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1 Introduction

Instrumental variables (IV) strategies are frequently applied in empirical economics to overcome

the potential endogeneity of a treatment variable, whose causal effect on some outcome variable

is of interest to researchers and policy makers. In general (i.e. nonparametric) treatment effect

models, an IV needs to satisfy a relevance condition, meaning that it monotonically shifts the

treatment, as well as validity: The IV must not be associated with treatment-outcome confounders

and not directly affect the outcome other than through the treatment, which is known as the IV

exclusion restriction. For binary treatment variables, the IV assumptions allow identifying the

local average treatment effect (LATE) on the compliers, whose treatment switches as a function

of the instrument, see Imbens and Angrist (1994), or the marginal treatment effect (MTE),

see Heckman and Vytlacil (2001) and Heckman and Vytlacil (2005). However, for multivalued

treatments like years of schooling, one merely identifies a weighted average of per-unit treatment

effects on several complier groups defined in terms of treatment-instrument reactions across the

support of the treatment.

Unfortunately, the weights of the per unit treatment effects are unidentified and the complier

groups might be overlapping, see Angrist and Imbens (1995). This complicates the interpretation

of the effect, unless one is willing to assume homogeneous treatment effects across compliers

and treatment levels. For LATE evaluation, multivalued treatments are therefore often binarized

based on a specific threshold in the support of the multivalued treatment that appears interesting

from a policy perspective. For instance, rather than considering years of schooling and aiming at

evaluating a weighted average effect of a one year increase in schooling, one might prefer analyzing

a binary indicator for college education for those whose college state reacts to the instrument. A

further motivation is the raising interest in the evaluation of the MTE, which is defined as the

average effect on those who are indifferent between taking and not taking a binary treatment for a

specific value of the instrument. This is also reflected by the fact that the MTE framework makes

use of the conditional probability to receive a binary treatment (given the instrument and possibly

further control variables) for identification. Accordingly, studies estimating MTEs commonly
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make use of binarized versions of originally multivalued treatments. For example, Carneiro,

Lokshin, and Umapathi (2017) use a distance to school instrument evaluate the effects of upper

secondary schooling. For other examples of MTE analyses binarizing potentially multivalued

treatments, see for instance Carneiro, Heckman, and Vytlacil (2011); Cornelissen, Dustmann,

Raute, and Schönberg (2016); Felfe and Lalive (2017).

This paper demonstrates that binarizing multivalued treatments generally entails a violation

of the IV exclusion restriction. Specifically, the violation occurs if (i) the IV affects the multiva-

lued treatment within support areas below and/or above the threshold for binarization and (ii)

such IV-induced changes in the multivalued treatment affect the outcome. As a methodological

contribution, we show that part (i) has testable implications when the original treatment variable

prior to binarization is observed. A necessary (but not sufficient) condition for ruling out ‘off-

threshold’ compliance, i.e. IV effects on the multivalued treatment within support below or above

the threshold, is a particular first stage condition. When binarizing the treatment at alternative

values across its support, the first stage effect of the instrument must weakly increase up to the

threshold actually chosen by the researcher, and weakly decrease thereafter. This can be tested

in a moment inequality framework, see for instance Andrews and Shi (2013).

Furthermore, we consider two special cases of this first stage condition, firstly, that any

compliers are situated at the threshold and secondly, that any compliers are situated at extreme

values of the multivalued treatment. We show that both conditions allow identifying average per

unit treatment effects for a well defined complier group (rather than an average of several complier

groups) with unknown weights and that the conditions can be tested by means of standard F-

tests. We apply our tests to wage market data from the National Longitudinal Survey of Young

Males (NLSYM) as analysed in Card (1995). We consider an indicator for graduating from a 4

year college as binarized schooling treatment, where a dummy for proximity to college serves as

instrument, and show that the exclusion restriction might be violated for the binarized treatment

in some specifications.

Our paper relates to a growing literature on testing the assumptions for the nonparametric
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identification of the LATE and MTE with binary treatments. Balke and Pearl (1997) derive

testable constraints whose violation would imply a negative density of compliers for some value

of a binary outcome, even thought the lower theoretical bound of densities is zero. Heckman and

Vytlacil (2005) generalize these constraints to the continuous outcome case. Kitagawa (2015)

proposes a test of the constraints in a moment inequality framework based on resampling variance-

weighted Kolmogorov-Smirnov-type statistics on the supremum of violations. Mourifié and Wan

(2017) suggest an alternative test that allows controlling for covariates in a user-friendly way.

Huber and Mellace (2015) show that the LATE assumptions imply an alternative set of

constraints related to the mean outcomes of non-compliers whose treatment does not react to the

instrument. Their mean potential outcomes can be both point identified and bounded in specific

treatment states. It can therefore be tested in a moment inequality framework whether the point

identified means fall inside the respective bounds. Any such moment inequality-based tests check

for necessary, albeit not sufficient conditions. That is, the tests are inconsistent in the sense that

there may exist data generating processes which satisfy the constraints, but nevertheless violate

the LATE assumptions. Sharma (2016) offers an extension by determining the likelihood that the

LATE assumptions hold when the testable constraints are satisfied. Specifically, the test defines

classes of valid causal models satisfying the LATE assumptions as well as as invalid models and

compares their marginal likelihood in the observed data.

As an alternative strategy, Slichter (2014) suggests testing conditional IV validity by finding

covariate values for which the instrument has no first stage and checking whether the instrument

is associated with the dependent variable despite the absence of a first stage. Our tests differ

from this and the previously mentioned approaches in that it exploits information in a multiva-

lued treatment prior to binarization, rather than in conditional means or densities of the out-

come. We therefore propose a further approach for testing IV validity in cases where the binary

treatment was generated from a variable with richer support. In the presence of both a binary

and a continuous instrument, Dzemski and Sarnetzki (2014) suggest a nonparametric overiden-

tification tests for IV validity. In contrast, our approach does not require a second IV. Finally,
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if outcome variables are observed in periods prior to instrument assignment, placebo tests ba-

sed on estimating the effect of the instrument on pre-instrument outcomes may be performed to

check the plausibility of IV validity. Our tests do not rely on the availability of pre-instrument

outcomes.

For the multivalued treatment case, Angrist and Imbens (1995) discuss the testable constraint

that the cumulative distribution functions of the treatment in the groups receiving and not

receiving the instrument, respectively, must not cross (stochastic dominance). As argued by the

authors, this would point to a violation of monotonicity of the treatment in the instrument,

conditional on IV validity. Fiorini and Stevens (2014) point out that testing this necessary

(albeit not sufficient) condition can also have power against violations of IV validity, conditional

on monotonicity. Our framework is different in that we assume that the IV relevance and validity

assumptions hold for the original multivalued treatment, but not necessarily for the binarized

treatment, for which we test the exclusion restriction.

This paper proceeds as follows. Section 2 introduces the econometric framework and presents

assumptions related to binarized treatments. Section 3 discusses testable implications of the

assumptions along with testing approaches. Section 4 presents an application to data from the

NLSYM. Section 5 concludes.

2 Econometric framework and assumptions

We denote by D a multivalued treatment variable that is ordered discrete, D ∈ {0, 1, ..., J}

with J+1 being the number of possible treatment doses, or even be continuously distributed. An

example is years of education. Y denotes the (discrete or continuous) outcome on which the effect

ought to be estimated, for instance earnings in the labor market later in life. Under endogeneity,

unobserved factors affect both D and Y such that treatment effects cannot be identified from

simple comparisons of different observed levels of the treatment. One possible solution is the

availability of a an instrumental variable (IV), denoted by Z, which is relevant in the sense that
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it influences D and valid in the sense that it is not associated with unobserved factors and does

not directly affect the outcome.

For the formal discussion of the identifying assumptions and testable implications, we use

the potential outcome framework, see for instance Rubin (1974). Denote by Dz the potential

treatment state that would occur if the instrument Z was exogenously set to some value z, and

by Yd the potential outcome with the treatment exogenously set to some value d in the support of

D. We will henceforth assume a binary instrument (Z ∈ {1, 0}), which simplifies the exposition.

but discuss a straightforward extension to a continuous or multivalued instrument at the end of

section 3.

The starting point for our analysis is the standard IV assumptions, which will be maintained

throughout the paper:

Assumption 1 (IV validity and relevance):

(a) Z⊥(D1, D0, Y0, Y1, ..., YJ) (IV independence),

(b) Pr(D1 ≥ D0) = 1 and Pr(D1 > D0) > 0 (positive monotonicity).

where “⊥” denotes independence. Assumption 1(a) implies two conditions. First, the instrument

must be random so that it is unrelated to factors affecting the treatment and/or outcome. There-

fore, not only the potential outcomes/treatment states, but also the types, which are defined by

the joint potential treatment states, are independent of the instrument. Second, Z must not have

a direct effect on Y other than through D, i.e., satisfy an exclusion restriction, which can be seen

from the fact that the potential outcomes are only defined in terms of d rather than z and d.1

The first part of Assumption 1(b) implies that the treatment of any individual does not decrease

in the instrument. The second part assumes the existence of individuals whose treatment state

positively reacts to the treatment. Both parts together imply a positive first stage effect of the

instrument on the treatment: E(D|Z = 1) − E(D|Z = 0) > 0. We note that Assumption 1(b)

1To make these two aspects explicit, Assumption 1(a) may be postulated as two conditions, see Angrist, Imbens,
and Rubin (1996): (i) Z⊥(D1, D0, Y1,0, Y0,0, Y1,1, Y0,1, ..., Y1,J , Y0,J) and (ii) Y1,d = Y0,d = Yd for all d in the support
of D (exclusion restriction), where Yz,d denotes a potential outcome defined in terms of both the instrument z and
the treatment d.
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could be replaced by negative monotonicity: Pr(D1 ≤ D0) = 1 and Pr(D1 < D0) > 0. From an

econometric perspective, both versions are equivalent, because when redefining the instrument

under negative monotonicity to be 1− Z, Assumption 1(b) is satisfied.

If D was binary, the local average treatment effect (LATE) on the so-called compliers, who

switch treatment from 0 to 1 as a response to a switch in the instrument from 0 to 1, could be

identified by the probability limit of two stage least squares (TSLS) or the Wald estimator, see

Angrist and Imbens (1995). That is, under Assumption 1 andD ∈ {0, 1}, E[Y1−Y0|D1−D0 = 1] =

E(Y |Z=1)−E(Y |Z=0)
E(D|Z=1)−E(D|Z=0) . For a multivalued treatment, however, the causal effect for a single complier

population defined by specific potential treatment states, e.g. for those increasing treatment from

2 to 3 when the instrument is switched from 0 to 1, is not identified. Angrist and Imbens (1995)

show for ordered discrete treatments that it is merely possible to identify a weighted average of

causal effects of unit increases in the treatment, Yj−Yj−1, j ∈ {1, ..., J}. Specifically, the authors

show in the proof of their Theorem 1 that under Assumption 1,

E(Y |Z = 1)− E(Y |Z = 0) =

J∑
j=1

E[(Yj − Yj−1)|D1 ≥ j > D0] · Pr(D1 ≥ j > D0), (1)

and that

E(D|Z = 1)− E(D|Z = 0) =
J∑

j=1

Pr(D1 ≥ j > D0). (2)

It follows that

E(Y |Z = 1)− E(Y |Z = 0)

E(D|Z = 1)− E(D|Z = 0)
=

J∑
j=1

wj · E(Yj − Yj−1|D1 ≥ j > D0) = ∆w, (3)

where the weights are given by

wj =
Pr(D1 ≥ j > D0)∑J
j=1 Pr(D1 ≥ j > D0)

. (4)

Note that 0 ≤ wj ≤ 1 and
∑J

j=1wj = 1. Therefore, the probability limits of TSLS or the
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Wald estimator equal a weighted average of per-unit treatment effects on various complier groups

defined by different margins of the potential treatments. The weights of the per unit treatment

effects, however, remain unidentified. Furthermore, the complier groups might be overlapping.

Some individuals could, for instance, satisfy both (D1 ≥ j > D0) and (D1 ≥ j+1 > D0) for some

j and therefore be accounted multiple times. This arguably compromises the interpretability of

the effect.

Many empiricists apparently circumvent such issues of interpretability by binarizing a mul-

tivalued treatment. Examples include the effect of a binary indicator for college attendance, in-

strumented for instance by college proximity (Kane and Rouse, 1993; Carneiro, Heckman, and

Vytlacil, 2011), or the impact of fertility measured by a dummy for having three or more child-

ren, instrumented by same-sex sibship or twin births (Angrist and Evans, 1998; Mogstad and

Wiswall, 2016; Black, Devereux, and Salvanes, 2005)). Binarization is also common in the litera-

ture on the MTE, a parameter that can be regarded as the limit of the LATE for an infinitesimal

change in the instrument. See Carneiro, Lokshin, and Umapathi (2017); Carneiro, Heckman, and

Vytlacil (2011); Cornelissen, Dustmann, Raute, and Schönberg (2016); Felfe and Lalive (2017)

for examples in the context of returns to college and child care, respectively.

Let D∗z = I{Dz ≥ j∗} denote the potential state of the binarized treatment under z ∈ {0, 1},

where I{a} is the indicator function that is equal to one when a holds and zero otherwise, while

j∗ denotes a specific threshold value in the support of D. This allows defining the average effect

among those whose treatment state passes the threshold when switching the instrument from 0

to 1:

∆∗ = E[YD1 − YD0 |D∗1 −D∗0 = 1] = E[YD1 − YD0 |D1 ≥ j∗ > D0] (5)

=

J∑
j=1

E[Yj − Yj−1|D1 ≥ j > D0, D1 ≥ j∗ > D0] · Pr(D1 ≥ j > D0|D1 ≥ j∗ > D0),

The expression following the second equality in (5) shows that ∆∗ is a weighted average of effects

across compliers satisfying D∗1−D∗0 = 1, even though they could be defined by different potential
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(original) treatments D1, D0. That is, the effect refers to all compliers satisfying D1 ≥ j∗ > D0,

no matter how heterogeneous they are in terms of D1 and D0, which is important to bear in mind

for interpretation. ∆∗ generally differs from ∆w identified in (3): the latter identifies an average

effect of unit-level changes while the former corresponds to a total effect, i.e. the sum of effects

of unit-level changes that are weighted with the probability that they occur among compliers

switching the binarized treatment as a response to the instrument.

As a matter of fact frequently disregarded by empiricists, ∆∗ is generally not identified by the

probability limit of the Wald estimator or TSLS based on D∗ rather than D,

WD∗ =
E(Y |Z = 1)− E(Y |Z = 0)

E(D∗|Z = 1)− E(D∗|Z = 0)
. (6)

This is the case despite of the supposed analogy of (6) to the results of Angrist and Imbens (1995)

for a (truly) binary treatment. However, a binarization of the treatment variable generally entails

a violation of the exclusion restriction such that Assumption 1a for D does not carry over to D∗.

To see this, rewrite (1) using the law of total probability and Assumption 1(b) as

E(Y |Z = 1)− E(Y |Z = 0)

=
J∑

j=1

E[Yj − Yj−1|D1 ≥ j > D0, D1 ≥ j∗ > D0] · Pr(D1 ≥ j > D0, D1 ≥ j∗ > D0)

+
J∑

j=1

E[Yj − Yj−1|D1 ≥ j > D0, D1 > D0 ≥ j∗] · Pr(D1 ≥ j > D0, D1 > D0 ≥ j∗)

+

J∑
j=1

E[Yj − Yj−1|D1 ≥ j > D0, j
∗ > D1 > D0] · Pr(D1 ≥ j > D0, j

∗ > D1 > D0)

=
J∑

j=1

E[Yj − Yj−1|D1 ≥ j > D0, D1 ≥ j∗ > D0] · Pr(D1 ≥ j > D0, D1 ≥ j∗ > D0) (7)

+

J∑
j=1

E[Yj − Yj−1|D1 ≥ j > D0, I{D1 ≥ j∗ > D0} = 0] · Pr(D1 ≥ j > D0, I{D1 ≥ j∗ > D0} = 0).
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By summing over j, (7) simplifies to

= E[YD1 − YD0 |D1 ≥ j∗ > D0] · Pr(D1 ≥ j∗ > D0)

+ E[YD1 − YD0 |D1 > D0, I{D1 ≥ j∗ > D0} = 0] · Pr(D1 > D0, I{D1 ≥ j∗ > D0} = 0). (8)

Note that the condition (D1 > D0, I{D1 ≥ j∗ > D0} = 0) captures complier groups whose

treatment reacts to the instrument (D1 > D0), but in a way that it does not cross the threshold

j∗ (I{D1 ≥ j∗ > D0} = 0). Furthermore, consider the denominator of (6):

E(D∗|Z = 1)− E(D∗|Z = 0)

= Pr(D ≥ j∗|Z = 1)− Pr(D ≥ j∗|Z = 0) = Pr(D1 ≥ j∗)− Pr(D0 ≥ j∗)

= Pr(D1 ≥ j∗ > D0) + Pr(D0 ≥ j∗)− Pr(D0 ≥ j∗)

= Pr(D1 ≥ j∗ > D0). (9)

where the second equation follows from Assumption 1(a) and the third from 1(b). Division of

(8) by (9) reveals that WD∗ does generally not identify ∆∗ due to the second line in (8). The

latter corresponds to the contribution of compliers whose treatment is not induce to cross j∗ by

the instrument. For this reason, the LATE of interest is only obtained in the special cases that

either such off-threshold compliers do not exist or that their average treatment effect is zero, as

formalized in Assumptions 2 and 3.

Assumption 2 (zero average treatment effect among non-captured compliers):

E[YD1 − YD0 |D1 > D0, I{D1 ≥ j∗ > D0} = 0] = 0.

Assumption 3 (full capturing of compliers by threshold):

Pr(D1 > D0 ≥ j∗) = Pr(j∗ > D1 > D0) = 0.

Assumption 2 postulates the absence of an average causal effect for the compliers not captured

by the threshold. That is, given a first stage not ‘going through’ j∗, the average second stage

9



for these compliers must be zero. On the other hand, Assumption 3, which can be alternatively

formalized as Pr(I{D1 ≥ j∗ > D0} = 0|D1 > D0) = 0, implies that all compliers are captured

by the threshold in the sense that their treatment state is shifted from some D0 < j∗ to some

D1 ≥ j∗ by the instrument. Thus, there exist no complier groups whose treatment is affected by

instrument in a way that D0, D1 are either both below or both above the threshold. This rules

out first stages not ‘going through’ the threshold j∗. Therefore, the IV exclusion restriction fails

with binarized treatments if (i) there exist compliers not captured by the definition of D∗ and

(ii) the instrument-induced changes in treatment actually affects the outcome of these subjects.

In contrast, if either Assumption 2 or 3 hold,

E(Y |Z = 1)− E(Y |Z = 0) = E[YD1 − YD0 |D1 ≥ j∗ > D0] · Pr(D1 ≥ j∗ > D0), (10)

such that WD∗ = ∆∗. Considering the expression after the first equality in (7) reveals that

identification is also obtained by combinations of Assumptions 2 and 3 for different subsets of

compliers not captured by D∗. For instance, Assumption 3 could hold below the threshold,

securing no compliers in this region, while Assumption 2 could hold above the threshold, securing

no treatment effect among these compliers. If neither Assumption 2 and 3 hold, it follows from

(8) that the direction of the bias in WD∗ is determined by the direction of the average treatment

effect among off-threshold compliers. Unfortunately, imposing the popular Monotone Treatment

Response (MTR) assumption of Manski and Pepper (2000), which implies that the treatment

effect goes into the same direction for both threshold and off-threshold compliers, does not permit

bounding the absolute size of ∆∗. Quite on the contrary, MTR implies that WD∗ overstates

(understates) ∆∗ whenever it is positive (negative).

We subsequently discuss two special cases of Assumption 3 for the reason that they allow

identifying ∆w, the weighted average of per-unit treatment effects, based on WD∗ . To this end,
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we rewrite (1) as

E(Y |Z = 1)− E(Y |Z = 0) =

j∗−1∑
j=1

E[Yj − Yj−1|D1 ≥ j > D0] · Pr(D1 ≥ j > D0)

+ E[Yj∗ − Yj∗−1|D1 ≥ j∗ > D0] · Pr(D1 ≥ j∗ > D0) (11)

+

J∑
j=j∗+1

E[Yj − Yj−1|D1 ≥ j > D0] · Pr(D1 ≥ j > D0).

and note that the probabilities in the first and third term are 0 by Assumption 3. The first special

case occurs if and only if all compliers are concentrated at the threshold such that the instrument

has no effect on the treatment at margins of D other than j∗, see also the discussion in Section

3.1 of Angrist and Imbens (1995).

Assumption 4 (concentration of compliers at threshold):∑J
j 6=j∗ Pr(D1 ≥ j > D0) = 0.

It follows from Assumption 4 that (9) and (2) are equivalent, implying E(D|Z = 1)− E(D|Z =

0) = E(D∗|Z = 1)−E(D∗|Z = 0) and that E(Y |Z = 1)−E(Y |Z = 0) = ∆∗ ·Pr(D1 ≥ j∗ > D0)

in (11). It follows that WD∗ = ∆∗ = ∆w. In cases where Assumption 4 is violated, Angrist and

Imbens (1995) show that WD∗ is larger in absolute terms than ∆w.

As second special case, assume that all compliers in the population switch their treatment

from the lowest (D0 = 0) to the highest (D1 = J) possible treatment value as response to the

instrument, while there exist no compliers with other treatment margins affected. This implies

that the complier population remains constant across values j.

Assumption 5 (concentration of compliers at extreme treatment values):

I{D1 ≥ j > D0} = I{D1 ≥ j∗ > D0} for all j, j∗ ∈ {1, ..., J}.

Note that this assumption is stated in terms of indicator functions in contrast to Assumption 4,

which is stated in terms of compliance probabilities. The reason is that while constant complier

sets across j imply constant compliance probabilities, the converse is not true: There might

for example exist compliers that shift D from 0 to 1 and others that shift from 1 to 2 when
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switching the instrument from 0 to 1. If the shares of these complier groups are the same, the

complier probabilities would remain constant across j ∈ {1, 2}, despite the existence of compliers

at intermediate treatment values.

Under Assumption 5, (11) simplifies to


J∑

j=1

E[(Yj − Yj−1)|D1 ≥ j∗ > D0]

 · Pr(D1 ≥ j∗ > D0). (12)

Therefore, WD∗ = ∆∗ and corresponds to the sum of impacts related to unit-level changes in

treatment D across the entire support of the latter. This implies ∆w = ∆∗/J , i.e. the average per

unit effect corresponds to the sum of effects across all possible unit-level changes divided by the

number of possible treatment states J . The reason is that under Assumption 5, the weights in

(4) become Pr(D1≥j∗>D0)
J ·Pr(D1≥j∗>D0) = 1/J , while in (3), E(Yj − Yj−1|D1 ≥ j > D0) = E(Yj − Yj−1|D1 ≥

j∗ > D0) . Therefore,

∆w =
E(Y |Z = 1)− E(Y |Z = 0)

E(D|Z = 1)− E(D|Z = 0)
=

E(Y |Z = 1)− E(Y |Z = 0)

E(D∗|Z = 1)− E(D∗|Z = 0)

/
J =

∆∗

J
. (13)

3 Testing Assumptions 3, 4, and 5

This section introduces tests for necessary conditions of Assumptions 3, 4, and 5. Under the

satisfaction of Assumption 3, it must hold that the share of compliers whose treatment is induced

to pass j by the instrument weakly increases when gradually increasing j up to j∗, while weakly

decreasing thereafter. The reason is that Assumption 3 requires that j∗ captures all compliers,

implying that the first stage is maximized at the threshold. Formally, the following weak moment

inequality constraints need to hold:

Pr(D1 ≥ j′ > D0) ≥ Pr(D1 ≥ j′′ > D0) for all j∗ ≥ j′ > j′′ > 0,

Pr(D1 ≥ j′ > D0) ≤ Pr(D1 ≥ j′′ > D0) for all J ≥ j′ > j′′ ≥ j∗. (14)
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Proof. Consider the first line of (14) and note that

Pr(D1 ≥ j′ > D0) = Pr(D1 ≥ j′ > j′′ > D0) + Pr(D1 ≥ j′ > D0 ≥ j′′)

= Pr(D1 ≥ j′′ > D0) + Pr(D1 ≥ j′ > D0 ≥ j′′) (15)

The first equality follows from the law of total probability and the second from Assumption 3.

To see this, note that Pr(D1 ≥ j′′ > D0) = Pr(D1 ≥ j′ > j′′ > D0) + Pr(j′ > D1 ≥ j′′ > D0).

However, by Assumption 3, Pr(j′ > D1 ≥ j′′ > D0) = 0 for any j′ ≤ j∗, such that Pr(D1 ≥

j′′ > D0) = Pr(D1 ≥ j′ > j′′ > D0). Therefore, it follows from Pr(D1 ≥ j′ > D0 ≥ j′′) ≥ 0 that

Pr(D1 ≥ j′ > D0) ≥ Pr(D1 ≥ j′′ > D0). The proof of the second line of (14) is analogous and is

therefore omitted.

By Assumption 1(a) and (b), (14) implies (in analogy to the discussion in (9) for Pr(D1 ≥

j∗ > D0)) that

βj ≥ βj′ for all j∗ ≥ j > j′ > 0,

βj ≤ βj′ for all J ≥ j > j′ ≥ j∗, (16)

where βj = Pr(D ≥ j|Z = 1) − Pr(D ≥ j|Z = 0) denotes the first stage effect of Z on the

probability that D is larger or equal to some value j. This allows formulating the following null

hypothesis for testing Assumption 3, conditional on the satisfaction of Assumption 1:

H0 :
βj+1 − βj ≥ 0, for all j∗ ≥ j > 0,

βj − βj+1 ≥ 0, for all J > j ≥ j∗

It is important to see that the satisfaction of the null hypothesis in (17) is necessary, albeit not

sufficient for Assumption 3. One can easily construct cases in which the weak inequalities hold,

even though a subset of individuals complies off threshold. Concerning the practical implementa-

tion, it suffices to implement the test for adjacent βj parameters because of their nested nature:

β2 ≥ β0 provide no additional restrictions on the data when β2 ≥ β1 and β1 ≥ β0. These condi-
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tions can be verified using testing procedures for moment inequality constraints, see for instance

Andrews and Shi (2013).

An implementation is available in the ‘cmi test’ command for the statistical software ‘Stata’,

see Andrews, Kim, and Shi (2017), which we use in our application presented in Section 4. We

to this end reconsider the first line of (17) and note that

βj+1 − βj = Pr(D ≥ j + 1 | Z = 1)− Pr(D ≥ j + 1 | Z = 0) (17)

− Pr(D ≥ j | Z = 1)− Pr(D ≥ j |> Z = 0)

= Pr(D = j | Z = 0)− Pr(D = j | Z = 1)

A symmetric argument follows for the second line. Therefore, (17) can be rewritten in the

following way based on inverse probability weighting by E(Z) and 1− E(Z):

E(mj(D,Z) | X) ≥ 0 (18)

where mj(D,Z) = I{D = j} E(Z)−Z
(1−E(Z))E(Z) for j∗ > j ≥ 0

and mj(D,Z) = I{D = j} Z−E(Z
(1−E(Z))E(Z) for J > j ≥ j∗.

These constraints match the structure of the ‘cmi test’ command of Andrews, Kim, and Shi

(2017), which verifies the sample analog of (18). Testing may be implemented both based on

Cramer-von-Mises and Kolmogorov-Smirnov-type statistics on average or maximum violations

across j, respectively, and both is considered in our empirical application. Control variables can

be included in this testing approach simply by replacing all instances of E(Z) with E(Z|X), see

example 6 in Andrews and Shi (2014).

Concerning Assumption 4, both a necessary and sufficient condition for its satisfaction is that

any first stage effect of Z on on the probability that D ≥ j must be zero unless j = j∗, because

all compliers must be located at the threshold. Formally,

H0 : βj = 0 for all j 6= j∗. (19)

14



Finally, a necessary condition for Assumption 5 is that the first stages or complier probabilities

remain constant across j. As highlighted in the discussion of Assumption 5 in Section 2, this is

implied by an concentration of compliers at extreme treatment values, albeit not sufficient for

ruling out other complier groups. Formally, the hypothesis to be tested is

H0 : βj = βj+1 for all j < J. (20)

Both (19) and (20) can be tested by means of an F -test in a system of equations in which

treatment indicator functions I{D ≥ j} at different values j are regressed on a constant and Z.

We note that the testing approaches can be extended to multivalued discrete as well as conti-

nuous instruments. For multivalued discrete instruments, the conditions given in (17), (19), and

(20) must hold when defining βj = Pr(D ≥ j|Z = z′)− Pr(D ≥ j|Z = z′′) for any values z′ > z′′

in the support of Z. For continuous instruments, the conditions given in (17), (19), and (20) must

hold for infinitesimal increases in Z across the entire support of Z. In this case βj = ∂ Pr(D≥j|Z=z)
∂z

for any z in the support of Z. Finally, if the IV assumptions are not assumed to hold uncondi-

tionally but given control variables, the latter might be included as conditioning set in the mo-

ment inequality- and regression-based tests. In (18), for instance, control variables can be con-

sidered by replacing E(Z) everywhere with the conditional expectation of Z given the controls,

also known as instrument propensity score.

4 Empirical application

We apply our method to labor market data previously analysed by Card (1995) that comprise

3,010 observations and come from the 1966 and 1976 waves of the U.S. National Longitudinal

Survey of Young Men (NLSYM). Card (1995) considers a dummy for proximity to a four-year

college in 1966 as an instrument for the likely endogenous schooling decision to estimate returns

to schooling in 1976. The intuition is that proximity should affect the schooling decision of some

individuals, for instance, due to costs associated with going to college when not living at home.
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The original data contain years of schooling as measure of education, but similar to Carneiro,

Heckman, and Vytlacil (2011), we binarize the treatment to represent having at least 16 years of

education, roughly comparable to a four-year college degree.

Table 1: Summary statistics,

Variable N mean s.d. min max comment

Years of schooling 3,010 13.3 2.68 1 18 1976

College dummy 3,010 0.27 0.44 0 1 Dummy for 16 or more years of education

College proximity 3,010 0.68 0.47 0 1 = 1 if near 4-year college in 1966

Age 3,010 28.1 3.14 24 34

Father’s educ 2,320 10.0 3.72 0 18

Mothers’ educ 2,657 10.3 3.18 0 18

Region 3,010 4.64 2.27 1 9 Regional dummy, 1966

SMSA 3,010 0.71 0.45 0 1 Metropolitan area of residence dummy

Black 3,010 0.23 0.42 0 1

Family type 2,796 1.07 0.38 0 2 Single mom / both parents / step-parent

IQ 2,061 102.4 15.4 50 149

Note: Data source: National Longitudinal Study of Young Men, 1966 and 1976 waves.

The variables used in our analysis are summarized in Table 1. The multivalued treatment is

years of schooling in 1976, which varies from 1 to 18 years with a mean of 13.3. Our binarized

treatment is a dummy for having 16 or more years of schooling, which has a mean of 0.27. The

instrument is a dummy equal to 1 for people living close to a 4-year college in 1966, which around

68 % of the sample did. In addition, we report a range of control variables, including age, parents’

education, geographic dummies, race, a dummy for family type at age 14, and IQ score.

To illustrate our tests, we first estimate the βj parameters outlined in Section 3, which reflect

increases in the probability of having j or more years of schooling when living close to a four-year

college compared to living further away, for all margins of education in the Card data. To this end

we estimate a system of equations in which the indicators of having at least j years of education

at various j are regressed on a constant and the instrument. Figure 1 displays the βj estimates

along with pointwise 95% confidence intervals. The results in the top graph are without controls,

while in the remainder graphs we control for the variable(s) indicated above the respective graph

in a fully saturated way, i.e. nonparametrically.2 The reason for this is that proximity to college

2We drop observations in singleton groups (observations with unique combinations of control variables) when
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Figure 1: Effects of living close to a four-year college on years of education

Note: Data from NLSYM. Figure shows the estimated impact on binary measures of years of education above j of
living close to a four-year college. The threshold for the binarized treatment is 16 or more years of education as
indicated by a dashed line, corresponding roughly to a four-year college degree. Fully flexible controls as indicated
above each panel.



is likely associated with factors also affecting wages, like local labor market conditions or family

background, which would violate Assumption 1. As testing Assumptions 3, 4, and 5 is conditional

on Assumption 1, we similarly to Card (1995) control for regional variables (SMSA and region in

the US) and socio-economic factors (e.g. parents’ education and ethnicity) to increase plausibility

of IV exogeneity.

Inspecting the graphs of Figure 1 allows eye-balling the plausibility of our assumptions. We

observe that the pattern of coefficients in the various scenarios is not consistent with Assumption

4, which requires all coefficients except βj∗ to be 0. Neither does it appear to support Assumption

5, which requires the coefficients to be constant across j. Concerning Assumption 3, notice that

the dashed line indicating 16 years of education is consistently to the right of (rather than at)

the mode of the βj estimates, pointing to a violation of the conditions in (14).

To formally investigate Assumption 3, we test the constraints in (18) by the ‘cmi test’ com-

mand of Andrews, Kim, and Shi (2017) based on Cramer-von-Mises and Kolmogorov-Smirnov

statistics.3 The results are provided in panel A of Table 2. Without including control variables,

the p-value of either statistic is 0.062, pointing to a marginally significant violation of the con-

straint. When including various control sets, p-values increase, but remain marginally significant

for several specifications. Also note the low and insignificant first stage coefficient in the more

robust specifications, challenging the relevance of the instrument in these specification even when

we cannot reject Assumption 3. For testing Assumptions 4 and 5, we test the null hypotheses in

(19) and (20) using F -tests in our system of equations used to estimate the βj parameters.4 The

outcomes are displayed in panels B and C of Table 2, respectively. Both assumptions are rejected

at the 5% level in most specifications, the exceptions being the specification controlling flexibly

estimating the βj coefficients (for a discussion, see e.g. Correia (2015)). In order to keep a consistent sample, we
also drop singleton observations for the conditional moment inequality test discussed further below, leading to a
drop in observations as we include more control variables in Table 2. Observations in singleton groups would in
any case not contribute to the estimation of βj or to the rejection of the restrictions in (18), because the empirical
moment conditions for these observations for instance in (18) are 0.

3A small program for Stata, available upon request, estimates and plots the βj coefficients, tests Assumption 4
and 5 using F -tests and constructs the moment inequalities and tests them using cmi test.

4The system of equations is estimated in a stacked regression using the reghdfe command (Correia, 2014) to
account for the covariance of the βj estimates. Standard errors are clustered at the individual level and robust to
heteroskedasticity.
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Table 2: Tests of instrument validity with a binarized instrument

(1) (2) (3) (4) (5) (6) (7)

A: Conditional moment inequalities tests of Assumption 3

Cramer-von-Mises type test statistic
Test statistic 1.618 3.028 2.764 2.783 1.801 2.686 0.178
Critical value 1% 2.260 5.151 3.530 3.615 3.157 3.840 0.313
Critical value 5% 1.697 4.358 3.006 3.092 2.681 3.321 0.272
Critical value 10% 1.437 4.059 2.765 2.834 2.404 3.028 0.249
p-value 0.062 0.501 0.101 0.115 0.363 0.206 0.514

Kolmogorov-Smirnov type tests statistic
Test statistic 13.570 10.725 11.187 14.983 7.800 10.984 3.980
Critical value 1% 18.953 21.858 18.626 19.238 18.693 17.005 11.409
Critical value 5% 14.233 17.651 14.955 15.733 14.360 13.958 8.792
Critical value 10% 12.050 15.593 13.136 14.140 12.392 12.302 7.689
p-value 0.062 0.492 0.202 0.072 0.467 0.181 0.656

B: F-test of Assumption 4

F 4.532 4.654 2.303 1.208 3.711 2.062 0.763
p-value 0.000 0.000 0.004 0.253 0.000 0.030 0.664

C: F-test of Assumption 5

F 4.639 4.755 2.449 1.173 3.794 2.301 0.723
p-value 0.000 0.000 0.002 0.282 0.000 0.014 0.717

Controls

Age X X
Fathers’ education X X
Mothers’ education X X
Region X X
SMSA X X
Black X X
Family type X X
IQ X

N 3,010 3,010 2,179 3,010 2,796 2,048 638

Note: Panel A shows the results from an F-test of βj = 0 for all j 6= j∗, testing the special case in Assumption
4. Panel B shows tests of whether all βj are the same, testing the special case in Assumption 5. Panel C shows
shows test statistics, critical values and resulting p-values from test of the moment inequalities in (15). All tests
performed with cmi test for Stata (Andrews, Kim, and Shi, 2017). Controls as indicated in the bottom panel.
Singleton groups are dropped.



for region and SMSA and the very parsimonious specification with all controls but IQ, which

has little power. The results therefore suggest that compliers do not exclusively choose schooling

levels situated at the threshold, i.e. 16 and 15 years with and without instrument, nor exclusi-

vely at the highest and lowest possible values of education. Therefore, the weighted average of

per-unit treatment effects, ∆w, cannot be recovered based on the binarized treatment.

Overall, our results point to the possibility that the exclusion restriction might be violated for

the binarized education measure considered, depending on control set. Even though the graphs

and estimates suggest that proximity to a four-year college indeed affects education, it may do

so not by an exclusive shift towards obtaining at least a four-year college degree. Rather, the

instrument seems to also affect the probability of both starting without finishing college and of

obtaining a two-year college degree. However, such possibilities are ignored when defining the

treatment as a four-year college degree. Judging from the graphs in Figure 1, the exclusion

restriction is more likely satisfied if treatment is defined as having at least some college education

versus having less education. In fact, constraints (17) and (18) cannot be rejected if the threshold

is chosen at the mode of an unimodal set of βj parameters. Yet, we need to bear in mind that

even in this case Assumption 3 might be violated, namely if some compliers shift from a two-year

college degree to a four-year degree. After all, we can only test necessary, albeit not sufficient

conditions for the exclusion restriction after binarization.

5 Conclusion

In the context of IV-based estimation, we discuss threats to the exclusion restriction when binari-

zing a multivalued endogenous treatment. Such a violation occurs whenever (i) the IV affects the

multivalued treatment within support areas below and/or above the threshold for binarization

and (ii) such IV-induced changes in the multivalued treatment affect the outcome. As a conse-

quence, IV estimation with a binarized treatment identifies the causal effect among individuals

whose binary treatment complies with the IV only if either (i) or (ii) can be ruled out. We show
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that (i) has testable implications that can be tested in a moment inequality framework when the

original treatment variable prior to binarization is observed. Furthermore, when ruling out (i)

and restricting the support of the multivalued treatment in a particular way, not only the average

complier effect of the binarized treatment, but also a weighted average of per-unit treatment ef-

fects of the multivalued treatment is recovered. We derived testable implications of these support

restrictions that can be verified by standard F -tests. Finally, we provided an empirical illustra-

tion to the estimation of returns to a four year college degree, a binarized treatment generated

from the multivalued measure of years of education. Our results suggested that such a coarse

definition of education may violate the exclusion restriction.

As a final word of caution, we emphasize that the threats to the exclusion restriction not only

arise when binarizing a treatment. The issues discussed in this paper prevail whenever the IV

affects a finer measure of treatment than used by the researcher in her IV analysis, even when finer

treatment measures are not available in the data. Examples include binning a truly continuous

treatment into a discrete number of categories or coarsening ordered discrete treatments into a

smaller number of categories (e.g. considering low vs. intermediate vs. high levels of education

rather than years of schooling). The conditions in this paper highlight under which circumstances

the IV validity for the underlying finer treatment measure carries over to a more coarsely defined

treatment.
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