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Preface

The research group CCSG (Combinatorics, Coding and Security Group) is
one of the research groups in the dEIC (Department of Information and Com-
munications Engineering) at the UAB (Universitat Autònoma de Barcelona)
in Spain.

From 1987 the team CCSG has been uninterruptedly working in several
projects and research activities on Information Theory, Communications,
Coding Theory, Source Coding, Teledetection, Cryptography, Electronic Vot-
ing, e-Auctions, Mobile Agents, etc.

The more important know-how of CCSG is about algorithms for for-
ward error correction (FEC), such as Golay codes, Hamming product codes,
Reed-Solomon codes, Preparata and Preparata-like codes, (extended) non-
linear 1-perfect codes, Z4-linear codes, Z2Z4-linear codes, etc.; computations
of the rank and the dimension of the kernel for nonlinear codes as binary 1-
perfect codes, q-ary 1-perfect codes, Preparata codes, Hadamard codes, Ker-
dock codes, quaternary Reed-Muller codes, etc.; the existence and structural
properties for 1-perfect codes, uniformly packed codes, completely regular
codes, completely transitive codes, etc.

Currently, the research projects where CCSG is involved are supported by
the Spanish MICINN under Grants TIN2010-17358 and TIN2013-40524-P,
and by the Catalan AGAUR under Grant 2014SGR-691. Part of this research
deals with Z2Z4-linear codes. There were no symbolic software to work with
these codes, so the members of CCSG has been developing a new package
that supports the basic facilities for Z2Z4-additive codes. Specifically, this
Magma package generalizes most of the known functions for codes over
the ring Z4, which are subgroups of Zn4 , to Z2Z4-additive codes, which are
subgroups of Zα2 × Zβ4 , maintaining all the functionality for codes over Z4

and adding new functions which, not only generalize the previous ones, but
introduce new variants when it is needed. The implementation is based on
the results that appeared in [1, 2, 6, 7].

The Gray map image of codes over Z4, or in general Z2Z4-additive codes,
denoted also as Z2Z4-linear codes, are usually binary nonlinear codes. Magma
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does not have functions to deal, in an efficient way, with nonlinear codes in
general. Therefore, the members of CCSG has also been developing packages
that supports functions for binary nonlinear codes, which are represented as
a union of cosets of a binary linear subcode, called kernel. The packages
include functions to represent, manipulate, store and construct binary non-
linear codes in an efficient way, mainly when the codes have a large kernel.
They also include functions to compute the minimum weight and distance
of these codes, as long as functions to simulate the decoding process using
nonlinear codes. The implementation is based on the results that appeared
in [22, 23].

A beta version of these new packages for Z2Z4-additive codes and for
binary nonlinear codes, and the manual with the description of all functions
can be downloaded from the web page http://www.ccsg.uab.es. For any
comment or further information about this package, you can send an e-mail
to support-ccsg@deic.uab.cat.

• Chapter 1 has been developed by Jaume Pujol and Mercè Villanueva
with the collaboration of Joan Cuadros, Miriam Gutiérrez, Vı́ctor Ovalle,
Marta Pujol, Laura Vidal and Fanxuan Zeng.

• Chapter 2 has been developed by Jaume Pujol and Mercè Villanueva
with the collaboration of Victoria González and Fanxuan Zeng.



Chapter 1

Binary Codes

1.1 Introduction

Magma currently supports the basic facilities for codes over finite fields and
codes over integer residue rings and galois rings, all that are linear codes
(see [4, Chapters 127-130]). Therefore, Magma provides functions for the
special case of binary linear codes, that is when the finite field is GF (2), or
equivalently the finite ring is Z2. This chapter describes functions which are
applicable to binary codes not necessarily linear.

Let Zn2 be the n-dimensional vector space over Z2. An (n,M, d) binary
code C is a subset of Zn2 with cardinality M and minimum Hamming distance
d. Two binary codes C1 and C2 of length n are said to be permutation equiva-
lent if there exists a coordinate permutation π such that C2 = {π(c) | c ∈ C1}.
They are said to be equivalent if there exists a vector a ∈ Zn2 and a coor-
dinate permutation π such that C2 = {a + π(c) | c ∈ C1}. Note that two
equivalent codes have the same minimum distance. Moreover, if C is linear,
the zero word belongs to C; but if C is nonlinear, the zero word does not
need to belong to C. In this case, we can always consider a new binary code
C ′ = C + c = {x + c | x ∈ C} for any c ∈ C, which is equivalent to C, such
that the zero word is included in C ′. In this chapter, the term “code” will
refer to a binary code not necessarily linear such that it contains the zero
word, unless otherwise specified.

Two structural properties of binary codes are the rank and kernel. The
rank of a binary code C, r = rank(C), is simply the dimension of the linear
span, 〈C〉, of C. The kernel of a binary code C is defined as K(C) = {x ∈
Zn2 | x + C = C}. If the zero word is in C, then K(C) is a linear subspace
of C. We will denote the dimension of the kernel of C by k = ker(C). In
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general, C can be written as the union of cosets of K(C):

C =
t⋃
i=0

(
K(C) + ci

)
,

where c0 = 0 and t+1 = M/2k. These parameters can be used to distinguish
between nonequivalent binary codes, since equivalent ones have the same
parameters r and k. Therefore, they provide a sufficient condition which
is not necessary, since two nonequivalent binary codes could have the same
parameters r and k.

Let C be a binary code of length n such that the zero word belongs to
C, with kernel K(C) of dimension k and coset representatives [c1, . . . , ct].
The parity check system of the binary code C is an (n− k)× (n+ t) binary
matrix (G|S), where G is a generator matrix of the dual code K(C)⊥ and
S = (G · c1 G · c2 . . . G · ct). The super dual of the binary code C is the
binary linear code generated by the parity check system (G|S). Note that if
C is a binary linear code, the super dual is the dual code C⊥. From these
definitions, we can establish the following properties [9, 10]:

• Let col(S) denote the set of columns of the matrix S. Then, c ∈ C if
and only if G · c = 0 or G · c ∈ col(S).

• Let r = rank(C) and k = ker(C). Then, r = n − dim(G) + dim(S)
and k = n− dim(G).

• The super dual of a code C is unique, up to a permutation of the
columns of the matrix S.

• Let π be any permutation of the set of coordinate positions. If (G|S)
is a parity check system for a nonlinear code C, then (π(G)|S) will be
a parity check system for the code π(C).

• Let C ′ = C + ci, for some i ∈ {1, . . . , t}. If (G|S) is a parity check
system for C, then (G|S ′) is a parity check system for C ′, where S ′ is
obtained from S by adding the column vector G · ci of S to all other
columns of S.
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1.2 Construction of Binary Codes

BinaryCode(L)

Creates a binary code C given by its super dual, which is a binary linear
code of length n + t generated by the parity check system (G|S) for
the binary code C. As it is explained above, the parity check system
(G|S) is constructed using the kernel K(C) and the coset representatives
[c1, . . . , ct] of the binary code obtained by L, where:

1. L is a sequence of elements of V = Zn2 ,

2. or, L is a subspace of V = Zn2 ,

3. or, L is an m× n matrix A over the ring Z2,

4. or, L is a binary linear code,

5. or, L is a quaternary linear code,

6. or, L is a Z2Z4-additive code.

Note that in general, depending on the cardinality M of the binary code
C, this function could take some time to compute K(C) and [c1, . . . , ct],
in order to return the binary code given by its super dual.

If L is a quaternary linear code or a Z2Z4-additive code, then the binary
code corresponds to the image of L under the Gray map.

If the zero word is not in L, then L is substituted by L + c, where c is
the first element in L.

This constructor appends five attributes to the code category:

• Length: The length n of the binary code.

• Kernel: The kernel of the binary code as a binary linear subcode.

• CosetRepresentatives: The sequence of coset representatives
[c1, . . . , ct].

• MinimumDistance: The minimum (Hamming) distance d.

• IsLinear: It is true if and only if C is a binary linear code.
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If L is a subspace of V = Zn2 or a binary linear code, this function
returns the dual code. In this case, the Kernel attribute is identical
to the binary linear code L defined by the function LinearCode(), the
CosetRepresentatives attribute is the empty sequence, the Length at-
tribute is n and the IsLinear attribute is true.

BinaryCode(L, K)

BinaryCode(L, K, Rep)

BinaryCode(K, Rep)

Creates a binary code C given by its super dual, which is a binary linear
code of length n + t generated by the parity check system (G|S) for the
binary code C. The parity check system (G|S) is constructed using the
kernel K(C) and the coset representatives [c1, . . . , ct] of the binary code
C.

Depending on the parameters of the function, the binary code C is con-
structed from a sequence L of elements of V = Zn2 , and a partial kernel
K; from a sequence L of elements of V = Zn2 , a partial kernel K, and
the corresponding sequence of partial coset representatives Rep; or from
a partial kernel K, and the corresponding sequence of partial coset rep-
resentatives Rep. The partial kernel K is given as a binary linear code.

This constructor appends the same attributes as the previous function.

BinarySuperDualCode(K, Rep)

Given the kernel K as a linear code of length n and the corresponding
sequence of t coset representatives Rep of a binary code C, return the
super dual of C, that is, the binary linear code of length n+ t generated
by the parity check system (G|S) constructed using K and Rep.

If Rep is an empty sequence, this function returns the dual of the kernel
K, which is also the dual of C.

Example H1E1
We can define a binary code by giving a sequence of elements of a vector space V = Zn

2 , or
a matrix over Z2. Note that the BinaryCode function returns the super dual of a binary
code C and the codewords of C can be generated as the union of the cosets of its kernel.

> V := VectorSpace(GF(2), 4);

> L := [V!0,V![1,0,0,0],V![0,1,0,1],V![1,1,1,1]];

> C1 := BinaryCode(L);

> C1;

[7, 4, 2] Linear Code over GF(2)

Generator matrix:
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[1 0 0 0 1 0 1]

[0 1 0 0 0 1 1]

[0 0 1 0 0 0 1]

[0 0 0 1 0 1 1]

> IsBinaryLinearCode(C1);

false

> A := Matrix(L);

> C2 := BinaryCode(A);

> C2;

[7, 4, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 1 0 1]

[0 1 0 0 0 1 1]

[0 0 1 0 0 0 1]

[0 0 0 1 0 1 1]

> IsBinaryEqual(C1, C2);

true

A binary linear code C can be generated as a binary code with this constructor. Note
that in this case the BinaryCode function returns the dual of C.

> C := LinearCode(sub<V|[[0,0,1,1],[1,0,1,1]]>);

> D := BinaryCode(sub<V|[[0,0,1,1],[1,0,1,1]]>);

> D;

[4, 2, 1] Linear Code over GF(2)

Generator matrix:

[0 1 0 0]

[0 0 1 1]

> IsBinaryLinearCode(D);

true

> Dual(C) eq D;

true

BinaryUniverseCode(n)

Given a positive integer n, return the binary code of length n consisting
of all possible codewords.

BinaryZeroCode(n)

Given a positive integer n, return the binary code of length n consisting
of only the zero codeword.

BinaryRandomCode(n, M)

Given two positive integers n and M , return a random binary code of
length n and cardinality M .
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BinaryRandomCode(n, M, k)

Given three positive integers n, M and k, return a random binary code
of length n, cardinality M and with a kernel of minimum dimension k.

BinaryIsomorphicCode(C, p)

Given a binary code C of length n and an element p belonging to a
permutation group of degree n, return the binary code p(C) = {p(c) | c ∈
C}, where p(c) is obtained from a codeword c by permuting the coordinate
positions of c according to p. The corresponding function for a linear code
C is C∧p.

Example H1E2
We can also construct random binary codes with a given length, number of codewords
and, optionally, with a given minimum kernel dimension.

> C1 := BinaryRandomCode(8, 56);

> C1;

[14, 5, 4] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 1 0 1 0 1 0]

[0 1 0 0 0 0 1 0 1 0 1 0 0 0]

[0 0 1 0 0 0 1 1 1 0 1 0 0 1]

[0 0 0 1 0 1 1 1 0 1 1 1 1 1]

[0 0 0 0 1 0 0 1 0 0 0 1 1 1]

> (BinaryLength(C1) eq 8) and (BinaryCardinal(C1) eq 56);

true

> C2 := BinaryRandomCode(8, 48, 2);

> C2;

[19, 6, 6] Linear Code over GF(2)

Generator matrix:

[1 0 0 1 0 0 0 0 1 1 0 1 0 0 0 1 0 1 0]

[0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 0 0 0 1]

[0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1]

[0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 1 1 1 1]

[0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 1 1 1]

[0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 1 1]

> BinaryDimensionOfKernel(C2) ge 2;

true

The binary zero code of length n is contained in every binary code of length n, and similarly
every binary code of length n is contained in the binary universe code of length n.

> U := BinaryUniverseCode(10);

> Z := BinaryZeroCode(10);

> R := BinaryRandomCode(10, 50);

> IsBinarySubset(Z, R) and IsBinarySubset(R, U);

true
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1.3 Invariants of a Binary Code

BinaryLength(C)

Given a binary code C, return the length of the code.

BinaryCardinal(C)

Given a binary code C, return the number of words belonging to C.

BinaryParameters(C)

Given a binary code C, return a list with the parameters [n,M, d], where n
is the length of the code, M the number of codewords and d the minimum
(Hamming) distance.

BinarySpanCode(C)

Given a binary code C of length n, return the linear span of C, that is,
the binary linear code generated by the codewords of C.

BinaryDimensionOfSpan(C)

BinaryRank(C)

Given a binary code C of length n, return its rank. The rank of a binary
code C is the dimension of the linear span of C over Z2.

BinaryKernelCode(C)

Given a binary code C of length n, return its kernel as a binary linear
code, and the representatives of the cosets as a list of binary vectors of
length n. The kernel of a binary code C is the set of codewords x such
that x+ C = C.

BinaryDimensionOfKernel(C)

Given a binary code C of length n, return the dimension of its kernel. The
kernel of a binary code C is the set of codewords x such that x+C = C.

Example H1E3
Given a binary code C, we compute its length, number of codewords, minimum distance,
rank and kernel dimension.

> V21 := VectorSpace(GF(2), 21);

> C21_kernel := LinearCode(sub< V21 |

[1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0,0],

[1,1,1,1,1,0,0,0,0,0,1,1,1,1,1,0,0,0,0,1,0],

[1,1,1,0,0,1,1,0,0,0,1,1,0,0,0,1,1,1,0,0,1]

>);

> C21_representatives := [

V21![0,0,0,1,0,1,1,0,1,1,0,1,0,1,0,1,1,0,0,0,0],
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V21![0,0,1,0,1,0,1,1,1,0,0,0,0,0,1,1,1,1,0,0,0],

V21![0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0,0],

V21![0,1,1,0,0,0,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0],

V21![1,0,0,0,0,1,0,0,0,1,1,0,1,1,1,1,0,0,0,0,1],

V21![1,0,1,0,0,1,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0],

V21![1,1,0,1,0,0,1,1,0,0,0,0,0,1,1,0,1,0,0,0,1]

];

> C := BinaryCode(C21_kernel, C21_representatives);

> C;

[28, 18] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0]

[0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 1]

[0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 0]

[0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1]

[0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0]

[0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 1 1]

[0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 0 1]

[0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 0]

[0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 1]

[0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 0 0]

[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1]

[0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0]

[0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1]

[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 1 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 1]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1 0 1 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1]

> BinaryLength(C);

21

> BinaryCardinal(C);

64

> BinaryMinimumDistance(C);

9

> BinaryParameters(C);

[ 21, 64, 9 ]

> r := BinaryDimensionOfSpan(C);

> r;

9

> k := BinaryDimensionOfKernel(C);

> k;

3

> kernel, cosetRepresentatives := BinaryKernelCode(C);

> ((2^k)*(#cosetRepresentatives+1)) eq BinaryCardinal(C);

true
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1.4 The Information Sets

IsBinarySystematic(C)

Return true if and only if the binary code C of length n is systematic,
that is, there is a set of t coordinate positions I ⊆ {1, . . . , n} such that
|C| = |CI | = 2t, where CI = {vI : v ∈ C} and vI denote the restriction of
the vector v to the coordinates in I.

BinaryInformationSpace(C)

Given a systematic binary code C of cardinality 2t, return the vector
space U = Zt2, which is the space of information vectors for the code C.

BinaryInformationSet(C)

Given a systematic binary code C of length n, return an information set
for C. An information set for C is an ordered set of t coordinate positions
I ⊆ {1, . . . , n} such that |C| = |CI | = 2t, where CI = {vI |v ∈ C} and
vI denote the restriction of the vector v to the coordinates in I. The
information set is returned as a sequence of t integers, giving the numbers
of the columns that correspond to the information set.

BinaryAllInformationSets(C)

Given a systematic binary code C of length n, return all the possible in-
formation sets of C as a (sorted) sequence of sequences of column indices.
Each inner sequence contains a set of t coordinate positions I ⊆ {1, . . . , n}
such that |C| = |CI | = 2t, where CI = {vI : v ∈ C} and vI denote the
restriction of the vector v to the coordinates in I.

BinaryStandardForm(C)

Given a systematic binary code C of length n, return the standard form
D of C. A systematic binary code of cardinality 2t is in standard form
if the first t components of the codewords correspond to the information
set. Magma returns one of the many codes in standard form which is
isomorphic to C. (The same code is returned each time.) Thus, the effect
of this function is to return a code D whose codewords come from the
codewords of C with its coordinates permuted, so that the codewords of
D restricted to the first t coordinates gives all the elements of the vector
space U = Zt2 which is the space of information vectors for the code C.
Two values are returned:

(a) The standard form code D;

(b) An isomorphism from C to D.

Example H1E4
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>

1.5 Operations on Codewords

BinarySet(C)

Given a binary code C, return the set of all codewords of C.

BinaryRandom(C)

Return a random codeword of the binary code C.

Example H1E5

> C := LinearCode(Matrix(Integers(4), [[1,0,3,0,3], [0,1,0,2,3]]));

> HasLinearGrayMapImage(C);

false

> Cb := BinaryCode(C);

> kernel, cosetRepresentatives := BinaryKernelCode(Cb);

> kernel;

[10, 2, 4] Quasicyclic of degree 5 Linear Code over GF(2)

Generator matrix:

[1 1 0 0 1 1 0 0 1 1]

[0 0 1 1 0 0 0 0 1 1]

> cosetRepresentatives;

[

(0 1 0 0 1 0 0 0 1 0),

(0 0 0 1 0 0 1 1 1 0),

(0 1 0 1 1 0 1 1 1 1)

]

> BinarySet(Cb) eq Set(GrayMapImage(C));

true

> c := BinaryRandom(Cb);

> IsInBinaryCode(Cb, c);

true

1.6 Membership and Equality

IsInBinaryCode(C, u)

Return true if and only if the vector u of V = Zn2 belongs to the binary
code C of length n.

IsNotInBinaryCode(C, u)

Return true if and only if the vector u of V = Zn2 does not belong to the
binary code C of length n.
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IsBinarySubset(C, D)

Return true if and only if the binary code C is a subcode of the binary
code D.

IsBinaryNotSubset(C, D)

Return true if and only if the binary code C is not a subcode of the
binary code D.

IsBinaryEqual(C, D)

Return true if and only if the binary codes C and D are equal.

IsBinaryNotEqual(C, D)

Return true if and only if the binary codes C and D are not equal.

Example H1E6

> V := VectorSpace(GF(2), 5);

> C1 := BinaryCode([V![1,1,1,1,1],V![0,0,0,0,0],

V![1,1,0,0,0],V![1,0,1,1,1]]);

> C2 := BinaryCode(Matrix([V![1,1,1,1,1],V![0,0,0,0,0],

V![1,1,0,0,0],V![1,0,1,1,1]]));

> IsBinaryEqual(C1, C2);

true

> C3 := BinaryRandomCode(8, 64, 2);

> C4 := BinaryRandomCode(8, 32);

> IsBinarySubset(C3, C4);

false

> C5 := BinaryCode(C4‘Kernel);

> IsBinarySubset(C5, C4);

true

1.7 Properties of Binary Codes

IsBinaryCode(C)

Return true if and only if C is a binary code.

IsBinaryLinearCode(C)

IsZ2LinearCode(C)

Return true if and only if C is a binary linear code.
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IsZ4LinearCode(C, p)

Given a binary code C of length n and a permutation p, return true if
and only if the binary code p(C) = {p(c) | c ∈ C} is the image under the
Gray map of a code over Z4, or equivalently, a quaternary linear code.

IsZ2Z4LinearCode(C, α, p)

Given a binary code C of length n, a positive integer α such that α ≤ n,
and a permutation p, return true if and only if the binary code p(C) =
{p(c) | c ∈ C} is the image under the Gray map of a Z2Z4-additive code
over Zα2 × Zβ4 , where β = (n− α)/2.

IsBinaryDistanceInvariant(C)

Return true if and only if the binary code C is distance invariant. Note
that any linear code, the Gray map image of any code over Z4, or the Gray
map image of any Z2Z4-additive code over Zα2 ×Zβ4 is distance invariant.

Example H1E7

> V := VectorSpace(GF(2), 3);

> C1 := BinaryCode([V!0,V![0,1,0],V![0,0,1]]);

> IsBinaryCode(C1);

true

> IsBinaryLinearCode(C1);

false

> V := RSpace(IntegerRing(4), 4);

> C := Z2Z4AdditiveCode([V![2,2,1,1],V![0,2,1,2],

V![2,2,2,2],V![2,0,1,1]] : Alpha:=2);

> Cb := BinaryCode(C);

> p1 := Sym(BinaryLength(Cb))!(1,2);

> Q := RandomLinearCode(IntegerRing(4), 5, 2);

> Qb := BinaryCode(Q);

> p2 := Sym(BinaryLength(Qb))!(1,2);

> IsZ2Z4LinearCode(Cb, 2, p1) and IsZ4LinearCode(Qb, p2);

true

> IsBinaryDistanceInvariant(C1);

false

> IsBinaryDistanceInvariant(Cb);

true

> IsBinaryDistanceInvariant(Qb);

true
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1.8 The Weight and Distance Distribution

BinaryMinimumWeight(C)

Given a binary code C, return the minimum (Hamming) weight of the
words belonging to the code C.

BinaryMinimumDistance(C)

Given a binary code C, return the minimum (Hamming) distance of the
words belonging to the code C.

Note that for distance invariant codes, the minimum weight and distance
coincide.

BinaryMinimumWeightWord(C)

Given a binary code C, return one codeword of C having minimum weight.

BinaryMinimumWeightWords(C)

Given a binary code C, return the set of all codewords of C having min-
imum weight.

BinaryMinimumDistanceWord(C, u)

Given a binary code C and a codeword u, return one codeword of C at
minimum distance of u.

BinaryMinimumDistanceWords(C, u)

Given a binary code C and a codeword u, return the set of all codewords
of C at minimum distance of u.

BinaryWeightDistribution(C)

Determine the weight distribution of the binary code C. The distribution
is returned in the form of a sequence of tuples, where the i-th tuple
contains the i-th weight, wi say, and the number of codewords having
weight wi.

BinaryDistanceDistribution(C)

Determine the distance distribution of the binary code C. The distribu-
tion is returned in the form of a sequence of tuples, where the i-th tuple
contains the i-th distance, di say, and the number of ordered pairs of
codewords at distance di apart, divided by the number of codewords of
C.

Note that the translated code C+u, where u is a vector from the ambient
space V = Zn2 of C, has the same distance distribution as C. Moreover,
for distance invariant codes, the weight and distance distribution coincide.
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BinaryFormalDualWeightDistribution(C)

Determine the weight distribution of the formal dual of the binary code C
as long as the cardinal of the code C is a power of two. The distribution is
returned in the form of a sequence of tuples, where the i-th tuple contains
the i-th weight, wi say, and the number of codewords having weight wi.

BinaryWeightDistribution(C, u)

Determine the weight distribution of the translated code C + u of the
binary code C, where u is a vector from the ambient space V = Zn2 of C.
The distribution is returned in the form of a sequence of tuples, where the
i-th tuple contains the i-th weight, wi say, and the number of codewords
having weight wi.

Note that the weight distribution of the translated code C + u coin-
cides with the distance distribution of C to u given by the function
BinaryDistanceDistribution(C, u).

BinaryDistanceDistribution(C, u)

Determine the distance distribution of the binary code C to u, where
u is a vector from the ambient space V = Zn2 of C. The distribution is
returned in the form of a sequence of tuples, where the i-th tuple contains
the i-th distance, di say, and the number of codewords at distance di of
u.

Note that the distance distribution of C to u coincides with the
weight distribution of the translated code C + u given by the function
BinaryWeightDistribution(C, u).

BinaryWeightWords(C, w)

Given a binary code C and an integer w, return the set of all codewords
of C having weight w.

BinaryWeightNumberOfWords(C, w)

Given a binary code C and an integer w, return the number of codewords
of C having weight w.

BinaryDistanceWords(C, d, u)

Given a binary code C, an integer d and a codeword u, return the set of
all codewords of C at distance d of u.

BinaryDistanceNumberOfWords(C, d, u)

Given a binary code C, an integer d and a codeword u, return the number
of codewords of C at distance d of u.
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BinaryMinimumDistanceGraph(C)

Given a binary code C, return its minimum distance graph. The minimum
distance graph of a code is a graph G, where the vertex set is the set of
codewords of C, and two vertices are connected by an edge if the distance
between them is the minimum distance of C.

Example H1E8

> V := VectorSpace(GF(2),31);

> C_kernel := SimplexCode(5);

> C_representatives := [

V![ 0,0,1,0,0,0,1,1,1,0,0,1,1,0,1,0,0,1,1,1,1,0,0,0,1,0,1,1,1,1,0],

V![ 0,1,0,1,1,0,1,0,1,0,1,1,1,1,0,0,1,0,1,1,1,0,1,0,0,1,1,1,1,0,1],

V![ 0,0,0,0,0,1,1,1,0,0,0,1,1,1,0,1,1,0,1,0,0,0,1,1,1,1,0,1,0,1,1]

];

> C := BinaryCode(C_kernel, C_representatives);

> BinaryMinimumWeight(C);

10;

> BinaryMinimumDistance(C);

8

> IsBinaryDistanceInvariant(C);

false

> BinaryMinimumWeightWords(C);

{

(1 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0),

(0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 1 1 0 0 0 1 0 1 0),

(0 1 1 1 0 0 1 0 0 0 0 1 0 1 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0)

}

> BinaryMinimumDistanceWords(C, V!0) eq BinaryMinimumWeightWords(C);

true

> atMinDistance1 := BinaryMinimumDistanceWords(C, C_representatives[1]);

> atMinDistance1;

{

(0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 0 1 1 1 1 1 1)

}

> atMinDistance2 := { c : c in BinarySet(C) |

Distance(c, C_representatives[1]) eq 8 };

> atMinDistance2;

{

(0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 0 1 1 1 1 1 1)

}

> atMinDistance1 eq atMinDistance2;

true

> weightDistribution := BinaryWeightDistribution(C);

> weightDistribution;

[ <0, 1>, <10, 3>, <11, 4>, <12, 9>, <13, 6>, <14, 15>, <15, 8>, <16, 50>,
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<17, 8>, <18, 13>, <19, 4>, <20, 3>, <21, 2>, <22, 1>, <24, 1> ]

> &+[wD[2] : wD in weightDistribution ] eq BinaryCardinal(C);

true

> [BinaryWeightNumberOfWords(C, wD[1]) : wD in weightDistribution ];

[ 1, 3, 4, 9, 6, 15, 8, 50, 8, 13, 4, 3, 2, 1, 1 ]

> distanceDistribution := BinaryDistanceDistribution(C);

> distanceDistribution;

[ <0, 1>, <8, 1/2>, <9, 1>, <10, 3/2>, <11, 5>, <12, 8>, <13, 8>,

<14, 15/2>, <15, 12>, <16, 50>, <17, 13>, <18, 13/2>, <19, 7>, <20, 4>,

<21, 2>, <22, 1/2>, <24, 1/2> ]

> &+[dD[2] : dD in distanceDistribution ] eq BinaryCardinal(C);

true

> [&+[BinaryDistanceNumberOfWords(C, dD[1], c) : c in BinarySet(C)]/BinaryCardinal(C)

: dD in distanceDistribution];

[ 1, 1/2, 1, 3/2, 5, 8, 8, 15/2, 12, 50, 13, 13/2, 7, 4, 2, 1/2, 1/2 ]

> distanceDistribution := BinaryDistanceDistribution(C, C_representatives[1]);

> distanceDistribution;

[ <0, 1>, <8, 1>, <9, 1>, <10, 2>, <11, 2>, <12, 10>, <13, 7>, <14, 8>,

<15, 8>, <16, 61>, <17, 7>, <18, 6>, <19, 6>, <20, 6>, <21, 1>, <24, 1> ]

> &+[dD[2] : dD in distanceDistribution ] eq BinaryCardinal(C);

true

> [BinaryDistanceNumberOfWords(C, dD[1], C_representatives[1]) :

dD in distanceDistribution ];

[ 1, 1, 1, 2, 2, 10, 7, 8, 8, 61, 7, 6, 6, 6, 1, 1 ]

BinaryVectorDistanceDistribution(C : parameters)

MaximumTime RngIntElt Default : ∞
IsDistanceInvariant BoolElt Default : false

Given a binary code C of length n, with ambient space V = Zn2 , attempt
to determine the distance distribution of all vectors in V to C. The
distance between C and a vector u ∈ V is the Hamming weight of a
vector of minimum weight in C + u. The distribution is returned as a
sequence of pairs comprising a distance d and the number of vectors in
V that are distance d from C, divided by the number of codewords of C.

When C is linear, it returns the same as the function
CosetDistanceDistribution(C) and true. When C is nonlinear
and it is known that it is distance invariant (for example, when it is
the Gray map image of a code over Z4 or a Z2Z4-additive code), the
parameter IsDistanceInvariant can be assigned to true.
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Note that this function is only applicable when V and C are small. When
C is nonlinear, the parameter MaximumTime sets a time limit (in seconds
of “user time”) after which the calculation is aborted. In this case, if
the computation has not finished, the function returns a partial distance
distribution and false, otherwise it returns the complete distance distri-
bution and true. Note that, in the first case, the maximum distance in
the distance distribution gives a lower bound of the covering radius; and
in the second case, it gives exactly the covering radius. The default value
of the parameter MaximumTime is infinite, when there is no restriction on
time.

BinaryCoveringRadius(C : parameters)

MaximumTime RngIntElt Default : ∞
IsDistanceInvariant BoolElt Default : false

Given a binary code C of length n, with ambient space V = Zn2 , attempt
to compute the covering radius of C. The covering radius of C is the
smallest integer ρ such that all vectors in V are within Hamming distance
ρ of some codeword, that is, ρ = max{d(u,C) : u ∈ V }, where d(u,C) is
the distance between C and the vector u ∈ V . The function returns the
covering radius ρ, a word at distance ρ of C, and true.

When C is linear, it returns the same as the function CoveringRadius(C).
When C is nonlinear and it is known that it is distance invariant (for
example, when it is the Gray map image of a code over Z4 or a Z2Z4-
additive code), the parameter IsDistanceInvariant can be assigned to
true.

Note that this function is only applicable when V and C are small. When
C is nonlinear, the parameter MaximumTime sets a time limit (in seconds
of “user time”) after which the calculation is aborted. In this case, if
the computation has not finished, the function returns a lower bound of
the covering radius, ρL, a word at distance ρL of C, and false. The
default value of the parameter MaximumTime is infinite, when there is no
restriction on time.

BinaryCoveringRadiusBounds(C)

Given a binary code C, return a lower bound and an upper bound of
the covering radius of C. These lower and upper bounds are given by the
covering radius of the linear span and kernel of C, respectively. Note that
ρ〈C〉 ≤ ρ ≤ ρK(C), where ρ, ρK(C) and ρ〈C〉 are the covering radius of the
binary code C, the kernel K(C) and the span 〈C〉, respectively.
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Example H1E9

We construct the binary code of length 16 given by the Gray map image of a Preparata
code of length 8 over Z4.

> C := BinaryCode(PreparataCode(3));

> time vDD := BinaryVectorDistanceDistribution(C);

Time: 3.270

> time vDD := BinaryVectorDistanceDistribution(C : IsDistanceInvariant := true);

Time: 0.410

> vDD;

[ <0, 1>, <1, 16>, <2, 120>, <3, 112>, <4, 7> ]

From the size of the code we know C has 256 translates which are disjoint because the
code is distance invariant. The translate distance distribution tells us that there are 16
translates at distance 1 from C, 120 translates are distance 2, 112 are distance 3 and 7
are distance 4. We confirm that all translates are represented in the distribution.

The covering radius gives the maximum distance of any translate from the code, and, from
the translate distance distribution, we see that this maximum distance is indeed 4.

> 2^BinaryLength(C)/BinaryCardinal(C);

256

> &+ [ t[2] : t in vDD ];

256

> BinaryCoveringRadius(C : IsDistanceInvariant := true);

4 (0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0)

true

> V := VectorSpace(GF(2),16);

> BinaryWeightDistribution(C, V![0,0,1,0,0,0,0,0,0,0,1,0,1,0,1,0]);

[ <4, 20>, <6, 48>, <8, 120>, <10, 48>, <12, 20> ]

We construct the binary code of length 32 given by the Gray map image of a Preparata
code of length 16 over Z4.

> C := BinaryCode(PreparataCode(4));

> BinaryCoveringRadius(C : MaximumTime := 5);

3 (0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

false

> BinaryCoveringRadius(C : MaximumTime := 50);

4 (0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

false

> BinaryCoveringRadiusBounds(C);

2 10
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1.9 Union, Intersection and Dual

BinaryUnion(C,D)

Return the union of the binary codes C and D, both of the same length.

BinaryIntersection(C,D)

Return the intersection of the binary codes C and D, both of the same
length.

BinaryDual(C)

Return the dual of the binary code C of length n. The dual consists of all
vectors in the vector space V = Zn2 which are orthogonal to all codewords
of C.

Example H1E10
We verify some simple results from the union, intersection and dual of binary codes.

> C1 := BinaryRandomCode(5,4);

> C2 := BinaryRandomCode(5,4);

> C1UnionC2 := BinaryUnion(C1,C2);

> C1InterC2 := BinaryIntersection(C1,C2);

> BinaryCardinal(C1) + BinaryCardinal(C2) eq

> BinaryCardinal(C1UnionC2) + BinaryCardinal(C1InterC2);

true

> U := BinaryUniverseCode(5);

> IsBinaryEqual(BinaryUnion(C1,U),U);

true

> IsBinaryEqual(BinaryIntersection(C1,U),C1);

true

> Z := BinaryZeroCode(5);

> IsBinaryEqual(BinaryUnion(C1,Z),C1);

true

> IsBinaryEqual(BinaryIntersection(C1,Z),Z);

true

> V := VectorSpace(GF(2),5);

> C := BinaryCode([V![1,0,0,1,0],V![1,1,1,1,1],V![0,0,0,0,0],V![0,0,0,0,1]]);

> CL1 := BinaryCode([V![0,0,0,0,0],V![0,1,1,0,1],V![0,0,1,1,0],V![0,1,0,1,1]]);

> CL2 := LinearCode(sub< V | [1,0,0,0,1],[0,1,0,0,1],[0,0,1,0,1],[0,0,0,1,1]>);

> BinaryDual(C) eq Dual(BinarySpanCode(C));

true

> BinaryDual(CL1) eq Dual(BinarySpanCode(CL1));

true

> BinaryDual(CL2) eq Dual(BinarySpanCode(CL2));

true
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> BinaryDual(CL1) eq Dual(BinaryKernelCode(CL1));

true

> BinaryDual(CL2) eq Dual(BinaryKernelCode(BinaryCode(CL2)));

true

1.10 New Codes from Existing

BinaryDirectSum(C, D)

Given binary codes C and D, construct the direct sum of C and D. The
direct sum is a binary code that consists of all vectors of the form (u, v),
where u ∈ C and v ∈ D.

BinaryDirectSum(Q)

Given a sequence of binary codes Q = [C1, . . . , Cr], construct the direct
sum of all these binary codes Ci, 1 ≤ i ≤ r. The direct sum is a binary
code that consists of all vectors of the form (u1, . . . , ur), where ui ∈ Ci,
1 ≤ i ≤ r.

BinaryExtendCode(C)

Given a binary code C form a new binary code C ′ from C by adding the
appropriate extra coordinate to each vector of C such that the sum of the
coordinates of the extended vector is zero.

BinaryPunctureCode(C, i)

Given a binary code C of length n and an integer i, 1 ≤ i ≤ n, construct
a new binary code C ′ by deleting the i-th coordinate from each codeword
of C.

BinaryPunctureCode(C, S)

Given a binary code C of length n and a set S of distinct integers
{i1, . . . , ir} each of which lies in the range [1, n], construct a new binary
code C ′ by deleting the components i1, . . . , ir from each codeword of C.

BinaryShortenCode(C, i)

Given a binary code C of length n and an integer i, 1 ≤ i ≤ n, construct a
new binary code from C by selecting only those codewords of C having a
zero as their i-th component and deleting the i-th component from these
codewords. Thus, the resulting code will have length n− 1.
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BinaryShortenCode(C, S)

Given a binary code C of length n and a set S of distinct integers {i1,
. . . , ir} each of which lies in the range [1, n], construct a new binary code
from C by selecting only those codewords of C having zeros in each of
the coordinate positions i1, . . . , ir, and deleting these components. Thus,
the resulting code will have length n− r.

BinaryPlotkinSum(C, D)

Given binary codes C and D both of the same length, construct the
Plotkin sum of C and D. The Plotkin sum is a binary code that consists
of all vectors of the form (u, u+ v), where u ∈ C and v ∈ D.

Example H1E11
We combine binary codes in different ways and look at the length of the new binary codes.

> C1 := BinaryRandomCode(5,4);

> C2 := BinaryRandomCode(7,3);

> BinaryLength(C1);

5

> BinaryLength(C2);

7

> C3 := BinaryDirectSum(C1,C2);

> BinaryLength(C3);

12

> C4 := BinaryDirectSum([C1,C2,C3]);

> BinaryLength(C4);

24

> C5 := BinaryExtendCode(C2);

> BinaryLength(C5);

8

> C6 := BinaryPunctureCode(C2,4);

> BinaryLength(C6);

6

> C7 := BinaryShortenCode(C2,{4,5});

> BinaryLength(C7);

5

> C8 := BinaryPlotkinSum(C2,C2);

> BinaryLength(C8);

14
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1.11 Decoding

BinaryCosetDecode(C, d, u : parameters)

MinWeigthKernel RngIntElt Default : -

Given a binary code C, its minimum distance d and a vector u from
the ambient space V of C, attempt to decode u with respect to C. If
the decoding algorithm succeeds in computing a vector u′ as the decoded
version of u, then the function returns true and u′. If the decoding
algorithm does not succeed in decoding u, then the function returns false
and the zero vector.

The algorithm considers the linear code Cu = C ∪ (C + u) when C is
linear, or the linear codes K0 = K ∪ (K+u), K1 = K ∪ (K+ v1 +u), . . .,
Kt = K∪ (K+vt+u), where K is the kernel of C and C =

⋃t
i=0(K+vi),

when C is nonlinear. If C is linear and the minimum weight of Cu is less
than d, then u′ = u + e, where e is a word of minimum weight of Cu;
otherwise, the decoding algorithm returns false. On the other hand,
if C is nonlinear and the minimum weight of ∪ti=0Ki is less than the
minimum weight of K, then u′ = u + e, where e is a word of minimum
weight of ∪ti=0Ki; otherwise, the decoding algorithm returns false. If the
parameter MinWeightKernel is not assigned, then the minimum weight
of K is computed.

Example H1E12
We create a binary nonlinear code C and a vector c of C and then perturb c to a new
vector u. We then decode u to find c again.

> V := VectorSpace(GF(2),31);

> C_kernel := SimplexCode(5);

> C_representatives := [

V![ 0,0,1,0,0,0,1,1,1,0,0,1,1,0,1,0,0,1,1,1,1,0,0,0,1,0,1,1,1,1,0],

V![ 0,1,0,1,1,0,1,0,1,0,1,1,1,1,0,0,1,0,1,1,1,0,1,0,0,1,1,1,1,0,1],

V![ 0,0,0,0,0,1,1,1,0,0,0,1,1,1,0,1,1,0,1,0,0,0,1,1,1,1,0,1,0,1,1]

];

> C := BinaryCode(C_kernel, C_representatives);

> d := BinaryMinimumDistance(C);

> d;

8

> c := V ! [0,1,1,1,0,1,1,0,0,1,0,0,0,1,0,0,0,1,1,0,0,1,1,1,0,0,1,1,1,0,0];

> IsInBinaryCode(C, c);

true

> u := c;

> u[5] := u[5] + 1;
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> u[12] := u[12] + 1;

> c;

(0 1 1 1 0 1 1 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0)

> u;

(0 1 1 1 1 1 1 0 0 1 0 1 0 1 0 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0)

> c-u;

(0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

> isDecoded, cDecoded := BinaryCosetDecode(C, d, u);

> isDecoded;

true

> cDecoded eq c;

true
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Chapter 2

Binary Codes Database

2.1 Introduction

Magma currently contains databases of the best known linear codes over
GF (q) for q = 2, 3, 4, 5, 7, 8, 9 (see [4, Chapter 148.13]). It also includes
a database of the best known quantum codes (see [4, Chapter 153]). This
chapter describes databases of known binary nonlinear codes. In this version,
we include all binary 1-perfect codes of length 15 (Section 2.2); and all binary
extended 1-perfect codes of length 16 (Section 2.2).

A binary 1-perfect code C of length n is a binary code, with minimum
Hamming distance d = 3, such that all the vectors in Zn2 are within distance
one from a codeword. For any t > 1 there exists exactly one binary linear
1-perfect code of length 2t − 1, up to equivalence, which is the well known
Hamming code. An extended code of the code C is a code resulting from
adding an overall parity-check digit to each codeword of C.

2.2 Databases of binary 1-perfect codes of

length 15 and binary extended 1-perfect

codes of length 16

It is known that there are 5983 nonequivalent binary 1-perfect codes of length
15 [14, 15]. The distribution of these codes, according to the rank and di-
mension of the kernel, is summarised in the following table:

31
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Dimension of the kernel
Rank 1 2 3 4 5 6 7 8 9 10 11 Total

11 1 1
12 12 3 3 18
13 224 262 176 28 13 703
14 163 1287 2334 941 129 8 1 4863
15 19 14 8 338 19 398

5983

It is also known that there are 2165 nonequivalent binary extended 1-
perfect codes of length 16 [14, 15]. The distribution of these codes according,
to the rank and dimension of the kernel, is summarised in the following table:

Dimension of the kernel
Rank 1 2 3 4 5 6 7 8 9 10 11 Total

11 1 1
12 8 2 2 12
13 82 89 67 11 7 256
14 102 449 786 326 53 4 1 1721
15 18 14 8 123 12 175

2165

Each code in the database is a record with the following information:

• Length: The length of the code.

• Kernel: A base of the linear subspace that represents the kernel, as a
sequence of binary vectors.

• CosetRepresentatives: A sequence of coset representatives (without
including the zero word), as a sequence of binary vectors.

• WordsMinWeight: The 35 codewords of weight 3 for binary 1-perfect
codes, or the 140 codewords of weight 4 for binary extended 1-perfect
codes, as a sequence of binary vectors.

• KernelDimension: The dimension of the kernel of the code.

• Rank: The dimension of the linear span of the code.

• Type: An integer number to identify the code. In this version, it has
value 0.
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• SymGroup: A sequence of generators of the group of symmetries.

• SymOrder: The order of the group of symmetries.

• AutOrder: The order of the automorphism group.

Each record in the database is determined by three parameters, (r, k, s),
where r is the rank of the code, k is the dimension of the kernel of the code,
and s is the position of the code among all codes having the same rank and
dimension of the kernel.

BinaryPerfectCodesLength15Database()

BPC15Database()

Returns the database of all nonequivalent binary 1-perfect codes of length
15. There are exactly 5983 codes in this database.

BinaryExtendedPerfectCodesLength16Database()

BEPC16Database()

Returns the database of all nonequivalent binary extended 1-perfect codes
of length 16. There are exactly 2165 codes in this database.

BCDHeaderInformation(DB)

Print header information (version, length, number of codewords and num-
ber of codes) of the database DB.

BCDDatabaseInformation(DB)

Print a table with the distribution of the codes in the database DB,
classified by their rank and dimension of the kernel.

BCDRecordEmpty(DB)

Return an empty record of the database DB.

Example H2E1

> DB := BPC15Database();

> BCDHeaderInformation(DB);

Database of binary 1-perfect codes of length 15. Version 1.5

There are 5983 codes in the database.

Each code has 2048 binary codewords.
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> BCDDatabaseInformation(DB);

Dimension of the kernel

Rank | 1 2 3 4 5 6 7 8 9 10 11 | Total

------------------------------------------------------------------------

11 | 1 | 1

12 | 12 3 3 | 18

13 | 224 262 176 28 13 | 703

14 | 163 1287 2334 941 129 8 1 | 4863

15 | 19 14 8 338 19 | 398

------------------------------------------------------------------------

5983

> R := BCDRecordEmpty(DB);

> Names(R);

[ Length, Kernel, CosetRepresentatives, WordsMinWeight, KernelDimension,

Rank, Type, SymGroup, SymOrder, AutOrder ]

BCDDimensionsOfSpan(DB)

BCDDimensionsOfSpan(DB, k)

BCDRanks(DB)

BCDRanks(DB, k)

Returns the sequence of ranks for which there is at least one code of
that rank in the database DB. If a second parameter k is specified, then
it returns the sequence of ranks for which there is at least one code of
dimension of the kernel k and that rank in the database DB.

BCDDimensionsOfKernel(DB)

BCDDimensionsOfKernel(DB, r)

Returns the sequence of dimensions of the kernel for which there is at least
one code of that dimension in the database DB. If a second parameter
r is specified, then it returns the sequence of dimensions of the kernel for
which there is at least one code of rank r and that dimension of the kernel
in the database DB.

BCDNumberOfCodes(DB, r, k)

BCDNumberOfCodes(DB, r)

Returns the number of codes of rank r and dimension of the kernel k in
the database DB. If k is omitted, then it returns the number of codes of
rank r.
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BCDRecord(DB, r, k, s)

BCDRecord(DB, r, k)

BCDRecord(DB, r)

Returns the database record determined by the parameters (r, k, s), where
1 ≤ s ≤ BCDNumberOfCodes(DB,r,k), that is, the s-th database record
containing a code of rank r and dimension of the kernel k. If s is omitted,
then it returns the sequence of database records corresponding to all codes
of rank r and dimension of the kernel k. If s and k are omitted, then
it returns the sequence of database records corresponding to all codes of
rank r.

BCDRandom(DB, r, k)

BCDRandom(DB, r)

BCDRandom(DB)

Returns a random database record containing a code of rank r and dimen-
sion of the kernel k. If k is omitted, then it returns a random database
record with a code of rank r. If k and r are omitted, then it returns a
random database record in the database DB.

BCDCode(R)

BCDCode(S, i)

Given a database record R, returns the binary code determined by R.
Given a sequence of database records S and an integer i, returns the
binary code determined by the record S[i].

Example H2E2

> DB := BEPC16Database();

> ranks := BCDRanks(DB);

> ranks;

[ 11, 12, 13, 14, 15 ]

> [BCDDimensionsOfKernel(DB,r) : r in ranks];

[

[ 11 ],

[ 7, 8, 9 ],

[ 4, 5, 6, 7, 8 ],

[ 2, 3, 4, 5, 6, 7, 8 ],

[ 1, 2, 3, 4, 5 ]

]

> BCDNumberOfCodes(DB, 14, 4);

786

> R := BCDRecord(DB, 14, 4, 12);

> C := BCDCode(R);
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> IsBinaryCode(C);

true

> IsBinaryExtendedPerfectCode(C);

true

BCDKernel(R)

BCDKernel(S, i)

Given a database record R, returns the kernel of the binary code deter-
mined by R, as a binary linear code. Given a sequence of database records
S and an integer i, returns the kernel of the binary code determined by
the record S[i], as a binary linear code.

BCDCosetRepresentatives(R)

BCDCosetRepresentatives(S, i)

Given a database record R, returns the sequence of coset representatives
of the binary code determined by R. Given a sequence of database records
S and an integer i, returns the sequence of coset representatives of the
binary code determined by the record S[i].

BCDRank(R)

BCDRank(S, i)

BCDDimensionOfSpan(R)

BCDDimensionOfSpan(S, i)

Given a database record R, returns the rank of the binary code deter-
mined by R. Given a sequence of database records S and an integer i,
returns the rank of the binary code determined by the record S[i].

BCDDimensionOfKernel(R)

BCDDimensionOfKernel(S, i)

Given a database record R, returns the dimension of the kernel of the
binary code determined by R. Given a sequence of database records S
and an integer i, returns the dimension of the kernel of the binary code
determined by the record S[i].

BCDMinimumWords(R)

BCDMinimumWords(S, i)

Given a database record R, returns the sequence of codewords of mini-
mum weight of the binary code determined by R. Given a sequence of
database records S and an integer i, returns the sequence of codewords
of minimum weight of the binary code determined by the record S[i].
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BCDSymmetriesGroup(R)

BCDSymmetriesGroup(S, i)

Given a database record R, returns the group of symmetries of the binary
code determined by R. Given a sequence of database records S and an
integer i, returns the group of symmetries of the binary code determined
by the record S[i].

BCDSymmetryGroupOrder(R)

BCDSymmetryGroupOrder(S, i)

Given a database record R, returns the order of the group of symmetries
of the binary code determined by R. Given a sequence of database records
S and an integer i, returns the order of the group of symmetries of the
binary code determined by the record S[i].

BCDAutomorphismGroupOrder(R)

BCDAutomorphismGroupOrder(S, i)

Given a database record R, returns the order of the automorphism group
of the binary code determined by R. Given a sequence of database records
S and an integer i, returns the order of the automorphism group of the
binary code determined by the record S[i].

BCDInvariants(R)

BCDInvariants(S, i)

Given a database record R, returns the invariants contained in the follow-
ing fields: Length, KernelDimension, Rank, SymOrder, AutOrder, of the
binary code determined by R, as a sequence of integers. Given a sequence
of database records S and an integer i, returns the above invariants of
the binary code determined by the record S[i], as a sequence of integers.

BCDClassification(DB, C)

Given a binary 1-perfect code C of length 15 or a binary extended 1-
perfect code C of length 16, returns the parameters (r, k, s) of the unique
binary 1-perfect code or binary extended 1-perfect code equivalent to C
in the database DB.

The verbose flag NonlinearDB is 0 by default. If it is set to 1, then the
process used to classify the code is printed. The computation is slow for
codes with small kernel or when there are a lot of codes with the same
rank r and dimension of the kernel k as the code C.
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Example H2E3

> H := HammingCode(GF(2), 4);

> Length(H);

15

> C := BinaryCode(H);

> BCDClassification(DB, C);

[ 11, 11, 1 ]

> // An example of slow computation

> SetVerbose("NonlinearDB", 1);

> R := BCDRandom(DB, 14);

> BCDInvariants(R);

[ 15, 5, 14, 4, 512 ]

> C := BCDCode(R);

> BCDClassification(DB, C);

Computing invariants...

Rank 14, kernelDim 5 candidates: 941

Symmetry group order 4 candidates: 485

STS candidates: 56

Automorphism group order 512 candidates: 30

Took 165.940 seconds

[ 14, 5, 585 ]
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goŕıtmica, Soria (Spain), July 11-14, pp. 171-177, 2006.

[2] J. Borges, C. Fernández, J. Pujol, J. Rifà, and M. Villanueva, “Z2Z4-
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