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Quantitative study of optical pumping in the presence of spin-exchange relaxation

Yongqi Shi,1,2,3,* Theo Scholtes,1 Zoran D. Grujić,1 Victor Lebedev,1 Vladimir Dolgovskiy,1 and Antoine Weis1,†
1Physics Department, University of Fribourg, Chemin du Musée 3, CH-1700 Fribourg, Switzerland

2University of Chinese Academy of Sciences, Beijing 100049, China
3Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China

(Received 22 November 2017; published 24 January 2018)

We have performed quantitative measurements of the variation of the on-resonance absorption coefficients κ0 of
the four hyperfine components of the Cs D1 transition as a function of laser power P , for pumping with linearly and
with circularly polarized light. Sublevel populations derived from rate equations assuming isotropic population
relaxation (at a rate γ1) yield algebraic κ0(P ) dependences that do not reproduce the experimental findings from
Cs vapor in a paraffin-coated cell. However, numerical results that consider spin-exchange relaxation (at a rate
γse) and isotropic relaxation fit the experimental data perfectly well. The fit parameters, viz., the absolute value
of κ0, the optical pumping saturation power Psat , and the ratio γse/γ1, are well described by the experimental
conditions and yield absolute values for γ1 and γse. The latter is consistent with the previously published Cs-Cs
spin-exchange relaxation cross section.

DOI: 10.1103/PhysRevA.97.013419

I. INTRODUCTION

Optical pumping, invented in the 1950s and honored by the
1966 Nobel Prize in physics [1], is a method by which the
rotation and/or reflection symmetry of a light beam that is res-
onant with an atomic medium is transferred onto the medium
by subsequent photon absorption and/or reemission cycles.
When pumped with circularly polarized light, the medium will
acquire in this way a vector spin polarization (orientation),
which has the axial symmetry of the light polarization. When
pumped with linearly polarized light, the medium acquires a
second-rank tensor polarization (alignment), with rotational in-
variance around the polarization axis and reflection invariance
with respect to a plane perpendicular to it.

Since atomic magnetic moments are parallel or antiparallel
to the atomic spin polarization, optical pumping is an efficient
method for magnetizing a dilute (vapor, beam, or even liquid)
atomic sample. The interaction of the medium’s magnetization
with external static or time-varying magnetic fields forms the
basis for a wealth of applications of optically pumped media
in fundamental and applied research fields [2].

For sensitive applications one wishes to ensure a long
lifetime of the produced magnetization, by suppressing spin
relaxation due to atom-container wall or atom-atom collisions.
The former can be strongly suppressed by addition of a buffer
gas or by antirelaxation wall coatings. The latter cause a more
severe problem, in particular in alkali-metal vapors, where any
win in signal strength from an increased vapor pressure is
counteracted by an increase of the atomic collision rate and
the ensuing relaxation from spin-exchange collisions. While
spin-exchange relaxation can be suppressed in high-density
alkali-metal vapors [3], it remains a main sensitivity limiting

*yongqi.shi@unifr.ch
†antoine.weis@unifr.ch

factor in room temperature alkali-metal vapors in (vacuum)
wall-coated cells.

The initial goal of the study presented in this paper was the
experimental verification of model calculations describing the
decrease of the atomic absorption coefficient κ0 with increasing
light power P . We will show that under the assumption of
isotropic spin-relaxation one can derive algebraic expressions
for κ0(P ) from rate equations. Obtaining poor agreement
between the predicted and recorded dependences, we were led
to extend our theoretical model by including (nonisotropic)
spin-exchange relaxation. On the modeling side this implied
that the rate equations could no longer be solved analytically,
but required numerical procedures. We find that this extended
model for κ0(P ) yields an excellent description of the ex-
perimental results for all four hyperfine components of the
133Cs D1 transition under pumping with linearly and circu-
larly polarized light. The deployed fitting procedure yields
values of the absorption coefficients, the optical pumping
saturation power, and the ratio of the spin-exchange relaxation
rate to the isotropic relaxation rate, which are all in very
good agreement with theoretical expressions on an absolute
scale.

II. EXPERIMENTS

A. Apparatus

The experimental setup is shown in Fig. 1. We use light
from a fiber-coupled single-mode external-cavity diode laser
(Toptica, model DL pro) operated at ∼894 nm near the Cs
6S1/2 → 6P1/2 transition (D1 line). A small percentage of the
light is directed into a Doppler-free saturated absorption fre-
quency lock permitting one to actively lock the laser frequency
to one of the four Cs D1 hyperfine transitions.

The main part of the beam passes through a fiber-integrated
electro-optic modulator (EOM) (Jenoptik, model AM905b). A
small fraction of the light transmitted by the EOM is detected
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FIG. 1. Schematic of the experimental setup: ECDL, external-
cavity diode laser; SAFL, saturated absorption frequency lock; SMF,
single-mode fiber; EOM, electro-optic modulator; PI, proportional-
integral amplifier; PD1,2, photodiode; LP, linear polarizer; λ/4, quar-
ter waveplate; I /V , current-voltage converter; DSO, digital storage
oscilloscope; and Cs, Cs vapor cell. The magnetic shield and the coils
are not shown.

by a photodiode (PD1, Thorlabs, model DET36A/M). Com-
parison of the transimpedance-amplified photodiode signal
with a variable voltage Vset allows stabilizing the power P

transmitted by the EOM to a value P ∝ Vset using a feedback
loop with proportional-integral control electronics [4]. More
importantly, the feedback control allows scanning the power
P (t) of the laser light delivered to the experiment in an arbitrary
manner by applying a suitable voltage Vset(t) to the set value
input of the feedback circuit. The polarization of the laser
light can be changed from linearly polarized light to circularly
polarized by insertion of a quarter waveplate (λ/4) after the
polarizer.

The Cs vapor cell is an evacuated spherical Pyrex cell
[29(1) mm inner diameter] with a paraffin-coated inner wall,
which efficiently reduces the spin-relaxation rates due to wall
collisions [5]. The cell contains a saturated vapor of Cs atoms
that is in thermodynamic equilibrium (at room temperature)
with a droplet of solid cesium contained in a reservoir stem,
connected to the cell by an approximately 0.7-mm-diam
capillary.

The laser beam from the single-mode fiber has a well-
defined transverse Gaussian intensity distribution I (r) =
I0 exp(−2r2/w2) with w ≈ 2 mm at the cell position. It
propagates through the cell along the z direction and the
transmitted power is measured by a photodiode (PD2, Hama-
matsu, model S6775-01) followed by a current-voltage con-
verter (FEMTO, model DLPCA-200) whose voltage signal is
recorded by a 16-bit digital storage oscilloscope (TiePie, model
HS5).

The cell is mounted in the center of a three-layer cylindrical
μ-metal shield (not shown in the figure), in which the Bx , By ,
and Bz components of the remnant field (approximately equal
to several nT) are measured and then compensated using the
methods described in Refs. [6,7]. For this measurement and/or
compensation we use three pairs of well-calibrated coils (not
shown in the figure). After nulling all field components we
apply a static holding field B0 of approximately 40 nT for
the measurements proper. For measurements with circularly
polarized light, �B0 is oriented along the �k vector of the beam

FIG. 2. Transmission spectrum showing the hyperfine structure
of the Cs D1 transition in a paraffin-coated vapor cell. The colored
dots mark the frequencies at which the laser was set for the power
scans.

(z direction), while for measurements with linearly polarized
light it is oriented along the light polarization, i.e., the y

direction. The purpose of the holding field is to stabilize the
spin polarization produced by optical pumping in both cases. It
is well known [6,8] that this stabilization requires the Larmor
frequency of the holding field to obey ωL = γF B0 � γ1, where
γF ≈ 3.5 Hz/nT is the Cs ground state’s gyromagnetic ratio
and γ1 the longitudinal spin-relaxation time of that state.

B. Data recording

Figure 2 shows the dependence of the transmitted laser
power P on the laser frequency ω, when the latter is swept
over the four hyperfine components Fg → Fe of the Cs D1

transition. During this recording the power entering the cell
was stabilized using the procedure discussed above, hence the
flat off-resonance background Poff . The quantity of interest,
i.e., the on-resonance absorption coefficient κ0, is contained in
the contrast, i.e., the relative amplitudes of the absorption dips.

We recall that the goal of the study was the measurement of
the power dependence of κ0 of the four transitions. In principle,
this can be achieved by recording spectra like the one shown in
Fig. 2 for a set of discrete settings of the laser power. However,
we found the following method to be much more efficient
for achieving the set goal: Because of the power stabilization
procedure, the off-resonance power level Poff is independent
of the laser frequency. In order to extract the absorption
coefficient, it is therefore sufficient to know the transmitted
power at the five frequencies marked by dots in Fig. 2. While
the four on-resonance measurements Pon(Fg → Fe) are done
with the laser frequency actively locked to the corresponding
transition, the off-resonance measurement was done by red
detuning the frequency with respect to the 4 → 3 transition
by approximately 1 GHz. For each set frequency we vary the
incident laser power over the range of 1−10 μW by applying
a suitable time-dependent voltage Vset(t) to the set input of the
power stabilization system. Here Vset(t) was given the shape
of a quarter period of a sine wave (on a suitable offset, as
shown schematically in Fig. 1), thus ensuring a slower scan
speed at low power levels. This condition is required by the
fact that a low power level P implies a corresponding low
optical pumping rate γpump ∝ P0 and hence a correspondingly
longer time for achieving steady-state polarization conditions.
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(a) (b)

FIG. 3. Experimental measurements of the dependence of the optical thickness κ
Fg

q→Fe

0 L on the power Pin for all four hyperfine transitions
of the Cs D1 line. Data were recorded with both (a) linearly polarized and (b) circularly polarized light.

A 250-s time duration for a complete power scan was found
sufficient for ensuring undistorted Poff/on(t) dependences.

C. Extracting κ0 L

The light power of a laser beam traversing the Cs vapor cell
is given by

P (δω) = PinT e−κ(δω)L = P0T 2e−κ(δω)L, (1)

where Pin is the power inside the cell, P0 the power before the
cell, T = 0.92(1) the (power) transmission coefficient of each
cell window, L the length of the traversed atomic medium,
and δω = ωFg→Fe

− ω the detuning of the laser frequency ω

from an atomic transition frequency ωFg→Fe
. The absorption

coefficient can be expressed as

κ(δω) = κ0L(δω), (2)

where κ0 = κ(δω = 0) is the peak absorption coefficient and
L(δω) the spectral line shape function (Lorentzian, Doppler,
Voigt, or other profile), normalized such that L(0) = 1.

Denoting the off-resonance transmitted power by

Poff ≡ P (δω � �) = PinT , (3)

where � is the resonance linewidth, and the on-resonance
power by

Pon ≡ P (δω = 0) = PinT e−κ0L, (4)

one sees that the on-resonance optical thickness is given by

κ0L = − ln
Pon

Poff
. (5)

Following the procedure described above, we have measured
the Pon(Pin) dependences with the laser frequency set to the
dotted values in Fig. 2. Using Eq. (5) we have then extracted

the four κ
Fg

q→Fe

0 (Pin)L dependences. We performed these
measurements both with linearly (q = 0) and with circularly
(q = 1) polarized light. The experimental results are shown in
Fig. 3 and illustrate the well-known decrease of the absorption
(corresponding to an increase of the transmission) under the
effect of optical pumping.

III. THEORETICAL MODELING

In this section we describe our approach to the theoretical
modeling of the dependences shown in Fig. 3. We will first

show that under the assumption of isotropic spin relaxation in
the ground state one can derive algebraic expressions for the

four κ
Fg

q→Fe

0 (Pin) dependences.
We note that the cell’s sidearm (reservoir) points in a radial

direction with respect to the laser beam’s propagation direction,
thus breaking rotational symmetry. Since many wall collisions
randomize the directions of the atoms’ trajectories, before their
escape into the reservoir, the relaxation process associated with
this loss mechanism can be assumed to be isotropic. However,
we find that the assumption of isotropic relaxation gives rather
poor agreement with the experimental findings.

As argued in Ref. [5], we know that spin relaxation
in the deployed paraffin-coated cell has a strong contribu-
tion from spin-exchange collisions, which, by their nature
yield a nonisotropic (i.e., F - and m-dependent) relaxation.
In consequence, we have extended the theoretical model in
order to take both isotropic and spin-exchange collisions into
account.

A. Setting up rate equations

We describe the atomic vapor in terms of the populations
pF,m of the two hyperfine levels F = 3,4 of the 6S1/2 cesium
ground state. These populations are represented in terms of a
population vector �p with 16 = (2I + 1)(2Jg + 1) components
{p3,−3, . . . ,p3,+3,p4,−4, . . . ,p4,+4}. We neglect the population
difference due to the finite Boltzmann factor exp(−Ehf/kBT ),
Ehf being the hyperfine splitting, so that all populations are
equal to 1/16 when the medium is not spin polarized.

We consider laser light that is resonant with a given
hyperfine transition |Fg〉 ≡ |6S1/2,Fg〉 → |Fe〉 ≡ |6P1/2,Fe〉
of the Cs D1 line. Optical pumping will redistribute the ground-
state populations by subsequent photon absorption-reemission
cycles. Since the maximum photon absorption rate γabs in our
experiments is less than (2π ) × 100 Hz (for 10 μW, as shown
in Sec. V B) while the spontaneous photon emission from the
excited state occurs at a rate γem of several MHz, the pump rate
γpump(|Fg,mg〉 → |Fe,me〉) can be assumed to be equal to the
absorption rate γpump ∝ γabs, given by

γ
pump
Fe,me ;Fg,mg

= γ
Fg,mg

q→Fe,me

abs . (6)

Note that here and below we use ordered indices that are
to be read as Xi;j ≡ Xto;from. As shown in Appendix A, the
rate at which light is absorbed on a given sublevel transition
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FIG. 4. Hyperfine and magnetic sublevel structure used to discuss
the optical pumping rate equations.

|Fg,mg〉 → |Fe,me〉 in a Doppler-broadened medium is given
by

γ
Fg,mg

q→Fe,me

abs = c
(q)
Fe,me ;Fg,mg

�abs, (7)

where

c
(q)
Fe,me ;Fg,mg

= (2Fg + 1)(2Fe + 1)

×
(

Fe 1 Fg

−me q mg

)2{
Je Jg 1
Fg Fe I

}2

(8)

and

�abs = 4π3/2α|r|2
h̄�D

Pin

Seff
. (9)

Here Pin is the power carried by the laser beam inside
the cell, Seff is the beam’s effective cross section, �D

is the Doppler width, introduced in Appendix A 1, and
|r| = |〈6P1/2‖r‖6S1/2〉| is the reduced electric dipole matrix
element of the D1 transition.

The rate at which ground-state populations pFg,mg
are

transferred to excited states |Fe,me〉 (processes marked by the
upward red arrow in Fig. 4) can be expressed in terms of a
depopulation matrix D, whose matrix elements are given by

γ
pump
Fe,me ;Fg,mg

= DFe,me ;Fg,mg
�abs = c

(q)
Fe,me ;Fg,mg

�abs. (10)

As shown in Fig. 4 for the case of linearly polarized light
(q = 0), each pumping cycle (i.e., absorption-reemission cy-
cle) will transfer, in general, populations from a given state
|Fg,mg〉 (marked by a red dot in the figure) to six adjacent
sublevels (marked by blue dots).

The elements of the repopulation matrix R describing the
rates at which the ground-state levels |F ′

g,m
′
g〉 are repopulated

after one pumping cycle starting from |Fg,mg〉 are given by

γ
repop
F ′

g,m
′
g ;Fg,mg

= RF ′
g,m

′
g ;Fg,mg

�abs

= wF ′
g,m

′
g ;Fe,me

c
(q)
Fe,me ;Fg,mg

�abs, (11)

where the probabilities w are given by

wF ′
g,m

′
g ;Fe,me

= 2(2Fe + 1)(2F ′
g + 1)

×
(

F ′
g 1 Fe

−m′
g m′

g − me me

)2{
Je Jg 1
F ′

g Fe I

}2

.

(12)

The forefactors in Eq. (12) ensure that the probabilities are
normalized such that

∑
F ′

g,m
′
g
wF ′

g,m
′
g ;Fe,me

= 1 for any sub-
level |Fe,me〉. Defining a (dimensionless) pump operator P =
−D + R, the rate equations governing the temporal evolution
of the population vector are given by

�̇p = P�abs �p − γ11( �p − �p eq), (13)

where 1 is the unit operator and we have assumed that in
the absence of light (Pin = 0 → �abs = 0) the ground-state
populations relax isotropically (i.e., independently of Fg and
mg) at a rate γ1 towards the 16 equilibrium populations �p eq =
{1/16,1/16, . . . ,1/16}.

B. Solving the rate equations

For P = 0, the ground-state sublevel populations evolve
towards steady-state populations �pss that are defined by the
condition �̇p = 0. The 16-component steady-state population
vector is thus obtained by solving the system∑

j

(Rij�abs − Dij�abs − δij γ1)pss
j = γ1p

eq
i , (14)

or equivalently∑
j

(Rij x − Dij x − δij )pss
j = p

eq
i , (15)

of 16 algebraic equations, in which i and j denote the quantum
numbers of the 16 magnetic sublevels of the ground state.
In Eq. (15) we have introduced the dimensionless optical
pumping saturation parameter

x ≡ �abs

γ1
= 4π3/2α|r|2

h̄�Dγ1

Pin

Seff
≡ Pin

Psat
, (16)

where

Psat = h̄�Dγ1Seff

4π3/2α|r|2 (17)

is the optical pumping saturation power. Writing out the
expression (15) explicitly yields

4∑
Fg=3

+Fg∑
mg=−Fg

[
δFg,F̃g

(
wF ′

g,m
′
g ;Fe,me

c
(q)
Fe,me ;Fg,mg

− c
(q)
Fe,me ;Fg,mg

)
x

− δF ′
g,m

′
g ;Fg,mg

]
pss

Fg,mg
= p

eq
F ′

g,m
′
g
, (18)

where |F̃g〉 is the ground state to which the laser light couples.
The 16 rate equations can be solved algebraically using,
e.g., Mathematica [9], yielding rational expressions for the
steady-state populations in the states |Fg,mg〉 produced by
optical pumping on the |Fg〉 → |Fe〉 transition by q-polarized
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(a) (b) (c) (d)

FIG. 5. Anticipated power dependence of the sublevel populations p4,m in the Fg = 4 state when pumped on the 4 → 3 and 4 → 4 transitions
with linearly (q = 0) and circularly (q = 1) polarized light, assuming isotropic relaxation. The numbers on the right in each graph represent
the mg values, in the same top-to-bottom order as the curves. We note that for q = 0, the (dashed) lines with a given mg overlap the (dotted)
lines with −mg .

light

p
Fg

q→Fe

Fg,mg
(x) = A

∑
n anx

n∑
n bnxn

, (19)

where A, an, and bn depend on Fg , Fe, mg , and q.
Figures 5 and 6 show the evolution of the steady-state

populations with the parameter x = Pin/Psat. Note that only
populations of the ground state Fg to which the pumping laser
couples are shown.

Let us discuss the graphs in Fig. 5, which represent the pop-
ulations of the |Fg = 4,mg〉 states after pumping on the Fg =
4 → Fe = 3,4 transitions. One can see that populations are
transferred preferentially to the |Fg = 4,mg = ±4〉 states and
to the |Fg = 4,mg = 0〉 state when pumping with linearly po-
larized (q = 0) light on the Fg = 4 → Fe = 3 and Fg = 4 →
Fe = 4 transitions, respectively [Figs. 5(a) and 5(b)]. These
so-called dark states do not absorb linearly polarized light,
a manifestation of electromagnetically induced transparency
(EIT). The corresponding dark states under pumping with
circularly polarized (q = 1) light are the |Fg = 4,mg = 3,4〉
and |Fg = 4,mg = 4〉 states, respectively [Figs. 5(c) and 5(d)].

The populations of the |Fg = 3,mg〉 states shown in Fig. 6
exhibit a peculiar feature. While pumping on the 3 → 3
transition with linearly or circularly polarized light produces
dark states [Figs. 6(a) and 6(c)], pumping on the 3 → 4
transitions completely empties the populations in the |Fg = 3〉
state, the emptying being more efficient under pumping with

linearly polarized light [Figs. 6(b) and 6(d)]. These transitions
are thus useful for repumping experiments.

The above discussion shows that the medium becomes
transparent, for all presented cases, in the high power limit
(x → ∞), but that the underlying mechanism may be quite
different, i.e., creation of dark state(s) versus complete level
depletion. As shown in Ref. [10], optical pumping on a closed
F → F + 1 transition transfers atoms to a state whose absorp-
tion coefficient is larger than the one of the unpolarized state
F , an effect known as electromagnetically induced absorption
(EIA). The fact that EIA does not occur for the 3 → 4 transition
here is due to the open character of the transition, i.e., the loss
of atoms to the F = 4 ground state that does not couple to
the light. We note that the rate equation model is valid only if
optical saturation can be neglected, i.e., as long as �abs � γem,
a condition that is well fulfilled in our case as discussed above.

C. Peak absorption coefficients

With the state populations known, we can then calculate the
power dependence of the peak absorption coefficient for each
hyperfine transition following Eqs. (A10) and (A11),

κ
Fg

q→Fe

0 =
+Fg∑

mg=−Fg

p
Fg

q→Fe

Fg,mg
c

(q)
Fe,me ;Fg,mg

C̃κ , (20)

(a) (b) (c) (d)

FIG. 6. Anticipated power dependence of the sublevel populations p3,m in the Fg = 3 state when pumped on the 3 → 3 and 3 → 4 transitions
with linearly (q = 0) and circularly (q = 1) polarized light, assuming isotropic relaxation. The numbers on the right in each graph represent
the mg values, in the same top-to-bottom order as the curves. As in Fig. 5, the (dashed) lines with a given mg overlap the (dotted) lines with
−mg for q = 0.
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(a) (b)

FIG. 7. Anticipated dependence of the (normalized) peak absorption coefficients on the dimensionless parameter x = �abs/γ1 = Pin/Psat

given by the analytical expressions [Eq. (22)] derived from rate equations, assuming isotropic population relaxation for pumping with
(a) linearly polarized light and (b) circularly polarized light.

with

C̃κ = 4πα

√
πMCsc2

2kBT
|r|2NCs. (21)

Since we have explicit algebraic expression for the populations

p
Fg

q→Fe

Fg,mg
(x), application of the above formula yields similar

algebraic rational expressions for the absorption coefficients

κ
Fg

q→Fe

0 (x)

κ
unpol
tot

= B
∑

n Nnx
n∑

n Dnxn
, (22)

where κ
unpol
tot = C̃κ/6, as shown in Appendix A. Numerical

values of the (integer) coefficients B, Nn, and Dn that depend
on Fg , Fe, and q are beyond the scope of the present work.

Expressing all κ
Fg

q→Fe

0 (x) in units of κ
unpol
tot yields, for the

individual absorption coefficients in the limit x → 0,

κ4→4
0 (0)

κ
unpol
tot

= 21

64
,

κ4→3
0 (0)

κ
unpol
tot

= 15

64
,

κ3→3
0 (0)

κ
unpol
tot

= 7

64
,

κ3→4
0 (0)

κ
unpol
tot

= 21

64
,

independently of the light polarization q. The graphs in Fig. 7
show the dependence of the peak absorption coefficients (in
units of κ

unpol
tot ) for the four hyperfine components on the

dimensionless parameter x that is proportional to laser power.
The results are shown for pumping with linearly polarized light
[Fig. 7(a)] and with circularly polarized light [Fig. 7(b)]. All
coefficients vanish for x → ∞, a trivial manifestation of the
well-studied phenomenon of EIT.

The dependences have the specific property that the al-
gebraic expressions for κ4→3

0 (x) and κ3→4
0 (x) are perfectly

identical, for both q = 0 and q = 1. Comparison with the
experimental recordings of Fig. 3 shows that the latter do not
reflect this anticipated feature.

It was known from our previous study [5] that, even at room
temperature, spin relaxation in the deployed paraffin-coated
cell has a strong (or even dominant) contribution from spin-
exchange collisions which are nonisotropic, i.e., Fg and mg

dependent. It was thus natural to assume that the failure of the
simple rate equations in reproducing the experimental data was
due to the simplifying assumption of isotropic relaxation. In

the following section we will describe how we have extended
the above model by implementing spin-exchange relaxation.

D. Spin-exchange relaxation

Spin-exchange relaxation is a process in which collid-
ing ground-state atoms in different hyperfine Zeeman states
|Fg,mg〉 and |F ′

g,m
′
g〉 exchange their quantum numbers such

that mg + m′
g is conserved. In the density-matrix formalism,

spin-exchange relaxation can be expressed as ρ̇ = −γseΓse,
where γse is the spin-exchange rate and Γse the dimensionless
spin-exchange operator

Γse = 3
4ρ − �S · ρ �S − 〈�S〉 · ({�S,ρ} − 2i �S × ρ �S) (23)

that is derived and discussed in Refs. [11–14]. We note that
the spin-exchange rate has a strong temperature dependence
since γse ∝ NCs. In Eq. (23), {· · · } denotes the anticommutator,
and 〈�S〉 = tr(ρ �S) is the (vector) spin polarization, i.e., the
Bloch vector of the atomic medium. Appendix B gives explicit
expressions for the matrix representation of the spin operators
Sx,y,z.

The operator form of the rate equations that take both
isotropic and spin-exchange relaxation into account reads

�̇p = P�abs �p − γ11( �p − �p eq) − γse �Gse( �p). (24)

We have evaluated the matrix representation of Γse in the basis
of the 16 sublevel populations, taking into account that ρ has
only diagonal elements (the sublevel populations). Moreover,
since the problem at hand deals only with sublevel populations,
we merely need the diagonal part [ �Gse]i = [Γse]ii of Γse. These
diagonal elements contain terms that are linear and terms that
are bilinear in the sublevel populations pFg,mg

so that, when
written in component form, the steady-state solutions ( �̇p = 0)
of the rate equations are obtained by solving the nonlinear
system of algebraic equations∑

j

(Pij x − δij )pss
j − εse[ �Gse( �p ss)]i = −p

eq
i , (25)

where x = �abs/γ1 = Pin/Psat is the variable and εse = γse/γ1

the relaxation parameter.
Because of the spin-exchange term’s nonlinear dependence

on the sublevel populations, the equations can no longer be
solved algebraically. We obtain numerical solutions of Eq. (25)
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(a) (b) (c) (d) (e)

FIG. 8. Theoretical predictions of the power dependence of the normalized peak absorption coefficients κ
Fg

q=0→ Fe

0 (x)/κunpol
tot for pumping with

linearly polarized light. Shown from left to right are increasing values of εse, i.e., the ratio of the spin-exchange rate to the isotropic relaxation
rate.

using Mathematica and use them for calculating the power
dependence of the peak absorption coefficients following
Eq. (20). The results are shown in Figs. 8 and 9 for various
values of the spin-exchange parameter εse. As anticipated,
the overlapping curves for the 4 → 3 and 3 → 4 transitions
found in the case of pure isotropic relaxation break up into two
distinctive curves for εse = 0.

IV. FITTING THE DATA

Our model calculations yield power dependences of the

form κ
Fg

q→Fe

0 (x)/κunpol
tot as a function of the dimensionless

variable x = Pin/Psat. The experimental data, on the other

hand, yield dependences of the optical thickness κ
Fg

q→Fe

0 L as a
function of the optical power Pin.

We have taken the following approach for fitting the
theoretical (numerical) expressions to the data taken with
circularly and with linearly polarized light, respectively: For
each light polarization (i.e., q = 0 and q = 1), we calcu-

late the absorption coefficients κ
Fg

q→Fe

0 (x) of the four hy-
perfine transitions on a grid of 301 discrete x values xm

(0 � xm � 3000). We produce such sets for a series of
21 discrete εse values ε(n)

se (0 � ε(n)
se � 20), yielding a two-

dimensional discrete set of κ
Fg

q→Fe

m,n (ε(n)
se ; xm)/κunpol

tot values.
We next use an interpolation algorithm (based on two-
dimensional Hermite interpolation of order 3 × 3) to generate

sets of continuous functions κ
Fg

q→Fe

theor (εse; x)/κunpol
tot that pass

through the discrete κ
Fg

q→Fe

m,n (ε(n)
se ; xm)/κunpol

tot points. We note
that there are 8 = 2(polarizations) × 4(hyperfine transitions)

such functions. Finally, we define fit functions κ
Fg

q→Fe

fit L =
Ãqκ

Fg

q→Fe

theor (ε̃q
se; Pin/P̃

q
sat)/κ

unpol
tot to fit the experimental data. For

each polarization q, the three fit parameters, common to all four
transitions, are an overall amplitude Ãq , the saturation power
P̃

q
sat, and the relaxation parameter ε̃

q
se.

V. RESULTS AND DISCUSSION

For each polarization q, we fit the four experimental curves
in Fig. 3 simultaneously with one given set of parameters Ãq ,
P̃

q
sat, and ε̃

q
se. Figure 10 shows the results for linearly polarized

[Fig. 10(a)] and circularly polarized [Fig. 10(b)] light, obtained
by varying the laser power between 1 and 10 μW. The model
is seen to reproduce very well the experimental data. In the
following, we discuss the numerical values of the three fit
parameters that are shown in Table I.

A. Fitted amplitude Ãq

According to our model (Appendix A 1), the global fitting
parameter Ãq is defined as

Ãq = κ
unpol
tot L = 2πα

3
|r|2

√
πMCsc2

2kBT
NCs(T )L, (26)

where α = (4πε0)−1e2/h̄c is the fine-structure constant. We
compare this theoretical expression with the experimental Ãq

values as follows. While the reduced matrix element |r| =
4.4978a0 (a0 being the Bohr radius) is known with high
precision [15], we lack precise knowledge of the temperature
T . Assuming a path length L of 29(1) mm and using the
expression from Ref. [16] for the temperature dependence of
the number density NCs(T ), we determine the temperature T ,
for which Eq. (26) reproduces the experimental Ãq values from
Table I. We find T = 22.0(3) ◦C and T = 21.8(6) ◦C for the
experiments with linearly polarized and circularly polarized
light, respectively. These compatible results are consistent with

(a) (b) (c) (d) (e)

FIG. 9. Same as in Fig. 8 for pumping with circularly polarized light.
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(a) (b)

FIG. 10. Power dependence of the optical thickness κ
Fg

q→Fe

0 L for the four hyperfine transitions measured with (a) linearly polarized and
(b) circularly polarized light. The solid lines are fits using the solutions of the rate equation model including both isotropic and spin-exchange
relaxation. The dots are the experimental values, where we dropped every second value (compared to Fig. 3) in order to make the fitted curves
more visible.

a reasonable value for the (room) temperature at which the
experiments were carried out.

B. Fitted saturation power P̃ q
sat

According to Eq. (17) the theoretical expression for the
saturation power is

Psat = h̄�Dγ1Seff

4π3/2α|r|2 . (27)

We note that this expression is based on the absorption rate
�abs derived in Appendix A 2 under the tacit assumption that
the atoms interact with the laser beam sufficiently long to
reach a steady state of the optical pumping process. For the
relatively modest laser intensities used in our experiments, such
a steady-state-reaching interaction would only be possible in a
laser beam with an unrealistically large transverse extension.
The high pumping efficiency obtained in an antirelaxation
coated cell, like the one used here, builds on the fact that
the atoms undergo multiple (spin polarization nondestructing)
wall collisions so that a steady state is reached before the
atom escapes into the sidearm. Because of this, each atom
will reenter the laser beam multiple times and continue to
be pumped on each beam traversal. Since the atoms spend
most of their time in the dark volume Vcell = 4πR3

cell/3 of the
cell, while being pumped only when inside of the illuminated
volume Vbeam = 2RcellSeff , we take this effect into account by
replacing γabs by an effective absorption rate

γabs → γ eff
abs = Vbeam

Vcell
γabs = 3Seff

2πR2
cell

γabs. (28)

TABLE I. Numerical values of the three fit parameters of the data
shown in Fig. 10.

q = 0 q = 1
Parameter π polarization σ+ polarization

Ãq 2.36(8) 2.31(14)
P̃

q
sat (nW) 58(6) 43(5)

ε̃q
se 2.4(3) 3.8(7)

Since x = Pin/Psat ∝ γabs/γ1, the substitution (28) is equiva-
lent to the substitution

Psat → P eff
sat = Vcell

Vbeam
Psat = h̄�Dγ1R

2
cell

6π1/2α|r|2 . (29)

With |r|2, �D , and Rcell = 14.5(5) mm known, we can
infer from Eq. (29) the isotropic relaxation rate γ1. The fitted
effective saturation powers P̃

q
sat = 58(6) and 43(5) nW from the

experiments with linearly polarized and circularly polarized
light yield γ1/2π = 1.4(2) and 1.0(1) Hz, respectively. For
the argument further down we will use their weighted average
γ 1/2π = 1.2(3) Hz.

In contrast to Eq. (27), Eq. (29) no longer depends on the
cross section Seff of the laser beam. This reflects the well-
known fact among researchers working with optically pumped
antirelaxation coated cells that the performance of such sen-
sors (e.g., for magnetometry) does not have a pronounced
dependence on the size of the laser beam. Nonetheless, the
substitution in Eq. (29) is a crude one, since it does not
take into account details of the laser beam profile or of the
thermal atomic velocity distribution, effects which can, in
principle, be modeled (see, e.g., Refs. [17,18]), but which are
too cumbersome to implement here. The results reported above
were obtained with a laser beam radius w ≈ 2 mm. Note that
we have repeated the experiments with a w ≈ 0.35 mm beam
and have obtained compatible results.

C. Fitted relaxation parameter ε̃
q
se

From the fitted ε̃
q
se (=γse/γ1) values (Table I) and the

γ1 values derived from P eff
sat in Sec. V B, we can estimate

the spin-exchange rates γse/2π to be 3.4(6) and 4.0(9) Hz,
with weighted average γ se/2π = 3.6(4) Hz. From the Cs-Cs
spin-exchange cross section σse = 2.06 × 10−14 cm2 reported
in Ref. [19] one can calculate the spin-exchange rate according
to

γse = NCs(T )v̄rel(T )σse, (30)

where v̄rel =
√

16kBT
πMCs

is the average relative thermal velocity of

Cs atoms. Determining the temperature T , for which Eq. (30)
produces the measured γ se value, yields T = 22.5(1.1) ◦C, a
value that is compatible with the temperature derived from the
signal amplitudes Ãq in Sec. V A.
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FIG. 11. Dependence of γ eff
1 /γ1 from Eq. (31) on εse = γse/γ1.

The green dotted lines show how γ eff
1 /γ1 is inferred from the fitted

εse value. The dashed line marks the asymptote for εse → ∞.

Equation (20) of Ref. [19], viz.,

γ eff
1 = γ1 + 1

1/γ1 + 2/γse
, (31)

expresses the effective longitudinal relaxation rate (in low
fields) in terms of the isotropic and spin-exchange relaxation
rates. Combining Eq. (31) with our definition εse = γse/γ1

yields the relation

γ eff
1 = 2εse + 2

εse + 2
γ1 (32)

between γ eff
1 and γse.

Figure 11 shows the γ eff
1 /γ1(εse) dependence that illustrates

the bounds γ1 � γ eff
1 � 2γ1 of γ eff

1 . The green bands in Fig. 11
show how γ eff

1 /γ1 can be inferred from εse = 2.7(8). Together
with γ 1 = 1.2(3) Hz, Eq. (32) yields γ eff

1 = 1.9(4) Hz, a value
compatible with our measurements of similar cells using a
double-resonance Mx magnetometry method [5].

VI. SUMMARY AND OUTLOOK

We have studied the reduction, by optical pumping with
linearly and circularly polarized light, of the resonant absorp-
tion coefficients κ0 of the four 6S1/2,Fg → 6P1/2,Fe hyperfine
components of room temperature Cs vapor contained in a
paraffin-coated cell. The dependence of κ0 on laser power Pin

is well described by rate equations that take both isotropic
and spin-exchange relaxation of the ground-state sublevel
populations into account. Fitting the model calculations with
simple scaling parameters for κ0 and Pin to the experimental
κ0(Pin) data yields consistent values of the fit parameters for
all four transitions, under both linearly and circularly polarized
light excitation. The scaling parameters are well described
by explicit theoretical expressions on an absolute scale. The
third fit parameter is the ratio γse/γ1 of the spin-exchange and
isotropic relaxation rates. When combined with an auxiliary
determination of the effective longitudinal spin-relaxation
rate γ eff

1 (γse,γ1), one obtains absolute values of γse and γ1,
which are in good agreement with literature values. We have
also presented algebraic expressions that describe the κ0(Pin)
dependence in the case of isotropic relaxation only.
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APPENDIX A: ABSORPTION COEFFICIENT AND
ABSORPTION RATE

The electric dipole matrix elements

d
(q)
ba = −ex

(q)
ba ≡ −e 〈b|xq |a〉 (A1)

play an important role in the definition of the ab-
sorption coefficient κ0 and absorption rate γabs dis-
cussed below. In the basis of total angular momentum
states |a〉 = |Fg,mg〉 ≡ |6S1/2,Fg,mg〉 and |b〉 = |Fe,me〉 ≡
|6P1/2,Fe,me〉, the squared matrix element between a given
magnetic sublevel |Fg,mg〉 of the ground state and the excited-
state sublevel |Fe,me = me + q〉 connected by absorption of
light with polarization q is given by∣∣x(q)

ba

∣∣2 = ∣∣x(q)
Fe,me ;Fg,mg

∣∣2

= |〈Fe,me|xq |Fg,mg〉|2

≡ c
(q)
Fe,me ;Fg,mg

|〈6P1/2‖r‖6S1/2〉|2

≡ c
(q)
Fe,me ;Fg,mg

|r|2, (A2)

with

c
(q)
Fe,me ;Fg,mg

= (2Fg + 1)(2Fe + 1)

×
(

Fe 1 Fg

−me q mg

)2{
Je Jg 1
Fg Fe I

}2

(A3)

and

|r| = |〈6P1/2‖r‖6S1/2〉|. (A4)

In Eq. (A3), I (=7/2 for 133Cs) is the nuclear spin and the 3j -
symbol properties imply that me = mg + q. The decoupling
rules used for the matrix elements can be found, e.g., in
Ref. [20].

1. Resonant absorption coefficient

For an optically nonsaturating laser intensity, the resonant
absorption coefficient for light of polarization q (tuned to the
|a〉 → |b〉 transition of frequency ωab) that traverses vapor of
Cs atoms with a Maxwellian velocity distribution is given by

κa
q→b

0 =
√

πωba

ε0h̄c�D

∣∣d (q)
ba

∣∣2
paNCs, (A5)

where ε0 is the vacuum permittivity, h̄ the reduced Planck
constant, c the vacuum light speed, NCs the cesium number
density, pa the population (fraction) of atoms in state |a〉 (such
that Na = paNCs), and

�D = ωab

√
2kBT

MCsc2
(A6)

the Doppler width (with the Boltzmann constant kB and cesium
atomic mass MCs), using the line-shape definition LD(δω) =
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e−δω2/�2
D for the Doppler profile. This result is valid in the

so-called Doppler limit, in which �D is much larger than the
natural width γ

opt
2 of the transition, a condition that is well

obeyed for the D1 line of Cs at room temperature. In Eq. (A5)∣∣d (q)
ba

∣∣2 = |〈b|dq |a〉|2 = e2|〈b|xq |a〉|2 ≡ e2
∣∣x(q)

ba

∣∣2
(A7)

defines the squared modulus of the electric dipole matrix
element, where q describes the polarization (q = 0 for linearly
and q = ±1 for circularly polarized light) of the absorbed light
beam. Defining

Cκ ≡ e2

ε0h̄

√
πMCs

2kBT
NCs = 4πα

√
πMCsc2

2kBT
NCs, (A8)

where α is the fine-structure constant, Eq. (A5) reads

κa
q→b

0 = pa

∣∣x(q)
ba

∣∣2
Cκ. (A9)

Using the explicit decomposition (A2) of the matrix elements,
we can rewrite the peak absorption coefficient as

κ
Fg,mg

q→Fe,me

0 ≡ pFg,mg
c

(q)
Fe,me ;Fg,mg

C̃κ , (A10)

with

C̃κ = |r|2Cκ. (A11)

One can define a total absorption coefficient of theD1 transition
by

κtot ≡
I+Je∑

Fe=I−Je

I+Jg∑
Fg=I−Jg

+Fg∑
mg=−Fg

κ
Fg,mg

q→Fe,me

0 . (A12)

Evaluating Eq. (A12) by inserting thermal populations
pFg,mg

= 1/16 into Eq. (A10) yields the total absorption
coefficient for an unpolarized medium

κ
unpol
tot = 1

16

I+Je∑
Fe=I−Je

I+Jg∑
Fg=I−Jg

+Fg∑
mg=−Fg

c
(q)
Fe,me ;Fg,mg

C̃κ

= 1

6
C̃κ , (A13)

that is independent of q, as it should be, because of the isotropy
of the unpolarized medium.

2. Resonant absorption rate

The absorption rate, i.e., the number of photons with a given
polarization absorbed (on average) by an atom (at rest) in state
|a〉, is given by

γ a→b
abs = |ba|2

2γ
opt
2

, (A14)

where γ
opt
2 is the transverse relaxation rate of the atomic dipole

moment and

|ba|2 =
∣∣∣∣∣
�dba · Ê

h̄

∣∣∣∣∣
2

E2
0 (A15)

is the square of the optical Rabi frequency. Here E0 and Ê

are the amplitude and polarization vector of a plane wave,

when expressed as �E = E0Ê cos(kz − ωt). Introducing the
light intensity I , given by

I = ε0c

2
E2

0 , (A16)

the absorption rate can be expressed as

γ a→b
abs = 1

ε0h̄
2cγ

opt
2

| �dba · Ê|2I. (A17)

We note that Eq. (A17) is valid for an atom at rest which has
a Lorentzian absorption profile with a FWHM of 2γ

opt
2 . The

expression can be adopted to a Doppler-broadened medium,
for which

κD(δω) = κD
0 e−δω2/�2

D =
√

πγ
opt
2

�D

κ0e
−δω2/�2

D , (A18)

by replacing γ
opt
2 in Eq. (A17) by �D/

√
π , yielding

γ a→b
abs =

√
π | �dba · Ê|2
ε0h̄

2c�D

I. (A19)

Introducing spherical tensor notation

d (±1) = ∓ 1√
2

(d (x) ± id (y)), d (0) = d (z) (A20)

for the components d (q=0,±1) of the dipole operator and
similarly for the components Eq of the polarization vector,
the scalar product in Eq. (A17), which reads

�dba · Ê =
∑

d
(i)
baEi = d (x)Ex + d (y)Ey + d (z)Ez (A21)

in Cartesian coordinates, will read

�d · Ê =
∑

q=0,±1

(−1)qd (q)
ba E−q (A22)

= d (0)E0 − d (+1)E−1 − d (−1)E+1 (A23)

in spherical coordinates. The components E0 and E±1 rep-
resent π - (linearly) and σ±1- (circularly) polarized light,
respectively. For light described by the (unit) polarization
vector E−q , only the matrix elements of the dipole operator
component d (q) will be responsible for the light absorption, so
Eq. (A17) reduces to

γ a
q→b

abs =
√

πe2

ε0h̄
2c�D

∣∣x(q)
ba

∣∣2
I, (A24)

where we have used d
(q)
ba = ex

(q)
ba .

Similarly to the parametrization used for the absorption
coefficient in Appendix A 1, we can parametrize the absorption
rate on the |a〉 → |b〉 transition driven by q-polarized light as

γ a
q→b

abs = Cγabs

∣∣x(q)
ba

∣∣2
, (A25)

with

Cγabs =
√

πe2

ε0h̄
2c�D

I = 4π3/2α

h̄�D

Pin

Seff
, (A26)

where α is the fine-structure constant. We also have expressed
the light intensity I ≡ Pin/Seff as power per unit area, in-
troducing an effective cross-section area Seff characterizing
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light beams with a nonhomogeneous transverse intensity dis-
tribution. Using the explicit decomposition (A2) of the matrix
elements, we can rewrite the absorption rate of Eq. (A25) as

γ
Fg,mg

q→Fe,me

abs = c
(q)
Fe,me ;Fg,mg

|r|2Cγabs

≡ c
(q)
Fe,me ;Fg,mg

�abs, (A27)

with

�abs = 4π3/2α|r|2
h̄�D

Pin

Seff
. (A28)

We recall that γ
Fg,mg

q→Fe,me

abs is a property of individual atoms

that is proportional to laser power, while κ
Fg

q→Fe

0 is an ensemble

property that is proportional to the density NCs of atoms in the
6S1/2 ground state.

APPENDIX B: MATRIX REPRESENTATION OF THE SPIN
OPERATORS Sx, y,z

The spherical components Sq=−1,0,+1 of the total angular
momentum operator are defined in terms of the Cartesian
components Si=x,y,z by

S±1 = ∓Sx ± iSy√
2

, S0 = Sz, (B1)

so the inverse relations read

Sx = S−1 − S+1√
2

, Sy = i
S−1 + S+1√

2
, Sz = S0. (B2)

In the basis of total angular momentum states |F,m〉 ≡
|n,I,S; F,m〉, the matrix elements of the operators Sq are
given by

〈F ′,m′|S|F,m〉 = (−1)F
′−m′

(
F ′ 1 F

−m′ q m

)
〈n,I,S; F ′‖S‖n,I,S; F 〉 , (B3)

where we have used the Wigner-Eckart theorem. The reduced matrix element is given by

〈n,I,S; F ′‖S‖n,I,S; F 〉 = (−1)S+1+I+F ′√
2F + 1

√
2F ′ + 1

{
S F ′ I

F S 1

}
〈S‖S‖S〉.

= (−1)F
′+1

√
3(2F + 1)(2F ′ + 1)

2

{
1/2 F ′ 7/2
F 1/2 1

}
. (B4)

using relations from Ref. [20]. Combining Eqs. (B2)–(B4), one obtains the following matrix representations of the operators
Fx,y,z in the basis {|Fg,mg〉} = {|3,−3〉 , . . . , |3,+3〉 , |4,−4〉 , . . . , |4,+4〉}:

Sx = 1

8
√

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −√
3 0 0 0 0 0 −2

√
7 0 1 0 0 0 0 0 0

−√
3 0 −√

5 0 0 0 0 0 −√
21 0

√
3 0 0 0 0 0

0 −√
5 0 −√

6 0 0 0 0 0 −√
15 0

√
6 0 0 0 0

0 0 −√
6 0 −√

6 0 0 0 0 0 −√
10 0

√
10 0 0 0

0 0 0 −√
6 0 −√

5 0 0 0 0 0 −√
6 0

√
15 0 0

0 0 0 0 −√
5 0 −√

3 0 0 0 0 0 −√
3 0

√
21 0

0 0 0 0 0 −√
3 0 0 0 0 0 0 0 −1 0 2

√
7

−2
√

7 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 −√

21 0 0 0 0 0 2 0
√

7 0 0 0 0 0 0
1 0 −√

15 0 0 0 0 0
√

7 0 3 0 0 0 0 0
0

√
3 0 −√

10 0 0 0 0 0 3 0
√

10 0 0 0 0
0 0

√
6 0 −√

6 0 0 0 0 0
√

10 0
√

10 0 0 0
0 0 0

√
10 0 −√

3 0 0 0 0 0
√

10 0 3 0 0
0 0 0 0

√
15 0 −1 0 0 0 0 0 3 0

√
7 0

0 0 0 0 0
√

21 0 0 0 0 0 0 0
√

7 0 2
0 0 0 0 0 0 2

√
7 0 0 0 0 0 0 0 2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(B5)
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Sy= i

8
√

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −√
3 0 0 0 0 0 2

√
7 0 1 0 0 0 0 0 0√

3 0 −√
5 0 0 0 0 0

√
21 0

√
3 0 0 0 0 0

0
√

5 0 −√
6 0 0 0 0 0

√
15 0

√
6 0 0 0 0

0 0
√

6 0 −√
6 0 0 0 0 0

√
10 0

√
10 0 0 0

0 0 0
√

6 0 −√
5 0 0 0 0 0

√
6 0

√
15 0 0

0 0 0 0
√

5 0 −√
3 0 0 0 0 0

√
3 0

√
21 0

0 0 0 0 0
√

3 0 0 0 0 0 0 0 1 0 2
√

7

−2
√

7 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0

0 −√
21 0 0 0 0 0 −2 0

√
7 0 0 0 0 0 0

−1 0 −√
15 0 0 0 0 0 −√

7 0 3 0 0 0 0 0

0 −√
3 0 −√

10 0 0 0 0 0 −3 0
√

10 0 0 0 0

0 0 −√
6 0 −√

6 0 0 0 0 0 −√
10 0

√
10 0 0 0

0 0 0 −√
10 0 −√

3 0 0 0 0 0 −√
10 0 3 0 0

0 0 0 0 −√
15 0 −1 0 0 0 0 0 −3 0

√
7 0

0 0 0 0 0 −√
21 0 0 0 0 0 0 0 −√

7 0 2

0 0 0 0 0 0 −2
√

7 0 0 0 0 0 0 0 −2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(B6)

Sz = 1

8

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 0 0 0 0 0 0 0 −√
7 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0 0 −2
√

3 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 −√
15 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −4 0 0 0 0

0 0 0 0 −1 0 0 0 0 0 0 0 −√
15 0 0 0

0 0 0 0 0 −2 0 0 0 0 0 0 0 −2
√

3 0 0

0 0 0 0 0 0 −3 0 0 0 0 0 0 0 −√
7 0

0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0

−√
7 0 0 0 0 0 0 0 −3 0 0 0 0 0 0 0

0 −2
√

3 0 0 0 0 0 0 0 −2 0 0 0 0 0 0

0 0 −√
15 0 0 0 0 0 0 0 −1 0 0 0 0 0

0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −√
15 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 −2
√

3 0 0 0 0 0 0 0 2 0 0

0 0 0 0 0 0 −√
7 0 0 0 0 0 0 0 3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(B7)

We note that the explicit expressions above for the matrix representations of Sx,y,z are identical to the corresponding matrices
�x,y,z/2 (disregarding a few typographical errors) given by Scholtes et al. [14], considering the alternative ordering of the basis
states used in Ref. [14].
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