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A coupled human-Earth model perspective
on long-term trends in the global marine fishery
E.D. Galbraith1,2,3, D.A. Carozza3,4 & D. Bianchi5

The global wild marine fish harvest increased fourfold between 1950 and a peak value near

the end of the 20th century, reflecting interactions between anthropogenic and ecological

forces. Here, we examine these interactions in a bio-energetically constrained, spatially and

temporally resolved model of global fisheries. We conduct historical hindcasts with the

model, which suggest that technological progress can explain most of the 20th century

increase of fish harvest. In contrast, projections extending this rate of technological progress

into the future under open access suggest a long-term decrease in harvest due to over-

fishing. Climate change is predicted to gradually decrease the global fish production capacity,

though our model suggests that this is of secondary importance to social and economic

factors. Our study represents a novel way to integrate human-ecological interactions within

a single model framework for long-term simulations.
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Ciència i Tecnologia Ambientals (ICTA), Universitat Autònoma de Barcelona, Barcelona 08193, Spain. 3 Department of Earth and Planetary Sciences, McGill
University, Montreal, Québec H3A 0E8, Canada. 4 Department of Mathematics, Université du Québec à Montréal, Montréal, Québec H3C 3P8, Canada.
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T
he global capture of wild marine ‘fish’ (including edible
invertebrates, as well as true fish) appears to have peaked
in the 1990s, according to a recent reconstruction1

(Fig. 1a), despite continued increases in the effort expended by
the global fishery2 (Fig. 1b). The increasingly intense fishing
pressure has driven marine fish biomass to a fraction of its
pristine state (Fig. 1c), a depletion that is widely believed to be
limiting fishing yields in many parts of the world2–4. These
historical trends reflect the interplay of ecosystem dynamics, the
demand for fish, the cost of fishing, improvements of fishing
technology and climate change1,3,5–7, all of which will play a role
in future8–10, but whose relative roles have been difficult to
formally assess.

Here we quantitatively address the multiple influences in the
global fishery, and their interactions, by explicitly including
human activity within an Earth System modelling framework,
and using simulation protocols typically used for climate
simulations. We use the BiOeconomic mArine Trophic Size-
spectrum (BOATS) model, a bio-energetically constrained
macroecological-life-history fish model that is coupled directly
with an economic model11,12 (Methods, see Supplementary
Methods for details). The BOATS model builds on prior works
that took regional13, species-specific or unidirectional coupling
approaches14,15 by introducing a comprehensive two-way
coupling of human and natural components of the system,
using relatively simple but well-founded predictive principles
applicable to multi-decadal timescales. Primary production by
phytoplankton and seawater temperatures are used to predict the
growth and reproduction of fish, by determining the energy
available to the trophic web16 and the metabolic rates of size-
structured fish populations17. The fish harvest is determined by
local-biomass density and interactive fishing effort, which evolves
independently in each grid cell over time. As a first-order
approximation, we assume that individual fishermen are rational
and profit-seeking, as generally borne-out by observations18, and
that there are no property rights (Open Access (OA)), which is
the expected outcome in unmanaged fisheries. The current model
version does not simulate artisanal or recreational fisheries
explicitly, but only industrial fisheries, which account for 480%
of global harvest and most of the 20th century trend1. Although
the OA dynamic is not representative of the B40% of fisheries
where management has recently become relatively effective19, it
was a reasonable approximation of global fisheries throughout
most of the 20th century20 and remains reflective of at least half
of fisheries today, particularly in low-income countries21,22.
Poorly constrained ecological model parameters are calibrated
using Monte Carlo-based approximate Bayesian computation
(Methods, Supplementary Methods) by comparing simulated
with observed catch and biomass, aggregated at the scale of Large
Marine Ecosystems (LMEs). The use of globally distributed LMEs
allows the assessment of model performance across the full range
of extant environmental conditions12. We show results for an
ensemble of five different combinations of parameter values that
provide realistic solutions, while representing a broad range of
parameter uncertainty.

Because the model resolves the dynamics of the global fishery
as a function of economic and environmental conditions,
historical ‘hindcast’ simulations can be conducted to attribute
the historical harvest trend to possible drivers on the coupled
system, analogous to the approach taken with coupled ocean-
atmosphere models to identify the role of greenhouse gases in
historical climate23. Given our simple but inclusive conceptual
framework, the external factors influencing the long-term
development of the wild capture fishery are climate, the price
of fish, the cost of fishing and the technology-dependent ability of
fishermen to catch fish for a given amount of fishing effort. We

first consider the ability of these factors to explain broad features
of the observed 20th century trend of fish harvests, and then
consider their possible roles in the future of the wild capture
fishery.

Our results show that the historical increase of wild fish
harvest, aggregated at the global scale, can be reproduced to first
order by a hindcast that includes a moderate rate of increase in
the technology-dependent ability to catch fish over time,
assuming open access. We also show that, were it to continue,
this same rate of technological progress would dominate the
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Figure 1 | Global historical time-series characterizing the global wild

capture fishery. (a) Reconstructed global fish harvest1, including illegal,

unreported and underreported catches. (b) Estimated nominal effort

(orange) and effective effort assuming, conservatively, an increase in

efficiency of 2.4% per year (red) (ref. 2). (c) Biomass as a fraction of

pristine biomass from selected stock assessment data, as estimated by

ref. 4.
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future trend in fish harvest under open access, but would result in
declining, rather than increasing, harvest. The future simulations
also assess the relative impacts of climate change on fish harvest,
with and without effective management of fisheries, and
considering the possibility of increasing market demand.

Results
Hindcast simulations. We carried out a series of experiments in
which the model was subjected to temporally varying histories of
the three economic forcings: (1) ex-vessel fish price (that is, the
price that fishermen receive per mass of catch), which has varied
over time in response to market conditions; (2) cost per unit
effort, which includes capital, fuel, labour and the impact of most
subsidies and (3) technological progress (Supplementary
Methods). Our definition of technological progress includes
advances in embodied technology, including more efficient boats,
more effective fishing gear, sonar and communications equip-
ment and disembodied technology, such as better knowledge of
fish behaviour and more efficient fishing practices24. The
combined effect of embodied and disembodied technology is
represented in a simple but inclusive way by a catchability
parameter, which was increased at rates of 2, 5 and 8% per year, a

range representative of progress estimated empirically from
individual fisheries7,25–27.

As shown in Fig. 2, the simulated changes in global harvest do
not reproduce the observed increasing 20th century trend when
forced individually with reconstructed changes in price or cost
alone. Given the open-access assumption, this implies that
increasing demand for fish was not the main driver of the long-
term 20th century increase in fish harvest, despite population
growth, although a growing population may have helped to
maintain demand in the face of an increasing fish supply. Nor
could the reconstructed changes in the cost per unit effort of
fishing have been the primary driver. In contrast, the three
simulations with technical progress produce global histories of
harvest with long-term 20th-century increases, more consistent
with the observations. With increasing technology the model also
simulates a global peak of harvest, as observed, which arises from
the sequential development, overexploitation and/or collapse of
fisheries throughout the world, a sequence that has occurred
historically in poorly managed fisheries28,29 (Supplementary
Methods).

The technological progress rate of 5% per year would appear
most representative as a global, long-term average, given that it
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Figure 2 | Attribution of drivers using model hindcasts of the global fishery. All simulations assume OA, and each varies only the forcing specified; all

other ecosystem and economic dynamics are solved prognostically. The average ex-vessel price of fish (a) and cost of fishing per unit effort (b) are derived

from observations, while technological progress is imposed as a constant rate of catchability increase of (c) 2, (d) 5 and (e) 8% per year.
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approximates the observed relative increase of harvest between
1950 and 1996 and is near the midpoint of estimates from
individual fisheries7,27,30. Given this apparent support for a long-
term average technological progress rate of roughly 5% per year,
we apply it together with the historical price reconstruction to
generate a standard global hindcast, shown in Fig. 3. The
agreement of the hindcast simulation with the reconstructed fish
harvest, effort and biomass (compare Fig. 3 with Fig. 1) is
remarkable, given that these are emergent properties of the

model. The effort estimated before 1970 (B7 GW) is notably
higher than that simulated by the model ensemble (1–5 GW), but
given difficulties in reconstructing historical global fishing effort2,
these contrasts may not be significant. The estimated rate of
biomass decrease is well-reproduced by the model at B10% of
pristine biomass per decade, but with an important difference
following 1990 when the estimated rate of biomass loss slowed
(Fig. 1c), in contrast with the model. This divergence would be
consistent with a progressive improvement in the management of
many fisheries over the past three decades, a change that is not
captured by the idealized OA simulations.

The model simulations also reproduce the first-order aspects of
the 20th-century spatial changes in fish harvest, first depleting the
dense biomass of highly productive coastal waters31, and then
moving into deeper waters of the open ocean32,33 (Fig. 4). The
expansion away from the coasts arises in the model as
technological progress makes open-ocean waters with low
biomass density more profitable, and therefore increasingly
subjected to fishing effort. It should be emphasized that this
model does not account for higher costs of fishing far from port,
nor does it include complex ecosystem interactions, habitat
alteration, fisheries management, or spatially variable economic
factors, all of which played some role in the history of the global
fishery. Nonetheless, it successfully reproduces the first-order
features of the historical global trends in harvest, effort, and
biomass. We therefore hypothesize that technological progress, at
an average rate of B5% per year, dominated the development of
the global wild capture fishery during the 20th century, while other
societal, economic and climate forces had secondary impacts.
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Figure 3 | Global historical hindcast simulation. Lines and shaded areas

show the model ensemble mean and 1 s.d., respectively, assuming open

access (OA, that is, no regulation), 5% per year technological progress, the

observed history of ex-vessel price, and historical climate variability as

simulated by the IPSL climate model. (a) Simulated fish catch per year.

(b) Nominal effort (orange) and effective effort (red). (c) Simulated

biomass as a fraction of pristine biomass. All model forcings and

parameters other than technology, price and climate are held constant

throughout the 56-year simulation.

0 1 2 3 4 5

a Year 1950 harvest

t wet biomass km–2 yr–1

b Year 2000 harvest

Figure 4 | Spatial expansion of fisheries in historical hindcast simulation.

Ensemble-average harvest in years 1950 (a) and 2000 (b). Colour shading

shows the harvest in t km� 2 yr� 1. For these plots, the ensemble was

forced with satellite-based observational estimates of primary productivity

and temperature, subjected to globally homogeneous historical price

variations and steady 5% per year technological progress. Although

idealized, the simulations reproduce key aspects of late 20th century

changes, including a shift to lower latitudes and deeper waters.
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Idealized future projections. We consider an extreme range of
possible futures for the global wild-capture fishery by projecting
the model forward under idealized economic scenarios, with and
without climate change. First, the historical OA hindcast is pro-
jected forward to represent an extreme end-member in which
management is absent, under two alternative technological pro-
gress scenarios, and with either constant or linearly increasing
price (Methods). Second, the model is used to estimate the global
Maximum Sustainable Yield (MSY), representing the theoretical
upper limit that could be approached with perfectly effective and
well-informed management aimed at maximizing food produc-
tion (Supplementary Methods). We emphasize that the future of
the global fishery will follow neither the purely OA nor the MSY
pathway; rather, these end-members outline the boundaries of
what is possible for the global wild fishery in terms of food
production. For example, effective regulations aimed at max-
imizing economic yield would produce less than the MSY harvest,
but would generate more profit for fishermen19. We
simultaneously consider the impacts of climate change by using
water temperatures and primary production from the Institut
Pierre Simon Laplace (IPSL) Earth System model with the RCP8.5
scenario (high emissions), and compare with a stable
pre-industrial climate (Methods, Supplementary Methods).

The MSY is determined exclusively by the ability of the
ecosystem to produce harvestable biomass, so that this modelled
upper limit of potential harvest depends only on climate. As
shown by Fig. 5a, the model ensemble estimates a MSY of
B180±60 Mt yr� 1 under stable preindustrial climate, while the
inclusion of historical climate change leads to a decrease of MSY
to 160±50 Mt yr� 1 by 2015. The present-day global MSY
estimate of 123 Mt yr� 1 provided by ref. 19 lies within the
1 s.d. range of the model ensemble. Under the rapid continuing
climate change of the RCP8.5 scenario, MSY decreases by 20%
relative to 2015 by the end of the 21st century, falling below the
simulated peak harvest obtained under OA, consistent with the
view that climate change will cause a significant drop in potential
fish production without reduction of carbon emissions34.

However, a much more dramatic decline in global harvest
occurs over the 21st century in the hypothetical cases for which
effective management is absent, as illustrated by the OA
scenarios. Given continued 5% per year technological progress
and constant price, the peak in global harvest is followed by a
long-term decline (Fig. 5a, grey). This reversal in the role of
technological progress—from enhancing to reducing harvest—
arises because the ability of most ecosystems to produce biomass
becomes limited by the spawning stock size under intense rates
of harvest, as shown in many scientific surveys of fisheries35,36,
and constrained here through our calibration against observed
harvests (Methods, Supplementary Methods). If technological
progress is halted, the harvest stabilizes, with only a small
downward drift that is due to climate change (Fig. 5a, green). In
the OA simulations where future price increases, shown in
Fig. 5b, the same general trajectories are maintained, but the
decline of harvest is more severe because over-fishing is
intensified.

Discussion
Our hindcast simulations, forced with relatively simple historical
scenarios, suggest that a long-term average technological progress
rate of roughly 5% per year dominated the 20th century trend in
global fish harvests. In reality, technological improvements did
not proceed by a steady march synchronized throughout the
world, but proceeded at heterogeneous rates among different
fisheries according to the development and diffusion of new ideas,
and access to the capital required to implement them.

Nonetheless, given the large number of technological innovations
that took place over the 20th century, from monofilament lines,
power blocks and new hook designs37, to sonar, radar and
satellite communications, it is plausible that the overall aggregate
progress—integrated among industrial fisheries of the world—
may have been relatively smooth.

The impact of technological progress is achieved in the model
by two interdependent pathways: fish become easier to catch for a
given nominal effort and fish biomass, increasing effective effort,
which in turn makes fishing more profitable, thereby increasing
the nominal effort as long as the ecosystem is capable of
sustaining the harvest. The fact that, over a 50-year period, a 5%
per year rate of technological progress would have increased
catchability by an order of magnitude explains its dominance over
the relatively small historical fluctuations in the ex-vessel price
and the cost of fishing.

Our idealized future simulations suggest that, over the 21st
century, continuing technological improvements would cause
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Figure 5 | Future ensemble projections of global harvest under idealized

scenarios. In each panel, four different idealized scenarios illustrate a range

of possible long-term outcomes, reflecting different roles of technological

progress, fisheries management, climate change and market conditions.

Black lines show OA simulations, representing an absence of management,

with steady 5% per year technological progress. Green ‘technology

stabilization’ OA simulations undergo a gradual decrease in technological

progress from 5% per year in 2006 to zero by 2036, after which the

technology is held constant. The global MSY that could be achieved given

perfect management aimed at maximizing harvest is shown in blue. For the

OA and MSY RCP8.5 scenarios, the 1 s.d. range of the five ensemble

members is shown by shaded envelope. (a) Simulations with constant

future price, (b) simulations with linearly increasing price from B1$ kg� 1 in

2006 to B3$ kg� 1 in 2100. All OA simulations, as well as the MSY RCP8.5

simulation, use the IPSL Earth System model climate change projection,

while the preindustrial MSY is plotted as a constant value, calculated from

the mean of the period 1850–1900 in the IPSL historical simulation.
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global harvest to decrease under OA. This reversal of the 20th
century trend would be exacerbated by any market dynamics that
raise prices. These simulated future decreases, which lead to a
growing divergence between OA and MSY over time (Fig. 5),
suggest that the global impact of effective regulation will become
more important in future as technology improves: whereas in
2015, the simulated MSY harvest is only B15% greater and
B$20 billion per year more profitable than the global OA harvest,
in 2100 (given 5% per year progress and increasing prices) the
MSY harvest is more than ten-fold greater and hundreds of
billions per year more profitable than the OA harvest. Although
this may be of only theoretical interest for fisheries where effective
regulatory regimes are well-established, it could have serious
food security implications for the numerous fisheries in which
regulations remain ineffective. The model suggests that, if
perfectly managed, the global MSY would be on the order of
25% greater than the OA historical peak under preindustrial
climate, and that even with the rapid climate change of the
RCP8.5 scenario, the MSY would remain greater than the OA
historical peak throughout most of the 21st century. Thus, our
model suggests that the global wild capture fishery could continue
to provide food, throughout the 21st century, at the same rate
(or better) as at the end of the 20th century, but only if effective
management can be extended to the fisheries in which it remains
weak or absent.

We note that if new fisheries develop for previously
unexploited species (such as mesopelagic fish), not included in
our model, this could potentially slow the reduction of harvest
under OA and raise global MSY. At the same time, our model
is generally optimistic, in that it does not resolve habitat
destruction by intensive trawling38, the takeover of ecosystems
by non-commercial species39, trophic cascades40, alternative
stable states41, ocean acidification and deoxygenation, or the
development of overcapacity due to subsidies6, all of which would
benefit from further study. The urgent need for improved
fisheries management at the global scale is widely recognized,
given the existing level of fishing effort19 and growing pressure
from climate change42,43. Our results amplify these concerns by
showing that, whereas progress in fishing technology contributed
to massive gains in fish harvest during the 20th century at the
global scale, its influence on catchability would be expected to
only reduce harvest in the 21st century unless met with a global
expansion of effective fisheries management.

The model presented here takes a highly simplified approach to
the wild capture fishery, as required to remain tractable at the
global scale and over long timescales. But despite its simplicity,
the comprehensive treatment of critical elements, including
spatially and temporally resolved interactions of humans with
the ecosystem, allow it to identify the relative importance of
general mechanisms that are difficult to discern among the
multiplicity of factors typically considered on shorter timescales.
Similar approaches may help to better understand the long-term
dynamics of other coupled human-Earth systems.

Methods
Model overview. At the foundation of the model is energy production by phy-
toplankton, which is transferred to multiple fish size-spectra according to an
efficiency that depends on gross ecosystem metabolic rates16,44,45. The fish spectra
are defined as representing the entire range of finfish and invertebrates with
individual mass greater than 10 g, commercially harvested before 2006. The spectra
resolve basic life-history characteristics, including temperature-dependent growth,
mortality and density-dependent recruitment. By including all commercial species
within the spectra, we implicitly account for species range shifts46,47, evolution48,
and changes in targeted species, all of which have been significant historically and
could play important roles in the future.

An economic model, coupled directly to the fish spectra at the grid scale,
predicts fishing effort as a function of local profit, assuming open access to the
available fish, following the classic work of ref. 49. Fishing effort in each grid cell

changes over time according to the difference between local revenues and costs, at a
rate determined by the fleet adjustment timescale. The effectiveness of fishing effort
at catching the locally available biomass is determined by a catchability parameter
that encapsulates both embodied and disembodied technology. Although fisheries
are not strictly open access, and approximately one third of fisheries currently has
some form of reasonably effective management19, the absence of effective
management from most of the world’s fisheries throughout the 20th century makes
it a good approximation at the global scale during the historical period21,22 as well
as an illustrative example to consider the importance of management in future. The
approximate global Maximum Sustainable Yield (MSY) is calculated by conducting
transient simulations in which catchability is increased slowly, and summing the
maximum harvest obtained in each grid cell. A more complete description of the
model is given in ‘Model description’ in Supplementary Methods.

Parameter selection. We calibrate the most important 13 model parameters
through a Monte Carlo method and comparison with observationally estimated
fish catches and stock assessments at the LME scale (‘Parameter optimization’ in
Supplementary Methods). Because the LMEs span a very broad range of tem-
perature and primary production, this strategy ensures a robust calibration to both
these important variables. For the simulations shown here, we use an ensemble
of five optimized models that span the uncertain parameter space as widely as
possible, while producing a reasonably accurate simulation.

Model forcing and simulations. The model is forced with ocean temperature and
net primary production, either from satellite-based observational estimates, or from
the Institut Pierre Simon Laplace (IPSL) global climate model50, using the historical
hindcast followed by the Representative Concentration Pathway (RCP) 8.5
scenario. The factors at play during the historical transient, according to the model
framework, include the increase of catchability due to technology24,26, and an
observational estimate of the global average ex-vessel fish price51, which has varied
remarkably little (‘Ex-vessel Price variations’ in the Supplementary Methods).
Given that there is no currently available estimate of historical variations in cost
per unit effort, we roughly approximate its potential role using its relationship with
observed price, effort and harvest under open-access, and making a steady-state
assumption (‘Historical global average cost per unit effort’ in Supplementary
Methods).

For the future projections, the OA model is integrated under four idealized
scenarios, two of which assume a continuation of the same 5% per year exponential
increase in fishing technology, while the other two simulate a gradual decrease in
the rate of progress after 2006, reaching stabilized-technology after 2036. Given
that technological progress is clearly continuing through advances such as
improved fish tracking, the deployment of fish aggregating devices, and the
increasing mechanization of fleets in developing nations, the technology-
stabilization scenarios are included as baselines from which to estimate the long-
term importance of future technological progress, rather than representing realistic
future outcomes. For each of the technological scenarios, we address uncertainty in
future market conditions by changing the ex-vessel price. Because the price of fish
depends on the demand for fish products, which is difficult to predict given its
dependence on societal preferences, available substitutes, and distribution
networks52, we apply two end-member scenarios for ex-vessel price: linearly
increasing, and constant. These represent the outcomes that might come from
a larger population and/or a greater preference for seafood (increasing price),
or a ready availability of substitutes from terrestrial food production (constant
price), and bracket a wide range of intermediate possibilities.

Code availability. The model code was written in MATLAB version R2012a. The
zero-dimensional version of the model (that is, for a single patch of ocean), which
includes the model run script, required functions, and forcing data, is available for
download at http://dx.doi.org/10.5281/zenodo.27700 (ref. 53).

Data availability. The model output and observational data are available from the
authors on request.
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