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Preface

The research group CCSG (Combinatorics, Coding and Security Group) is
one of the research groups in the dEIC (Department of Information and Com-
munications Engineering) at the UAB (Universitat Autònoma de Barcelona)
in Spain.

From 1987 the team CCSG has been uninterruptedly working in several
projects and research activities on Information Theory, Communications,
Coding Theory, Source Coding, Teledetection, Cryptography, Electronic Vot-
ing, e-Auctions, Mobile Agents, etc.

The more important know-how of CCSG is about algorithms for for-
ward error correction (FEC), such as Golay codes, Hamming product codes,
Reed-Solomon codes, Preparata and Preparata-like codes, (extended) non-
linear 1-perfect codes, Z4-linear codes, Z2Z4-linear codes, etc.; computations
of the rank and the dimension of the kernel for nonlinear codes as binary 1-
perfect codes, q-ary 1-perfect codes, Preparata codes, Hadamard codes, Ker-
dock codes, quaternary Reed-Muller codes, etc.; the existence and structural
properties for 1-perfect codes, uniformly packed codes, completely regular
codes, completely transitive codes, etc.

• Chapter 1 has been developed by Jaume Pujol and Mercè Villanueva
with the collaboration of Joan Cuadros, Adrià Figuerola, Miriam Gutiérrez,
Vı́ctor Ovalle, Erik Vicent, Laura Vidal, and Fanxuan Zeng.
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Chapter 1

Qary Codes

1.1 Introduction

Magma currently supports the basic facilities for codes over finite fields and
codes over integer residue rings and galois rings, all that are linear codes [6,
Chapters 127-130]. This chapter describes functions which are applicable to
codes over finite fields not necessarily linear.

Let Fn
q be the n-dimensional vector space over the finite field Fq = GF (q).

An (n,M, d) q-ary code C is a subset of Fn
q with cardinality M and minimum

Hamming distance d. Two q-ary codes C1 and C2 of length n are said to
be equivalent if there is a vector a ∈ Fn

q , a monomial matrix M and an
automorphism Γ of the field Fq such that C2 = {MΓ(c) + a | c ∈ C1}.
Note that two equivalent q-ary codes have the same minimum Hamming
distance. Moreover, if C is linear, the zero word belongs to C, but if C is
nonlinear, the zero word does not need to belong to C. In any case, for
every u ∈ C, we can consider the q-ary code, called zero-translation code,
Cu = C − u = {c− u | c ∈ C}. Note that Cu always contains the zero word
and is equivalent to C. Moreover, if C is linear, then Cu = C for all u ∈ C.
In this chapter, the term “code” will refer to a q-ary code not necessarily
linear, which may not contain the zero word, unless otherwise specified.

Given a q-ary code C, we can define two q-ary linear codes related to
C: the linear span of C, which is 〈C〉; and the kernel of C, defined as
K(C) = {x ∈ Fn

q | λx + C = C, ∀λ ∈ Fq} [1, 18]. Note that K(C) is a
linear subspace of Fn

q . Moreover, if the zero word, denoted by 0, is in C,
then K(C) is also a subset of C, so K(C) ⊆ C ⊆ 〈C〉. Otherwise, if 0 6∈ C,
then it is easy to see that K(C)∩C = ∅. The dimension of the linear span of
C, called rank, is denoted by r = dim(〈C〉); and the dimension of the kernel
of C is denoted by k = dim(K(C)). These two parameters can be used to
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8 CHAPTER 1. QARY CODES

distinguish between nonequivalent q-ary codes, since equivalent ones have
the same parameters r and k. Therefore, they provide a sufficient condition
which is not necessary, since two nonequivalent q-ary codes could have the
same parameters r and k.

Let C be a q-ary code of length n and cardinality M with kernel K(C)
of dimension k. Then, C can be written as the union of cosets of K(C):

C =
t⋃

i=0

(
K(C) + ci

)
,

where t + 1 = M/qk [1, 18]. The elements c0, c1, . . . , ct are called coset
representatives of C. If 0 ∈ C, since K(C) ⊆ C, then exactly one of the
coset representatives has to be in the kernel. In this case, we always consider
that 0 ∈ K(C) is a coset representative and c0 = 0.

The parity check system of the q-ary code C is an (n − k) × (n + t + 1)
matrix over Fq, (H|S), where H is a parity check matrix of K(C) and S =
(H ·c0 H ·c1 . . . H ·ct). The super dual of the q-ary code C is the linear code
generated by the parity check system (H|S). Note that if C is linear, then
c0 = 0, S is a zero matrix of size (n − k) × 1, and the super dual coincides
with the dual code of C after removing the last zero coordinate. From these
definitions, we can establish the following properties [11, 12]:

(i) Let col(S) denote the set of columns of S. Then, c ∈ C if and only if
H · c ∈ col(S).

(ii) Let r = dim(〈C〉) and k = dim(K(C)). Then, r = n−dim(H)+dim(S)
and k = n− dim(H).

(iii) The super dual of a q-ary code C is unique, up to a permutation of the
columns of S.

(iv) Let π be any permutation of the set of coordinate positions. Then,
(π(H)|S) is a parity check system for the q-ary code π(C).

(v) Let Cci = C − ci, for i ∈ {0, 1, . . . , t}. Then, (H|Sci) is a parity check
system for Cci , where Sci is obtained from S by replacing the column
vector H · ci with −H · ci and adding −H · ci to all other columns of S.

Let C be a q-ary code with kernel K(C). For every u ∈ C, we can consider
the zero-translation code Cu = C − u. Note that Cu = C for all u ∈ K(C).
Moreover, it is also easy to see that K(C) = K(Cu) for all u ∈ C. However,
note that, if Cu 6= Cv, then the coset representatives of Cu are not a suitable
set of coset representatives for Cv, where u 6= v ∈ C.
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1.2 Construction of Qary Codes

1.2.1 Construction of General Qary Codes

QaryCode(L)

Create a q-ary code C determined by the kernel K(C) and a set of coset
representatives c0, c1, . . . , ct of C. If 0 ∈ C, then c0 = 0. The q-ary code
C is generated by the elements specified by L, where

1. L is a sequence of elements of V = Fn
q ,

2. or, L is a subspace of V = Fn
q ,

3. or, L is an m× n matrix A over a finite field Fq,

4. or, L is an m× n matrix A over a ring Zp, p prime,

5. or, L is an m× n matrix A over a ring Z2s , s ≥ 2,

6. or, L is a linear code over a finite field Fq,

7. or, L is a linear code over a ring Zp, p prime,

8. or, L is a linear code over a ring Z2s , s ≥ 2.

The verbose flag KernelFlag is set to level 0 by default. If it is set to level
1, the total time used to compute the kernel and coset representatives is
shown. If it is set to level 2, the percentage of the computation process
performed is also printed.

Note that, depending on the cardinality M of the q-ary code C, this
function could take some time to compute K(C) and c0, c1, . . . , ct, in
order to return the q-ary code. The following table shows the time (in
seconds) to compute the kernel and coset representatives for several q-ary
codes, using this function (QC column) and the brute force method (BF
column). All these computations have been performed in Magma version
V2.22-1, running on a server with an Intel Xeon processor (clock speed
2.40GHz) and 32GB of memory.

n M = qk(t + 1) Base field k t Time BF(s.) Time QC(s.)
16 64 GF (4) 2 3 0.02 0.01
16 2048 GF (2) 9 3 2.62 0.04
13 59049 GF (3) 9 2 7381.87 1.86
13 118098 GF (3) 10 1 47922.29 4.25
20 163840 GF (8) 5 4 128656.85 7.92
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If L is an m × n matrix A over the ring Z2s , with s ≥ 2, then the q-
ary code has as codewords the image under the generalized Gray map
of the rows of L [5, 10]. Similarly, if L is a linear code over the ring
Z2s , with s ≥ 2, then the q-ary code has as codewords the image under
the generalized Gray map of the codewords of L. In both cases, q =
2, and the binary code is not necessarily linear. Note that the coset
representatives c0, c1, . . . , ct have c0 = 0, since the binary code always
contains the zero word. However, note that if s = 2, then the function
KernelCosetRepresentatives for codes over Z4 [6, Chapter 162] returns
the coset representatives c1, . . . , ct without including the zero word.

If L is an m × n matrix A over Fq or Zp, then the q-ary code has as
codewords the rows of L.

This constructor defines a new user-defined type, CodeFld, and appends
seven attributes to this new category:

• BaseField: The base finite field Fq of the q-ary code C.

• Kernel: The kernel K(C) of the code C as a linear code over Fq.

• CosetRepresentatives: A sequence of coset representatives
[c0, c1, . . . , ct] of the q-ary code C.

• ParityCheckSystem: An (n−k)× (n+ t+ 1) matrix over Fq which
represents the parity check system of the q-ary code C.

• Length: The length n of the q-ary code C.

• IsLinear: It is true if and only if C is a linear code over Fq.

• MinimumDistance: The minimum (Hamming) distance d of C.

If L is a subspace of V = Fn
q or a linear code over Fq or Zp, this function

returns the q-ary code, where the BaseField attribute is Fq or Fp, the
Kernel attribute is the corresponding linear code L defined by the func-
tion LinearCode, the CosetRepresentatives attribute is the sequence
containing only the zero word, the ParityCheckSystem attribute is the
(n−k)×(n+1) matrix having the generator matrix of the dual code of L
in the first n columns and zeroes in the last column, the Length attribute
is set to n, the IsLinear attribute is true, and the MinimumDistance

attribute is computed by using the function MinimumDistance for linear
codes. Note that, in this case, the type CodeLinFld for linear codes over
Fq and the new type CodeFld are not compatible.
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Example H1E1
We define a q-ary code by giving a sequence of elements of a vector space V = Fn

q , or a
matrix over Fq. Note that the function QaryCode returns a q-ary code C determined by
the kernel and a set of coset representatives of C.

> V := VectorSpace(GF(2), 4);

> L := [V!0, V![1,0,0,0], V![0,1,1,1],

V![1,0,1,0], V![0,1,0,1], V![1,1,1,1]];

> C1 := QaryCode(L);

> C1;

(4, 6) code over a finite field of size 2

with a kernel of dimension 1 and 3 coset representatives

> C1:Maximal;

(4, 6) code over a finite field of size 2

with a kernel of dimension 1 and 3 coset representatives

Kernel generator matrix:

[1 1 1 1]

Coset representatives sequence:

[

(0 0 0 0),

(1 0 0 0),

(1 0 1 0)

]

> C1‘Kernel;

[4, 1, 4] Cyclic Linear Code over GF(2)

Generator matrix:

[1 1 1 1]

> C1‘CosetRepresentatives;

[

(0 0 0 0),

(1 0 0 0),

(1 0 1 0)

]

> C1‘IsLinear;

false

> A := Matrix(L);

> C2 := QaryCode(A);

> C2;

(4, 6) code over a finite field of size 2

with a kernel of dimension 1 and 3 coset representatives

> C1 eq C2;

true

> C3 := QaryCode([x + V![0,1,0,0] : x in L]);

> C3;

(4, 6) code over a finite field of size 2

with a kernel of dimension 1 and 3 coset representatives

> C3‘CosetRepresentatives;
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[

(0 1 0 0),

(1 1 0 0),

(1 1 1 0)

]

> C1 eq C3;

false

> C1‘Kernel eq C3‘Kernel;

true

Example H1E2
From a linear code L over Z4, we can define a binary code (that is, a q-ary code with q = 2)
having as codewords the Gray map image of the codewords of L. In this case, note that
the functions KernelZ2CodeZ4 and KernelCosetRepresentatives for codes over Z4 also
return the kernel and a set of coset representatives without the zero word, respectively.

> L := HadamardCodeZ4(3, 5);

> L;

((16, 4^3 2^0)) Linear Code over IntegerRing(4)

Generator matrix:

[1 0 3 2 0 3 2 1 3 2 1 0 2 1 0 3]

[0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3]

[0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3]

> C4 := QaryCode(L);

> C4;

(32, 64) code over a finite field of size 2

with a kernel of dimension 4 and 4 coset representatives

> C4‘Kernel;

[32, 4, 16] Quasicyclic of degree 4 Linear Code over GF(2)

Generator matrix:

[1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0]

[0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1]

[0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1]

[0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1]

> C4‘CosetRepresentatives;

[

(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0),

(0 1 0 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1 0 0 1 0 1 1 1 0 1 1 0 1 0 0),

(0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0),

(0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1 0 1 1 0 1 0 0 1 1 0 1 0 0 1 0)

]

> _, kernelZ2 := KernelZ2CodeZ4(L);

> C4‘Kernel eq kernelZ2;

true

> _, cosetRepZ2 := KernelCosetRepresentatives(L);

> cosetRepZ2;

[

(0 1 0 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1 0 0 1 0 1 1 1 0 1 1 0 1 0 0),
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(0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0),

(0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1 0 1 1 0 1 0 0 1 1 0 1 0 0 1 0)

]

Example H1E3
A linear code C over Fq can also be generated as a q-ary code by using this constructor.
In this cas, note that the function QaryCode returns a CodeFld type code and not a
CodeLinFld type code.

> V := VectorSpace(GF(2), 4);

> C := LinearCode(sub<V|[[0,0,1,1],[1,0,1,1]]>);

> D := QaryCode(sub<V|[[0,0,1,1],[1,0,1,1]]>);

> D;

[4, 2, 1] Linear Code over GF(2)

Generator matrix:

[0 1 0 0]

[0 0 1 1]

> C eq D;

>> C eq D;

^

Runtime error in ’eq’: Bad argument types

Argument types given: CodeLinFld, CodeFld

> QaryCode(C) eq D;

true

QaryCode(L, K)

Create a q-ary code C determined by the kernel K(C) and a set of coset
representatives c0, c1, . . . , ct of C. The q-ary code C is generated from a
sequence L of elements of V = Fn

q , and a partial kernel K. A partial kernel
K is a subspace of K(C), that is, a subspace of V such that λx+ L ⊆ L
for all λ ∈ Fq and x ∈ K.

The partial kernel K must be given as a linear code over Fq. Moreover,
if 0 belongs to L, then K must be a subset of L; otherwise, K must be a
subset of Lu = L− u for all u ∈ L. Finally, K must always be a subcode
of K(C). These last two conditions are not checked by the function.

The verbose flag KernelFlag is set to level 0 by default. If it is set to level
1, the total time used to compute the kernel and coset representatives is
shown. If it is set to level 2, the percentage of the computation process
performed is also printed.
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QaryCode(K, Rep)

Create a q-ary code C determined by the kernel K(C) and a set of coset
representatives c0, c1, . . . , ct of C. The q-ary code C is generated from
a partial kernel K, and a sequence with the corresponding partial coset
representatives Rep of C, so such that the codeword of C are the elements
of L =

⋃
c∈Rep(K + c). A partial kernel K is a subspace of K(C), that is,

a subspace of V such that λx+ L ⊆ L for all λ ∈ Fq and x ∈ K.

The partial kernel K must be given as a linear code over Fq. If more
than one element in Rep belongs to K, only one of them is considered.
Moreover, if Rep contains different coset representatives for the same
coset of K, only one of them for each coset is considered. Finally, note
that if Rep contains an element from K, then 0 ∈ C; otherwise, 0 6∈ C.

The verbose flag KernelFlag is set to level 0 by default. If it is set to level
1, the total time used to compute the kernel and coset representatives is
shown. If it is set to level 2, the percentage of the computation process
performed is also printed.

Example H1E4
We can define a q-ary code directly by giving the kernel and a sequence with the corre-
sponding coset representatives. Next, we show the construction of two q-ary codes, one
without containing the zero word and another one containing it.

> F4<w> := GF(4);

> V := VectorSpace(F4, 5);

> K := LinearCode<F4, 5 | [[1,0,w,1,0], [0,1,w^2,0,1]]>;

> Rep1 := [V![w,w^2,0,w,0], V![1,w^2,1,0,w]];

> Rep2 := [V!0, V![w,w^2,0,w,0], V![1,w^2,1,0,w]];

> C1 := QaryCode(K, Rep1);

> C1;

(5, 32) code over a finite field of size 4

with a kernel of dimension 2 and 2 coset representatives

> C1‘Kernel eq K;

true

> Set(C1) eq {k + x : k in K, x in Rep1};

true

> Set(C1) eq {k + x : k in K, x in C1‘CosetRepresentatives};

true

> C2 := QaryCode(K, Rep2);

> C2;

(5, 48) code over a finite field of size 4

with a kernel of dimension 2 and 3 coset representatives

> C2‘Kernel eq K;
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true

> Set(C2) eq {k + x : k in K, x in Rep2};

true

> Set(C2) eq {k + x : k in K, x in C2‘CosetRepresentatives};

true

We can also define the same q-ary code C2 by giving a partial kernel, that is, a subspace
of the kernel and a sequence with the corresponding partial coset representatives.

> partialK := LinearCode<F4, 5 | [[1,0,w,1,0]]>;

> partialRep := [V!0, V![w,w,w^2,w,1], V![w,1,1,w,w], V![w,0,w,w,w^2],

V![w,w^2,0,w,0], V![1,w,w,0,w^2], V![1,1,0,0,0],

V![1,0,w^2,0,1], V![1,w^2,1,0,w], V![0,1,w^2,0,1],

V![0,w,1,0,w], V![0,w^2,w,0,w^2]];

> C3 := QaryCode(partialK, partialRep);

> C3 eq C2;

true

Note that we can speed up the construction of the q-ary code C2 from a sequence of
elements of a vector space V = Fn

q , when we know the kernel or just a partial kernel, by
using the function QaryCode(L, K) instead of the function QaryCode(L).

> L := [k + rep : k in C2‘Kernel, rep in C2‘CosetRepresentatives];

> time C4 := QaryCode(L);

Time: 0.020

> time C5 := QaryCode(L, partialK);

Time: 0.000

> (C2 eq C4) and (C2 eq C5);

true

Example H1E5
In this example, we can see more clear how, when we know the kernel or just a partial
kernel, the function QaryCode(L, K) can speed up the construction of a q-ary code from
a sequence of elements of a vector space V = Fn

q .

> CZ4 := ReedMullerCodeRMZ4(1, 2, 5);

> L := GrayMapImage(CZ4);

> #L;

65536

> time C := QaryCode(L);

Time: 1.890

> B := Basis(KernelCode(C));

> partialKernel1 := LinearCode<GF(2), 32 | B[1..2]>;

> time C1 := QaryCode(L, partialKernel1);

Time: 1.600

> partialKernel2 := LinearCode<GF(2), 32 | B[1..5]>;

> time C2 := QaryCode(L, partialKernel2);
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Time: 1.080

> partialKernel3 := LinearCode<GF(2), 32 | B[1..7]>;

> time C3 := QaryCode(L, partialKernel3);

Time: 0.840

> partialKernel4 := LinearCode<GF(2), 32 | B[1..9]>;

> time C4 := QaryCode(L, partialKernel4);

Time: 0.580

> kernel := KernelCode(C);

> time C5 := QaryCode(L, kernel);

Time: 0.330

> (C1 eq C2) and (C2 eq C3) and (C3 eq C4) and (C4 eq C5) and (C5 eq C);

true

1.2.2 Some Trivial Qary Codes

ZeroQaryCode(F, n)

Given a finite field F = Fq and positive integer n, return the (n, 0, n)
q-ary code consisting of only the zero word, (where the minimum weight
is by convention equal to n).

RepetitionQaryCode(F, n)

Given a finite field F = Fq and positive integer n, return the (n, q, n)
q-ary code over F generated by the all-ones word.

UniverseQaryCode(F, n)

Given a finite field F = Fq and positive integer n, return the (n, qn, 1)
q-ary code consisting of all possible codewords.

RandomQaryCode(F, n, M : parameters)

ZeroCodeword BoolElt Default: false

Given a finite field F = Fq and positive integers n and M , such that
0 < M ≤ qn, the function returns a random q-ary code C of length n
and cardinality M over the finite field Fq. The method employed is first
to find an integer k ≥ 0 such that qk|M ; then a random linear code K
of length n and dimension k over Fq; and finally to successively choose
random vectors from Fn

q until M/qk different cosets of K have been found.

The parameter ZeroCodeword specifies whether the random q-ary code C
has to contain the zero codeword or not. The default value is false. In
this case, the random q-ary code C may not contain the zero codeword.
If it is set to true, then 0 ∈ C.
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RandomQaryCode(F, n, M, k : parameters)

ZeroCodeword BoolElt Default: false

Given a finite field F = Fq and positive integers n, M , and k, such that
0 < M ≤ qn and qk|M , the function returns a random q-ary code C of
length n, cardinality M , and with a kernel of dimension at least k over
the finite field Fq. The method employed is first to find a random linear
code K of length n and dimension k over Fq; and then to successively
choose random vectors from Fn

q until M/qk different cosets of K have
been found.

The parameter ZeroCodeword specifies whether the random q-ary code C
has to contain the zero codeword or not. The default value is false. In
this case, the random q-ary code C may not contain the zero codeword.
If it is set to true, then 0 ∈ C.

Example H1E6
A first random q-ary code over F8 = GF (8) is constructed having a given length and
number of codewords. A second random q-ary code over F8 = GF (8) is constructed
having also a given minimum dimension of the kernel.

> C1 := RandomQaryCode(GF(8), 8, 56);

> (Length(C1) eq 8) and (#C1 eq 56);

true

> C1zero := RandomQaryCode(GF(8), 8, 56 : ZeroCodeword := true);

> (Length(C1zero) eq 8) and (#C1zero eq 56) and (C1zero!0 in C1zero);

true

> C2 := RandomQaryCode(GF(8), 8, 448, 2);

> (Length(C2) eq 8) and (#C2 eq 448);

true

> DimensionOfKernel(C2) ge 2;

true

> C2zero := RandomQaryCode(GF(8), 8, 448, 2 : ZeroCodeword :=true);

> (Length(C2zero) eq 8) and (#C2zero eq 448) and (C2zero!0 in C2zero);

true

> DimensionOfKernel(C2zero) ge 2;

true

Over any specific finite field Fq, the q-ary zero code of length n is contained in every q-ary
code of length n, and similarly every q-ary code of length n is contained in the q-ary
universe code of length n. This is illustrated over F3 = GF (3) for codes of length 10 with
an arbitrary code of length 10 and cardinality 50.

> F := GF(3);

> U := UniverseQaryCode(F, 10);
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> Z := ZeroQaryCode(F, 10);

> R := RandomQaryCode(F, 10, 50);

> (Z subset R) and (R subset U);

true

1.3 Invariants of a Qary Code

1.3.1 Basic Numerical Invariants

Length(C)

Given a q-ary code C, return the length of C.

#C

Given a q-ary code C, return the number of codewords belonging to C.

Parameters(C)

Given a q-ary code C, return a sequence with the parameters n, M , and
d; where n is the length of C, M the number of codewords, and d the
minimum (Hamming) distance.

InformationRate(C)

The information rate of the (n,M, d) q-ary code C. This is the ratio
(logqM)/n.

Example H1E7
Given a binary code C, we compute its length, number of codewords, minimum distance,
and information rate.

> V21 := VectorSpace(GF(2), 21);

> partialK := LinearCode(sub< V21 |

[1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0,0],

[1,1,1,1,1,0,0,0,0,0,1,1,1,1,1,0,0,0,0,1,0],

[1,1,1,0,0,1,1,0,0,0,1,1,0,0,0,1,1,1,0,0,1]

>);

> partialRep := [

V21!0,

V21![0,0,0,1,0,1,1,0,1,1,0,1,0,1,0,1,1,0,0,0,0],

V21![0,0,1,0,1,0,1,1,1,0,0,0,0,0,1,1,1,1,0,0,0],

V21![0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0,0],

V21![0,1,1,0,0,0,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0],

V21![1,0,0,0,0,1,0,0,0,1,1,0,1,1,1,1,0,0,0,0,1],

V21![1,0,1,0,0,1,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0],

V21![1,1,0,1,0,0,1,1,0,0,0,0,0,1,1,0,1,0,0,0,1]

];
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> C := QaryCode(partialK, partialRep);

> Length(C);

21

> #C;

64

> Parameters(C);

[ 21, 64 ]

> MinimumDistance(C);

9

> Parameters(C);

[ 21, 64, 9 ]

> InformationRate(C) eq Log(2, #C)/Length(C);

true

1.3.2 The Ambient Space and Alphabet

AmbientSpace(C)

The ambient space of the q-ary code C, i.e. the generic vector space V
over Fq in which C is contained.

Generic(C)

Given a q-ary code C of length n, return the generic (n, qn, 1) q-ary code
in which C is contained.

Alphabet(C)

Field(C)

The underlying finite field (or alphabet) Fq of the q-ary code C.

Example H1E8

Given the same binary code C as in Example H1E7, we compute its ambient space, generic
(n, qn, 1) q-ary code and underlying finite field.

> AmbientSpace(C);

Full Vector space of degree 21 over GF(2)

> Generic(C);

[21, 21, 1] Cyclic Linear Code over GF(2)

> Alphabet(C);

Finite field of size 2
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1.3.3 The Code Space

SpanCode(C)

Given a q-ary code C of length n, return the linear span of C, that is,
the linear code over Fq generated by the codewords of C.

Note that if the q-ary code C is linear, the span of C coincides with C.

DimensionOfSpan(C)

Rank(C)

Given a q-ary code C of length n, return its rank. The rank of a q-ary
code C is the dimension of the linear span of C over Fq.

KernelCode(C)

Given a q-ary code C of length n, return its kernel as a linear code over
Fq. The kernel of a q-ary code C is the set of codewords x such that
λx+ C = C for all λ ∈ Fq.

Note that if the q-ary code C is linear, the kernel of C coincides with C.

DimensionOfKernel(C)

Given a q-ary code C of length n, return the dimension of its kernel. The
kernel of a q-ary code C is the set of codewords x such that λx+C = C
for all λ ∈ Fq.

PseudoLinearityRate(C)

Given a q-ary code C of length n, return the pseudo linearity rate of C.
The pseudo linearity rate of a q-ary code C is the ratio 1 − (r − k)/n,
where r and k are the dimension of the linear span (rank) and dimension
of the kernel, respectively.

Note that 0 ≤ 1− (r− k)/n ≤ 1. Moreover, if the q-ary code C is linear,
then this ratio is equal to 1.

Example H1E9
Given the same binary code C as in Example H1E7, we compute the dimension of its
linear span (rank) and dimension of its kernel, as long as its linear span and kernel.

> r := DimensionOfSpan(C);

> r;

9

> span := SpanCode(C);

> Dimension(span) eq r;

true

> k := DimensionOfKernel(C);
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> k;

3

> kernel := KernelCode(C);

> Dimension(kernel) eq k;

true

> (kernel subset C) and (C subset span);

true

> k le Ilog(#Field(C), #C);

true

> Ilog(#Field(C), #C) le r;

true

> PseudoLinearityRate(C);

0.714285714285714285714285714285

> PseudoLinearityRate(C) eq 1-(r-k)/Length(C);

true

For any linear code, the linear span and kernel coincide with the code itself, so the dimen-
sion of the linear span and kernel is the same as the dimension of the code. Moreover, the
pseudo linearity rate is always 1.

> C2 := RandomLinearCode(GF(9), 10, 4);

> Cq2 := QaryCode(C2);

> (KernelCode(Cq2) eq SpanCode(Cq2)) and (SpanCode(Cq2) eq C2);

true

> (DimensionOfKernel(Cq2) eq Rank(Cq2)) and (Rank(Cq2) eq Dimension(C2));

true

> PseudoLinearityRate(Cq2) eq 1;

true

1.3.4 The Dual and Superdual Space

Dual(C)

The dual D of the q-ary code C of length n. The dual consists of all
elements in the vector space V = Fn

q which are orthogonal to all codewords
of C, so it also coincides with the dual of the linear span of C.

ParityCheckSystem(C)

Given a q-ary code C of length n, with kernel K(C) of dimension k and
t + 1 coset representatives c0, c1, . . . , ct, return the (n − k) × (n + t + 1)
matrix over Fq, (H|S), where H is a parity check matrix of K(C) and
S = (H · c0 H · c1 . . . H · ct).

Note that if the q-ary code C is linear, then c0 = 0, S is a zero matrix
of size (n − k) × 1, and (H|S) is a parity check matrix of K(C) after
removing the last zero column.
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SuperDualCode(C)

Given a q-ary code C of length n, with kernel K(C) of dimension k and
t + 1 coset representatives c0, c1, . . . , ct, return the super dual of C, that
is, the linear code over Fq of length n+t+1 generated by the parity check
system (H|S).

Note that if the q-ary code C is linear, then the super dual is the dual
code of C after removing the last zero coordinate.

Example H1E10
Given a random q-ary code over F5 = GF (5), we check that its dual corresponds to the
dual of the linear span of the code. We also check that its super dual is the linear code
generated by a parity check system (H|S) of the code.

> C1 := RandomQaryCode(GF(5), 10, 60);

> Dual(C1) eq Dual(SpanCode(C1));

true

> SuperDualCode(C1) eq LinearCode(ParityCheckSystem(C1));

true

For any linear code, the parity check system coincides with a parity check matrix of C
after removing the last zero column, and the super dual coincides with the dual code of C
after removing the last zero coordinate.

> C2 := RandomLinearCode(GF(8), 6, 3);

> Cq2 := QaryCode(C2);

> SuperDualCode(Cq2) eq LinearCode(ParityCheckSystem(Cq2));

true

> RemoveColumn(ParityCheckSystem(Cq2), 7) eq ParityCheckMatrix(C2);

true

> PunctureCode(SuperDualCode(Cq2), 7) eq Dual(C2);

true

1.4 Operations on Codewords

1.4.1 Construction of a Codeword

C ! [a1,. . .,an]

Given a q-ary code C which is defined as a subset of the vector space
V = Fn

q , and elements a1, . . . , an belonging to Fq, construct the codeword
(a1, . . . , an) of C. It is checked that the vector (a1, . . . , an) is an element
of C.
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C ! u

Given a q-ary code C which is defined as a subset of the vector space
V = Fn

q , and an element u belonging to V , create the codeword of C
corresponding to u. The function will fail if u does not belong to C.

C ! 0

The zero word of the q-ary code C.

1.4.2 Codewords

Random(C)

Return a random codeword of the q-ary code C.

CosetRepresentatives(C)

Given a q-ary code C of length n, return the coset representatives of C
as a sequence of vectors of length n over Fq.

Set(C)

Given a q-ary code C, return all its codewords as a set. It can be useful
to iterate over the codewords of C.

Example H1E11
We first construct a binary code as the Gray map image of a linear code over the ring Z4.
Then, we check that the set of codewords of this binary code coincides with the return of
the function GrayMapImage applied to the linear code over Z4.

> CZ4 := LinearCode(Matrix(Integers(4), [[1,0,3,0,3], [0,1,0,2,3]]));

> C := QaryCode(CZ4);

> C;

(10, 16) code over a finite field of size 2

with a kernel of dimension 2 and 4 coset representatives

> kernel := KernelCode(C);

> kernel;

[10, 2, 4] Quasicyclic of degree 5 Linear Code over GF(2)

Generator matrix:

[1 1 0 0 1 1 0 0 1 1]

[0 0 1 1 0 0 0 0 1 1]

> cosetRep := CosetRepresentatives(C);

> cosetRep;

[

(0 0 0 0 0 0 0 0 0 0),

(0 1 0 0 1 0 0 0 1 0),

(0 0 0 1 0 0 1 1 1 0),

(0 1 0 1 1 0 1 1 1 1)

]
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> Set(C) eq Set(GrayMapImage(CZ4));

true

> Set(C) eq {k + c : k in kernel, c in cosetRep};

true

> Random(C) in C;

true

1.5 Subcodes of Qary Codes

1.5.1 Derived Codes

ZeroTranslationCode(C)

Given a q-ary code C of length n, return a zero-translation code Cw =
C − w equivalent to C, together with w. The vector w is always chosen
as the first element of the sequence of coset representatives of C. Note
that, since w ∈ C, then Cw always contains the zero word.

TranslationCode(C, w)

Given a q-ary code C of length n and a vector w ∈ V = Fn
q , return the

q-ary code Cw = C − w equivalent to C. Note that if w ∈ K(C), then
Cw = C. Moreover, Cw contains the zero word, so it is a zero-translation
code of C, as long as w ∈ C.

Example H1E12

> V := VectorSpace(GF(5), 6);

> partialK := LinearCode(sub< V |

[1,2,3,4,1,1],

[0,1,0,2,2,0]

>);

> partialRep := [

V![4,0,2,1,4,1],

V![3,0,2,4,2,4],

V![2,1,2,3,4,4]

];

> C := QaryCode(partialK, partialRep);

> C;

(6, 75) code over a finite field of size 5

with a kernel of dimension 2 and 3 coset representatives

> V!0 in C;

false

> Cz := ZeroTranslationCode(C);
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> V!0 in Cz;

true

> MinimumDistance(C) eq MinimumDistance(Cz);

true

> Parameters(C) eq Parameters(Cz);

true

> Cz eq TranslationCode(C, C‘CosetRepresentatives[1]);

true

> C eq TranslationCode(C, Random(C‘Kernel));

true

> Parameters(C) eq Parameters(TranslationCode(C, Random(V)));

true

> KernelCode(C) eq KernelCode(TranslationCode(C, Random(V)));

true

> V!0 in TranslationCode(C, Random(C));

true

> w := Random(Set(V) diff Set(C));

> w in C;

false

> V!0 in TranslationCode(C, w);

false

1.5.2 Membership and Equality

u in C

Return true if and only if the vector u of V = Fn
q belongs to the q-ary

code C of length n.

u notin C

Return true if and only if the vector u of V = Fn
q does not belong to the

q-ary code C of length n.

C eq D

Return true if and only if the q-ary codes C and D are equal.

C ne D

Return true if and only if the q-ary codes C and D are not equal.

Example H1E13

> V := VectorSpace(GF(2), 5);

> C1 := QaryCode([V![1,1,1,1,1],V![0,0,0,0,0],

V![1,1,0,0,0],V![1,0,1,1,1]]);

> C2 := QaryCode(Matrix([V![1,1,1,1,1],V![0,0,0,0,0],

V![1,1,0,0,0],V![1,0,1,1,1]]));
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> C1 eq C2;

true

> C3 := RandomQaryCode(GF(3), 8, 108, 2);

> C4 := RandomQaryCode(GF(3), 8, 27);

> C3 eq C4;

false

> C5 := QaryCode(C4‘Kernel);

> C5 subset C4;

true

1.6 Properties of Qary Codes

IsQary(C)

Return true if and only if C is a q-ary code.

IsLinear(C)

Return true if and only if C is a linear q-ary code.

1.7 The Weight and Distance Distribution

QaryMinimumWeight(C)

AlgMethod MonStgElt Default: “Auto”

Given a q-ary code C, determine the minimum weight of the codewords
belonging to the code C.

Sometimes a brute force calculation of the entire weight distribution can
be a faster way to get the minimum weight for small codes. When the
parameter AlgMethod is set to the default "Auto" then the method is
internally chosen. The user can specify which method they want using
setting it to either "Distribution" or "Zimmerman".

MinimumDistance(C)

AlgMethod MonStgElt Default: “Auto”

Given a q-ary code C, determine the minimum distance of the codewords
belonging to the code C.
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Sometimes a brute force calculation of the entire weight distribution can
be a faster way to get the minimum weight for small codes. When the
parameter AlgMethod is set to the default “Auto” then the method is
internally chosen. The user can specify which method they want using
setting it to either "Distribution" or "Zimmerman".

Note that for distance invariant codes, the minimum weight and distance
coincide.

WeightDistribution(C)

Determine the weight distribution of the q-ary code C. The distribution is
returned in the form of a sequence of tuples, where the i-th tuple contains
the i-th weight, wi say, and the number of codewords having weight wi.

Example H1E14

> V := VectorSpace(GF(2), 31);

> C_kernel := SimplexCode(5);

> C_representatives := [

V!0,

V![ 0,0,1,0,0,0,1,1,1,0,0,1,1,0,1,0,0,1,1,1,1,0,0,0,1,0,1,1,1,1,0],

V![ 0,1,0,1,1,0,1,0,1,0,1,1,1,1,0,0,1,0,1,1,1,0,1,0,0,1,1,1,1,0,1],

V![ 0,0,0,0,0,1,1,1,0,0,0,1,1,1,0,1,1,0,1,0,0,0,1,1,1,1,0,1,0,1,1]

];

> C := QaryCode(C_kernel, C_representatives);

> QaryMinimumWeight(C);

10;

> MinimumDistance(C);

8

> weightDistribution := WeightDistribution(C);

> weightDistribution;

[ <0, 1>, <10, 3>, <11, 4>, <12, 9>, <13, 6>, <14, 15>, <15, 8>, <16, 50>,

<17, 8>, <18, 13>, <19, 4>, <20, 3>, <21, 2>, <22, 1>, <24, 1> ]

> &+[wD[2] : wD in weightDistribution ] eq #C;

true



28 CHAPTER 1. QARY CODES



Bibliography

[1] H. Bauer, B. Ganter, and F. Hergert, “Algebraic techniques for nonlinear
codes,” Combinatorica, vol. 3, pp. 21-33, 1983.

[2] J. Borges, C. Fernández, J. Pujol, J. Rifà and M. Villanueva, “On Z2Z4-
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