

ADVERTIMENT. L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:

ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons:

WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en

BY NC ND

Institut de Ciència i Tecnologia Ambientals•UAB

Modelación espacio-temporal de polen y esporas de hongos aerovagantes de Catalunya

(1994-2015)

Tesis doctoral

Andrés M. Vélez-Pereira

Institut de Ciència i Tecnologia Ambientals – ICTA Universitat Autònoma de Barcelona

España, 2017

Institut de Ciència i Tecnologia Ambientals•UAB

Modelación espacio-temporal de polen y esporas de hongos aerovagantes de Catalunya

(1994-2015)

Tesis doctoral

Memoria presentada por

Andrés M. Vélez-Pereira Para optar al grado de Doctor

Con el visto bueno de las directoras de tesis:

Dra. Jordina Belmonte ICTA–UAB y BABVE **Dra. Concepción De Linares** BABVE y ICTA–UAB

Institut de Ciència i Tecnologia Ambientals – ICTA Universitat Autònoma de Barcelona

España, 2017

$$f_{(\upsilon\varpi)} = \int \beta \lambda^2 \alpha \mu^2 = \bigotimes$$

Al Departamento Nacional de Ciencia, Tecnología e Innovación – COLCIENCIAS (Colombia) Por la beca ofrecida en el marco de la convocatoria para la formación de alto nivel 617 de 2013.

A mi familia por el apoyo incondicional y por aguantar tantas cosas. Sin su apoyo, consejo y ocurrencias este proceso no tendría los resultados que hoy tiene.

A mis compañeros de despacho por estar presto a resolver cualquiera de mis dudas y solicitudes, mil gracias a todos: David Navarro, Oriol Baeza, Pau Cardellach, Rut Puigdemunt, Silvia Renom y Txell Batalla. Al final no he colocado los apodos que comente por mucho tiempo.

A mi familia en España: señor Pepe, señora Carmen y Alba, mis más sinceros agradecimientos por todo. Bueno incluyamos a mis sobrinos felinos ©.

A los amigos que se hacen en este proceso, gracias por su apoyo, consejos y ánimos: Antonio Costa, Fabiola Palomo, Estafanía Maral, Jonathan Calleja, Nano, Natalia García, Rocío Burges, Sebastián Aparicio, Sofía Aparicio (patito), Tania Cobos. No se sientan excluidos si tu nombre no esta, es que no puedo incluir una lista tan grande en la tesis!!!

A los Doctores Miquel Ángel Canela, Rosario Delgado, Mikhail Sofiev y Marta Alarcón por su apoyo y aportes a la realización de esta tesis, ¡gracias!

A mis directoras: Dra. Jordina Belmonte Soler y Dra. Concepción De Linares Fernández

Resumen

El desarrollo de modelos sobre el polen y esporas de hongos aerovagantes busca, entre otros objetivos, evaluar y predecir sus concentraciones o dinámica estacional; establecer, desarrollar o validar modelos de transporte atmosférico; o correlacionar las concentraciones con impactos o cambios en los procesos ambientales. Aquellos modelos que buscan predecir concentraciones o eventos futuros se denominan modelos predictivos y suelen ser clasificados en modelos basados en la observación (OBM), modelos basados en la fenología (PHM) y otros (Otros modelos). Una revisión exhaustiva de estos estudios muestra que los OBM se han empleado frecuentemente para predecir concentraciones futuras y los PHM para caracterizar el periodo de floración, mientras que los "Otros modelos" se han centrado en establecer estimaciones espaciales en áreas no monitoreadas. Los PHM concentran una mayor diversidad de modelos, son más sencillos de aplicar y emplean una menor cantidad de variables independientes en comparación con los OBM. No obstante, la complejidad de los criterios de partida en los PHM provoca una menor frecuencia de uso. Hay otro tipo de modelos, los de transporte atmosférico, a los que les reconoce con el nombre de modelos de dispersión y se les clasifica según sea el sentido de la modelación, hacia adelante (Forward) o hacia atrás (Backward). Éstos presentan un número menor de aplicaciones con respecto a los modelos predictivos, atribuido principalmente a los altos requerimientos técnico-científicos necesarios para su desarrollo, donde la mayor limitación es establecer el flujo y la fuente de emisión, causando un alto grado de incertidumbre en la simulación.

La variabilidad estacional e interanual que presentan las series aerobiológicas dificultan las comparaciones espacio-temporales y el desarrollo de modelos, sobre todo predictivos, principalmente por el tipo de distribución que siguen estos datos. En este sentido, se evidencia que una distribución gamma describe correctamente la distribución de una serie anual aerobiológica, permitiendo establecer comparaciones espaciales y temporales de las series anuales de 29 tipos polínicos y 20 tipos fúngicos en ocho localidades de Catalunya. Los resultados muestran que el parámetro α del modelo cambia razonablemente de año a año, dependiendo de las condiciones meteorológicas, pero mostrando una buena estabilidad interanual y espacial; además muestra que el taxon polínico Urticaceae y el taxon fúngico Cladosporium presentan la mayor estabilidad en sus series anuales tanto en escala temporal como espacial. Por último, el parámetro α permite establecer una clasificación genérica de las partículas aerovagantes estudiadas en cinco categorías para polen y cinco para esporas de hongos. Esta clasificación refleja la fuerte relación del parámetro α con la distribución ecológica (potencial y/o ornamental) en el caso de los táxones polínicos, y la fuerte relación entre los táxones fúngicos y el uso del suelo y/o el bioclima de la zona. La clasificación genérica propuesta, al agrupar las partículas aerovagantes en estas categorías, permite reducir el número de táxones a estudiar, uno por cada categoría, facilitando desarrollo de los modelos.

Junto a los problemas de distribución y variabilidad de los datos, para el desarrollo de los modelos predictivos se tiene en cuenta las limitaciones de los métodos estadísticos. En este sentido se ha planteado el desarrollo de los modelos por umbrales de concentración, donde se emplea el uso de una respuesta binaria que permita establecer la ocurrencia o no de un umbral de concentración modelado. Esto elimina los problemas generados por el tipo de distribución de los datos, al tiempo que disminuye

el ruido en los mismos y facilita los procesos de interpretación y presentación de los resultados. Con el fin de desarrollar un buen modelo de predición en Catalunya, se ha evaluado la capacidad y eficacia de la regresión logística y árbol de regresión como modelos de predicción para 12 táxones (seis polínicos y seis fúngicos) seleccionados a partir de la clasificación genérica del modelo gamma y cuatro umbrales de concentración (bajo, medio, alto y muy alto). Los modelos se desarrollan utilizando datos del periodo 1994-2011 de las ocho localidades catalanas y se validaron con datos de 2012 a 2014, todos ellos pertenecientes a la base de datos de la Xarxa Aerobiològica de Catalunya. En general, los dos modelos arrojan resultados similares en cuanto a la relación y/o influencia de los parámetros meteorológicos en los diferentes umbrales, presentando valores altamente satisfactorios en los parámetros de sensibilidad y especificidad durante la validación. No obstante, se observa que la regresión logística presenta una mayor precisión en establecer la superación de un umbral de concentración (sensibilidad), además tiene menor exigencia computacional y ser más sencillo de aplicar. Por consiguiente, dicho modelo resulta ser el más idóneo para las estimaciones futuras basándose en umbrales de concentración en Catalunya.

Finalmente, se presenta un modelo de correlación que establece las tendencias del índice anual de 20 táxones fúngicos en las estaciones de Catalunya en el periodo 1995-2013. El cálculo de la significación de dichas tendencias se realiza mediante las pruebas no paramétricas de Spearman Rho y Mann-Kendall y, la magnitud del cambio, con Theil-Sen; finalmente se analiza si esta magnitud (proporción de cambio anual) es significativamente diferente de cero con la prueba de Wilcoxon-Mann-Whitney por fitoclima, estación y taxon estudiado. El análisis de la proporción de cambio anual muestra que 12 táxones presentan tendencias significativas crecientes y dos descrecientes. La zona central de Catalunya y Agrocybe muestran el mayor incremento significativo, mientras que la estación aerobiológica de Roquetes-Tortosa y el taxon Torula muestran los menores incrementos significativos. La mayor proporción significativa de cambio anual decreciente corresponde a Drechslera-Helminthosporium y la menor a Curvularia. Teniendo en cuenta la diversidad de características geográficas y de uso del suelo de las localidades estudiadas, se puede establecer que el efecto del cambio en los patrones meteorológicos de los últimos años no es despreciable. El aumento de las temperaturas y la inestabilidad de las precipitaciones, establecidas como efectos del cambio climático en Catalunya en los últimos 50 años, podrían estimular la esporulación en las zonas montañosas y contenerla en el litoral catalán meridional, afectando así la presencia de esporas.

Abstract

The development of airborne pollen and fungal spores models have, among other aims, to evaluate and predict their concentrations and/or seasonal dynamics; to establish, develop and/or validate atmospheric transport models; and/or to correlate concentrations with impacts or changes in environmental processes. The models that predict concentrations or future events are called predictive models and are usually classified as observation based models (OBM), phenology based models (PHM) and others (Other models). A comprehensive review of the literature shows that frequently the OBM have been used to predict future concentrations and the PHM to characterize the flowering period, while "Other models" have focused on establishing spatial estimates in unmonitored areas. In comparison with the OBM, PHM are more diverse, more easy to apply and they use a smaller number of independent variables. However, the complexity of the starting criteria in PHM results in a lower frequency of use. There are other types of models that study the atmospheric transport, which are named as dispersion models and are classifyed as forward or backward, according to the temporal direction of the modeling. They have been applied in lesser occasions than the predictive models, mainly due to the high technical-scientific requirements necessary for their development. One of the greatest limitation is to establish the flow and source of emission, causing a high degree of uncertainty in the simulation.

The seasonal and interannual variability presented by the aerobiological series makes difficult the spatial-temporal comparisons and the development of models, mainly predictive, due to the type of data series distribution. In this sense, this work makes evident that a gamma distribution can describe properly the distribution of an annual aerobiological data series. With this model, we can establish spatial and temporal comparisons of the annual series of 29 pollen and 20 fungal taxa in eigth localities of Catalonia. The results show that the parameter α of the gamma model changes reasonably from year to year, depending on the meteorological conditions, but shows a good interannual and spatial stability. In addition, this parameter shows that Urticaceae pollen and *Cladosporium* spore present the greatest stability in their annual series in both scales, temporal and spatial. Finally, the parameter α allows us to establish a generic classification of airborne particles studied in five categories for pollen and five for fungal spores. This classification reflects the strong relation of the parameter α with the ecological distribution (potential and/or ornamental) in the case of the pollen taxa, and the strong relation between the fungal taxa and the use of the soil and/or bioclimatic zone. The generic classification proposed, able to group the airborne particles in these few categories, it allow us to reduce the number of taxa to be studied, one for each category, facilitating the development of the models.

Together with the problem of data distribution and variability, to develop predictive models the limitations of the statistical methods are taken into consideration. In this sense, we propose the use of predictive models based on concentration thresholds and on a binary function that will determine whether the occurrence or not of a modeled threshold. Doing so, the problems associated with the data distribution are reduced, as well as the noise in the data and the processes of interpretation and presentation of the results are facilitated. In order to develop a good prediction model in Catalonia,

we evaluated the capacity and efficacy of the logistic regression and the regression tree as tools to predict 4 concentration thresholds (low, medium, high and very high) on 12 taxa (six pollen and six fungal taxa), selected from the generic classification of Gamma model. The models were developed using data from the period 1994-2011 of eigth Catalan localities and were validated with data from years 2012 to 2014 all belonging to the database of the Xarxa Aerobiològica de Catalunya. In general, the two models show similar results regarding the relation and/or influence of the meteorological parameters in the different thresholds, presenting highly satisfactory sensitivity and specificity values during the validation. However, we observed that the logistic regression has a greater precision in establishing the exceedance of the concentration threshold (sensitivity), and a lower computational requirement, being easier to apply. Therefore, this model proves to be the most suitable for future estimates.

Finally, we present a correlation model that shows the temporal trends of the annual fungal spore index of 20 taxa in Catalonia during 1995-2013. We use the nonparametric Spearman's Rho and Mann-Kendall tests and, when the series is significant, we calculate the magnitude of the change applying the Theil–Sen estimator. Finally, we analyze whether the proportional annual change is significantly different from zero, according to the phytoclimate, station, and spore taxon, with the Wilcoxon–Mann–Whitney test. The proportional annual change analysis shows that 12 taxa present significant increasing trends and two decreasing. The central area of Catalonia and Agrocybe show the largest significant increase, while Roquetes-Tortosa station and the taxon Torula present the lowest increasing trends. The highest significant proportion of decreasing annual change corresponds to Drechslera-Helminthosporium and the lowest one to Curvularia. The diversity of characteristics of the sites studied brings the opportunity to evaluate the variability of the fungal values and the magnitude of their change across the study period as depending on the intensity of the land use (urbanization versus agriculture) and the distance to the sea (inland versus littoral), but the effect of the change of the meteorological patterns in the recent years is not negligible. The increasing temperatures and precipitation instability established as characteristics of the climate change in Catalonia in the last 50 years could be stimulating the sporulation in mountain areas and affecting it in the southern Catalan littoral, thus affecting spore counts.

Resum

El desenvolupament de models sobre pol·len i espores de fongs aerovagants busca, entre altres objectius, avaluar i predir les seves concentracions i/o dinàmica estacional; establir, desenvolupar i/o validar models de transport atmosfèric; i/o correlacionar les concentracions amb impactes o canvis en els processos ambientals. Els models que busquen predir concentracions o esdeveniments futurs es diuen models predictius i se solen classificar en models basats en la observació (OBM), models basats en la fenologia (PHM) i altres (Altres models). Una revisió exhaustiva d'aquests estudis mostra que els OBM s'han utilitzat freqüentment per a predir concentracions futures i els PHM per a caracteritzar el període de floració, mentres que els "Altres models" s'han centrat en establir estimacions espacials en àrees no monitoritzades. Els PHM concentren una major diversitat de models, són més fàcils d'aplicar i usen una menor quantitat de variables independents en comparació amb els OBM. No obstant, la complexitat dels criteris de partida en els PHM provoca una menor freqüència d'ús. Hi ha un altre tipus de models, els de transport atmosfèric, que s'anomenen models de dispersió i que es classifiquen segons el sentit de la modelització sigui endavant (Forward) o endarrere (Backward). Aquests models s'han aplicat menys que els models predictius, atribuït principalment als alts requeriments tècnic-científics necessaris per al seu desenvolupament, essent la major limitació establir el flux i font d'emissió, causant un alt grau d'incertesa en la simulació.

La variabilitat estacional i interanual que presenten les sèries aerobiològiques dificulten les comparacions espacio-temporals i el desenvolupament de models, sobretot predictius, principalment pel tipus de distribució que segueixen aquestes dades. En aquest sentit, s'evidencia que una distribució gamma descriu correctament la distribució d'una sèrie anual aerobiològica, permetent establir comparacions espacials i temporals de les sèries anuals de 29 tipus pol·línics i 20 tipus fúngics en vuit localitats de Catalunya. Els resultats mostren que el paràmetre α del model canvia raonablement d'any en any, depenent de les condicions meteorològiques, però mostrant una bona estabilitat interanual i espacial; a més mostra que el tàxon pol·línic Urticaceae i el tàxon fúngic *Cladosporium* presenten la major estabilitat en les seves sèries anuals tant en l'escala temporal com espacial. Finalment, el paràmetre α apermet establir una classificació genèrica de les partícules aerovagants estudiades en cinc categories per a pol·len i cinc per a espores de fongs. Aquesta classificació reflexa la forta relació del paràmetre α amb la distribució ecològica (potencial i/o ornamental) en el cas dels tàxons pol·línics, i la forta relació del sol i/o el bioclima de la zona. La classificació genèrica proposada, a l'agrupar les partícules aerovagants en aquestes categories, permet reduir el nombre de tàxons a estudiar, un per cada categoría, facilitant el desenvolupament dels models.

Junt amb els problemes de distribució i variabilitat de les dades, per al desenvolupament dels models predictius es tenen en compte les limitacions dels mètodes estadístics. En aquest sentit s'ha plantejat el desenvolupament dels models per llindars de concentració, en els que es proposa utilitzar una resposta binaria que permeti establir el fet que s'assoleixi un llindar de concentració modelat. Això elimina els problemes generats pel tipus de distribució de les dades, al temps que disminueix el soroll en els mateixos i facilita els processos d'interpretació i presentació dels resultats. Amb la finalitat de desenvolupar un bon model de predicció per a Catalunya, s'ha avaluat la capacitat i eficàcia de la

regressió logística i arbre de regressió com a models de predicció per a 12 tàxons (sis pol·línics i sis fúngics) seleccionats a partir de la classificació genèrica del model gamma i quatre llindars de concentració (baix, mig, alt i molt alt). Els models es desenvolupen utilitzant dades del període 1994-2011 de les vuit localitats catalanes i es validaran amb dades de 2012 a 2014 tots ells pertanyents a la base de dades de la Xarxa Aerobiològica de Catalunya. En general, els dos models donen resultats similars en quant a la relació i/o influència dels paràmetres meteorològics en els diferents llindars, presentant valors altament satisfactòris en els paràmetres de sensibilitat i especificitat durant la validació. No obstant, s'observa que la regressió logística presenta una major precisió en establir la superació d'un llindar de concentració (sensibilitat), a més té menor exigència computacional i és més senzill d'aplicar. Per tant, aquest model resulta ser el més idoni basant a les estimacions futures per llindars de concentració a Catalunya.

Finalment, es presenta un model de correlació que estableix les tendències de l'índex anual de 20 tàxons fúngics en les estacions de Catalunya en el període 1995-2013. El càlcul de la significació d'aquestes tendències es fa mitjançant les proves no paramètriques de Spearman Rho i Mann-Kendall i, la magnitud del canvi, amb Theil-Sen; finalment s'analitza si aquesta magnitud (proporció de canvi anual) és significativament diferent de zero amb la prova de Wilcoxon-Mann-Whitney. L'anàlisi de la proporció de canvi anual mostra que 12 tàxons presenten tendències significatives de creixement i dos decreixen. La zona central de Catalunya i *Agrocybe* mostren el major increment significatiu, mentre que la estació aerobiològica de Roquetes-Tortosa i el tàxon *Torula* mostren els menors increments significatius. La major proporció significativa de canvi anual decreixent correspon a *Drechslera-Helminthosporium* i la menor a *Curvularia*. Tenint en compte la diversitat de característiques geogràfiques i d'ús del sòl de les localitats estudiades, es pot establir que l'efecte del canvi dels patrons meteorològics en els últims anys no és menyspreable. L'augment de les temperatures i la inestabilitat de les precipitacions, establerts com manifestacions del canvi climàtic a Catalunya en els últims 50 anys, podrien estimular la esporulació en les zones de muntanya i contenir-la en el litoral català meridional, afectant així la presència d'espores.

Contenido

Introducción	16
I. Introducción	17
II. Objetivos y esquema de la tesis	20
III. Área de estudio	22
IV. Base de datos aerobiológica	25
V. Referencias bibliográficas	27

Capítulo 1

Modelos de	predicción	y dispersión	aplicados	a	polen	y	esporas	de
hongos en el	aire							

ongos en el aire	29
1.1. Introducción	31
1.2. Modelos de predicción aplicados a polen y esporas de hongos en el aire	32
1.2.1. Modelos basados en la observación (OBM)	33
1.2.2. Modelos basados en los procesos fenológicos (PHM)	39
1.2.3. Otros modelos	40
1.3. Modelos de dispersión de polen y esporas de hongos	41
1.3.1. Módulo O : Modelo meteorológico	42
1.3.2. Módulo 2: Emisión de polen/esporas de hongos	43
1.3.3. Módulo	46
1.4. Conclusión	48
1.5. Referencias bibliográficas	48
1.6. Anexos	59

Capítulo 2 Caracterización y clasificación espacio-temporal de polen y esporas de hongos aerovagantes en Catalunya

ongos aerovagantes en Catalunya	
2.1. Introducción	93
2.2. Material y métodos	95
2.2.1. Datos aerobiológicos	95
2.2.2. Área de estudio	95
2.2.3. Método estadístico	95
2.3. Resultados y discusión	96
2.3.1. Polen	96
2.3.2. Esporas de hongos	101
2.4. Conclusión	110
2.5. Referencias bibliográficas	110
2.6. Anexos	115

Capítulo 3

Modelos de predicción por umbrales de concentración de polen y esporas de hongos en Catalunya mediante regresión logística y árboles de regresión

de regresión	143
3.1. Introducción	145
3.1.1. Regresión logística	146
3.1.2. Árboles de regresión	147
3.2. Material y métodos	148
3.2.1. Datos aerobiológicos	148
3.2.2. Área de estudio	149
3.2.3. Método estadístico	149
3.3. Resultados y discusión	150
3.3.1. Polen	151
3.3.2. Esporas de hongos	159
3.4. Conclusión	167
3.5. Referencias bibliográficas	167
3.6. Anexos	175
Capítulo 4	
Tendencias temporales de los índices anuales de esporas de hongos	
aerovagantes en Catalunya	203

4.1. Introducción	205
4.2. Material y métodos	206
4.2.1. Datos aerobiológicos	206
4.2.2. Área de estudio	206
4.2.3. Métodos estadísticos	206
4.3. Resultados y discusión	207
4.5. Conclusión	214
4.6. Referencias bibliográficas	214
Conclusiones	217

Introducción

Tahla I	Campos donde la Aeronalinogía tiene anlicación	17
Tabla I Tabla II	Agentes biológicos incluidos en la clasificación de bioaerosoles y sus efectos	19
	adversos en la salud humana y animal, y el ambiente.	17
Tabla III	Usos del suelo en Catalunya y en las comarcas donde se ubican las estaciones aerobiológicas.	24
Tabla IV	Clasificación, categorías y umbrales de concentración de polen en Catalunya.	26
Tabla V	Clasificación, categorías y umbrales de concentración de esporas de hongos en Catalunya.	26
<u>Capítulo</u>	1	
Tabla 1.1	Porcentaje de uso de los modelos predictivos que se han aplicado en polen y esporas de hongos aerovagantes. (n=503, artículos recopilados cubriendo el periodo 1998 - 2015).	35
Tabla 1.2	Relación entre los modelos predictivos y el tipo de bioaerosol modelado (un mismo artículo puede incluir más de un método o taxon).	36
Tabla 1.3	Relación entre los modelos predictivos y el parámetro modelado (más de un método o taxon puede ser incluido en un mismo artículo).	38
Capítulo		
		~ 7
Tabla 2.1	Promedio del índice anual de polen en estudio y del <i>número de días no nulos</i> (fondo gris) en las estaciones estudiadas.	97
Tabla 2.2	Resumen de los parámetros α , β y DNN por tipos polínicos.	99
Tabla 2.3	Clasificación genérica de los tipos polínicos mediante el parámetro α del modelo gamma.	101
Tabla 2.4	Promedio del índice anual de esporas de hongos en estudio y del <i>número de días no nulos</i> (fondo gris) en las estaciones de Catalunya.	103
Tabla 2.5	Resumen de los parámetros α , β y DNN por tipos fungícos.	104
Tabla 2.6	Clasificación genérica de los tipos de esporas de hongo mediante el parámetro α del modelo gamma.	106
Capítulo	3	
T 11 21		1 7 1
Tabla 3.1	valor crítico para los taxones polínicos y fungicos por cada umbral de concentracion en las estaciones de muestreo aerobiológicas	151
Tabla 3.2	Frecuencia y valor crítico (VC) promedio mínimo y máximo de las variables	154
1 4014 0 62	meteorológicas en los primeros cuatro niveles del árbol de regresión por taxon arbóreo y umbral de concentración	101
Tabla 3.3	Frecuencia y valor crítico (VC) promedio, mínimo y máximo de las variables meteorológicas en los primeros cuatro niveles del árbol de regresión por taxon	155

Tabla 3.4 Sensibilidad (Sen) y especificidad (Esp) de la regresión logística y de los árboles de 158 regresión para cada umbral de concentración y estación de estudio.

Tabla 3.5	Frecuencia y valor crítico (VC) promedio, mínimo y máximo de las variables meteorológicas en los cuatro primeros niveles del árbol de regresión para ascósporas y umbral de concentración	161
Tabla 3.6	Frecuencia y valor crítico (VC) promedio, mínimo y máximo de las variables meteorológicas en los cuatro primeros niveles del árbol de regresión para basidiósporas y umbral de concentración.	162
Tabla 3.7	Frecuencia y valor crítico (VC) promedio, mínimo y máximo de las variables meteorológicas en los cuatro primeros niveles del árbol de regresión para conidiósporas y umbral de concentración.	163
Tabla 3.8	Sensibilidad (Sen) y especificidad (Esp) de la regresión logística y de los árboles de regresión para cada umbral de concentración y estación de estudio.	166
Capítulo	4	
Tabla 4.1	Tendencias monotónicas significativas detectadas en los análisis de AFSI por estación de muestreo, fitoclimas y táxones de esporas de hongos y su magnitud del cambio.	208
Table 1 2	Distribución (an porcentaio) de los tendencias por code tayon y test no peremótrico	210

- **Tabla 4.3** Comparación entre los tests de Mann-Kendall (MK) y Spearman's Rho (SR) para 210
detectar algún tipo de tendencia monotónica.

Introrducción

Figura I Línea de tiempo de los eventos históricos relevantes del desarrollo de	la 18
Figura II Cuadro sinóptico de los procesos que afectan la presencia de polen y esporas o hongos en el aire, su impacto y las condiciones para la construcción de modelos.	le 20
 Figura III Modelos desarrollados a partir de series plurianuales aerobiológicas. Figura IV Situación geográfica, fitoclimas y características meteorológicas de las estacione de estudio. 	21 23
Figura V Promedios mensuales de la temperatura máxima (boxplot rojos) y mínima (boxplazul), precipitación total (barras verdes), número de días con precipitación (número en cursiva) y humedad relativa (línea naranja) de las estaciones de estudio en periodo 1994-2015.	ot 24 ro el
Capítulo 1	
Figura 1.1 Número de estudios aerobiológicos de polen y esporas de hongos (eje izquierdo) porcentaje de trabajos que aplican modelación (eje derecho) por año reportados e Google Académico.	y 33
Figura 1.2 Esquema de los módulos necesarios para el desarrollo de un modelo de dispersió de polen o esporas de hongos.	ón 42
Figura 1.3 Distribución porcentual de los diferentes modelos meteorológicos aplicados en la modelos de dispersión de polen o esporas de hongos.	os 43
Figura 1.4 Distribución porcentual de los diferentes módulos de emisión aplicados en la modelos de dispersión de polen o esporas de hongos.	os 45
Figura 1.5 Distribución porcentual por modelos de dispersión atmosféricos de polen (lac izquierdo) y esporas de hongos (lado derecho).	lo 47
Capítulo 2	
Figura 2.1 Representación espacial del promedio de α por taxon en el área de estudio. Figura 2.2 Representación espacial del promedio de α por taxon en el área de estudio.	102 107
Capítulo 3	
Figura 3.1 Representación de los niveles y nodos en un árbol de regresión.	150
Figura 3.2 Frecuencia y nivel de significación de las variables meteorológicas por tipo polínic y umbral de concentración estudiado.	20 152
Figura 3.3 Frecuencia y nivel de significación de las variables meteorológicas por tipo fúngio y umbral de concentración estudiado.	co 160
Capítulo 4	

Figura 4.1 Boxplots de la proporción de cambio anual (PAC año-1) en el promedio del AFSI por a) 212 fitoclima, b) estación de muestreo y c) taxon.

Capítulo 1

Anexo 1.A	Estudios aerobiológicos de polen y esporas de hongos aerovagantes donde se han aplicado modelos basados en la observación (1998-2015).	59
Anexo 1.B	Estudios aerobiológicos de polen y esporas de hongos aerovagantes donde se han aplicado modelos basados en los procesos fenológicos (1998-2015).	71
Anexo 1.C	Estudios aerobiológicos de polen y esporas de hongos aerovagantes donde se han aplicado "Otros modelos" (1998-2015).	79
Anexo 1.D	Estudios de dispersión de polen y esporas y sus respectivos módulos con escala desde meso-escalar hasta larga distancia (1998-2015).	81
Capítulo	2	
Anexo 2.A	Valores de los parámetros del modelo de distribución gamma, días no nulos y su nivel de significaición para cada serie anual, estación y tipo polínico estudiado.	115
Anexo 2.B	Valores de los parámetros del modelo de distribución gamma, días no nulos y su nivel de significación para cada serie anual, estación y esporas de hongos estudiado.	131
Capítulo	3	
Anexo 3.A	Ecuaciones generadas por el modelo logístico para los umbrales de concentración	175

- Anexo 3.A Ecuaciones generadas por el modelo logístico para los umbrales de concentración 175 de polen y esporas de hongos estudiados.
 Anexo 3.B Árbolos de regresión para los umbrales de concentración de polen y esporas de 180
- **Anexo 3.B** Árboles de regresión para los umbrales de concentración de polen y esporas de 189 hongos estudiados.

Introducción

I. Introducción	
II. Objetivos y esquema de la tesis	
III. Área de estudio	
IV. Base de datos aerobiológica	
V. Referencias bibliográficas	

I. Introducción

En los últimos años se ha incrementado el interés por evaluar la emisión de agentes asociados a la contaminación atmosférica, en especial los de origen biológico, puesto que se ha demostrado que este tipo de emisiones (en especial los bioaerosoles) representan un riesgo para la salud de los seres humanos generando, a corto y medio plazo, problemas respiratorios que pueden afectar a una comunidad o población expuesta (Camargo *et al.* 2011).

La ciencia que estudia los organismos vivos aerotransportados se denomina Aerobiología. A pesar de que su origen surge con el estudio desarrollado por J. Bostock en 1819, quién buscaba explicar la aparición estacional de la alergia respiratoria en humanos, el término Aerobiología fue acuñado en los años 30 gracias al patólogo vegetal F.C. Meier (Boehm & Leuschner 1986, Pepper & Dowd 2009). Esta ciencia ha sido definida en muchos estudios como la ciencia que analiza los procesos de aerolización (emisión), transporte atmosférico (dispersión) y deposición (inmisión) de material biológico (Pepper & Dowd 2009). Un resumen de algunos de los eventos importantes en el desarrollo de esta ciencia es presentado en la Figura I.

La Aerobiología es considerada como una ciencia transdisciplinar que incorpora diferentes campos como la biología, la medicina, la ingeniería, la agricultura, la meteorología y la microbiología entre muchas otras donde sus estudios tienen aplicaciones. No obstante, la mayoría de estos estudios se encuadran en la Aeropalinología la cual se centran en el impacto de polen y esporas de hongos en la salud de humanos, animales y cultivos. En general se pueden establecer hasta cinco áreas de aplicación (Tabla I). Sin embargo, es preciso aclarar que en la Aerobiología, también se estudia cualquier agente biológico que sea aerotransportado como virus, bacterias, protozoos, insectos microscópicos o restos biológicos (Stetzenbach 2007, Vélez-Pereira *et al.* 2011) que también presentan un impacto en la salud humana o en el ambiente (Tabla II).

Campo	Área	Aplicación
Medicina	Humana	Por su impacto en la salud, provocado principalmente por aerolérgenos.
	Forense	Para establecer la localización geográfica en pruebas criminalísticas.
Cianaias	Gestión ambiental	Para monitorizar variaciones climáticas, cambios del uso del suelo, o el bioteterioro
ciencias		en el patrimonio histórico-cultural.
ambientales	Calidad del aire	Considerando las partículas aerobiológicas como contaminates atmosféricos
A ami avaltarma	Gestion de cultivos	Por su aplicaciones en la estimación del rendimiento y/o pérdida de cultivos y en el
Agricultura		control de fitopatologías.

Tabla I – Campos donde la Aeropalinogía tiene aplicación.

Fuente: adaptado por el autor a partir de De Linares (2007)

El alto interés y frecuencia en los estudios de polen y esporas de hongos aerovagantes puede atribuirse principalmente a tres aspectos: El primero de ellos es la prevalencia y/o cantidad de estos agentes en diferentes periodos de tiempo; el segundo es la relativa facilidad con la que se pueden cuantificar e identificar los diferentes táxones de dichas partículas con respecto a otros agentes; finalmente, el tercer

A	Efectos adversos asociados					
Agente biologico	Salud humana y animal	Ambiente				
Alga	Reacción alérgica	Problemas de olores				
Bacteria	Neumonitis por hipersensibilidad	Degradación de edificios (biodeterioro)				
	Infecciones	Perdida de la productividad agrícola				
	Irritación de la membrana mucosa	Problema de olores				
Endotoxina	Tos	No reportado				
	Dolor de cabeza					
	Fiebre					
	Dolores musculares					
	Náuseas					
	Dificultad respiratoria					
Hongo	Reacciones alérgicas	Biodeterioro				
	Exacerbación del asma	Pérdida de productividad agrícola				
	Irritación dérmica	Problemas de olores				
	Neumonitis por hipersensibilidad	Síndrome del edificio enfermo (indoor)				
	Infecciones					
	Irritación de las mucosas					
Micotoxina	Dolor de cabeza	Pérdida de la productividad agrícola				
	Problemas musculares					
	Desórdenes neurológicos					
	Dificultad respiratoria					
	Infecciones					
Polen	Rinitis	No reportado				
	Conjuntivitis					
	Asma					
_	Dermatitis					
Protozoo	Encefalitis	Pérdida de productividad agrícola				
	Reacciones de hipersensibilidad	Posible protección del tratamiento biocida a otros				
~ **	Infecciones	microorganismos				
Virus	Infecciones	Pérdida de la productividad agrícola				

Tabla II – Agentes biológicos incluidos en la clasificación de bioaerosoles y sus efectos adversos en la salud humana y animal, y el ambiente.

Fuente: adaptado por el autor a partir de Stetzenbach (2007)

aspecto y posiblemente el que mayor relevancia posee, es que las concentraciones reportadas presentan una alta aplicabilidad en diversos campos, en especial en la salud humana (Tabla I).

La presencia, cantidad y diversidad de polen y esporas de hongos en la atmósfera está fuertemente relacionada con las condiciones ambientales y geográficas, el uso del suelo, las actividades antropogénicas y/o la calidad del aire. Un ejemplo de ésto es el comportamiento de las concentraciones de polen y esporas de hongos por zonas climáticas. En los climas templados, debido a la predominancia de plantas anemófilas, las concentraciones polínicas son más altas que las de las esporas fúngicas mientras que en las zonas templadas ocurre lo contrario, puesto que las esporas disponen de mejores condiciones para su desarrollo y liberación y son más abundantes. En la actualidad se han establecido redes de monitoreo de estas partículas, que abarcan desde grandes regiones como la European Aeroallergen Network (https://ean.polleninfo.eu/Ean/), regionales como la Red Española de Aerobiología (https://www.uco.es/rea/) o locales como la Xarxa Aerobiològica de Catalunya (http://lap.uab.cat/aerobiologia/es/) que recogen, analizan y almacenan información sobre los niveles polínicos y fúngicos de diversos táxones estudiados. Dichos registros suelen ser empleados para generar

bases de datos y crear sistemas de información sobre las variaciones que presentan los táxones a lo largo del tiempo y del espacio. Gracias a la obtención de series plurianuales se han podido realizar estudios más complejos, especialmente aquellos que pretenden modelar el comportamiento de éstas partículas o identificar las variaciones en las diferentes escalas (temporal, espacial o espacio-temporal). En la Figura II se presenta un resumen de los procesos que afectan a la presencia del polen y esporas de hongos en el aire, sus impactos y los requerimientos necesarios para la construcción de los modelos que alimentan los sistemas de información y ayudan a crear mecanismos de prevención.

Figura II – Cuadro sinóptico de los procesos que afectan la presencia de polen y esporas de hongos en el aire, su impacto y las condiciones para la construcción de modelos.

De manera general los modelos estadísticos desarrollados a partir de las series aerobiológicas anuales se pueden dividir en tres tipos o categorías (Figura III): "Modelos predictivos" con el objetivo general de predecir las concentraciones o dinámicas aerobiológicas futuras, basados en la observación y/o en la fenología de las plantas y/o concentraciones en otras áreas a las del estudio; "Modelos de dispersión" para identificar la fuente potencial de las inmisiones, analizar el movimiento de las emisiones o explicar el aumento significativo de los valores de inmisión por transporte desde largas distancias ya sea en sentido *forward* (cuando la modelación es hacia adelante) o *backward* (si es hacia atrás); "Modelos correlativos" donde se busca relacionar el comportamiento estacional de estas partículas con la incidencia de cambios o variaciones de las condiciones ambientales, procesos de infección o a los rendimientos de los cultivos.

II. Objetivos y esquema de la tesis

El objetivo general de la tesis es desarrollar diferentes modelos estadísticos para estudiar la variación espacio-temporal de polen y esporas de hongos aerovagantes en Catalunya. Para el cumplimiento de este objetivo se plantea el desarrollo de cuatro capítulos:

El objetivo general de este capítulo es analizar y discutir los diferentes modelos que se han empleado en los estudios aerobiológicos de polen y esporas de hongos clasificados en modelos predictivos y de dispersión. En este capítulo se han recopilado estudios desde 1998 hasta 2015.

Capítulo 2: Caracterización y clasificación espacio-temporal de polen y esporas de hongos aerovagantes en Catalunya.

En este capítulo se busca validar un modelo de distribución gamma que nos permita caracterizar series anuales de datos a través de los parámetros del modelo con el fin de establecer una clasificación genérica que agrupe en categorías los tipos diferentes de pólenes y esporas de hongos y así reducir el número de táxones con los que desarrollar modelos de predicción.

Capítulo 3: Modelos de predicción por umbrales de concentración de polen y esporas de hongos en Catalunya mediante regresión logística y árboles de regresión.

Con el objetivo de identificar una herramienta eficaz de predicción basada en umbrales de concentración, se evalúa el comportamiento de dos modelos estadísticos (regresión logística y árbol de regresión) utilizando 12 táxones (seis polínicos y seis fúngicos) seleccionados a partir de la clasificación genérica del modelo gamma del capítulo anterior.

Capítulo 4: Tendencias temporales de los índices anuales de esporas de hongos en Catalunya.

La finalidad de este capítulo ha sido determinar si existe una tendencia temporal en el índice anual de esporas de hongos estudiadas en las ocho estaciones aerobiológicas de Catalunya mediante las pruebas no paramétricas Mann-Kendall y Rho de Spearman, comparar los resultados de estos dos métodos y determinar su capacidad para detectar tendencias monotónicas. Finalmente se establece la proporción anual de cambio estadísticamente significativa.

Conclusiones

III. Área de estudio

El área de estudio en la que se ha centrado esta tesis es Catalunya (Noreste de España). En la Figura IV se observa la ubicación de las ocho estaciones aerobiológicas, sus características geográficas y fitoclimáticas. Tres estaciones son consideradas estaciones de ambientes urbanos: Barcelona, Girona y Tarragona; dos son consideradas rurales: Lleida y Vielha; y las tres estaciones restantes como urbano/rural: Bellaterra, Manresa y Roquetes-Tortosa. En general, el clima de esta región es principalmente mediterráneo, aunque una de las áreas presenta influencia continental y otra Atlántica.

De acerdo con Allue Andrade (1990), estas estaciones aerobiológicas se encuentran en cuatro regiones fitoclimáticas. En el fitoclima Fresco-Continental Oriental-Húmedo se encuentra la estación de Vielha, ubicada a 42°42'08" latitud norte, 00°47'50" longitud este y 997 m.s.n.m., en el valle del Pirineo denominado Vall d'Aran. Puesto que es la estación de estudio con mayor latitud y altitud, muestra el fitoclima más frío y uno de los más lluviosos, tanto en cantidad total anual como en número de días con precipitación (Figura V).

En el fitoclima Fresco-Transicional-Semiárido se encuentra la estación de Lleida, que se ubica a una latitud central en el territorio, a 41°37'41" latitud norte, 00°35'44" longitud este y 192 m.s.n.m., en la comarca de El Segrià. Presenta las menores precipitaciones anuales y temperaturas medias de entre 12 y 15.5°C (Figura V). Esta estación aerobiológica se encuentra en la zona más agrícola de Catalunya, especialmente por cultivos de cereal (Tabla III; Departament d'Agricultura, Ramaderia, Pesca i Alimentació *et al.* 2014).

Así mismo, y también en la zona central de Catalunya, se reporta el fitoclima Fresco-Continental Oriental-Semihúmedo. En él se encuentran las estaciones de Bellaterra (a 41°30'02" latitud norte, 02°06'28" longitud este y 245 m.s.n.m.) ubicada en la comarca del Vallès Occidental, Girona (41°59'03" latitud norte, 02°49'23" longitud este y 80 m.s.n.m.) en la comarca del Gironès, y Manresa (41°43'12"

latitud norte, 01°50'23" longitud este y 291 m.s.n.m.) en la comarca del Bages. Estas estaciones presentan una temperatura media de entre 12 y 15.5°C (como el caso de Lleida) pero Girona, se presenta como una de las estaciones con mayor precipitación, oscilación térmica y humedad relativa a lo largo de los años de estudio (Figura V).

Figura IV – Situación geográfica, fitoclimas y características meteorológicas de las estaciones de estudio.

Finalmente, en la zona litoral del territorio, se reporta el fitoclima Fresco-Thétyco-Semiárido, ubicándose las estaciones de Barcelona, a 41°23'37" latitud norte, 02°09'53" longitud este y 67 m.s.n.m. en la comarca del Barcelonès; Roquetes-Tortosa, a 40°49'13" latitud norte, 00°29'35" longitud este y 50 m.s.n.m. en el área comarcal El Baix Ebre; y Tarragona a 41°07'12" latitud norte, 01°14'37" longitud este y 44 m.s.n.m. en la comarca del Tarragonès. En todas estas estaciones se presentan temperaturas de 12 a 15.5°C (como en los dos fitoclimas anteriores), pero en este caso sus precipitaciones son intermedias en comparación con las restantes estaciones (Figura IV y Figura V).

Figura V – Promedios mensuales de la temperatura máxima (boxplot rojos) y mínima (boxplot azul), precipitación total (barras verdes), número de días con precipitación (número en cursiva) y humedad relativa (línea naranja) de las estaciones de estudio en el periodo 1994-2015.

Tabla III – Usos del suelo en Catalunya y en las comarcas donde se ubican las estaciones aerobiológicas.

			Usos del suelo (ha)						
		-	Forestal		-	Cultivos		Urbanizado	
Estación	Comarca	Superfície	Bosques	Maleza	Otros	Sin vegetación	Secano	Regadíos	y otros
Vielha	Vall d'Aran	63360	23650	17888	20085	936	44	1	686
Lleida	El Segrià	139670	7865	16260	4277	7463	27525	67961	8369
Bellaterra	Vallès Occidental	58310	18368	13081	689	2736	4473	519	18434
Girona	Gironès	57560	25126	10609	722	1897	9515	4186	5545
Manresa	El Bages	109230	55452	19340	3162	3827	19915	751	6773
Barcelona	Barcelonès	14580	1188	1206	169	103	13	46	11645
Roquetes-Tortosa	El Baix Ebre	100270	17817	24932	3182	5027	26712	16744	5526
Tarragona	Tarragonès	31940	5398	3492	425	2412	7695	3784	8534
	Catalunya	3210650	1121387	714772	217308	103017	570830	267280	214608

Fuente: (Institut d'Estadística de Catalunya, 2014)

IV. Base de datos aerobiológica

La base de datos empleada pertenece a la Red Aerobiológica de Catalunya (Xarxa Aerobiològica de Catalunya - XAC), que sigue la metodología estándar propuesta por la Red Española de Aerobiología - REA (Galán *et al.* 2007) y los requerimientos mínimos aconsejados por la Asociación Europea de Aerobiología (Galán *et al.* 2014). Los recuentos diarios se expresan como la concentración media diaria de granos de polen por metro cúbico de aire, para los tipos polínicos y de esporas de hongos por metro cúbico, en el caso de esporas fúngicas. Para el caso de polen, se ha trabajado con datos comprendidos entre los años 1994 y 2014, mientras que los datos de esporas de hongos están disponibles desde 1995. En general, en esta tesis, Barcelona y Bellaterra presentan series de hasta 21 años (1994-2014), Girona, Lleida, Manresa y Tarragona hasta 19 años (1996-2014), Vielha hasta 11 años (2004 a 2014) y Roquetes-Tortosa hasta 9 años (2006-2014).

De la base de datos de la XAC se seleccionaron 29 tipos polínicos. De ellos 19 son árboles (*Acer, Alnus, Betula, Castanea, Casuarina*, Cupressaceae, *Fagus, Fraxinus*, Moraceae, *Olea*, Palmae, *Pinus, Platanus, Populus, Quercus* [incluyendo: *Quercus* caducifolios y *Quercus* perennifolios], *Salix y Ulmus*), 3 arbustos (*Corylus*, Ericaceae y *Pistacia*) y 7 hierbas (*Artemisia, Ambrosia*, Chenopodiaceae-Amaranthaceae, *Plantago*, Poaceae, Polygonaceae y Urticaceae).

En el caso de los táxones de hongos, se seleccionaron 20 tipos. De ellos 5 son ascósporas (*Chaetomium*, *Leptosphaeria*, *Pleospora*, Venturiaceae, Xylariaceae), 5 basidiósporas (*Agaricus*, *Agrocybe*, Coprinaceae, *Ganoderma*, Thelephoraceae) y 10 conidiósporas (*Alternaria*, *Arthrinium*, *Aspergillus-Penicillium*, *Cladosporium*, *Curvularia*, *Drechslera-Helminthosporium*, *Epicoccum*, *Pithomyces*, *Stemphylium*, *Torula*).

Teniendo en cuenta que los niveles de concentración entre los diferentes tipos polínicos y de esporas de hongos es muy variable, Belmonte *et al.* (1999a, 1999b, 2000) introdujeron una categorización basada en cinco intervalos o umbrales de concentración para diversos tipos polínicos y fúngicos, la cual es usada para comparar las concentraciones medias semanales. No obstante, en el desarrollo de esta tesis, se han establecido cambios en dichos umbrales para diversos tipos polínicos y se han ampliado para las esporas de hongos.

En el caso de los tipos polínicos se establecieron tres grupos: grupo A correspondiente a los árboles y arbustos con altos niveles de polinización; grupo B, árboles y arbustos con bajos niveles de polinización; y grupo C constituido por hierbas con altos niveles de alergenicidad (Tabla IV).

Para los tipos de esporas fúngicas, se han establecido cuatro grupos, los cuales están definidos por el número de días del año en los que están presentes con al menos una concentración mayor o igual a una espora/m³. Es necesario aclarar que para el caso del primer grupo (grupo A), no se ha establecido 1 categorización por tratarse de esporas presentes en el aire en muy bajas concentraciones y distribuidas de manera irregular a lo largo del año (menos de 50 días con presencia de una espora al año). La clasificación establecida se presenta en la Tabla V, siendo necesario aclarar que *Cladosporium* (grupo

				Umbrales de concentración				
Grupo	Tipo de planta y nivel de polinización/alergenicidad	Taxon	Tipo de planta	Nulo (0)	Bajo (1)	Medio (2)	Alto (3)	Muy alto (4)
A	Árboles y arbustos con altos niveles de polinización	Cupressaceae Olea Pinus Platanus Populus Quercus (Q. caducifolios, Q. perennifolios)	Árbol/arbusto Árbol Árbol Árbol Árbol Árbol	0-1 polen/m ³	1-20 polen/m ³	20-50 polen/m ³	50-100 polen/m ³	>100 polen/m ³
B	Arboles y arbustos con bajos niveles de polinización	Acer Alnus Betula Castanea Castanea Corylus Ericaceae Fagus Fraxinus Moraceae Palmae Pistacia Salix Ulmus	Arbol Árbol Árbol Árbol Árbol Arbusto Árbol Árbol Árbol Árbol Árbol Árbol Árbol	0 polen/m ³	0-5 polen/m ³	5-20 polen/m ³	20-30 polen/m ³	>30 polen/m ³
C	Hierbas con altos niveles de alergenicidad	Ambrosia Artemisia Chenopodiaceae- Amaranthaceae Poaceae Plantago Polygonaceae Urticaceae	Hierbas Hierbas Hierbas Hierbas Hierbas Hierbas Hierbas	0 polen/m ³	0-4 polen/m ³	4-8 polen/m ³	8-12 polen/m ³	>12 polen/m ³

Tabla IV – Clasificación, categorías y umbrales de concentración de polen en Catalunya.

Tabla V – Clasificación, categorías y umbrales de concentración de esporas de hongos en Catalunya.

			Umbral de concentración				
			Nulo	Bajo	Medio	Alto	Muy alto
Grupo	Núm. De días al año con > 1 Espora/m ³	Taxon	(0)	(1)	(2)	(3)	(4)
В	50 – 200	Agaricus Arthrinium Aspergillus-Penicillium Drechslera-Helminthosporium Epicoccum Ganoderma Leptosphaeria Pleospora Stemphylium Thelephoraceae Torula Xylariaceae	0-1 esporas/m ³	1-4 esporas/m ³	4-8 esporas/m ³	8-12 esporas/m ³	>12 esporas/m ³
С	200 - 300	Agrocybe Alternaria Coprinaceae	0-1 esporas/m ³	1-10 esporas/m ³	10-30 esporas/m ³	30-50 esporas/m ³	>50 esporas/m ³
D	> 300	Cladosporium	0-200 esporas/m ³	200-500 esporas/m ³	500-1000 esporas/m ³	1000-1500 esporas/m ³	>1500 esporas/m ³

Grupo A: *Chaetomium, Curvularia, Pithomyces* y Venturiaceae reportan menos de 30 días al año con al menos una esporas/m³, por esta razón no se le ha asignado una categoría y escala ordinal.

D) es un taxon que se registra casi todo el año (>300 días) con valores relativamente altos, por lo que las concentraciones por debajo de 200 esporas/m³ se consideran como umbral nulo.

V. Referencias bibliográficas

- Allue Andrade JL (1990) Phytoclimatic atlas of Spain. Taxonomies. Instituto Nacional de Investigaciones Agrarias, Ministerio de Agricultura, Pesca y Alimentación, Madrid, España
- Belmonte J, Canela M, Guàrdia R, Guàrdia RA, Sbai L, Vendrell M, Alba F, Alcázar P, Cabezudo B, Gutiérrez M, Mendez J, & Valencia R (1999a) Aerobiological dynamics of the Urticaceae pollen in Spain, 1992-98. Polen 10:79–91.
- Belmonte J, Canela M, Guàrdia R, Guàrdia RA, Sbai L, Vendrell M, Cariñanos P, Díaz de la Guardia C, Dopazo A, Fernández D, Gutiérrez M, & Trigo MM (1999b) Aerobiological dynamics of the Cupressaceae pollen in Spain, 1992-98. Polen 10:27–38.
- Belmonte J, Canela M, & Guàrdia R-A (2000) Comparison between categorical pollen data obtained by Hirst and Cour sampling methods. Aerobiologia 16:177–185. doi: 10.1023/A:1007628214350
- Boehm F, & Leuschner RM (1986) Advances in Aerobiology: Proceedings of the 3rd International Conference on Aerobiology, August 6–9. Birkhäuser, Basel, Switzerland
- Camargo Y, Henao DM, & Vélez-Pereira AM (2011) Introducción. In: Emisiones atmosféricas de origen biológico, Primera edición. Fondo Editorial UniMagdalena, Santa Marta, Colombia, pp 17–18
- De Linares C (2007) Análisis del polen alergógeno en la atmósfera de Granada: evolución de las concentraciones polínicas, actividad alergénica e incidencia en la población atópica. Tesis Doctoral, Universidad de Granada. http://digibug.ugr.es/handle/10481/1528#.WVaOr4TyhbU
- Departament d'Agricultura, Ramaderia, Pesca i Alimentació, Secretaria General, & Estudis i Prospectiva agrària i Alimentària (2014) Superfícies, rendimientos i produccions comarcals dels conreus agrícoles. Any 2014. http://agricultura.gencat.cat/web/.content/de_departament/de02_estadistiques_observatoris/02_estructura_i_produccio/0 2_estadistiques_agricoles/01_llencols_definitius/fitxers_estatics/produccions_comarcals/Produccions_comarcals_web_2 014.pdf. Accessed 27 Sep 2016
- Galán C, Cariñanos P, Alcázar P, & Dominguez E (2007) Manual de calidad y gestión de la Red Española de Aerobiología. Universidad de Córdoba, Cordoba, España
- Galán C, Smith M, Thibaudon M, Frenguelli G, Oteros J, Gehrig R, Berger U, Clot B, Brandao R, & Group EQW (2014) Pollen monitoring: minimum requirements and reproducibility of analysis. Aerobiologia 30:385–395. doi: 10.1007/s10453-014-9335-5
- Institut d'Estadística de Catalunya I (2014) Anuari estadístic de Catalunya. Usos del sòl. Comarques, àmbits i províncies. http://www.idescat.cat/pub/?id=aec&n=202. Accessed 5 Sep 2016
- Pepper IL, & Dowd SE (2009) Chapter 5 Aeromicrobiology. In: Environmental Microbiology (Second Edition). Academic Press, San Diego, pp 83–102
- Stetzenbach LD (2007) Introduction to Aerobiology. In: Hurst CJ, Crawford RL, Knudsen GR, McInerney MJ, & Stetzenbach LD (eds) Manual of environmental microbiology, Segunda. ASM press, Washington DC, USA, pp 925–938
- Vélez-Pereira AM, Henao DM, & Camargo Y (2011) Generalidades de los aerosoles biológicos. In: Emisiones atmosféricas de origen biológico, Primera edición. Fondo Editorial UniMagdalena, Santa Marta, Colombia, pp 19–57
Capítulo 1

Modelos de predicción y dispersión aplicados a polen y esporas de hongos en el aire

Resumen

Los modelos estadísticos de polen y esporas de hongos aerovagantes pretenden, entre otros objetivos, predecir concentraciones o dinámicas estacionales y establecer, desarrollar o validar modelos de transporte atmosféricos. Aquellos modelos que buscan predecir concentraciones o eventos futuros se denominan modelos predictivos y suelen estar clasificados en modelos basados en la observación (OBM), en la fenología (PHM), o otros (Otros modelos). La revisión bibliográfica realizada en el presente capítulo muestra que los OBM se han empleado frecuentemente para predecir concentraciones futuras y los PHM para caracterizar el periodo de floración, mientras que los "Otros modelos" se han centrado en establecer estimaciones espaciales en áreas no monitoreadas. Los PHM reportan la mayor diversidad y emplean una menor cantidad de variables independientes en comparación con los OBM. También se observa que los PHM son más sencillos de aplicar que los OBM; no obstante, la amplitud de los criterios de partida en los parámetros de los PHM (ej: inicio de polinización) provoca una menor frecuencia de uso. A los modelos de transporte atmosférico se les reconoce con el nombre de modelos de dispersión y se les clasifica según sea el sentido de la modelación hacia adelante (Forward) o hacia atrás (Backward). Los modelos de dispersión presentan un número menor de aplicaciones con respecto los modelos predictivos, atribuible principalmente a los altos requerimientos técnicos-científicos necesarios para su desarrollo, donde la mayor limitación es establecer el flujo y la fuente de emisión.

apítulo 1	29
Modelos de predicción y dispersión aplicados a polen y esporas de hongos en el aire	29
1.1. Introducción	3
1.2. Modelos de predicción aplicados a polen y esporas de hongos en el aire	32
1.2.1. Modelos basados en la observación (OBM)	33
1.2.2. Modelos basados en los procesos fenológicos (PHM)	39
1.2.3. Otros modelos	4(
1.3. Modelos de dispersión de polen y esporas de hongos	4
1.3.1. Módulo 0 : Modelo meteorológico	42
1.3.2. Módulo 2: Emisión de polen/esporas de hongos	4
1.3.3. Módulo 9 : Fuente área potencial y/o mapa forestal	4
1.4. Conclusión	48
1.5. Referencias bibliográficas	48
1.6. Anexos	59

1.1. Introducción

Un amplio espectro de microorganismos y material particulado biológico emplean la atmósfera como medio de transporte (Cox & Wathes 1995). La aerobiología estudia su presencia y comportamiento en el aire utilizando diferentes metodologías e involucrando a biólogos, agrónomos, meteorólogos y ecólogos, entre otros Scheifinger et al. (2013). El objetivo principal es analizar las partículas biológicas (frecuentemente polen y esporas de hongos) que son transportadas pasivamente por el aire (Cecchi 2013). Dichos estudios han evaluado su concentración y dispersión a través de los años, centrándose inicialmente en el estudio de sus características biológicas (Goldstein 1960, Kanchan & Jayachandra 1980), demostrando que la emisión de polen y esporas de hongos depende de la vegetación y las condiciones ambientales, variando interanualmente, entre países, entre regiones de un mismo país, o incluso entre ciudades de una misma región (Brown & Hovmøller 2002, Ribeiro et al. 2003, Prospero et al. 2005, Oliveira et al. 2009b, Ziello et al. 2012, De Linares et al. 2017). En la actualidad, los estudios aerobiológicos se centran en establecer la relación de sus concentraciones con los efectos en la salud humana o en los cultivos (D'Amato et al. 1998, Tao et al. 2009), predecir el rendimiento de los cultivos (Galán et al. 2008), crear programas de manejo integrado de plagas (Pasken & Pietrowicz 2005, Decognet et al. 2009), desarrollar modelos predictivos y de dispersión (Emberlin et al. 2000, Sofiev et al. 2013b), o como un indicador de los posibles efectos del cambio climático en la vegetación mediante alteraciones observadas en los procesos fenológicos (Aguilera et al. 2013).

A algunos tipos polínicos se les reconoce por su papel en el desarrollo de alergias respiratorias (D'Amato *et al.* 2007), cuyos síntomas aparecen especialmente durante los periodos de floración de las plantas (Türe & Böcük 2009). El desarrollo de éstas alergias también ha sido asociado a esporas de hongos (Hasnain *et al.* 2012). Estudios sobre la prevalencia de alergias al polen estiman que en Europa el 40% de la población está afectada (D'Amato *et al.* 2007), mientras que para el caso de las esporas de hongos se estima que alrededor del 25% de la población del mundo industrializado padece algún tipo de alergia (Salvaggio & Aukrust 1981, Tariq *et al.* 1996, Kurup *et al.* 2002).

Adicionalmente, la aerobiología puede ser útil en las previsiones de rendimiento de los cultivos, puesto que la emisión anual de polen puede ser empleada como un indicador de la producción de frutos. Esta estrecha relación ha sido ampliamente estudiada, especialmente en cultivos de polinización anemófila como el avellano (*Corylus avellana L.* – Lletjos *et al.* 1993), la vid (*Vitis vinifera L.* – Cunha *et al.* 2003), el olivo (*Olea europaea L.* – Fornaciari *et al.* 2002, 2005, Galán *et al.* 2004, Ribeiro *et al.* 2007, García-Mozo *et al.* 2009, Orlandi *et al.* 2010) o la encina (*Quercus ilex* subsp. *ballota*, García-Mozo *et al.* 2007). En el caso de las esporas de hongos, los estudios aerobiológicos han sido empleados para predecir el riesgo de infección de los cultivos, como en la sarna del manzano (*Venturia inaequalis* – Aylor 1999), el moho azul del tabaco (*Peronospora tabacina* – Aylor 1999), la podredumbre gris (*Botrytis cinerea* – Blanco *et al.* 2006, Oliveira *et al.* 2009a, Rodríguez-Rajo *et al.* 2010, Fernández-González *et al.* 2011, Leyronas & Nicot 2013), roya de la soja (*Phakopsora pachyrhizi* – Tao *et al.* 2009), el mildiu de la vid (*Plasmopara viticola* – Fernández-González *et al.* 2011) o el oídio en la vid (*Uncinula necator* – Fernández-González *et al.* 2011).

Así mismo, los registros históricos de polen y esporas de hongos aerovagantes han sido modelados para determinar el origen de la emisión de estas partículas (Rousseau *et al*. 2004, 2006, Šauliene & Veriankaite 2006, Waisel *et al*. 2008, Belmonte *et al*. 2008, Izquierdo *et al*. 2011), simular su dispersión (Tufto *et al*. 1997, Nurminiemi *et al*. 1998, Poska & Pidek 2010, Efstathiou *et al*. 2011, Zink *et al*. 2012, Prank *et al*. 2013, Trakhtenbrot *et al*. 2014), predecir eventos futuros, o simplemente analizar su dinámica (Chuine *et al*. 2000, Belmonte & Canela 2002, Chuine & Belmonte 2004, De Linares *et al*. 2010, Recio *et al*. 2012, DellaValle *et al*. 2012, Khwarahm *et al*. 2014, García-Mozo *et al*. 2014).

Por otro lado, varios estudios se han centrado en observar los efectos del cambio climático en la vegetación; mostrándose en algunos casos la incidencia que tienen el aumento de las temperaturas en el incremento de los registros de polen (Spieksma *et al.* 1995, Frei 1998, Teranishi *et al.* 2000, Ziska & Caulfield 2000, Rasmussen 2002, Ziello *et al.* 2012, Fernández-Llamazares *et al.* 2014), mientras que otros han mostrado la relación de la temperatura con un avance en el inicio del periodo de polinización (Emberlin 1994, Emberlin *et al.* 1997, 2002, D'Amato *et al.* 2002, Fitter & Fitter 2002, Frenguelli 2002, Rasmussen 2002, Galán *et al.* 2005, Breton *et al.* 2006, García-Mozo *et al.* 2006, Stach *et al.* 2007b). Un reciente meta-análisis de datos de floración reportó que actualmente la tasa de avance fenológico primaveral es de cinco días por década para numerosas especies de plantas no arbóreas y de tres días por década para numerosas de hongos a través de los años, obteniendo que los incrementos de temperatura están afectando a las concentraciones de esporas positiva o negativamente, dependiento del tipo de hongo y localidad estudiada (Corden & Millington 2001, Corden *et al.* 2003, Millington & Corden 2005, Damialis *et al.* 2015a, 2015b, Grinn-Gofroń *et al.* 2011, Sadyś *et al.* 2016, Vélez-Pereira *et al.* 2016).

El número de estudios de polen y esporas de hongos aerovagantes se ha visto incrementado en los últimos 20 años, especialmente los relacionados con modelación (Figura 1.1), lo que demuestra su creciente interés. En el presente capítulo se presentan, analizan y discuten, los diferentes modelos que se han empleado en los estudios aerobiológicos de polen y esporas de hongos clasificados en modelos predictivos y de dispersión. Los modelos predictivos son analizados de acuerdo a la metodología, el taxon y el parámetro modelado. Por su parte, los modelos de dispersión, limitados por la escala de aplicación (de meso-escalar a larga distancia), se analizan en función del modelo de transporte, del modelo meteorológico aplicado y módulo de emisión desarrollado y/o implementado. Este trabajo revisa los artículos en formato electrónico desde 1998 hasta 2015.

1.2. Modelos de predicción aplicados a polen y esporas de hongos en el aire

Los modelos de predicción de polen son clasificados siguiendo el criterio establecido por Scheifinger *et al.* (2013) en modelos basados en la observación (OBM - *Observation-Based Models*) y modelos basados en los procesos fenológicos (PHM - *process-based PHenological Models*). Sin embargo, cuando el modelo estudiado no cumple con los criterios de clasificación anteriores, éste es incluido en una clasificación denominada "Otros modelos". En el caso de las esporas de hongos, su clasificación está

Figura 1.1 – Número de estudios aerobiológicos de polen y esporas de hongos (eje izquierdo) y porcentaje de trabajos que aplican modelación (eje derecho) por año reportados en Google Académico.¹

dada por OBM y "Otros modelos". En los anexos Anexo 1.A, 1.B y 1.C se presentan los estudios que aplican algún tipo de modelo predictivo, ordenados alfabéticamente por el nombre del modelo, el tipo de bioaerosol modelado (tipo polínico o taxon de esporas de hongos) y el parámetro modelado. Este último aspecto hace referencia a la variable modelada del bioaerosol, por ejemplo la concentración diaria, la concentración pico, la fecha de la concentración pico, entre otros.

1.2.1. Modelos basados en la observación (OBM)

Los OBM se establecen como la relación entre el parámetro modelado del bioaerosol y un conjunto de variables independientes, generalmente parámetros meteorológicos (Aboulaich *et al.* 2013), expresados mediante una función o ecuación con la que se obtiene la predicción. Los estudios realizados por Raynor & Hayes (1970), Davies & Smith (1973) y Bringfelt (1979) posiblemente fueron los primeros trabajos publicados que emplearon OBM en bioaerosoles, poniendo de manifiesto el interés y la necesidad de desarrollar modelos para predecir las concentraciones diarias de estas partículas aerobiológicas.

El Anexo 1.A muestra un total de 18 modelos que se ajustan a la definición de OBM. La regresión lineal es el modelo clásico más aplicado, el cual incluye variaciones como regresión múltiple o multivariado, regresión múltiple hacia atrás, regresión múltiple jerarquizada y regresión múltiple por pasos. Sin embargo, uno de los problemas de la regresión lineal es que los datos aerobiológicos frecuentemente no cumplen la linealidad y normalidad necesarios para aplicar este tipo de regresión (Grinn-Gofroń &

¹ Consulta realizada el 22 de julio de 2016

Strzelczak 2008a, 2008b, Astray *et al.* 2010). Esto puede generar que los resultados del modelo, cuyos datos no hayan sido previamente normalizados, presenten un alto grado de incertidumbre (Grinn-Gofroń & Strzelczak 2008a, 2008b, Galán *et al.* 2001, Díaz de la Guardia *et al.* 2003). No obstante, diferentes procesos de normalización de estos datos como la raíz cuadrada (Smith & Emberlin 2005), logaritmo de base natural (Alcázar *et al.* 2004) o logaritmo de base 10 (Stach *et al.* 2008), pueden solucionar esta limitación. Adicionalmente, otros modelos mostrados en el Anexo 1.A como redes neuronales artificiales, autoregresión integrada, regresión logística, regresión lineal parcial y árboles de regresión, al no requerir el cumplimiento de normalidad y linealidad de los datos de entrada, han visto incrementado su uso en los últimos años. Otros modelos como Box-Jenkins no se han incluido en la presente revisión, por requerir patrones de comportamiento estacional estable que no se presentan en las series anuales de los datos aerobiológicos.

En los OBM es posible establecer el grado de ajuste de las estimaciones, siendo el coeficiente de correlación R^2 el estadístico utilizado con mayor frecuencia. Analizando este R^2 en los modelos aplicados al polen se observa que éste puede variar entre 0.21 y 0.99, mientras que para las esporas de hongos, varía entre 0.16 y 0.98. En ambos casos, los modelos que exigen el cumplimiento de la normalidad y linealidad en los datos analizados presentaron valores de ajuste más bajos. Adicionalmente, en un mismo modelo aplicado a polen e independientemente del parámetro modelado, el coeficiente R^2 no reporta grandes variaciones.

Si analizamos los OBM de forma cronológica, se observa una tendencia a disminuir el uso de la regresión lineal mientras que métodos como redes neuronales artificiales y árboles de regresión presentan una tendencia a incrementar su uso. Como se ha comentado anteriormente, esto puede ser atribuido al hecho que estos últimos modelos no están limitados por la falta de normalidad y linealidad en los datos aerobiológicos. Además, estos métodos presentan una ventaja adicional al poder desarrolar en paralelo procesos de clasificación, predicción y análisis clúster, entre otros, que facilitan el ajuste de los modelos (Scheifinger *et al.* 2013).

En la Tabla 1.1 se muestran los porcentajes de uso de cada modelo utilizado en OBM. La regresión lineal es la más usada (21.1%), seguido de redes neuronales artificiales (8.7%), regresión logística (5.8%) y autorregresión integrada (4.4%). Es necesario aclarar que en la metodología de regresión lineal se incluyen las variaciones del método como regresión múltiple (33.0% de los estudios incluidos en regresión lineal), regresión múltiple por paso (31.3%), regresión múltiple hacia atrás (4.6%) y regresión múltiple jerarquizada (1.9%). Los OBM representan el 55.5% de los 503 métodos predictivos que se han aplicado en los 152 artículos analizados en este capítulo. Como muestran estas cifras, más de un método puede ser incluido en un mismo artículo.

En relación a los táxones modelados (Tabla 1.2), de un total de 28, el tipo polínico más modelado es Poaceae seguido por *Olea, Ambrosia* y *Betula*. En el caso de las esporas de hongos, de un total de 7 táxones, *Alternaria* es el taxon más frecuentemente modelado, seguido de *Cladosporium* y *Ganoderma*. La frecuencia de uso de cada modelo sobre un taxon determinado puede estar justificada por su impacto en la salud humana o en la agricultura y no en una restricción especifica del método.

Tabla 1.1 – Porcentaje de uso de los modelos predictivos que se han aplicado en polen y esporas de hongos aerovagantes. (n=503, artículos recopilados cubriendo el periodo 1998 - 2015).

		_		Porcentaje de uso	
Modelo			Polen	Esporas de hongos	Total
	Análisis de componentes principales		0.2%		0.2%
	Análisis lineal discriminante		1.0%		1.0%
	Arboles de regresión		1.8%	0.6%	2.4%
	Autoregresión integrada		2.8%	1.6%	4.4%
	Gamma Probability density function (PDF)		0.6%	0.6%	1.2%
	Gaussian PDF		0.6%	0.6%	1.2%
	Gradiente boosting estocástico		3.2%		3.2%
	Gumbel's PDF		3.0%		3.0%
Ţ	Máquina de soporte de vectores		0.6%		0.6%
B	Mínimos cuadrados parciales		0.6%		0.6%
0	Redes neuronales artificiales		4.2%	4.6%	8.7%
	Regresión de Poisson		0.2%		0.2%
	Regresión lineal		18.5%	2.6%	21.1%
	Regresión lineal parcial		0.2%		0.2%
	Regresión logística		5.6%	0.2%	5.8%
	Regresión no paramétrica		1.0%		1.0%
	Regresión no paramétrica (mediana)		0.2%		0.2%
	Shuffle Complex Evolution Metropolis Algorithm (SCEM-UA)		0.6%		0.6%
		Subtotal de OMB	44.8%	10.7%	55.5%
	Alternativo		3.0%		3.0%
	Días de grados de crecimiento (°GDD)		5.6%		5.6%
	Estado de función forzada		0.4%		0.4%
	Forc PO		0.4%		0.4%
	Forzado de Sarvas		2.4%		2.4%
	Forzado unificado		0.2%		0.2%
	Horas de grados de crecimiento (°GDH)		0.8%		0.8%
	Método de la hora fría		1.2%		1.2%
	Método del día frio		0.4%		0.4%
	Paralelo		3.0%		3.0%
	Paralelo de Sarvas		2.2%		2.2%
I	Paralelo del tiempo térmico		2.2%		2.2%
H	Primavera cálida		3.0%		3.0%
Р	O10		0.2%		0.2%
	Secuencial		3.0%		3.0%
	Secuencial de Sarvas		2.2%		2.2%
	Secuencial del tiempo térmico		2.2%		2.2%
	Suma de temperatura		1.6%		1.6%
	Suma de temperatura de doble umbral		0.2%		0.2%
	Tiempo de forzado térmico		2.4%		2.4%
	Tiempo térmico		0.2%		0.2%
	Unidad de frío		0.2%		0.2%
	Unidades de calor		0.4%		0.4%
	Unidades de forzado y frío		1.4%		1.4%
		Subtotal de PHM	38.6%		38.6%
	Índice bioclimático		0.4%		0.4%
	Índice taxonómico		0.2%		0.2%
	Kriging		1.2%		1.2%
	Kriging-Regresión Lineal-Autocorrección espacial (Kr-Lr-Sa)		0.2%		0.2%
ros	Longitudinal		1.0%		1.0%
Otı	Modelo de la estación más cercana		1.0%		1.0%
-	Modelo de regresión del uso del suelo			0.6%	0.6%
	Predicción basado en las medias diarias		1.2%		1.2%
	Vecino más cercano		0.2%		0.2%
		Subtotal de otros	5.4%	0.6%	6.0%
		T-4-1	00 70/	11.20/	

La Tabla 1.3 muestra la relación entre los modelos aplicados y el parámetro modelado. En el caso del polen, la variable mayoritariamente modelada es las concentraciones diarias (91 casos), seguida del inicio del periodo de polinización (53 casos) y el fin y la duración del periodo de polinización (17 casos para

Capítulo

-	
Ē	
8	
ā	
+	
2	
- Pe	
ŏ	
ét	
Ξ	
3	
e.	
р	
S.	
D,	
5	
-H	
д	
2	
.=	
le	
- S	
Ē	
P	
р	
n	
Ĕ	
E	
2	
L.	
- Yi	
Ц	
n	
3	
0	
ğ	
la	
le	
ĕ	
Ē	
_	
20	
Ö	
er	
ā	
Ę.	
le	
č	
ă	
ti	
2	
5	
õ	
i.	
ct	
i	
ē	
Id	
Ś	
lo	
le	
ĕ	
Ē	
S	
Õ	
e	
Ē	
Ē	
ē	
· . =	
iói	
acióı	
elacióı	
Relacióı	
– Relacióı	
2 – Relacióı	
1.2 – Relacióı	
a 1.2 – Relacióı	
bla 1.2 – Relacióı	
abla 1.2 – Relació	

								Po	len									Espora	as de hor	203		
Modelo	Acer Acsenta Acer	pisordmA	aisimətrA	snxng	vəuvisu) snudura	snjåno condens	Fagus Fagus	sunixor ¹ 21 sunixor	suni ^q	ogotnol9 eunotol9	Poaceae	snunı _d	хәшпү snəлənð	xiln2 euxnT	Ulmus Urticaceae	Polen	Alternaria Alternaria AgerPenic.	Botrytis Botrytis Botrytis	Pleospora Ganoderma	Pyricularia Pyricularia Espora de hongo	Subtotal Totol nor modele	101al por modelo
Análisis de componentes principales							I										1					-
Análisis discriminante lineal Arboles de regresión									4 v	-					-		0		6		m	5 12
Autoregresión integrada	1		6,816,81		1000 	. 2029.			с С		e e		1010 1010 1010		. 6	1	4 4	2	2		ı∞ı 1	22
Gamma PDF			ς, τ														() () ()				<u> ()</u>	9
Gradientes boosting estocástico	1	-	o —	_	I 1	-	-	-		-	-		1				ר קרי				า	16
Gumbels PDF 		S	S								<u>،</u> 1				_		<u>v</u> c					15
Minimos cuadrados parciales									2		-						n col					n m
Redes neuronales artificiales			0.65						8	-	9				2	1	9	4	4 4	-	1 <u>23</u>	44
Regresión de Poisson Berrasión lineal	v	r	-	Ģ		¢	ø		5	"	1		ç		6	-	<u>م</u> م	¢			1	106
Regression lineal parcial			t		- 10 CC - 53 SC	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0		3		t V		4	2020	0	-	<u>ا – ا</u> د د				3	
Regresión logística	2 4			ŝ	2	2	0	2	1 2	2	4				2	~	1				-	29
Regresión no paramétrica		ŝ															<u>, 10</u>					ŝ, v
Regresión no paramétrica (mediana) SCFM-11A			- 166										-				3					- "
Subtotal de OBM	2 1	1 22	16 1	17	1 5	5	13 1	3	47 2	2 7	48 1	1	4 1		13	2 22	5 24	2 12	2 7 4	4 1 4	4 54 2	279
Alternativo	1 1 2	Ŧ	1	1	1 1			1	Ţ	2				I	1	1	5					15
GDD	2	7	5	2		-	3		4	1	2 1		9	1	1	6	80					28
Estado de función forzada Ecre DO									, ,		2						2 0					C1 C
Forzado de Sarvas	-			1	1	-			1 6						-		7 0					1 1
Forzado unificado									1								1					-
HCD.				2									2				4					4
Método de la hora fría Método del día frío						-			-				en M				0 0					0 0
Paralelo	1 1 2	-	1	1	-			1	1	2				-	1	1	5					15
Paralelo de Sarvas	1			1	-	-			-	-					-		1					Ξ
Paralelo de tiempo térmico	- c 		-			-		-	-	- (-	-		- 4					= =
	7		-	-	-			-	-	7	-			-	1	-	<u>1</u>					
Secuencial	1 1 2	-	-	1	1 1			1	÷	2				-	1	1	5					15
Secuencial de Sarvas	1			1 1	1	-			1	1				1	1	1	1				0.000	Ξ
Secuencial de tiempo térmico	1		ā.ā	1	1	-			H	-				-	1	-	1					Ξ
Suma de temperatura		7							1	-	7		-				<u>∞ı</u>		1			×
Suma de temperatura de doble umbral Tismos de formede termol						-			,	-				-	-	-			2	2		
Liempo de lorzado termal Tiamo tarmal	-			-		-			7 -					-	-	-	7 -					1 1
Unidad de frío			-			-	-														-	
Unidades de calor									÷				1				2					6
Unidades de forzado y frío				1		1		-			1		2				7					5
Subtotal de PHM	4 10 19	8	6 1	13 10	0 10	6	4	1 4	24	1 15	8		15	1 10	11	19	4				_	194

Polen Esporas de hongos	Ріанти Ріанти Розсеве Рориінь Рориінь Сивессиь Борен - Репіс. Воігунія Агрен - Репіс. Воігунія Слаподетта Рісозрога Рісозрога Бэрога де йон <u>г</u> о Ворега де йон <u>г</u> о Рісозрога Ворега де йон <u>г</u> о Саподетта Рісозрога Варога де йон <u>г</u> о Саподетта Рісозрога Варога де йон <u>г</u> о Саподетта Рісозрога Варога де йон <u>г</u> о Саподетта Саподетта Рісозрога Саподетта Саподета Саподетта Саподо С С С С С С С С С С С С С С С С С С		1			2 <u>5</u>	2 5		3 6		3 7 27 1 1 1	11 16 9 446 24 1 2 13 7 4 1 5 <u>5</u>
Polen Esporas de hongos	Ріанацур Ріанацур Розсеве Рориінь Ринть Санекснь Бонугія Вонугія Саподетта Рієозрога Рієозрога Рієозрога						2 5		3 6		3 7 27 1 1	11 16 9 446 24 1 2 13 7 4 1
Polen Esporas de hongo	Раставо Расаве Ровсеве Ровсеве Вонулія Вонулія Вонулія Вонулія Вонулія Вонулія Вонулія Вонулія Вонулія Вонулія Вонова Во					2 2 1000 1000 1000 1000 1000 1000 1000 1	2 5		3 6		3 7 27 1 1	11 16 9 446 24 1 2 13 7 4
Polen Esporas de ho	Ріалацо Ріалацо Рориния Рориния Вонутия Вонутія Вонутія Сіадозрогішт Вонутія Вонутія Вонутія Вонутія Вонутія Вонутія		1			2 5	2 5		3 6		3 7 27 1 1	11 16 9 446 24 1 2 13 7
Polen Esporas d	Растадо Расана Ролседе Рориния Вонуния Агрен - Ретіс. Вонунія Вонунія СГадогрогіцт СГадогрогіцт Срадогра		1	1 1 1 1 1 1 1 1 1 1	ter see see 700 T	2 5	2 5		3 6		3 7 27 1 1	11 16 9 446 24 1 2 13
Polen Espo	Ріатадо Ріалания Ровсеве Рориіния Линех Ситех Бонет Анеталіа Алетого Вонтіна Вонтіна Вонтіна	호텔 호텔 1 호텔 호텔 호텔 호텔 호텔 호텔	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2 5	2 5	0	3 6		3 7 27 1	11 16 9 446 24 1 2
Polen	Ріанаво Ріанаво Рориїиs Ровсеве Опегсиs Ситех Витех Сліпя Роїет Айетогаї Айетогаї		1	1 2 6 2 6		2 5	2 5		3 <u>6</u>	1 (1997) 1 (1995) 1 (1995)	3 7 27 1	11 16 9 446 24 1
Polen	Platanuso Platanus Populus Duercus Salix Jaricsceae Dolen Polen Alternaria	21 21 21 21 21 21 21 21 21 21 21 21 21 2				2 5	2 5	0	3 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 7 <u>27</u>	11 16 9 446 24
Polen	Platanuso Platanus Posceae Populus Jaines Jaines Polen Polen		1		<u>1</u>	2 5	2 5	0	3 6		3 7 27	11 16 9 446
Polen	Раставо Родеве Родеве Витех Зайх Тахия Unius Polen		1	1 0000 1 0000 0000 0000 0000 0000 0000		2	2		3		3 7	11 16 9 4
Polen	Распаво Раста Рориния Ситех Зайх Лахия Unicaceae Unicaceae Polen		1	1		2	2		33		3 7	11 16 9
Polen	Lationese Data Pranus Populus Poscene Poscene Platanus Pl		1	1 (1995) (1995)					m		3	11 10
Polen	l llmus Platans Poscese Poscese Populus Poscese Poscese Poscese Poscese Puttons Platan		1									1
Polen	Torus Platanus Posceae Posceae Platanus		1								000	0
Polen	gairs Rumex Daercus Populus Poaceae Platanus		1	555 1 555							and the local division of the local division	1
Polen	prines Grevens Propulus Posceae Platanus	21 I 222 - 22		1 99 1 99 1 99		22				1313	040	
Polen	Brunns Populus Poaceae Platanus					-	_	eiei		999	2	4]
Polen	Pennus Populus Platanus Platanus			66		ac.					4.	1 2
Polen	Platanus Platanus Poscese									1010	SKR.	5
Polen	ognami Platana				1			de de	3	444	6	52
Polen	0801101	4040		33		99		999			•	22 6
Polen		4 (4.4)		44						-2-2	808	3 2
Polen	snura			3636		5767		5365			000	2
Pol	016a			Щ	_	gg					2	73
	suvj8nf			12122	1	61.C		1111 			1000	4
	snu _i xvı _A	* * * * * *		33	1							4
	sn8vJ	(a)(a)		4(24)2	1	24.20		64944		4940	0004	1
	Cupressaceae	121		33								17
	snįsiog			40404		24723		14046		6040	00016	14
	ChenoAmara.			22								1
	vəuvtsvə				Ċ					1010		15
	snuid1vJ			33							000	11
	snxn g										10013	10
	Betula											30
	aizimətrA											22
	aisordmA									Ŧ	1	31
	snulA											30
	snjnəsə¥	••••										10
	усвг			-		-	-				3	6
					Sa	al	estación mas cercana	regresión del uso del suelo	1 basado en las medias diarias	is cercano	Subtotal de Otros modelos	Total

Cheno.-Amara.: Chenopodiaceae-Amaranthaceae. Asper.-Penic: Asper.gillus-Penicillium

Tabla 1.3 – Relación entre los modelos predictivos y el parámetro modelado (más de un método o taxon puede se	er
incluido en un mismo artículo).	

										Pa	arár	netr	o m	ode	ladc)								
						P	ole	n								Es	por	as d	le h	onge	os			
Мо	delos	Día pico	Duración del periodo	Estimación espacial	Fin del periodo	Índice anual	Índice pre-pico	lnicio del periodo	Núm. de días por encima del umbral	Concentración pico	Concentración diaria	Concentración semanal	Incremento anual	Duración del periodo	Estimación espacial	Fin del periodo	Indice mensual	Inicio del periodo	Núm. de esporas	Presencia o ausencia	Concentración*	Concentración diaria	Concentración horaria	Concentración semanal
_	Análisis de componentes principales										1													
	Análisis discriminante lineal					1		1	1	1	1													
	Arboles de regresión					1		1	1	1	5									1		2		_
	Autoregresión integrada		1		1	1		3			7	2		1		1	2	1			1	5		
	Camma PDF Caussian PDF		1	1	1			1		1				1		1		1						
	Gradiente boosting estocástico					-		1			16			1		1		1						
	Gumbel's PDF	3	3			1		3	3	3														
Σ	Maquina de soporte de vectores										3													
OBI	Mínimos cuadrados parciales	1				000		1			1									3				
-	Redes neuronales artificiales					1		1	1	1	17	_			2				1	1	1	15	3	_
	Regresión de Poisson	0	11		e	0		27		c	1			_							2	0		2
	Regressión lineal parcial	9	: 11			0	1	21		0	1										: 4	9		2
	Regresión logística				9			13			5	1	1											
	Regresión no paramétrica				1	101101		1			3													
	Regresión no paramétrica (mediana)										1													
	SCEM-UA					1				1	3									3				
	Subtotal de OMB	13	17	-	17	12	1	53	6	12	91	3	1	2	2	2	2	2	1	2	4	31	3	2
	°GDD	1	5		1	1		21		1									1.1.1		1:1:1			
	Estado de función forzada	1						1																
	Forc PO	1						1																
	Forzado de Sarvas							12																
	Forzado unificado			1		1		1												3				
	°GDH	1	2			1		2		2		_												
	Método del día frio							2								1								
	Paralelo					1000		15																
	Paralelo de Sarvas							11																
Z	Paralelo del tiempo térmico			1				11																
ΗI	Primavera cálida							15				_				_								
	Q10			3				15																
	Secuencial de Sarvas							15																
	Secuencial del tiempo térmico							11																
	Suma de temperatura		1			1010		7																
	Suma de temperatura de doble umbral		1																					_
	Tiempo de forzado térmico			a a a a a a a a a a a a a a a a a a a				12																
	Lindad de frío	1						1																
	Unidades de calor	1						2																
	Unidades de forzado y frío	1				1111		6											1					
	Subtotal de PHM	5	9		1			179																
	Îndice bioclimático		1					1																
	Indice taxonómico			6		1		1																
los	Kr-I r-Sa			0		-	1919				n 193								111					
ode	Longitudinal			5																				
ss m	Modelo de la estación más cercana			5		10100																		
ortC	Modelo de regresión del uso del suelo														3									
-	Predicción basado en las medias diarias							2			2	2												
	Vecino más cercano			17		1	199	. 4		-	1				2	_			111					
	Total	18	27	17	18	12	1	236	6	12	94	5	1	2	5	2	2	2	1	2	4	31	3	2

* No reportan las unidades de medida

cada uno). En las esporas de hongos, el parámetro más modelado ha sido, al igual que en el caso del polen, las concentraciones diarias (32 casos de los 54 totales).

1.2.2. Modelos basados en los procesos fenológicos (PHM)

Los PHM se establecen como modelos aerobiológicos basados en el periodo de polinización (inicio, fin y/o duración del periodo de polinización) y que se asocian a una fase fenológica. Teniendo en cuenta que las emisiones de polen se desarrollan durante la floración de las plantas, y que ésta a su vez requiere de condiciones climáticas específicas, algunos autores han predicho el inicio de la temporada de polen usando la temperatura (García-Mozo *et al.* 2000, 2002, Orlandi *et al.* 2002, Sánchez-Mesa *et al.* 2002, Recio *et al.* 2012), la radiación o insolación, las horas de sol, la evapotranspiración, el viento y/o la precipitación (Durand 1967, Mandrioli *et al.* 1993, Fornaciari *et al.* 1998, Laaidi 2001a, 2001b, Laaidi *et al.* 2003, Stach *et al.* 2008, Kizilpinar *et al.* 2011, Puc 2012). Estas variables también han sido empleadas en los estudios de las fases fenológicas (Chuine *et al.* 1998, Chuine 2000, Schaber & Badeck 2003, Linkosalo *et al.* 2008). Tal y como Scheifinger *et al.* (2013) lo describe, estos modelos pueden emplear variables simples como la acumulación de calor, acumulación de frío, el fotoperiodo y la disponibilidad de agua, así como la combinación de dos o más parámetros anteriormente mencionados.

No obstante, los estudios que relacionan la concentración de polen aerovagante con los procesos fenológicos no son tan abundantes como los que aplican OBM, a pesar de que las variables meteorológicas afectan al proceso fenológico de floración y por tanto a la cantidad de polen aerovagante (Khwarahm *et al.* 2014).

Uno de los primeros trabajos que logró predecir el inicio de la temporada del polen basándose en procesos fenológicos lo realizó Andersen en 1991 utilizando las "unidades de dormancia" y las "unidades de crecimiento" para predecir el periodo de polinización de *Alnus, Betula* y *Ulmus*. En la presente revisión se han encontrado 24 modelos diferentes (Anexo 1.B). Uno de estos modelos usa la acumulación de calor y el fotoperiodo como parámetros principales del modelo ("forc PO"), tres usan la fase de dormancia ("método del día frío", "método de la hora fría" y "unidad de frío"); ocho usan la acumulación de calor y la fase de dormancia ("alternativo", "paralelo", "secuencial", "paralelo de Sarvas", "paralelo del tiempo térmico" y "unidades de forzado y frio"); mientras que los 12 restantes usan la acumulación de calor.

La Tabla 1.1 muestra que, de los modelos predictivos analizados, el 38.5% de ellos corresponden a PHM, donde el modelo "días de grados de crecimiento (°GDD)" es el más aplicado seguido por el grupo de modelos de "paralelo" y "secuencial" y, "alternativo" y "primavera cálida".

La complejidad de los PHM está en establecer las características fundamentales del periodo de polinización (el inicio y/o el fin) por medio de los umbrales de temperatura para cada fase fenológica. De hecho, el método para definir los umbrales es mucho más complejo que la aplicación misma del modelo. Del análisis de los trabajos recopilados en este capítulo, se evidencia que 24 de los 33 estudios plantean un diseño en función de la variación de la temperatura umbral entre los 0 y 12 °C, con el fin de

establecer la mejor temperatura para el desarrollo de los modelos. Incluso seis de los 33 estudios plantean un análisis cruzado de la variación de los umbrales con variaciones en la metodología empleada para establecer el inicio y fin del periodo de floración.

Como en el caso de OBM, en los PHM es posible medir el grado de precisión de los modelos, siendo el RMSE (error cuadrático medio) el parámetro más frecuentemente empleado. Los resultados muestran un buen ajuste de los modelos fenológicos con un rango de error entre los 0 y 7 días en la predicción de la fecha de inicio y de 1 a 6 días en la predicción del día pico. En ambos casos la fecha de la estimación es posterior a la fecha observada.

El análisis entre el PHM y el taxon estudiado (Tabla 1.2) muestra que *Olea* es el tipo polínico más frecuentente modelado seguido de *Alnus*, *Platanus* y *Quercus*. Al igual que OBM, el estudio de un taxon u otro, no se debe a una condición específica del modelo, sino a su importancia o impacto sobre la salud o en la producción de los cultivos. Finalmente, la Tabla 1.3 muestra que el inicio del periodo es el parámetro más predicho por este tipo de modelos, seguido por la duración del periodo de polinización y el día pico.

1.2.3. Otros modelos

Como ya se mencionó, cuando los modelos predictivos reportados en el presente capítulo no se ajustan a las definiciones de OBM y PHM, empleamos la clasificación "Otros modelos". El Anexo 1.C muestra los 8 tipos de modelos encontrados. El "Índice bioclimático" y el "Índice taxonómico" son modelos predictivos que caracterizan el periodo de polinización. En ellos, en lugar de utilizar variables meteorológicas y/o fenológicas, se utilizan índices elaborados a partir de combinaciones estas variables de entrada. Valencia-Barrera *et al.* (2002) publicaron que en un periodo de tiempo corto (tomando solo periodo principal de polinización) el uso de los índices bioclimáticos muestra resultados similares a los OBM, mientras que en un periodo de tiempo extenso (incluyendo un periodo anterior y posterior al periodo principal de polinización) se observa una mejor correlación. Concluyendo que estos indicadores ofrecen mayor precisión en las estimaciones. Alternativamente, el modelo "Predicción basada en las medias diarias" obtiene una estimación en base a la media de la concentración histórica del polen en una misma fecha.

El resto de modelos incluídos en este apartado emplean métodos estadísticos de interpolación, utilizando datos de estaciones cercanas al área donde se quiere hacer la estimación. DellaValle *et al.* (2012) aplicó tres modelos (Vecino más cercano, Kriging, Modelo longitudinal) de los clasificados en otros modelos en un mismo estudio, concluyendo que las estimaciones espaciales pueden ser poco fiables debido a la influencia de las condiciones meteorológicas, las características aerodinámicas de la partícula y las grandes variaciones en las concentraciones. Sin embargo, el modelo puede tener una buena estimación en áreas no monitoreadas si se tienen en cuenta las citadas variables. Por otro lado, Alba *et al.* (2006) aplicó el modelo de interpolación Kriging para estimar las concentraciones de polen de *Olea* en la zona oriental de Andalucía (España). En este caso, no encontraron diferencias significativas entre el promedio

semanal de polen observado y las estimaciones del modelo, excepto cuando las estaciones de monitoreo presentaban una alta fluctuación en las concentraciones.

Los modelos categorizados como "Otros modelos" corresponde al 6.0% del total de los modelos predictivos recopilados (Tabla 1.1). En este caso, el modelo más usado es el "Kriging", seguido de "predicción basado en las medias diarias", "longitudinal" y "la estación de monitoreo más cercana". La Tabla 1.2 muestra que el taxon más frecuentemente analizado con estos modelos es Poaceae, seguido de *Quercus, Acer* y Urticaceae. En el caso de las esporas, se reporta un estudio para *Alternaria* y *Cladosporium*. Finalmente, la Tabla 1.3 muestra que el parámetro más frecuentemente modelado es la estimación espacial de la concentración, seguido del inicio del periodo.

1.3. Modelos de dispersión de polen y esporas de hongos

Los aerosoles atmosféricos se originan en una gran variedad de fuentes naturales y antropogénicas, por lo que su concentración, composición y distribución en tamaños presentan una alta variabilidad espaciotemporal (Pöschl 2005). Su dispersión a través de la atmósfera se ve afectada por procesos como el transporte en las masas de aire, la mezcla turbulenta del aire, las transformaciones fisicoquímicas y la deposición por vía seca y húmeda (Sofiev *et al.* 2006a). Dichos procesos están relacionados principalmente con los factores meteorológicos, así como con características físicas de la propia partícula como la forma, densidad, tamaño y viabilidad del aerosol (Helbig *et al.* 2004, Kuparinen *et al.* 2007, Pfender *et al.* 2007, Vogel *et al.* 2008, Veriankaité *et al.* 2010, Vélez-Pereira 2011, Després *et al.* 2012). En el caso de los bioaerosoles menores de 100 μ m, los procesos de dispersión no varían sustancialmente con respecto a las partículas inorgánicas menores de 10 μ m (PM10) (Sofiev *et al.* 2006a, 2013a). A pesar de tener un tamaño mayor, su baja densidad y su carácter hidrofóbico facilitan que el tiempo de residencia en la atmósfera y su velocidad de deposición sean equiparables a los valores de muchos aerosoles atmosféricos.

El estudio del transporte de polen y esporas de hongos se justifica principalmente en los impactos en la salud pública y cultivos. Desde mediados del siglo XX se han reportado estudios de dispersión de polen y esporas de hongos, proporcionado información sobre su transporte a escalas locales, regionales y de larga distancia (Erdtman 1931, 1935, Gregory 1961, Ranta *et al.* 2006, Skjøth *et al.* 2007, Zhang *et al.* 2014). Uno de los primeros trabajos sobre la dispersión del polen lo presentaron Di-Giovanni *et al.* (1989) y McCartney & Lacey (1991), demostrando la aplicabilidad de estos modelos a pesar de su falta de precisión. A partir de estos estudios, se ha evidenciado el transporte a diferentes distancias, de tipos polínicos y fúngicos como *Ambrosia* en Polonia (Stach *et al.* 2007b, Smith *et al.* 2008, Kasprzyk *et al.* 2011), Italia (Cecchi *et al.* 2007) y el área balcánica (Šikoparija *et al.* 2009); *Betula* en el Reino Unido (Skjøth *et al.* 2009) y Dinamarca (Mahura *et al.* 2007, Skjøth *et al.* 2000, 2008, Hernández-Ceballos *et al.* 2011b, 2014); Poaceae en Reino Unido (Smith *et al.* 2005); *Alternaria* en Dinamarca (Skjøth *et al.* 2012); o *Ganoderma* en Inglaterra (Sadyś *et al.* 2014).

Para el desarrollo de un modelo de dispersión de polen o esporas de hongos se requiere, al igual que para cualquier elemento del que se desee simular su dispersión, de un conjunto de variables y/o información que permitan dar solución a la ecuación de transporte empleada en el modelo. En la Figura 1.2 se propone un esquema general sobre el desarrollo de un modelo de dispersión de polen o esporas de hongos. El modelo requerirá de cuatro grandes componentes de información: un módulo conformado por el modelo meteorológico **①**, que establecerá las características físicas y químicas del transporte de la partícula y los procesos de emisión; un módulo de emisión de polen/esporas **②**, que establecerá las características temporales de la emisión; un módulo donde se presente la fuente área potencial de emisión o mapa forestal **③**, que aportará la información sobre la distribución espacial de la(s) fuente(s) de emisión; y un módulo que contenga las configuraciones de salida **④**, que definirá los criterios espacio-temporales de solución de la ecuación del modelo, como resolución vertical y horizontal, entre otras.

Figura 1.2 – Esquema de los módulos necesarios para el desarrollo de un modelo de dispersión de polen o esporas de hongos.

1.3.1. Módulo **0**: Modelo meteorológico

El módulo meteorológico es un importante componente en la ecuación de los modelos de dispersión. Permite el análisis del movimiento de las masas de aire que incluyen las sustancias o partículas dispersadas, simulando con una alta fiabilidad el transporte a larga distancia (Chen & Dudhia 2001). Adicionalmente, el modelo meteorológico proporciona la información necesaria para poder desarrollar el módulo de emisión. Análisis y discusiones sobre estos modelos pueden ser encontrados en diversas publicaciones (Lorenc 1986, Steppeler *et al.* 2003, Kukkonen *et al.* 2012).

En los modelos de dispersión, el módulo meteorológico puede ser aplicado de dos maneras: mediante sistemas de modelado *Off-line* (también llamados modelos de una vía) o mediante sistemas de modelado *On-line* (o modelos integrados de doble vía). El modelado *Off-line* es utilizado cuando el módulo meteorológico es ejecutado previamente, y su resultado es incorporado posteriormente en el modelo de dispersión. Por el contrario, en el modelado *On-line*, el modelo meteorológico es ejecutado al mismo tiempo que el modelo de dispersión (Grell *et al.* 2005, Baklanov *et al.* 2008, Kukkonen *et al.* 2012). Estas dos metodologías tienen un efecto diferente en la precisión de la simulación del transporte de la partícula. Sofiev *et al.* (2006b) y Kukkonen *et al.* (2012) estimaron que el modelado *On-line* proporciona resultados más consistentes que el *Off-line*, porque el primero permite que todos los campos meteorológicos utilizados en el modelo de dispersión se correspondan con el intervalo de tiempo que se esté estudiando en la simulación (ejecución del modelo).

La Figura 1.3 muestra los diferentes modelos meteorológicos **O** usados en los modelos de dispersión de polen o esporas de hongos. Los más frecuentes son el GDAS (con un 27% del total de trabajos revisados), los procesadores internos (11%), el modelo WRF (8%) y el modelo Eta (7%).

Figura 1.3 – Distribución porcentual de los diferentes modelos meteorológicos aplicados en los modelos de dispersión de polen o esporas de hongos.

1.3.2. Módulo @: Emisión de polen/esporas de hongos

El módulo de emisión de polen está basado en varios factores como el inicio y la intensidad de la floración, la densidad del taxon en la zona de estudio (Vogel *et al*. 2008) y/o las variables meteorológicas

(Rempe 1937, Puls 1987, Mullins & Emberlin 1997). Dichos factores pueden ser utilizados en el modelo de dispersión independientemente o, con el objetivo de alcanzar un mayor nivel de aproximación en el modelo, se pueden integrar en una parametrización específica.

Helbig *et al.* (2004) propusieron una parametrización aplicando un algoritmo basado en umbrales de humedad relativa y de velocidad de fricción de las partículas ejercida por el viento que consistía en dos ecuaciones "Heaviside" (cero o uno como un factor multiplicativo). La primera de estas ecuaciones establece la emisión del polen en función de la floración, la cantidad de polen por metro cuadrado (basándose el índice de área foliar) y la velocidad de fricción que ejerce el viento, y está condicionada por el factor meteorológico (Ke). La segunda ecuación calcula la resuspensión del polen dependiendo de la cantidad sedimentada, su velocidad de sedimentación y el factor de flotación, y en este caso está condicionada por el factor de resuspensión (Kr). Esta parametrización se implementó en el modelo "non-hydrostatic mesoscale meteorological model coupled – DRAIS". Basándose en Helbig *et al.* (2004), Vogel *et al.* (2008), al implementar ésta parametrización al modelo "Consortium for Small Scale Modeling - Aerosols and Reactive Traces Gases - COSMO-ART", agregaron una nueva variable en el algoritmo, denominada factor de ponderación, mientras que Efstathiou *et al.* (2011), implementaron la misma parametrización en el modelo "Community Multi-scale Air Quality Model – CMAQ" (Anexo 1.D).

Por otro lado, Sofiev *et al.* (2013b) desarrollaron otra parametrización específica. La predicción de la floración se realizó por medio de un PHM y la emisión mediante el desarrollo de ecuaciones "Heaviside". En ellas se planteaban las variables de humedad ambiental y tasa de precipitación como un supresor de la emisión, mientras que la velocidad y turbulencia del viento como un promotor de la misma. Esta parametrización se denominó "módulo de emisión de polen del modelo System for integrated modelling of atmospheric composition - SILAM", puesto que fue desarrollado e implementado en el modelo de dispersión del mismo nombre.

Otra parametrización específica es la desarrollada por Zhang *et al.* (2014) denominada "Simulator of Timing and Magnitude of Pollen Season, STaMPS". En este caso se desarrolló un algoritmo junto con el modelo MEGAN (*Model of Emissions of Gases and Aerosols from Nature*) y los factores meteorológicos. Esta parametrización establece una cantidad de polen diario disponible para su emisión (emisión potencial) en función de la velocidad de fricción y los valores umbrales del viento. El STaMPS permite establecer la emisión de uno o varios tipos polínicos al mismo tiempo y fue implementada en el modelo de dispersión CMAQ (Anexo 1.D).

En el caso de las esporas de hongos no se ha desarrollado una parametrización específica, a pesar de que McCartney & West (2007) han descrito los procesos de emisión, transporte y deposición que sirvirán de base para el desarrollo de la parametrización.

Por otro lado y teniendo en cuenta lo complejo que es establecer las parametrizaciones de emisión, algunos estudios de dispersión han reemplazado dichas parametrizaciones por factores de emisión. Estos

factores se calculan específicamente para cada taxon y suelen estar asociados a factores meteorológicos (fricción del viento, precipitación, Anexo 1.D - ②) y/o fenológicos (°GGD, Anexo 1.D - ③). En este caso, los factores de emisión presentan un alto grado de incertidumbre, atribuible principalmente al flujo constante de la emisión a lo largo del tiempo.

Finalmente, muchas investigaciones han centrado sus estudios en el cálculo de modelaciones inversas o retrotrayectorias (*Backward*). Éstas representan el trayecto que ha seguido una masa de aire que alcanza una determinada zona (estación de muestreo) en un momento determinado. Su objetivo es explicar la presencia de polen no autóctono, incrementos significativos en las concentraciones de polen antes o después de la época de emisión local o simplemente establecer el origen del polen o esporas de hongos (Skjøth *et al.* 2007, 2009, 2012, Gassmann & Pérez 2006, Stach *et al.* 2007a, Belmonte *et al.* 2008, Smith *et al.* 2009, Veriankaitè *et al.* 2010, Hernández-Ceballos *et al.* 2011a, 2011b, 2014, Izquierdo *et al.* 2011, Kasprzyk *et al.* 2011, Leyronas & Nicot 2013). En estos casos, el módulo de emisión obtenidas en las estaciones aerobiológicas (NA, *backward* en Anexo 1.D - **2**). La aplicación de esta modelación inversa indica sólo la dirección principal del transporte, sin tener en cuenta, entre otros, los procesos de barrido (disminución de las concentraciones por precipitación o sedimentación) o la mezcla vertical de las masas de aire. Ésto hace complejo o subjetivo el análisis de estas aplicaciones, por lo que sus conclusiones no siempre son claras (Hernández-Ceballos *et al.* 2014).

La Figura 1.4 muestra el porcentaje de uso de los diversos métodos aplicados en el módulo de emisión de polen o esporas de hongos. El 22% del total de estudios han empleado algún tipo de parametrización (módulo de emisión de polen de SILAM: 10%; STaMPS: 7%; basado en Helbig et al. (2004): 4%; y otras: 1%). El 10% usaron factores de emisión, mientas que el 67% han desarrollado una modelación inversa (*Backward*).

Figura 1.4 – Distribución porcentual de los diferentes módulos de emisión aplicados en los modelos de dispersión de polen o esporas de hongos.

Para poder establecer las áreas fuentes de emisión de polen y/o esporas de hongos es indispensable conocer las áreas potenciales o, en el caso de polen, las áreas de distribución de las plantas. Esta información está disponible en diferentes escalas como nacional o regional (Simpson *et al.* 1999, Skjøth *et al.* 2007, 2008b). Sin embargo, en muchos casos la informació no cubre el área requerida para la modelación de largo alcance (Sofiev *et al.* 2006a, Skjøth *et al.* 2008a). Por ello, se hace necesario una unificación de las diferentes base de datos por medio de los Sistemas de Información Geográfica (GIS), siempre y cuando se tenga presente el grado de incertidumbre generado por las diferentes metodologías, el nivel de detalle en las categorías taxonómicas, y el área empleada en los inventarios (Skjøth *et al.* 2008a). En el caso de las hierbas/arbustos, los mapas o áreas de distribución no están disponibles. Sin embargo, Skjøth *et al.* (2010) propusieron una metodología basándose en las características ecológicas del taxon y en la cobertura del suelo y el recuento anual de polen aerovagante en el área de estudio. Una mayor discusión sobre estas metodologías se presenta en Skjøth *et al.* (2013).

La obtención de mapas donde se muestran las áreas potenciales para esporas de hongos es todavía más compleja. Sin embargo, algunos estudios han simplificado este problema empleando como área potencial de emisión, los campos de cultivos infectados por los patógenos objeto de estudio (Pan *et al.* 2006, Isard *et al.* 2007, 2011, Andrade *et al.* 2009, Tao *et al.* 2009, Prussin 2013, Prussin *et al.* 2013). Es preciso resaltar que una óptima simulación del transporte requiere una correcta localización de las fuentes de emisión, así como una estimación detallada del flujo. Por tanto, los mapas forestales o de área potencial deben obtenerse con la mayor resolución y calidad posible.

En general, para la simulación escalar de la dispersión se emplean una de estas tres ecuaciones: Estadística, Lagrangiana y Euleriana. La ecuación estadística es relativamente simple, calcula la concentración de partículas estableciendo el decaimiento (sedimentación) y dilución (difusión) desde la fuente mediante un escalar tipo curva Gaussina (Dupont *et al.* 2006). Por otro lado, la ecuación Lagrangiana resuelve la concentración promedio de partículas y su tasa de deposición a partir del cálculo de múltiples trayectorias individuales pseudo-aleatorias (Dupont *et al.* 2006). Finalmente, la ecuación Euleriana estima la concentración media de partículas resolviendo la ecuación de conservación advectiva de flujo turbulento en la celda de simulación (Di-Giovanni *et al.* 1989, McCartney & Lacey 1991, Lakehal 2002, Loos *et al.* 2003).

Kukkonen *et al.* (2012) presentaron un análisis de los diversos modelos empleados en Europa sobre el transporte de contaminantes atmosféricos y sus respectivas ecuaciones. Muchos de estos modelos han sido aplicados o adaptados para la modelación de la dispersión de polen o esporas de hongos, evidenciados en la Tabla 8b de Kukkonen *et al.* (2012) y en el Anexo 1.D del presente capítulo.

La Figura 1.5 muestra la distribución porcentual de modelos de dispersión recopilados en este capítulo. El 67% de los estudios revisados desarrollaron una modelación inversa o por retrotrayectorias o *Backward* (61% polen, 6% esporas de hongos), siendo el "Hybrid Single-Particle Lagrangian Integrated Trajectory Model – HYSPLIT" (Draxler & Rolph 2003) el más utilizado con un 56% de los casos, seguidos de "Atmospheric Chemistry and Deposition – ACDEP" (Hertel *et al.* 1995) con un 7% y SILAM (Sofiev *et al.* s.f., 2006a, 2006b, 2013b) con un 6%. Asimismo, la modelación de la dispersión "hacia adelante" representa el 33% de los estudios (27% polen, 6% esporas de hongos) con un total de 15 modelos. De este último grupo, el más frecuentemente empleado es el CAMQ (Byun & Ching 1999, Byun & Schere 2006) con un 9%, seguido de los modelos COSMO-ART (Vogel *et al.* 2009) y SILAM con 4% cada uno.

Modelación "hacia adelante" o "hacia atrás"

Figura 1.5 – Distribución porcentual por modelos de dispersión atmosféricos de polen (lado izquierdo) y esporas de hongos (lado derecho).

ACDEP: Atmospheric Chemistry and Deposition. AIMS: Integrated Aerobiology Modeling System. CMAQ: Community Multi-scale Air Quality Model. COSMO-ART: Consortium for Small Scale Modeling. HYSPLIT: Hybrid Single-Particle Lagrangian Integrated Trajectory Model. SILAM: System for integrated modelling of atmospheric composition. Grupo 1: <u>CALPUFF</u>: is an advanced non-steady-state meteorological and air quality modeling system developed by ASG scientists. <u>CHIRIME</u>: chemistry-transport model. <u>DRAIS</u>: is a non-hydrostatic mesoscale meteorological model coupled with the pollutant dispersion model. <u>EMEP</u>: European Monitoring and Evaluation Programme. Eulerian Type diffusion model. <u>EURAD-IM</u>: The European Air Pollution and Dispersion—Inverse Model. <u>LOTOS-EUROS</u>: Long Term Ozone Simulation - European Operational Smog. <u>MATCH</u>: Mesoscale Atmospheric Transport and Chemistry. <u>METRAS</u>: Meteorological institute mesoscale model, University of Hamburg. <u>MOCAGE</u>: multiscale global chemistry and transport model.

Adicionalmente, el 88% de los estudios se han centrado en polen (Figura 1.5) con un total de 27 tipos polínicos, siendo *Betula* el más modelado (26%), seguido de *Ambrosia* (19%) y *Olea* (8%). Estos altos porcentajes, se pueden atribuir a que estos tipos polínicos se incluyen dentro de los 12 táxones más alergénicos en Europa (WHO 2003, Oswalt & Marshall 2008, Burbach *et al.* 2009, Feo *et al.* 2011, Skjøth *et al.* 2013). En el caso de las esporas, con un 12% de los casos (Figura 1.5), se han centrado en seis táxones, siendo las esporas de *Phakopsora* las más modeladas (4%), seguidas de las de *Alternaria* (3%). El posible interés en las esporas de *Phakopsora* se puede atribuir a su efecto patógeno sobre los cultivos de soja (Pan *et al.* 2006, Pfender *et al.* 2006, Isard *et al.* 2007, Skjøth *et al.* 2012, Leyronas & Nicot 2013, Sadyś *et al.* 2014), mientras que las esporas de *Alternaria*, a parte de su interés como patógeno en la agricultura, es reconocido como uno de los aeroalérgenos fúngicos más importantes (D'Amato *et al.* 1997, Bartra *et al.* 2009).

1.4. Conclusión

Los estudios de modelación de polen y esporas de hongos aerovagantes presentan un creciente interés, demostrando la utilidad de estas investigaciones transversales en los diversos campos de aplicación de la aerobiología.

En general, se observa que los modelos predictivos se aplican a un amplio número de parámetros aerobiológicos. Los OBM se han empleado frecuentemente para predecir concentraciones futuras (mayoritariamente concentraciones diarias), los PHM para caracterizar el periodo de floración (frecuentemente en el cálculo del inicio del periodo), mientas los "Otros modelos" se han centrado en establecer estimaciones espaciales en área no monitoreadas.

En cuanto a los modelos predictivos, los PHM concentran una mayor diversidad, pese a que muchos de ellos tienen el mismo fundamento matemático. Adicionalmente, los PHM emplean una menor cantidad de variables independientes (frecuentemente la temperatura) que los OBM (que mayoritariamente emplean temperatura y precipitación). También se observa que los PHM son más sencillos de aplicar que los OBM; no obstante, la complejidad de los criterios de partida en los PHM provoca una menor frecuencia de uso, por lo que aún se requiere una mayor discusión para concertar estos criterios.

Por otro lado, el número de modelos de dipersión aplicados es significativamente menor que el de modelos predictivos. Esto se puede atribuir principalmente a los altos requerimientos técnico-científicos necesarios para su desarrollo, donde la mayor limitación es establecer el flujo y fuente de emisión. Estas limitaciones causan mayor grado de incertidumbre en la simulación.

1.5. Referencias bibliográficas

- Aboulaich N, Achmakh L, Bouziane H, Trigo MM, Recio M, Kadiri M, Cabezudo B, Riadi H, & Kazzaz M (2013) Effect of meteorological parameters on Poaceae pollen in the atmosphere of Tetouan (NW Morocco). Int J Biometeorol 57:197–205. doi: 10.1007/s00484-012-0566-2
- Aguilera F, Orlandi F, Ruiz L, Galán C, García-Mozo H, Bonofiglio T, Oteros J, Díaz de la Guardia C, Trigo MM, Pérez R, & Fornaciari M (2013) La floración del olivo (*Olea europea L*.) como elemento bioindicador de cambios en el clima mediterráneo: análisis preliminar. In: Actas Simposio Expoliva. Jaen, españa, pp 1–8
- Alba F, Nieto-Lugilde D, Comtois P, Díaz de la Guardia C, De Linares C, & Ruiz L (2006) Airborne-pollen map for *Olea europaea L*. in eastern Andalusia (Spain) using GIS: Estimation models. Aerobiologia 22:109–118. doi: 10.1007/s10453-006-9024-0
- Alcázar P, Cariñanos P, De Castro C, Guerra F, Moreno C, Domínguez-Vilches E, & Galán C (2004) Airbone plane-tree (*Platanus hispanica*) pollen distribution in the city of Cordoba, South-western Spain, and possible implications on pollen allergy. J Invest Allergol Clin Immunol 14:238–243.
- Andersen TB (1991) A model to predict the beginning of the pollen season. Grana 30:269–275. doi: 10.1080/00173139109427810
- Andrade D, Pan Z, Dannevik W, & Zidek J (2009) Modeling soybean rust spore escape from infected canopies: model description and preliminary results. J Appl Meteor Climatol 48:789–803. doi: 10.1175/2008JAMC1917.1

- Astray G, Rodríguez-Rajo FJ, Ferreiro-Lage JA, Fernández-González M, Jato V, & Mejuto JC (2010) The use of artificial neural networks to forecast biological atmospheric allergens or pathogens only as *Alternaria* spores. J Environ Monit 12:2145–2152. doi: 10.1039/C0EM00248H
- Aylor DE (1999) Biophysical scaling and the passive dispersal of fungus spores: relationship to integrated pest management strategies. Agric For Meteorol 97:275–292. doi: 10.1016/S0168-1923(99)00072-6
- Baklanov A, Fay B, Kaminski J, Sokhi R, Pechinger U, De Ridder K, Delcloo A, Smith Korsholm U, Gross A, Männik A, Kaasik M, Sofiev M, Reimer E, Schlünzen H, Tombrou M, Bossioli E, Finardi S, Maurizi A, Castelli ST, Finzi G, Carnevale C, Pisoni E, Volta M, Struzewska J, Kaszowski W, Godlowska J, Rozwoda W, Miranda AI, San José R, Persson C, Foltescu V, Clappier A, Athanassiadou M, Craig Hort M, Jones A, Vogel H, Suppan P, Yu Y, Chemel C, Hu R-M, Grell GA, Schere KL, Manins P, & Flemming J (2008) Overview of existing integrated (off-line and on-line) mesoscale meteorological and chemical transport modelling systems in Europe. World Meteorological Organization, Geneva, Switzerland
- Bartra J, Belmonte J, Torres-Rodríguez JM, & Cistero-Bahima A (2009) Sensitization to *Alternaria* in patients with respiratory allergy. Front Biosci 14:3372–3379. doi: 10.2741/3459
- Belmonte J, Alarcón M, Avila A, Scialabba E, & Pino D (2008) Long-range transport of beech (*Fagus sylvatica L.*) pollen to Catalonia (north-eastern Spain). Int J Biometeorol 52:675–687. doi: 10.1007/s00484-008-0160-9
- Belmonte J, & Canela MA (2002) Modelling aerobiological time series. Application to Urticaceae. Aerobiologia 18:287–295. doi: 10.1023/A:1021323610112
- Belmonte J, Vendrell M, Roure JM, Vidal J, Botey J, & Cadahía À (2000) Levels of *Ambrosia* pollen in the atmospheric spectra of Catalan aerobiological stations. Aerobiologia 16:93–99. doi: 10.1023/A:1007649427549
- Blanco C, De Santos B, & Romero F (2006) Relationship between concentrations of *Botrytis Cinerea* conidia in air, environmental conditions, and the incidence of grey mould in strawberry flowers and fruits. Eur J Plant Pathol 114:415–425. doi: 10.1007/s10658-006-0007-3
- Breton MC, Garneau M, Fortier I, Guay F, & Louis J (2006) Relationship between climate, pollen concentrations of *Ambrosia* and medical consultations for allergic rhinitis in Montreal, 1994–2002. Sci Total Environ 370:39–50. doi: 10.1016/j.scitotenv.2006.05.022
- Bringfelt P (1979) Studies of pollen concentration in Stockholm and weatherdata. In: 1st Int. Conf. Aerobiol. Proc. (Ed AW Frankland, E. Stix & H. Ziegler), München, pp 12–24
- Brown JKM, & Hovmøller MS (2002) Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297:537–541. doi: 10.1126/science.1072678
- Burbach GJ, Heinzerling LM, Röhnelt C, Bergmann K-C, Behrendt H, & Zuberbier T (2009) Ragweed sensitization in Europe GA2LEN study suggests increasing prevalence1. Allergy 64:664–665. doi: 10.1111/j.1398-9995.2009.01975.x
- Byun D, & Schere KL (2006) Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system. Appl Mech Rev 59:51–77. doi: 10.1115/1.2128636
- Byun DW, & Ching JKS (1999) Science algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) modeling system. US EPA, Research Triangle Park, NC
- Cabezudo B, Recio M, Sánchez-Laulhé JM, Trigo MM, Toro FJ, & Polvorinos F (1997) Atmospheric transportation of marihuana pollen from North Africa to the Southwest of Europe. Atmos Environ 31:3323–3328. doi: 10.1016/S1352-2310(97)00161-1
- Cecchi L (2013) Introduction. In: Sofiev M, & Bergmann K-C (eds) Allergenic Pollen, 1st edn. Springer Netherlands, New York, London, pp 1–7
- Cecchi L, Torrigiani TM, Albertini R, Zanca M, Ridolo E, Usberti I, Morabito M, Dall' PA, & Orlandini S (2007) The contribution of long-distance transport to the presence of *Ambrosia* pollen in central northern Italy. Aerobiologia 23:145–151. doi: 10.1007/s10453-007-9060-4

- Chen F, & Dudhia J (2001) Coupling and advanced land surface-hydrology model with the Penn State-NCAR MM5 Modeling system. Part I: model implementation and sensitivity. Mon Wea Rev 129:569–585. doi: 10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
- Chuine I (2000) A unified model for budburst of trees. J Theor Biol 207:337-347. doi: 10.1006/jtbi.2000.2178
- Chuine I, & Belmonte J (2004) Improving prophylaxis for pollen allergies: predicting the time course of the pollen load of the atmosphere of major allergenic plants in France and Spain. Grana 43:65–80. doi: 10.1080/00173130410019163
- Chuine I, Belmonte J, & Mignot A (2000) A modelling analysis of the genetic variation of phenology between tree populations. J Ecol 88:561–570. doi: 10.1046/j.1365-2745.2000.00468.x
- Chuine I, Cour P, & Rousseau DD (1998) Fitting models predicting dates of flowering of temperate-zone trees using simulated annealing. Plant Cell Environ 21:455–466. doi: 10.1046/j.1365-3040.1998.00299.x
- Corden JM, & Millington WM (2001) The long-term trends and seasonal variation of the aeroallergen *Alternaria* in Derby, UK. Aerobiologia 17:127–136. doi: 10.1023/A:1010876917512
- Corden JM, Millington WM, & Mullins J (2003) Long-term trends and regional variation in the aeroallergen *Alternaria* in Cardiff and Derby UK are differences in climate and cereal production having an effect? Aerobiologia 19:191–199. doi: 10.1023/B:AERO.0000006529.51252.2f
- Cox CS, & Wathes CM (1995) Bioaerosols Handbook. CRC Press, New York
- Cunha M, Abreu I, Pinto P, & Castro R (2003) Airborne pollen samples for early-season estimates of wine production in a Mediterranean climate area of northern portugal. Am J Enol Vitic 54:189–194.
- D'Amato G, Cecchi L, Bonini S, Nunes C, Annesi-Maesano I, Behrendt H, Liccardi G, Popov T, & Van Cauwenberge P (2007) Allergenic pollen and pollen allergy in Europe. Allergy 62:976–990. doi: 10.1111/j.1398-9995.2007.01393.x
- D'Amato G, Chatzigeorgiou G, Corsico R, Gioulekas D, Jäger L, Jäger S, Kontou-Fili K, Kouridakis S, Liccardi G, Meriggi A, Palma-Carlos A, Palma-Carlos ML, Aleman AP, Parmiani S, Puccinelli P, Russo M, Spieksma FTM, Torricelli R, & Wuthrich B (1997) Evaluation of the prevalence of skin prick test positivity to *Alternaria* and *Cladosporium* in patients with suspected respiratory allergy. Allergy 52:711–716. doi: 10.1111/j.1398-9995.1997.tb01227.x
- D'Amato G, Liccardi G, D'Amato M, & Cazzola M (2002) Outdoor air pollution, climatic changes and allergic bronchial asthma. Eur Respir J 20:763–776. doi: 10.1183/09031936.02.00401402
- D'Amato G, Spieksma FTM, Liccardi G, Jäger S, Russo M, Kontou-Fili K, Nikkels H, Wüthrich B, & Bonini S (1998) Pollenrelated allergy in Europe*. Allergy 53:567–578. doi: 10.1111/j.1398-9995.1998.tb03932.x
- Damialis A, Mohammad AB, Halley JM, & Gange AC (2015a) Fungi in a changing world: growth rates will be elevated, but spore production may decrease in future climates. Int J Biometeorol 59:1157–1167. doi: 10.1007/s00484-014-0927-0
- Damialis A, Vokou D, Gioulekas D, & Halley JM (2015b) Long-term trends in airborne fungal-spore concentrations: a comparison with pollen. Fungal Ecol 13:150–156. doi: 10.1016/j.funeco.2014.09.010
- Davies RR, & Smith LP (1973) Forecasting the start and severity of the hay fever season. Clin Exp Allergy 3:263–267. doi: 10.1111/j.1365-2222.1973.tb01332.x
- De Linares C, Belmonte J, Canela M, Díaz de la Guardia C, Alba-Sanchez F, Sabariego S, & Alonso-Pérez S (2010) Dispersal patterns of *Alternaria* conidia in Spain. Agric For Meteorol 150:1491–1500. doi: 10.1016/j.agrformet.2010.07.004
- De Linares C, Delgado R, Aira MJ, Alcázar P, Alonso-Pérez S, Boi M, Cariñanos P, Cuevas E, Díaz de la Guardia C, Elvira-Rendueles B, Fernández-González D, Galán C, Gutiérrez-Bustillo AM, Pérez-Badia R, Rodríguez-Rajo FJ, Ruíz-Valenzuela L, Tormo-Molina R, Trigo MM, Valencia-Barrera RM, Valle A, & Belmonte J (2017) Changes in the Mediterranean pine forest: pollination patterns and annual trends of airborne pollen. Aerobiologia 1–17. doi: 10.1007/s10453-017-9476-4
- Decognet V, Bardin M, Trottin-Caudal Y, & Nicot PC (2009) Rapid change in the genetic diversity of *Botrytis cinerea* populations after the introduction of strains in a tomato glasshouse. Phytopathology 99:185–193. doi: 10.1094/PHYTO-99-2-0185

- DellaValle CT, Triche EW, & Bell ML (2012) Spatial and temporal modeling of daily pollen concentrations. Int J Biometeorol 56:183–194. doi: 10.1007/s00484-011-0412-y
- Després VR, Huffman JA, Burrows SM, Hoose C, Safatov AS, Buryak G, Fröhlich-Nowoisky J, Elbert W, Andreae MO, Pöschl U, & Jaenicke R (2012) Primary biological aerosol particles in the atmosphere: a review. Tellus B 64:15598. doi: 10.3402/tellusb.v64i0.15598
- Díaz de la Guardia C, Alba F, Trigo MM, Galán C, Ruíz L, & Sabariego S (2003) Aerobiological analysis of *Olea europaea L*. pollen in different localities of southern Spain. Grana 42:234–243. doi: 10.1080/00173130310016455
- Di-Giovanni F, Beckett PM, & Flenley JR (1989) Modelling of dispersion and deposition of tree pollen within a forest canopy. Grana 28:129–139. doi: 10.1080/00173138909429964
- Draxler RR, & Rolph GD (2003) HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model access via NOAA ARL READY website (http://www. arl. noaa. gov/ready/hysplit4. html). NOAA Air Resources Laboratory, Silver Spring. NOAA Air Resources Laboratory, Silver Spring, MD
- Dupont S, Brunet Y, & Jarosz N (2006) Eulerian modelling of pollen dispersal over heterogeneous vegetation canopies. Agric For Meteorol 141:82–104. doi: 10.1016/j.agrformet.2006.09.004
- Durand R (1967) Action de la température et du rayonnement sur la croissance. Ann Physiol Vég 9:5-27.
- Efstathiou C, Isukapalli S, & Georgopoulos P (2011) A mechanistic modeling system for estimating large-scale emissions and transport of pollen and co-allergens. Atmos Environ 45:2260–2276. doi: 10.1016/j.atmosenv.2010.12.008
- Emberlin J (1994) The effects of patterns in climate and pollen abundance on allergy. Allergy 49:15–20. doi: 10.1111/j.1398-9995.1994.tb04233.x
- Emberlin J, Detandt M, Gehrig R, Jaeger S, Nolard N, & Rantio-Lehtimäki A (2002) Responses in the start of *Betula* (birch) pollen seasons to recent changes in spring temperatures across Europe. Int J Biometeorol 46:159–170. doi: 10.1007/s00484-002-0139-x
- Emberlin J, Jaeger S, Dominguez-Vilches E, Galán C, Hodal L, Mandrioli P, Lehtimäki AR, Savage M, Spieksma FT, & Bartlett C (2000) Temporal and geographical variations in grass pollen seasons in areas of western Europe: an analysis of season dates at sites of the European pollen information system. Aerobiologia 16:373–379. doi: 10.1023/A:1026521331503
- Emberlin J, Mullins J, Corden J, Millington W, Brooke M, Savage M, & Jones S (1997) The trend to earlier birch pollen seasons in the U.K.: A biotic response to changes in weather conditions? Grana 36:29–33. doi: 10.1080/00173139709362586
- Erdtman G (1931) Pollen-Statistics: A New Research Method in Paleo-Ecology.
- Erdtman G (1935) Pollen statistics. In: Pollen Grains. McGraw Hill Book Co., New York., p 110125
- Feo FB, Gimeno PM, Carnés J, Martín R, Fernández-Caldas E, Lara P, López-Fidalgo J, & Guerra F (2011) Olea europaea pollen counts and aeroallergen levels predict clinical symptoms in patients allergic to olive pollen. Ann Allerg Asthma Im 106:146–152. doi: 10.1016/j.anai.2010.11.003
- Fernández-González M, Rodríguez-Rajo FJ, Jato V, Escuredo O, & Aira MJ (2011) Estimation of yield "Loureira" variety with an aerobiological and phenological model. Grana 50:63–72. doi: 10.1080/00173134.2011.561871
- Fernández-Llamazares Á, Belmonte J, Delgado R, & De Linares C (2014) A statistical approach to bioclimatic trend detection in the airborne pollen records of Catalonia (NE Spain). Int J Biometeorol 58:371–382. doi: 10.1007/s00484-013-0632-4
- Fitter AH, & Fitter RSR (2002) Rapid changes in flowering time in british plants. Science 296:1689–1691. doi: 10.1126/science.1071617
- Fornaciari M, Orlandi F, & Romano B (2005) Yield forecasting for olive trees. Agron J 97:1537. doi: 10.2134/agronj2005.0067
- Fornaciari M, Pieroni L, Ciuchi P, & Romano B (1998) A regression model for the start of the pollen season in *Olea europaea*. Grana 37:110–113. doi: 10.1080/00173139809362652

- Fornaciari M, Pieroni L, Orlandi F, & Romano B (2002) A new approach to consider the pollen variable in forecasting yield models. Econ Bot 56:66–72. doi: 10.1663/0013-0001(2002)056[0066:ANATCT]2.0.CO;2
- Frei T (1998) The effects of climate change in Switzerland 1969–1996 on airborne pollen quantities from hazel, birch and grass. Grana 37:172–179. doi: 10.1080/00173139809362662
- Frenguelli G (2002) Interactions between climatic changes and allergenic plants. Arch Chest Dis 57:141–143.
- Galán C, Cariñanos P, García-Mozo H, Alcázar P, & Domínguez-Vilches E (2001) Model for forecasting *Olea europaea L*. airborne pollen in South-West Andalusia, Spain. Int J Biometeorol 45:59–63. doi: 10.1007/s004840100089
- Galán C, García-Mozo H, Vázquez L, Ruiz L, Díaz de la Guardia C, & Domínguez-Vilches E (2008) Modeling olive crop yield in andalusia, Spain. Agron J 100:98. doi: 10.2134/agrojnl2006.0345
- Galán C, García-Mozo H, Vázquez L, Ruiz L, Díaz de la Guardia C, & Trigo MM (2005) Heat requirement for the onset of the *Olea europaea L*. pollen season in several sites in Andalusia and the effect of the expected future climate change. Int J Biometeorol 49:184–188. doi: 10.1007/s00484-004-0223-5
- Galán C, Vázquez L, García-Mozo H, & Domínguez E (2004) Forecasting olive (*Olea europaea*) crop yield based on pollen emission. Field Crops Res 86:43–51. doi: 10.1016/S0378-4290(03)00170-9
- García-Mozo H, Galán C, Aira MJ, Belmonte J, Díaz de la Guardia C, Fernández D, Gutierrez AM, Rodriguez FJ, Trigo MM, & Dominguez-Vilches E (2002) Modelling start of oak pollen season in different climatic zones in Spain. Agric For Meteorol 110:247–257. doi: 10.1016/S0168-1923(02)00003-5
- García-Mozo H, Galan C, Gomez-Casero MT, & Dominguez E (2000) A comparative study of different temperature accumulation methods for predicting the start of the *Quercus* pollen season in Cordoba (South West Spain). Grana 39:194–199. doi: 10.1080/00173130051084322
- García-Mozo H, Galán C, Jato V, Belmonte J, Díaz de la Guardia C, Fernández D, Gutiérrez M, Aira MJ, Roure JM, Ruiz L, Trigo MM, & Dominguez-Vilches E (2006) *Quercus* pollen season dynamics in the Iberian Peninsula: response to meteorological parameters and possible consequences of climate change. Ann Agric Enviro Med 13:209.
- García-Mozo H, Gómez-Casero MT, Domínguez E, & Galán C (2007) Influence of pollen emission and weather-related factors on variations in holm-oak (*Quercus ilex* subsp. ballota) acorn production. Environ Exp Bot 61:35–40. doi: 10.1016/j.envexpbot.2007.02.009
- García-Mozo H, Orlandi F, Galan C, Fornaciari M, Romano B, Ruiz L, Díaz de la Guardia C, Trigo MM, & Chuine I (2009) Olive flowering phenology variation between different cultivars in Spain and Italy: modeling analysis. Theor Appl Climatol 95:385–395. doi: 10.1007/s00704-008-0016-6
- García-Mozo H, Yaezel L, Oteros J, & Galán C (2014) Statistical approach to the analysis of olive long-term pollen season trends in southern Spain. Sci Total Environ 473–474:103–109. doi: 10.1016/j.scitotenv.2013.11.142
- Gassmann MI, & Pérez CF (2006) Trajectories associated to regional and extra-regional pollen transport in the southeast of Buenos Aires province, Mar del Plata (Argentina). Int J Biometeorol 50:280–291. doi: 10.1007/s00484-005-0021-8
- Goldstein S (1960) Degradation of pollen by phycomycetes. Ecology 41:543-545. doi: 10.2307/1933329
- Gregory PH (1961) The microbiology of the atmosphere. Interscience Publisher, INC., New York
- Grell GA, Peckham SE, Schmitz R, McKeen SA, Frost G, Skamarock WC, & Eder B (2005) Fully coupled "online" chemistry within the WRF model. Atmos Environ 39:6957–6975. doi: 10.1016/j.atmosenv.2005.04.027
- Grinn-Gofroń A, & Strzelczak A (2008a) Artificial neural network models of relationships between *Alternaria* spores and meteorological factors in Szczecin (Poland). Int J Biometeorol 52:859–868. doi: 10.1007/s00484-008-0182-3
- Grinn-Gofroń A, & Strzelczak A (2008b) Artificial neural network models of relationships between *Cladosporium* spores and meteorological factors in Szczecin (Poland). Grana 47:305–315. doi: 10.1080/00173130802513784
- Grinn-Gofroń A, Strzelczak A, & Wolski T (2011) The relationships between air pollutants, meteorological parameters and concentration of airborne fungal spores. Environmental Pollution 159:602–608. doi: 10.1016/j.envpol.2010.10.002
- Hasnain SM, Akhter T, & Waqar MA (2012) Airborne and allergenic fungal spores of the Karachi environment and their correlation with meteorological factors. J Environ Monit 14:1006–1013. doi: 10.1039/C2EM10545D

- Helbig N, Vogel B, Vogel H, & Fiedler F (2004) Numerical modelling of pollen dispersion on the regional scale. Aerobiologia 20:3–19. doi: 10.1023/B:AERO.0000022984.51588.30
- Hernández-Ceballos MA, García-Mozo H, Adame JA, Domínguez-Vilches E, Bolívar JP, De la Morena BA, Pérez-Badía R, & Galán C (2011a) Determination of potential sources of *Quercus* airborne pollen in Córdoba city (southern Spain) using back-trajectory analysis. Aerobiologia 27:261–276. doi: 10.1007/s10453-011-9195-1
- Hernández-Ceballos MA, García-Mozo H, Adame JA, Domínguez-Vilches E, De la Morena BA, Bolívar JP, & Galán C (2011b) Synoptic and meteorological characterisation of olive pollen transport in Córdoba province (south-western Spain). Int J Biometeorol 55:17–34. doi: 10.1007/s00484-010-0306-4
- Hernández-Ceballos MA, Soares J, García-Mozo H, Sofiev M, Bolivar JP, & Galán C (2014) Analysis of atmospheric dispersion of olive pollen in southern Spain using SILAM and HYSPLIT models. Aerobiologia 30:239–255. doi: 10.1007/s10453-013-9324-0
- Hertel O, Christensen J, Runge EH, Asman WAH, Berkowicz R, Hovmand MF, & Hov Ø (1995) Development and testing of a new variable scale air pollution model—ACDEP. Atmos Environ 29:1267–1290. doi: 10.1016/1352-2310(95)00067-9
- Isard SA, Barnes CW, Hambleton S, Ariatti A, Russo JM, Tenuta A, Gay DA, & Szabo LJ (2011) Predicting soybean rust incursions into the North American continental interior using crop monitoring, spore trapping, and aerobiological modeling. Plant Dis 95:1346–1357. doi: 10.1094/PDIS-01-11-0034
- Isard SA, Russo JM, & Ariatti A (2007) The Integrated aerobiology modeling system applied to the spread of soybean rust into the Ohio River valley during September 2006. Aerobiologia 23:271–282. doi: 10.1007/s10453-007-9073-z
- Izquierdo R, Belmonte J, Avila A, Alarcón M, Cuevas E, & Alonso-Pérez S (2011) Source areas and long-range transport of pollen from continental land to Tenerife (Canary Islands). Int J Biometeorol 55:67–85. doi: 10.1007/s00484-010-0309-1
- Kanchan S, & Jayachandra C (1980) Pollen Allelopathy—a New Phenomenon. New Phytol 84:739–746. doi: 10.1111/j.1469-8137.1980.tb04786.x
- Kasprzyk I, Myszkowska D, Grewling Ł, Stach A, Šikoparija B, Skjøth CA, & Smith M (2011) The occurrence of Ambrosia pollen in Rzeszów, Kraków and Poznań, Poland: investigation of trends and possible transport of Ambrosia pollen from Ukraine. Int J Biometeorol 55:633–644. doi: 10.1007/s00484-010-0376-3
- Khwarahm N, Dash J, Atkinson PM, Newnham RM, Skjøth CA, Adams-Groom B, Caulton E, & Head K (2014) Exploring the spatio-temporal relationship between two key aeroallergens and meteorological variables in the United Kingdom. Int J Biometeorol 58:529–545. doi: 10.1007/s00484-013-0739-7
- Kizilpinar I, Civelek E, Tuncer A, Dogan C, Karabulut E, Sahiner UM, Yavuz ST, & Sackesen C (2011) Pollen counts and their relationship to meteorological factors in Ankara, Turkey during 2005–2008. Int J Biometeorol 55:623–631. doi: 10.1007/s00484-010-0363-8
- Kukkonen J, Olsson T, Schultz DM, Baklanov A, Klein T, Miranda AI, Monteiro A, Hirtl M, Tarvainen V, Boy M, Peuch V-H, Poupkou A, Kioutsioukis I, Finardi S, Sofiev M, Sokhi R, Lehtinen KEJ, Karatzas K, San José R, Astitha M, Kallos G, Schaap M, Reimer E, Jakobs H, & Eben K (2012) A review of operational, regional-scale, chemical weather forecasting models in Europe. Atmos Chem Phys 12:1–87. doi: 10.5194/acp-12-1-2012
- Kuparinen A, Markkanen T, Riikonen H, & Vesala T (2007) Modeling air-mediated dispersal of spores, pollen and seeds in forested areas. Ecol Model 208:177–188. doi: 10.1016/j.ecolmodel.2007.05.023
- Kurup VP, Shen H-D, & Vijay H (2002) Immunobiology of fungal allergens. Int Arch Allergy Immunol 129:181–188. doi: 10.1159/000066780
- Laaidi M (2001a) Forecasting the start of the pollen season of Poaceae: evaluation of some methods based on meteorological factors. Int J Biometeorol 45:1–7. doi: 10.1007/s004840000079
- Laaidi M (2001b) Regional variations in the pollen season of *Betula* in Burgundy: two models for predicting the start of the pollination. Aerobiologia 17:247–254. doi: 10.1023/A:1011899603453

- Laaidi M, Thibaudon M, & Besancenot J-P (2003) Two statistical approaches to forecasting the start and duration of the pollen season of *Ambrosia* in the area of Lyon (France). Int J Biometeorol 48:65–73. doi: 10.1007/s00484-003-0182-2
- Lakehal D (2002) On the modelling of multiphase turbulent flows for environmental and hydrodynamic applications. Int J Multiphas Flow 28:823–863. doi: 10.1016/S0301-9322(01)00086-6
- Leyronas C, & Nicot PC (2013) Monitoring viable airborne inoculum of *Botrytis cinerea* in the South-East of France over 3 years: relation with climatic parameters and the origin of air masses. Aerobiologia 29:291–299. doi: 10.1007/s10453-012-9280-0
- Linkosalo T, Lappalainen HK, & Hari P (2008) A comparison of phenological models of leaf bud burst and flowering of boreal trees using independent observations. Tree Physiol 28:1873–1882. doi: 10.1093/treephys/28.12.1873
- Lletjos R, Bartroli R, Esteban A, Riera S, & Coll CR (1993) Forecasting hazelnut (*Corylus avellana L.*) crop production based on monitoring airborne pollen concentration. In: IV International Symposium on Fruit, Nut and Vegetable Production Engineering. IVIA, Valencia-Zaragoza, Spain, p 172
- Loos C, Seppelt R, Meier-Bethke S, Schiemann J, & Richter O (2003) Spatially explicit modelling of transgenic maize pollen dispersal and cross-pollination. J Theor Biol 225:241–255. doi: 10.1016/S0022-5193(03)00243-1
- Lorenc AC (1986) Analysis methods for numerical weather prediction. Q J R Meteorol Soc 112:1177-1194. doi: 10.1002/qj.49711247414
- Mahura AG, Korsholm US, Baklanov AA, & Rasmussen A (2007) Elevated birch pollen episodes in Denmark: contributions from remote sources. Aerobiologia 23:171–179. doi: 10.1007/s10453-007-9061-3
- Mandrioli P, Marletto V, Sirotti M, Puppi G, & Zanotti A (1993) A forecast model for hazel (*Corylus*) and chestnut (*Castanea*) pollen emission. Allergie et immunologie 25:141–144.
- McCartney A, & West J (2007) Dispersal of fungal spores through the air. In: Dijksterhuis J, & Samson RA (eds) Food Mycology, 1st edn. CRC Press, pp 65–81
- McCartney HA, & Lacey ME (1991) Wind dispersal of pollen from crops of oilseed rape (*Brassica napus L*.). J Aerosol Sci 22:467–477. doi: 10.1016/0021-8502(91)90005-3
- Millington WM, & Corden JM (2005) Long term trends in outdoor *Aspergillus/Penicillium* spore concentrations in Derby, UK from 1970 to 2003 and a comparative study in 1994 and 1996 with the indoor air of two local houses. Aerobiologia 21:105–113. doi: 10.1007/s10453-005-4180-1
- Mullins J, & Emberlin J (1997) Sampling pollens. J Aerosol Sci 28:365-370. doi: 10.1016/S0021-8502(96)00439-9
- Nurminiemi M, Tufto J, Nilsson N-O, & Rognli OA (1998) Spatial models of pollen dispersal in the forage grass meadow fescue. Evol Ecol 12:487–502. doi: 10.1023/A:1006529023036
- Oliveira M, Guerner-Moreira J, Mesquita MM, & Abreu I (2009a) Important phytopathogenic airborne fungal spores in a rural area: Incidence of *Botrytis cinerea* and *Oidium* spp. Ann Agric Enviro Med 16:197–204.
- Oliveira M, Ribeiro H, Delgado JL, & Abreu I (2009b) The effects of meteorological factors on airborne fungal spore concentration in two areas differing in urbanisation level. Int J Biometeorol 53:61–73. doi: 10.1007/s00484-008-0191-2
- Orlandi F, Fornaciari M, & Romano B (2002) The use of phenological data to calculate chilling units in *Olea europaea L*. in relation to the onset of reproduction. Int J Biometeorol 46:2–8. doi: 10.1007/s00484-001-0108-9
- Orlandi F, Sgromo C, Bonofiglio T, Ruga L, Romano B, & Fornaciari M (2010) Yield modelling in a Mediterranean species utilizing cause–effect relationships between temperature forcing and biological processes. Sci Hortic 123:412–417. doi: 10.1016/j.scienta.2009.09.015
- Oswalt ML, & Marshall GD (2008) Ragweed as an example of worldwide allergen expansion. Allergy Asthma Clin Immunol 4:130. doi: 10.1186/1710-1492-4-3-130
- Pan Z, Yang XB, Pivonia S, Xue L, Pasken R, & Roads J (2006) Long-term prediction of soybean rust entry into the continental United States. Plant Dis 90:840–846. doi: 10.1094/PD-90-0840
- Pasken R, & Pietrowicz JA (2005) Using dispersion and mesoscale meteorological models to forecast pollen concentrations. Atmos Environ 39:7689–7701. doi: 10.1016/j.atmosenv.2005.04.043

- Pfender W, Graw R, Bradley W, Carney M, & Maxwell L (2007) Emission rates, survival, and modeled dispersal of viable pollen of Creeping Bentgrass. Crop Sci 47:2529. doi: 10.2135/cropsci2007.01.0030
- Pfender W, Graw R, Bradley W, Carney M, & Maxwell L (2006) Use of a complex air pollution model to estimate dispersal and deposition of grass stem rust urediniospores at landscape scale. Agric For Meteorol 139:138–153. doi: 10.1016/j.agrformet.2006.06.007
- Pöschl U (2005) Atmospheric aerosols: composition, transformation, climate and health effects. Angew Chem Int Ed 44:7520–7540. doi: 10.1002/anie.200501122
- Poska A, & Pidek IA (2010) Pollen dispersal and deposition characteristics of *Abies alba*, *Fagus sylvatica* and *Pinus sylvestris*, Roztocze region (SE Poland). Veget Hist Archaeobot 19:91–101. doi: 10.1007/s00334-009-0230-x
- Prank M, Chapman DS, Bullock JM, Belmonte J, Berger U, Dahl A, Jäger S, Kovtunenko I, Magyar D, Niemelä S, Rantio-Lehtimäki A, Rodinkova V, Sauliene I, Severova E, Sikoparija B, & Sofiev M (2013) An operational model for forecasting ragweed pollen release and dispersion in Europe. Agric For Meteorol 182–183:43–53. doi: 10.1016/j.agrformet.2013.08.003
- Prospero JM, Blades E, Mathison G, & Naidu R (2005) Interhemispheric transport of viable fungi and bacteria from Africa to the Caribbean with soil dust. Aerobiologia 21:1–19. doi: 10.1007/s10453-004-5872-7
- Prussin AJ (2013) Monitoring and predicting the long distance transport of *Fusarium graminearum*, causal agent of *Fusarium* head blight in Wheat and Barley. Doctor of Philosophy in Plant Pathology, Physiology, and Weed Science, Virginia Polytechnic Institute and State University
- Prussin AJ, Szanyi NA, Welling PI, Ross SD, & Schmale DG (2013) Estimating the Production and Release of Ascospores from a Field-Scale Source of Fusarium graminearum Inoculum. Plant Dis 98:497–503. doi: 10.1094/PDIS-04-13-0404-RE
- Puc M (2012) Artificial neural network model of the relationship between *Betula* pollen and meteorological factors in Szczecin (Poland). Int J Biometeorol 56:395–401. doi: 10.1007/s00484-011-0446-1
- Puls KE (1987) Der Einfluß von Witterung und Wetter auf Blütenanlage, Pollenfreisetzung und Pollenflug. In: Stiftung Deutscher Polleninformationsdienst (Hrsg.). pp 27–47
- Ranta H, Kubin E, Siljamo P, Sofiev M, Linkosalo T, Oksanen A, & Bondestam K (2006) Long distance pollen transport cause problems for determining the timing of birch pollen season in Fennoscandia by using phenological observations. Grana 45:297–304. doi: 10.1080/00173130600984740
- Rasmussen A (2002) The effects of climate change on the birch pollen season in Denmark. Aerobiologia 18:253–265. doi: 10.1023/A:1021321615254
- Raynor GS, & Hayes JV (1970) Experimental prediction of daily ragweed concentration. Ann Allergy 28:580-585.
- Recio M, Trigo MM, Docampo S, Melgar M, García-Sánchez J, Bootello L, & Cabezudo B (2012) Analysis of the predicting variables for daily and weekly fluctuations of two airborne fungal spores: *Alternaria* and *Cladosporium*. Int J Biometeorol 56:983–991. doi: 10.1007/s00484-011-0509-3
- Rempe H (1937) Untersuchungen über die Verbreitung des Blütenstaubes durch die Luftströmungen. Planta 27:93–147. doi: 10.1007/BF01939376
- Ribeiro H, Cunha M, & Abreu I (2003) Airborne pollen concentration in the region of Braga, Portugal, and its relationship with meteorological parameters. Aerobiologia 19:21–27. doi: 10.1023/A:1022620431167
- Ribeiro H, Cunha M, & Abreu I (2007) Improving early-season estimates of olive production using airborne pollen multisampling sites. Aerobiologia 23:71–78. doi: 10.1007/s10453-007-9050-6
- Rodríguez-Rajo FJ, Jato V, Fernández-González M, & Aira MJ (2010) The use of aerobiological methods for forecasting *Botrytis* spore concentrations in a vineyard. Grana 49:56–65. doi: 10.1080/00173130903472393
- Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, & Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60. doi: 10.1038/nature01333

- Rousseau D-D, Duzer D, Etienne J-L, Cambon G, Jolly D, Ferrier J, & Schevin P (2004) Pollen record of rapidly changing air trajectories to the North Pole. J Geophys Res 109:D06116. doi: 10.1029/2003JD003985
- Rousseau D-D, Schevin P, Duzer D, Cambon G, Ferrier J, Jolly D, & Poulsen U (2006) New evidence of long distance pollen transport to southern Greenland in late spring. Review of Palaeobotany and Palynology 141:277–286. doi: 10.1016/j.revpalbo.2006.05.001
- Sadyś M, Kennedy R, & West JS (2016) Potential impact of climate change on fungal distributions: analysis of 2 years of contrasting weather in the UK. Aerobiologia 32:127–137. doi: 10.1007/s10453-015-9402-6
- Sadyś M, Skjøth CA, & Kennedy R (2014) Back-trajectories show export of airborne fungal spores (*Ganoderma* sp.) from forests to agricultural and urban areas in England. Atmos Environ 84:88–99. doi: 10.1016/j.atmosenv.2013.11.015
- Salvaggio J, & Aukrust L (1981) Mold-induced asthma. J Allergy Clin Immun 68:327–346. doi: 10.1016/0091-6749(81)90131-7
- Sánchez-Mesa JA, Galan C, Martínez-Heras JA, & Hervás-Martínez C (2002) The use of a neural network to forecast daily grass pollen concentration in a Mediterranean region: the southern part of the Iberian Peninsula. Clin Exp Allergy 32:1606–1612. doi: 10.1046/j.1365-2222.2002.01510.x
- Šauliene I, & Veriankaite L (2006) Application of backward air mass trajectory analysis in evaluating airborne pollen dispersion. J Environ Eng Landsc Manag 14:113–120. doi: 10.1080/16486897.2006.9636887
- Schaber J, & Badeck F-W (2003) Physiology-based phenology models for forest tree species in Germany. Int J Biometeorol 47:193–201. doi: 10.1007/s00484-003-0171-5
- Scheifinger H, Belmonte J, Buters J, Celenk S, Damialis A, Dechamp C, García-Mozo H, Gehrig R, Grewling L, Halley JM, Hogda K-A, Jäger S, Karatzas K, Karlsen S-R, Koch E, Pauling A, Peel R, Sikoparija B, Smith M, Galán C, Thibaudon M, Vokou D, & De Weger LA (2013) Monitoring, modelling and forecasting of the pollen season. In: Sofiev M, & Bergmann K-C (eds) Allergenic Pollen, 1st edn. Springer Netherlands, New York, London, pp 71–126
- Šikoparija B, Smith M, Skjøth CA, Radišić P, Milkovska S, Šimić S, & Brandt J (2009) The Pannonian plain as a source of *Ambrosia* pollen in the Balkans. Int J Biometeorol 53:263–272. doi: 10.1007/s00484-009-0212-9
- Simpson D, Winiwarter W, Börjesson G, Cinderby S, Ferreiro A, Guenther A, Hewitt CN, Janson R, Khalil MAK, Owen S, Pierce TE, Puxbaum H, Shearer M, Skiba U, Steinbrecher R, Tarrasón L, & Öquist MG (1999) Inventorying emissions from nature in Europe. J Geophys Res 104:8113–8152. doi: 10.1029/98JD02747
- Skjøth CA, Geels C, Hvidberg M, Hertel O, Brandt J, Frohn LM, Hansen KM, Hedegaard GB, Christensen JH, & Moseholm L (2008a) An inventory of tree species in Europe—An essential data input for air pollution modelling. Ecol Model 217:292–304. doi: 10.1016/j.ecolmodel.2008.06.023
- Skjøth CA, Šikoparija B, Jäger S, & European Aeroallergen Network E (2013) Pollen sources. In: Sofiev M, & Bergmann K-C (eds) Allergenic Pollen. Springer Netherlands, pp 9–27
- Skjøth CA, Smith M, Brandt J, & Emberlin J (2009) Are the birch trees in Southern England a source of Betula pollen for North London? Int J Biometeorol 53:75–86. doi: 10.1007/s00484-008-0192-1
- Skjøth CA, Smith M, Šikoparija B, Stach A, Myszkowska D, Kasprzyk I, Radišić P, Stjepanović B, Hrga I, Apatini D, Magyar D, Páldy A, & Ianovici N (2010) A method for producing airborne pollen source inventories: An example of *Ambrosia* (ragweed) on the Pannonian Plain. Agric For Meteorol 150:1203–1210. doi: 10.1016/j.agrformet.2010.05.002
- Skjøth CA, Sommer J, Brandt J, Hvidberg M, Geels C, Hansen KM, Hertel O, Frohn LM, & Christensen JH (2008b) Copenhagen – a significant source of birch (*Betula*) pollen? Int J Biometeorol 52:453–462. doi: 10.1007/s00484-007-0139-y
- Skjøth CA, Sommer J, Frederiksen L, & Gosewinkel Karlson U (2012) Crop harvest in Denmark and Central Europe contributes to the local load of airborne *Alternaria* spore concentrations in Copenhagen. Atmos Chem Phys 12:11107– 11123. doi: 10.5194/acp-12-11107-2012

- Skjøth CA, Sommer J, Stach A, Smith M, & Brandt J (2007) The long-range transport of birch (*Betula*) pollen from Poland and Germany causes significant pre-season concentrations in Denmark. Clin Exp Allergy 37:1204–1212. doi: 10.1111/j.1365-2222.2007.02771.x
- Smith M, & Emberlin J (2005) Constructing a 7-day ahead forecast model for grass pollen at north London, United Kingdom. Clin Exp Allergy 35:1400–1406. doi: 10.1111/j.1365-2222.2005.02349.x
- Smith M, Emberlin J, & Kress A (2005) Examining high magnitude grass pollen episodes at Worcester, United Kingdom, using back-trajectory analysis. Aerobiologia 21:85–94. doi: 10.1007/s10453-005-4178-8
- Smith M, Skjøth CA, Myszkowska D, Uruska A, Puc M, Stach A, Balwierz Z, Chlopek K, Piotrowska K, Kasprzyk I, & Brandt J (2008) Long-range transport of *Ambrosia* pollen to Poland. Agric For Meteorol 148:1402–1411. doi: 10.1016/j.agrformet.2008.04.005
- Sofiev M, Belmonte J, Gehrig R, Izquierdo R, Smith M, Dahl Å, & Siljamo P (2013a) Airborne pollen transport. In: Sofiev M, & Bergmann K-C (eds) Allergenic Pollen. Springer Netherlands, pp 127–159
- Sofiev M, Prank M, Siljamo P, Soares J, Vira J, Summanen T, & Karppinen A (s.f.) System for integrated modelling of atmospheric composition. In: System for integrated modelling of atmospheric composition. http://silam.fmi.fi/. Accessed 4 Nov 2014
- Sofiev M, Siljamo P, Ranta H, Linkosalo T, Jaeger S, Rasmussen A, Rantio-Lehtimaki A, Severova E, & Kukkonen J (2013b) A numerical model of birch pollen emission and dispersion in the atmosphere. Description of the emission module. Int J Biometeorol 57:45–58. doi: 10.1007/s00484-012-0532-z
- Sofiev M, Siljamo P, Ranta H, & Rantio-Lehtimäki A (2006a) Towards numerical forecasting of long-range air transport of birch pollen: theoretical considerations and a feasibility study. Int J Biometeorol 50:392–402. doi: 10.1007/s00484-006-0027-x
- Sofiev M, Siljamo P, Valkama I, Ilvonen M, & Kukkonen J (2006b) A dispersion modelling system SILAM and its evaluation against ETEX data. Atmos Environ 40:674–685. doi: 10.1016/j.atmosenv.2005.09.069
- Spieksma FTM, Emberlin JC, Hjelmroos M, Jäger S, & Leuschner RM (1995) Atmospheric birch (Betula) pollen in Europe: Trends and fluctuations in annual quantities and the starting dates of the seasons. Grana 34:51–57. doi: 10.1080/00173139509429033
- Stach A, García-Mozo H, Prieto-Baena JC, Czarnecka-Operacz M, Jenerowicz D, Silny W, & Galán C (2007a) Prevalence of Artemisia species pollinosis in western Poland: Impact of climate change on aerobiological trends. J Investig Allergol Clin Immunol 17:39–47.
- Stach A, Smith M, Prieto Baena JC, & Emberlin J (2008) Long-term and short-term forecast models for Poaceae (grass) pollen in Poznań, Poland, constructed using regression analysis. Environ Exp Bot 62:323–332. doi: 10.1016/j.envexpbot.2007.10.005
- Stach A, Smith M, Skjøth CA, & Brandt J (2007b) Examining *Ambrosia* pollen episodes at Poznań (Poland) using backtrajectory analysis. Int J Biometeorol 51:275–286. doi: 10.1007/s00484-006-0068-1
- Steppeler J, Hess R, Schättler U, & Bonaventura L (2003) Review of numerical methods for nonhydrostatic weather prediction models. Meteorol Atmos Phys 82:287–301. doi: 10.1007/s00703-001-0593-8
- Tao Z, Malvick D, Claybrooke R, Floyd C, Bernacchi CJ, Spoden G, Kurle J, Gay D, Bowersox V, & Krupa S (2009) Predicting the risk of soybean rust in Minnesota based on an integrated atmospheric model. Int J Biometeorol 53:509– 521. doi: 10.1007/s00484-009-0239-y
- Tariq SM, Matthews SM, Stevens M, & Hakim EA (1996) Sensitization to *Alternaria* and *Cladosporium* by the age of 4 years. Clin Exp Allergy 26:794–798. doi: 10.1111/j.1365-2222.1996.tb00610.x
- Teranishi H, Kenda Y, Katoh T, Kasuya M, Oura E, & Taira E (2000) Possible role of climate change in the pollen scatter of Japanese cedar *Cryptomeria japonica* in Japan. Clim Res 14:65–70.
- Trakhtenbrot A, Katul GG, & Nathan R (2014) Mechanistic modeling of seed dispersal by wind over hilly terrain. Ecol Model 274:29–40. doi: 10.1016/j.ecolmodel.2013.11.029

- Tufto J, Engen S, & Hindar K (1997) Stochastic dispersal processes in plant populations. Theoretical Popul Biol 52:16–26. doi: 10.1006/tpbi.1997.1306
- Türe C, & Böcük H (2009) Analysis of airborne pollen grains in Bilecik, Turkey. Environ Monit Assess 151:27–35. doi: 10.1007/s10661-008-0246-1
- Valencia-Barrera R, Comtois P, & Fernández-González D (2002) Bioclimatic indices as a tool in pollen forecasting. Int J Biometeorol 46:171–175. doi: 10.1007/s00484-002-0138-y
- Vélez-Pereira AM (2011) Comportamiento aerodinámico y viabilidad de los aerosoles biológicos. In: Emisiones atmosféricas de origen biológico, Primera edición. Fondo Editorial UniMagdalena, Santa Marta, Colombia, pp 74–99
- Vélez-Pereira AM, De Linares C, Delgado R, & Belmonte J (2016) Temporal trends of the airborne fungal spores in Catalonia (NE Spain), 1995–2013. Aerobiologia 32:23–37. doi: 10.1007/s10453-015-9410-6
- Veriankaitė L, Siljamo P, Sofiev M, Šaulienė I, & Kukkonen J (2010) Modelling analysis of source regions of long-range transported birch pollen that influences allergenic seasons in Lithuania. Aerobiologia 26:47–62. doi: 10.1007/s10453-009-9142-6
- Vogel B, Vogel H, Bäumer D, Bangert M, Lundgren K, Rinke R, & Stanelle T (2009) The comprehensive model system COSMO-ART – Radiative impact of aerosol on the state of the atmosphere on the regional scale. Atmos Chem Phys 9:8661–8680. doi: 10.5194/acp-9-8661-2009
- Vogel H, Pauling A, & Vogel B (2008) Numerical simulation of birch pollen dispersion with an operational weather forecast system. Int J Biometeorol 52:805–814. doi: 10.1007/s00484-008-0174-3
- Waisel Y, Ganor E, Epshtein V, Stupp A, & Eshel A (2008) Airborne pollen, spores, and dust across the East Mediterranean Sea. Aerobiologia 24:125–131. doi: 10.1007/s10453-008-9087-1
- WHO (2003) Phenology and human health: allergic disorders. WHO Regional Office for Europe, Rome, Italy
- Zhang R, Duhl T, Salam MT, House JM, Flagan RC, Avol EL, Gilliland FD, Guenther A, Chung SH, Lamb BK, & VanReken TM (2014) Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease. Biogeosciences 11:1461–1478. doi: 10.5194/bg-11-1461-2014
- Ziello C, Sparks TH, Estrella N, Belmonte J, Bergmann KC, Bucher E, Brighetti MA, Damialis A, Detandt M, Galán C, Gehrig R, Grewling L, Gutiérrez Bustillo AM, Hallsdóttir M, Kockhans-Bieda M-C, De Linares C, Myszkowska D, Pàldy A, Sánchez A, Smith M, Thibaudon M, Travaglini A, Uruska A, Valencia-Barrera RM, Vokou D, Wachter R, de Weger LA, & Menzel A (2012) Changes to airborne pollen counts across Europe. PLoS ONE 7:e34076. doi: 10.1371/journal.pone.0034076
- Zink K, Vogel H, Vogel B, Magyar D, & Kottmeier C (2012) Modeling the dispersion of *Ambrosia artemisiifolia L*. pollen with the model system COSMO-ART. Int J Biometeorol 56:669–680. doi: 10.1007/s00484-011-0468-8
- Ziska LH, & Caulfield FA (2000) Rising CO2 and pollen production of common ragweed (*Ambrosia artemisiifolia L.*), a known allergy-inducing species: implications for public health. Functional Plant Biol 27:893–898.

1.6. Anexos

Anexo 1.A Estudios aerobiológicos de polen y esporas de hongos aerovagantes donde se han aplicado modelos basados en la observación (1998-2015).

Presentación

Modelos predictivos basados en la observación en el periodo 1988-2015 (ordenados alfabéticamente).

Por columnas se muestra: el nombre del modelo, tipo de bioaerosol o taxon modelado, parámetro modelado y referencia bibliográfica.

Abreviaturas

*: No reportan periodo de tiempo.

**: Estandarizan la concentración.

***: Estiman la concentración por umbrales.

†: 15 táxones diferentes.

PDF: Función de probabilidad de distribución.

Cheno.-Amara.: Chenopodiaceae-Amaranthaceae.

polen o esporas de hongos sin especificar.

Modelo	Taxon	Parámetro modelado	Referencia bibliográfica
Análisis de componentes	Cupressaceae	Concentración diaria	Ocaña-Peinado et al. (2013)
principales	_		
Análisis discriminante líneal	Olea	Índice anual	Oteros et al. (2013b)
		Inicio del periodo	
		Núm. de días por encima del umbral	
		Concentración pico	$S_{\text{trained}} = M_{\text{trained}} + \frac{1}{2}(2005)$
Árbolos do regresión	Poaceae	Concentración diaria	Sanchez-Mesa <i>et al.</i> (2005)
Arboies de l'églésion	Ganoderma	Presencia o ausencia	Grinn-Gofroń & Strzelczak (2011)
	Gundaerma	Concentración diaria	Iedryczka <i>et al.</i> (2015)
			Sadyś <i>et al.</i> (2016)
	Olea	Índice anual	Oteros <i>et al.</i> (2013b)
		Inicio del periodo	
		Núm. de días por encima del umbral	
		Concentración pico	
		Concentración diaria	Voukantsis et al. (2010b)
	Platanus	Concentración diaria	Sabariego et al. (2008)
	Poaceae	Concentración diaria	Voukantsis et al. (2010b)
	Urticaceae		
Autoregresión integrada	Alnus	Concentración diaria	Rodríguez-Rajo <i>et al.</i> (2006)
	Alternaria	Indice mensual	Damialis & Gioulekas (2006)
		Concentración diaria	Escurado <i>et al.</i> (2011)
	Ambrosia	Concentración diaria	Matyasovszky & Makra (2011)
	Retula	Concentración diaria	Castellano-Méndez <i>et al.</i> (2005) ***
	Botrytis	Concentración diaria	Fernández-González <i>et al.</i> (2012)
			Rodríguez-Rajo <i>et al.</i> (2010b)
	Castanea	Concentración diaria	Rodríguez-Rajo et al. (2005b)
	Cladosporium	Índice mensual	Damialis & Gioulekas (2006)
	_	Concentración diaria	
	Cupressaceae	Concentración diaria	Ocaña-Peinado et al. (2008)
	Esporas de hongos ¹	Concentración	Verma & Pathak (2009) *
	Olea	Duración del periodo	García-Mozo et al. (2014)
		Índice anual	
		Inicio del periodo	
	Poaceae	Inicio del periodo	Tassan-Mazzocco et al. (2015)
		Concentración diaria	
		Concentración semanal	
	Urticaceae	Inicio del periodo	Tassan-Mazzocco et al. (2015)
		Concentración diaria	
Commo DDE	Altown qui q	Concentracion semanal	Kaappark & Walanus (2014)
Gainina PDF	Allernaria	Fin del periodo	Kasprzyk & Walanus (2014)
		Inicio del periodo	
	Artemisia	Duración del periodo	Kasprzyk & Walanus (2014)
		Fin del periodo	
		Inicio del periodo	
Gaussian PDF	Alternaria	Duración del periodo	Kasprzyk & Walanus (2014)
		Fin del periodo	
		Inicio del periodo	
	Artemisia	Duración del periodo	Kasprzyk & Walanus (2014)
		Fin del periodo	
~		Inicio del periodo	
Gradiente boosting estocástico	Alnus	Concentración diaria	Hilaire <i>et al.</i> (2012)
	Ambrosia		
	Artemisia Potul -		
	Beiula Carrinus		
	Carpinus		

Vélez-Pereira, Andrés M.

Modelación espacio-temporal de polen y esporas de hogos aerovagantes de Catalunya (1994-2015)

Madala	Toyon	Parámetro modelado	Rafarancia hibliagráfica
	Castanea	T aramen o mouerado	
	Corvius		
	Eagus		
	Fugus		
	Diantana		
	Planlago		
	Platanus		
	Poaceae		
	Populus		
	Quercus		
	Rumex		
	Urticaceae		
Gumbel's PDF	Ambrosia	Día pico	Puc & Wolski (2013)
		Duración del periodo	
		Inicio del periodo	
		Núm. de días por encima del umbral	
		Concentración pico	
	Artemisia	Día pico	Puc & Wolski (2013)
		Duración del periodo	
		Inicio del periodo	
		Nro. de días por encima del umbral	
		Concentración pico	
	Poaceae	Día pico	Puc & Wolski (2013)
		Duración del periodo	
		Inicio del periodo	
		Núm, de días por encima del umbral	
		Concentración pico	
Máquina de soporte de vectores	Olea	Concentración diaria	Voukantsis <i>et al.</i> (2010b)
inaquina de soporte de vectores	Poaceae		
	Urticaceae		
Mínimos cuadrados parciales	Olea	Día pico	Aguilera et al. (2015)
Winnings educations parenales	Oleu	Inicio del periodo	Agunera et ul. (2015)
	Doncono	Concentración diaria	Brighetti at al. (2014)
Padas nauronalas artificialas	Alternaria	Estimación espacial	Tomossetti at al. (2014)
Redes neuronales artificiales	Allemana	Concentración diaria	1000000000000000000000000000000000000
		Concentración diaria	Astray et al. (2010)
			Gring Cofrad & Stranlard (2009a)
			Grinn-Golfon & Strzeiczak (2008a)
			$\frac{\text{Grinn-Goffon et al. (2011)}}{\text{Grinn-Goffon et al. (2012)}}$
			Grinn-Gofron & Strzelczak (2013)
			Tomassetti et al. (2009)
			Tomassetti et al. (2013)
		Concentración horaria	Grinn-Gotron & Strzelczak (2009)
	Ambrosia	Concentración diaria	Csépe <i>et al.</i> (2014)
	Betula	Concentración diaria	Puc (2012)
	Castanea	Concentración diaria	Astray <i>et al.</i> (2016)
	Cladosporium	Concentración diaria	Grinn-Gofroń & Strzelczak (2008b)
			Grinn-Gofroń et al. (2011)
			Grinn-Gofroń & Strzelczak (2013)
		Concentración horaria	Grinn-Gofroń & Strzelczak (2009)
	Esporas de	Concentración	Verma & Pathak (2009) *
	hongos ¹		
	Ganoderma	Presencia o ausencia	Grinn-Gofroń & Strzelczak (2011)
		Concentración diaria	Jedryczka et al. (2015)
			Sadyś et al. (2016)
		Concentración horaria	Kasprzyk <i>et al.</i> (2011)
	Olea	Índice anual	Oteros et al. (2013b)
		Inicio del periodo	()
		Núm, de días por encima del umbral	
		Concentración pico	
		Concentración diaria	Aznarte M <i>et al.</i> (2007)
			1 illiui to 11 07 th. (2007)

Modelo	Taxon	Parámetro modelado	Referencia bibliográfica
			Iglesias-Otero et al. (2015a)
			Voukantsis et al. (2010a)
			Voukantsis et al. (2010b)
	Plantago	Concentración diaria	Iglesias-Otero et al. (2015b)
	Pleospora	Estimación espacial	Tomassetti <i>et al.</i> (2013)
		Concentración diaria	Bruno et al. (2007)
			Tomassetti <i>et al.</i> (2009)
			Tomassetti <i>et al.</i> (2013)
	Poaceae	Concentración diaria	Arca (2004)
	1 0000000		Rodríguez-Raio <i>et al.</i> (2010a)
			Sánchez-Mesa <i>et al.</i> (2002)
			Sánchez-Mesa <i>et al.</i> (2005)
			Voukantsis <i>et al.</i> (2010a)
			Voukantsis et al. (2010b)
	Polen ¹	Concentración diaria	Ranzi et al. (2003)
	Puricularia	Núm de esporas	$\frac{1}{2003}$
	Urticaceae	Concentración diaria	Dara (2013) **
	Unicaceae	Concentración diaria	Voukontais et al. (2010b)
Pagragión de Doisson	Dongono	Concentración diaria	$\frac{1}{2007}$
Regresión lineal	Almus		Biotrowska Warwarka (2012)
Regresion mean	Alnus	Dia pico Duración del periodo	FIOLIOWSKA-WELYSZKO (2013)
			Each and $a = 1 (2007)$
		micio del periodo	Eindernin et al. (2007) Bistrouwka Warwarka (2012)
			Plotrowska-weryszko (2013)
	A1, ·		Rodriguez-Rajo <i>et al.</i> (2009)
	Alternaria	Concentración diaria	$\frac{\text{Aira et al. (2008)}}{\text{Prime to the (2012)}}$
			$\frac{\text{Recto et al.}(2012)}{\text{Recto et al.}(2002)}$
			Rodriguez-Rajo <i>et al.</i> (2005a)
			Sidel <i>et al.</i> (2015)
	<u> </u>	Concentración semanal	Recio <i>et al.</i> (2012)
	Ambrosia	Duración del periodo	Laaidi et al. (2003)
			Zhang <i>et al.</i> (2015)
		Inicio del periodo	Laaidi et al. (2003)
			Zhang <i>et al.</i> (2015)
		Concentración diaria	Howard & Levetin (2014) **
			Makra & Matyasovszky (2011)
			Makra <i>et al</i> . (2004)
	Artemisia	Duración del periodo	Zhang <i>et al.</i> (2015)
		Indice anual	Drzeniecka-Osiadacz et al. (2015)
		Inicio del periodo	Drzeniecka-Osiadacz et al. (2015)
			Zhang <i>et al.</i> (2015)
	Betula	Día pico	Myszkowska (2013)
		Duración del periodo	Zhang <i>et al</i> . (2015)
		Inicio del periodo	Adams-Groom et al. (2002)
			Gormsen <i>et al</i> . (2005)
			Laaidi (2001a)
			Myszkowska 2013)
			Zhang <i>et al.</i> (2015)
		Fin del periodo	Myszkowska (2013)
		Concentración pico	
		Concentración diaria	Méndez et al. (2005) **
	ChenoAmara.	Concentración diaria	Angosto et al. (2005) **
	Cladosporium	Concentración diaria	Aira et al. (2008)
			Angulo-Romero et al. (1999)
			Molina <i>et al.</i> (1998)
			Recio $et al. (2012)$
			Rodríguez-Rajo <i>et al.</i> (2006)
		Concentración semanal	Recio et al. (2012)
	Corvlus	Inicio del periodo	Emberlin <i>et al.</i> (2007)
	Corytus	intero del periodo	Piotrowska & Kaszewski (2009)
			1 10110 W SKU (2007)

Modelo	Taxon	Parámetro modelado	Referencia bibliográfica
Modelo	Cupressaceae	Día pico	Galán <i>et al</i> (1998a)
	Cupressueeue	Índice anual	
		Inicio del periodo	
		Concentración pico	
		Concentración diaria	Díaz de la Guardia <i>et al.</i> (2006)
		Concentración diana	Galán <i>et al.</i> (1998b)
			Ocaña-Peinado et al. (2013)
			Sabariego et al. (2012) **
	Esporas de	Concentración	Ho et al. (2005) † *
	hongos ¹	concentration	Verma & Pathak (2009) *
	Olea	Día pico	Galán et al. (2001)
		F	Murray & Galán (2016)
			Sicard <i>et al.</i> (2012)
		Duración del periodo	Murray & Galán (2016)
			Sicard <i>et al.</i> (2012)
		Fin del periodo	Murray & Galán (2016)
			Sicard <i>et al.</i> (2012)
		Índice anual	Galán <i>et al.</i> (2001)
		indice undur	Oteros $et al.$ (2013a)
			$\frac{1}{2016}$
			Sicard <i>et al.</i> (2012)
		Índice pre-pico	Sicard et al. (2012)
		Inicio del periodo	Fornaciari <i>et al.</i> (1998)
		lilleto del periodo	Murray & Galán (2016)
			Ribeiro <i>et al.</i> (2006)
			Sicard et al. (2000)
		Concentración pico	Galán <i>et al.</i> (2001)
		Concentration pieco	Murray & Galán (2016)
			Sicard <i>et al.</i> (2012)
		Concentración diaria	Díaz de la Guardia <i>et al.</i> (2003)
			Voukantsis <i>et al.</i> (2010a)
			Voukantsis et al. (2010b)
	Platanus	Inicio del periodo	$\frac{1}{10000000000000000000000000000000000$
	1 10010000005	Concentración diaria	Iglesias et al. (2007)
			Sabariego <i>et al.</i> (2008)
	Poaceae	Día pico	Kasprzyk & Walanus (2010)
		F	Piotrowska (2012)
			Stach <i>et al.</i> (2008)
		Duración del periodo	Kasprzyk & Walanus (2010)
			Piotrowska (2012)
			1100000000000000000000000000000000000
		Fin del periodo	Kasprzyk & Walanus (2010)
		I I I I I I I I I I I I I I I I I I I	Stach <i>et al.</i> (2008)
		Índice anual	Emberlin et al. (1999)
			Schäppi <i>et al.</i> (1998)
		Inicio del periodo	Kasprzyk & Walanus (2010)
		1	Laaidi (2001b)
			Piotrowska (2012)
			Stach <i>et al.</i> (2008)
			Zhang <i>et al.</i> (2015)
		Concentración pico	Piotrowska (2012)
		Concentración diaria	Aboulaich et al. (2013)
			Matyasovszky et al. (2011)
			Smith & Emberlin (2005)
			Smith & Emberlin (2006)
			Stach <i>et al.</i> (2008)
			Toro <i>et al.</i> (1998)**
			Voukantsis <i>et al.</i> (2010a)
			Voukantsis <i>et al.</i> (2010b)

.
Modelo	Taxon	Parámetro modelado	Referencia bibliográfica
	Polen ¹	Concentración diaria	Angosto et al. (2005) **
	Prunus	Inicio del periodo	Gormsen et al. (2005)
	Quercus	Duración del periodo	Zhang <i>et al</i> . (2015)
		Inicio del periodo	
	Urticaceae	Concentración diaria	Dara (2013)**
			Galán <i>et al</i> . (2000)
			Voukantsis et al. (2010b)
Regresión lineal parcial	Betula	Concentración diaria	Cotos-Yáñez et al. (2004)
Regresión logística	Acer	Fin del periodo	Ribeiro et al. (2007)
		Inicio del periodo	
	Alnus	Fin del periodo	Ribeiro et al. (2007)
		Inicio del periodo	Myszkowska (2014)
			Ribeiro et al. (2007)
		Concentración diaria	Myszkowska & Majewska (2014)***
	Alternaria	Incremento anual	De Linares et al. (2010)
	Betula	Inicio del periodo	Referencia bibliográfica Angosto et al. (2005) ** Gormsen et al. (2005) Zhang et al. (2015) Dara (2013)** Galán et al. (2000) Voukantsis et al. (2010b) Cotos-Yáñez et al. (2007) Ribeiro et al. (2007) Myszkowska (2014) Ribeiro et al. (2007) Myszkowska (2014) Ribeiro et al. (2007) Myszkowska (2014) Cotos-Yáñez et al. (2010) Myszkowska (2014) Cotos-Yáñez et al. (2010) Myszkowska (2014) Cotos-Yáñez et al. (2007) Myszkowska (2014) Cotos-Yáñez et al. (2007) Myszkowska (2014) Myszkowska (2014) Myszkowska (2014) Myszkowska (2014) Myszkowska (2014) Myszkowska (2017) Ribeiro et al. (2007) Ribeiro et al. (2007) Ribeiro et al. (2007) Myszkowska (2014) Ribeiro et al. (2007) Myszkowska (2014) Ribeiro et al. (2007) Myszkowska (2014) Ribeiro et al. (2007)
		Concentración diaria	Cotos-Yáñez et al. (2004)
			Myszkowska & Majewska (2014)***
	Castanea	Fin del periodo	Ribeiro et al. (2007)
		Inicio del periodo	
	Corylus	Inicio del periodo	Myszkowska (2014)
		Concentración diaria	Myszkowska & Majewska (2014)***
	Cupressaceae	Fin del periodo	Ribeiro et al. (2007)
		Inicio del periodo	
	Fraxinus	Fin del periodo	Ribeiro et al. (2007)
		Inicio del periodo	
	Olea	Concentración semanal	Escabias et al. (2013)
	Pinus	Fin del periodo	Ribeiro et al. (2007)
		Inicio del periodo	
	Platanus	Fin del periodo	Ribeiro et al. (2007)
		Inicio del periodo	
	Poaceae	Fin del periodo	Ribeiro et al. (2007)
		Inicio del periodo	Myszkowska (2014)
			Ribeiro et al. (2007)
		Concentración diaria	Myszkowska & Majewska (2014)***
	Urticaceae	Fin del periodo	Ribeiro et al. (2007)
		Inicio del periodo	
Regresión no paramétrica	Ambrosia	Fin del periodo	Makra et al. (2011)
		Inicio del periodo	
		Concentración diaria	Makra & Matyasovszky (2011)
			Makra <i>et al.</i> (2011)
			Makra <i>et al</i> . (2011)***
Regresión no paramétrica (mediana)	Ambrosia	Concentración diaria	Makra & Matyasovszky (2011)
SCEM-UA	Cupressaceae	Concentración diaria	Silva-Palacios et al. (2016)
-	Olea	Concentración diaria	Fernández-Rodríguez <i>et al.</i> (2016a)
	Ouercus	Concentración diaria	Fernández-Rodríguez <i>et al.</i> (2016b)
	2		

Referencias bibliográficas del anexo 1.A

- Aboulaich N, Achmakh L, Bouziane H, Trigo MM, Recio M, Kadiri M, Cabezudo B, Riadi H, & Kazzaz M (2013) Effect of meteorological parameters on Poaceae pollen in the atmosphere of Tetouan (NW Morocco). Int J Biometeorol 57:197– 205. doi: 10.1007/s00484-012-0566-2
- Adams-Groom B, Emberlin J, Corden J, Millington W, & Mullins J (2002) Predicting the start of the birch pollen season at London, Derby and Cardiff, United Kingdom, using a multiple regression model, based on data from 1987 to 1997. Aerobiologia 18:117–123. doi: 10.1023/A:1020698023134

Capítulo 1

- Aguilera F, Fornaciari M, Ruiz-Valenzuela L, Galán C, Msallem M, Dhiab AB, Díaz de la Guardia C, Trigo MM, Bonofiglio T, & Orlandi F (2015) Phenological models to predict the main flowering phases of olive (*Olea europaea L.*) along a latitudinal and longitudinal gradient across the Mediterranean region. Int J Biometeorol 59:629–641. doi: 10.1007/s00484-014-0876-7
- Aira MJ, Rodríguez-Rajo FJ, & Jato V (2008) 47 annual records of allergenic fungi spore: predictive models from the NW iberian peninsula. Ann Agric Environ Med 15:91–98.
- Angosto JM, Moreno-Grau S, Bayo J, & Elvira-Rendueles B (2005) Multiple regression models for predicting total daily pollen concentration in Cartagena. Grana 44:108–114. doi: 10.1080/00173130510010468
- Angulo-Romero J, Mediavilla-Molina A, & Domínguez-Vilches E (1999) Conidia of *Alternaria* in the atmosphere of the city of Cordoba, Spain in relation to meteorological parameters. Int J Biometeorol 43:45–49. doi: 10.1007/s004840050115
- Arca B, Pellizzaro G, Canu A, & Varhiu A (2004) Use of neural networks to short-term forecast of airborne pollen data. In: 16th Biometeorology and Aerobiology. Vancouver, p P1.13
- Astray G, Fernández-González M, Rodríguez-Rajo FJ, López D, & Mejuto JC (2016) Airborne *Castanea* pollen forecasting model for ecological and allergological implementation. Sci Total Environ 548–549:110–121. doi: 10.1016/j.scitotenv.2016.01.035
- Astray G, Rodríguez-Rajo FJ, Ferreiro-Lage JA, Fernández-González M, Jato V, & Mejuto JC (2010) The use of artificial neural networks to forecast biological atmospheric allergens or pathogens only as *Alternaria* spores. J Environ Monit 12:2145–2152. doi: 10.1039/C0EM00248H
- Aznarte JLM, Benítez JMS, Nieto DL, De Linares C, Díaz de la Guardia C, & Sánchez FA (2007) Forecasting airborne pollen concentration time series with neural and neuro-fuzzy models. Expert Syst Appl 32:1218–1225. doi: 10.1016/j.eswa.2006.02.011
- Brighetti MA, Costa C, Menesatti P, Antonucci F, Tripodi S, & Travaglini A (2014) Multivariate statistical forecasting modeling to predict Poaceae pollen critical concentrations by meteoclimatic data. Aerobiologia 30:25–33. doi: 10.1007/s10453-013-9305-3
- Bruno AA, Pace L, Tomassetti B, Coppola E, Verdecchia M, Pacioni G, & Visconti G (2007) Estimation of fungal spore concentrations associated to meteorological variables. Aerobiologia 23:221–228. doi: 10.1007/s10453-007-9066-y
- Castellano-Méndez M, Aira MJ, Iglesias I, Jato V, & González-Manteiga W (2005) Artificial neural networks as a useful tool to predict the risk level of *Betula* pollen in the air. Int J Biometeorol 49:310–316. doi: 10.1007/s00484-004-0247-x
- Cotos-Yáñez TR, Rodríguez-Rajo FJ, & Jato MV (2004) Short-term prediction of *Betula* airborne pollen concentration in Vigo (NW Spain) using logistic additive models and partially linear models. Int J Biometeorol 48:179–185. doi: 10.1007/s00484-004-0203-9
- Csépe Z, Makra L, Voukantsis D, Matyasovszky I, Tusnády G, Karatzas K, & Thibaudon M (2014) Predicting daily ragweed pollen concentrations using Computational Intelligence techniques over two heavily polluted areas in Europe. Sci Total Environ 476–477:542–552. doi: 10.1016/j.scitotenv.2014.01.056
- Damialis A, & Gioulekas D. (2006) Airborne allergenic fungal spores and meteorological factors in Greece: Forecasting possibilities. Grana 45:122–129. doi: 10.1080/00173130600601005
- Dara F (2013) Forecasting daily Urticaceae pollen count by artificial neural networks. Int J Innov Res Dev 2:63-71.
- De Linares C, Belmonte J, Canela M, Díaz de la Guardia C, Alba-Sanchez F, Sabariego S, & Alonso-Pérez S (2010) Dispersal patterns of *Alternaria* conidia in Spain. Agric For Meteorol 150:1491–1500. doi: 10.1016/j.agrformet.2010.07.004
- Díaz de la Guardia C, Alba F, De Linares C, Nieto-Lugilde D, & López JC (2006) Aerobiological and allergenic analysis of Cupressaceae pollen in Granada (Southern Spain). J Investig Allergol Clin Immunol 16:24.
- Díaz de la Guardia C, Alba F, Trigo MM, Galán C, Ruíz L, & Sabariego S (2003) Aerobiological analysis of *Olea europaea L*. pollen in different localities of southern Spain. Grana 42:234–243. doi: 10.1080/00173130310016455

- Drzeniecka-Osiadacz A, Krynicka J, Malkiewicz M, Klaczak K, & Migała K (2015) Statistical modelling of the main features of the *Artemisia* pollen season in Wrocław, Poland, during the 2002–2011 time period. Theor Appl Climatol 119:419–432. doi: 10.1007/s00704-014-1109-z
- Emberlin J, Mullins J, Corden J, Jones S, Millington W, Brooke M, & Savage M (1999) Regional variations in grass pollen seasons in the UK, long-term trends and forecast models. Clin Exp Allergy 29:347–356. doi: 10.1046/j.1365-2222.1999.00369.x
- Emberlin J, Smith M, Close R, & Adams-Groom B (2007) Changes in the pollen seasons of the early flowering trees *Alnus* spp. and *Corylus* spp. in Worcester, United Kingdom, 1996–2005. Int J Biometeorol 51:181–191. doi: 10.1007/s00484-006-0059-2
- Erbas B, Chang J-H, Newbigin E, & Dhamarge S (2007) Modelling atmospheric concentrations of grass pollen using meteorological variables in Melbourne, Australia. Int J Environ Health Res 17:361–368. doi: 10.1080/09603120701628693
- Escabias M, Valderrama MJ, Aguilera AM, Santofimia ME, & Aguilera-Morillo MC (2013) Stepwise selection of functional covariates in forecasting peak levels of olive pollen. Stoch Environ Res Risk Assess 27:367–376. doi: 10.1007/s00477-012-0655-0
- Escuredo O, Seijo MC, Fernández-González M, & Iglesias I (2011) Effects of meteorological factors on the levels of *Alternaria* spores on a potato crop. Int J Biometeorol 55:243–252. doi: 10.1007/s00484-010-0330-4
- Fernández-González M, Rodríguez-Rajo FJ, Jato V, Aira MJ, Ribeiro H, Oliveira M, & Abreu I (2012) Forecasting ARIMA models for atmospheric vineyard pathogens in Galicia and Northern Portugal: Botrytis cinerea spores. Ann Agric Environ Med 19:255–262.
- Fernández-Rodríguez S, Durán-Barroso P, Silva-Palacios I, Tormo-Molina R, Maya-Manzano JM, & Gonzalo-Garijo Á (2016a) Regional forecast model for the *Olea* pollen season in Extremadura (SW Spain). Int J Biometeorol 60:1509–1517. doi: 10.1007/s00484-016-1141-z
- Fernández-Rodríguez S, Durán-Barroso P, Silva-Palacios I, Tormo-Molina R, Maya-Manzano JM, & Gonzalo-Garijo Á (2016b) Quercus long-term pollen season trends in the southwest of the Iberian Peninsula. Process Saf Environ Prot 101:152–159. doi: 10.1016/j.psep.2015.11.008
- Fornaciari M, Pieroni L, Ciuchi P, & Romano B (1998) A regression model for the start of the pollen season in *Olea europaea*. Grana 37:110–113. doi: 10.1080/00173139809362652
- Galán C, Alcázar P, Cariñanos P, Garcia H, & Domínguez-Vilches E (2000) Meteorological factors affecting daily Urticaceae pollen counts in southwest Spain. Int J Biometeorol 43:191–195. doi: 10.1007/s004840050008
- Galán C, Cariñanos P, García-Mozo H, Alcázar P, & Domínguez-Vilches E (2001) Model for forecasting *Olea europaea L*. airborne pollen in South-West Andalusia, Spain. Int J Biometeorol 45:59–63. doi: 10.1007/s004840100089
- Galán C, Fuillerat MJ, Comtois P, & Domínguez E (1998a) A predictive study of cupressaceae pollen season onset, severity, maximum value and maximum value date. Aerobiologia 14:195–199. doi: 10.1007/BF02694206
- Galán C, Fuillerat MJ, Comtois P, & Dominguez-Vilches E (1998b) Bioclimatic factors affecting daily Cupressaceae flowering in southwest Spain. Int J Biometeorol 41:95–100. doi: 10.1007/s004840050059
- García-Mozo H, Yaezel L, Oteros J, & Galán C (2014) Statistical approach to the analysis of olive long-term pollen season trends in southern Spain. Sci Total Environ 473–474:103–109. doi: 10.1016/j.scitotenv.2013.11.142
- Gormsen AK, Hense A, Toldam-Andersen TB, & Braun P (2005) Large-scale climate variability and its effects on mean temperature and flowering time of *Prunus* and *Betula* in Denmark. Theor Appl Climatol 82:41–50. doi: 10.1007/s00704-005-0122-7
- Grinn-Gofroń A, & Strzelczak A (2011) The effects of meteorological factors on the occurrence of *Ganoderma* sp. spores in the air. Int J Biometeorol 55:235–241. doi: 10.1007/s00484-010-0329-x
- Grinn-Gofroń A, & Strzelczak A (2008a) Artificial neural network models of relationships between *Alternaria* spores and meteorological factors in Szczecin (Poland). Int J Biometeorol 52:859–868. doi: 10.1007/s00484-008-0182-3

- Grinn-Gofroń A, & Strzelczak A (2013) Changes in concentration of *Alternaria* and *Cladosporium* spores during summer storms. Int J Biometeorol 57:759–768. doi: 10.1007/s00484-012-0604-0
- Grinn-Gofroń A, & Strzelczak A (2009) Hourly predictive artificial neural network and multivariate regression tree models of *Alternaria* and *Cladosporium* spore concentrations in Szczecin (Poland). Int J Biometeorol 53:555–562. doi: 10.1007/s00484-009-0243-2
- Grinn-Gofroń A, & Strzelczak A (2008b) Artificial neural network models of relationships between *Cladosporium* spores and meteorological factors in Szczecin (Poland). Grana 47:305–315. doi: 10.1080/00173130802513784
- Grinn-Gofroń A, Strzelczak A, & Wolski T (2011) The relationships between air pollutants, meteorological parameters and concentration of airborne fungal spores. Environ Pollut 159:602–608. doi: 10.1016/j.envpol.2010.10.002
- Hilaire D, Rotach MW, & Clot B (2012) Building models for daily pollen concentrations: The example of 16 pollen taxa in 14 Swiss monitoring stations. Aerobiologia 28:499–513. doi: 10.1007/s10453-012-9252-4
- Ho H-M, Rao CY, Hsu H-H, Chiu Y-H, Liu C-M, & Chao HJ (2005) Characteristics and determinants of ambient fungal spores in Hualien, Taiwan. Atmos Environ 39:5839–5850. doi: 10.1016/j.atmosenv.2005.06.034
- Howard LE, & Levetin E (2014) *Ambrosia* pollen in Tulsa, Oklahoma: aerobiology, trends, and forecasting model development. Ann Allergy Asthma Immunol 113:641–646. doi: 10.1016/j.anai.2014.08.019
- Iglesias I, Rodriguez-Rajo FJ, & Méndez J (2007) Behavior of *Platanus hispanica* pollen, an important spring aeroallergen in northwestern Spain. J Investig Allergol Clin Immunol 17:145.
- Iglesias-Otero MA, Astray G, Vara A, Galvez JF, Mejuto JC, & Rodriguez-Rajo FJ (2015a) Forecastion *Olea* Airborne pollen concentration by mean of artificial inteligence. Fresenius Environ Bull 24:4574–4580.
- Iglesias-Otero MA, Fernández-González M, Rodríguez-Caride D, Astray G, Mejuto JC, & Rodríguez-Rajo FJ (2015b) A model to forecast the risk periods of *Plantago* pollen allergy by using the ANN methodology. Aerobiologia 31:201–211. doi: 10.1007/s10453-014-9357-z
- Jedryczka M, Strzelczak A, Grinn-Gofron A, Nowak M, Wolski T, Siwulski M, Sobieralski K, & Kaczmarek J (2015) Advanced statistical models commonly applied in aerobiology cannot accurately predict the exposure of people to *Ganoderma* spore-related allergies. Agric For Meteorol 201:209–217. doi: 10.1016/j.agrformet.2014.11.015
- Kasprzyk I, Grinn-Gofroń A, Strzelczak A, & Wolski T (2011) Hourly predictive artificial neural network and multivariate regression trees models of *Ganoderma* spore concentrations in Rzeszów and Szczecin (Poland). Sci Total Environ 409:949–956. doi: 10.1016/j.scitotenv.2010.12.002
- Kasprzyk I, & Walanus A (2014) Gamma, Gaussian and logistic distribution models for airborne pollen grains and fungal spore season dynamics. Aerobiologia 30:369–383. doi: 10.1007/s10453-014-9332-8
- Kasprzyk I, & Walanus A (2010) Description of the main Poaceae pollen season using bi-Gaussian curves, and forecasting methods for the start and peak dates for this type of season in Rzeszów and Ostrowiec Św. (SE Poland). J Environ Monit 12:906–916. doi: 10.1039/b912256g
- Laaidi M (2001a) Regional variations in the pollen season of *Betula* in Burgundy: two models for predicting the start of the pollination. Aerobiologia 17:247–254. doi: 10.1023/A:1011899603453
- Laaidi M (2001b) Forecasting the start of the pollen season of Poaceae: evaluation of some methods based on meteorological factors. Int J Biometeorol 45:1–7. doi: 10.1007/s004840000079
- Laaidi M, Thibaudon M, & Besancenot J-P (2003) Two statistical approaches to forecasting the start and duration of the pollen season of *Ambrosia* in the area of Lyon (France). Int J Biometeorol 48:65–73. doi: 10.1007/s00484-003-0182-2
- Makra L, Juhász M, Borsos E, & Béczi R (2004) Meteorological variables connected with airborne ragweed pollen in Southern Hungary. Int J Biometeorol 49:37–47. doi: 10.1007/s00484-004-0208-4
- Makra L, & Matyasovszky I (2011) Assessment of the daily ragweed pollen concentration with previous-day meteorological variables using regression and quantile regression analysis for Szeged, Hungary. Aerobiologia 27:247–259. doi: 10.1007/s10453-010-9194-7

- Makra L, Matyasovszky I, Thibaudon M, & Bonini M (2011) Forecasting ragweed pollen characteristics with nonparametric regression methods over the most polluted areas in Europe. Int J Biometeorol 55:361–371. doi: 10.1007/s00484-010-0346-9
- Matyasovszky I, & Makra L (2011) Autoregressive modelling of daily ragweed pollen concentrations for Szeged in Hungary. Theor Appl Climatol 104:277–283. doi: 10.1007/s00704-011-0431-y
- Matyasovszky I, Makra L, Guba Z, Pátkai Z, Páldy A, & Sümeghy Z (2011) Estimating the daily Poaceae pollen concentration in Hungary by linear regression conditioning on weather types. Grana 50:208–216. doi: 10.1080/00173134.2011.602984
- Méndez J, Comtois P, & Iglesias I (2005) *Betula* pollen: One of the most important aeroallergens in Ourense, Spain. Aerobiological studies from 1993 to 2000. Aerobiologia 21:115–124. doi: 10.1007/s10453-005-4181-0
- Mojerlou S, Mousanejad S, & Safaie N (2013) Modeling fluctuation of Pyricularia grisea spore population as affected by meteorological factors in Guilan province (Iran) using artificial neural network. J Crop Prot 2:501–514.
- Molina AM, Romero JA, García-Pantaleón FI, Comtois P, & Vilches ED (1998) Preliminary statistical modeling of the presence of two conidial types of *Cladosporium* in the atmosphere of Córdoba, Spain. Aerobiologia 14:229–234. doi: 10.1007/BF02694211
- Murray MG, & Galán C (2016) Effect of the meteorological parameters on the *Olea europaea L*. pollen season in Bahía Blanca (Argentina). Aerobiologia 32:541–553. doi: 10.1007/s10453-016-9431-9
- Myszkowska D (2013) Prediction of the birch pollen season characteristics in Cracow, Poland using an 18-year data series. Aerobiologia 29:31–44. doi: 10.1007/s10453-012-9260-4
- Myszkowska D (2014) Predicting tree pollen season start dates using thermal conditions. Aerobiologia 30:307–321. doi: 10.1007/s10453-014-9329-3
- Myszkowska D, & Majewska R (2014) Pollen grains as allergenic environmental factors-new approach to the forecasting of the pollen concentration during the season. Ann Agric Environ Med 21:681–688. doi: 10.5604/12321966.1129914
- Ocaña-Peinado F, Valderrama MJ, & Aguilera AM (2008) A dynamic regression model for air pollen concentration. Stoch Environ Res Risk Assess 22:59–63. doi: 10.1007/s00477-007-0153-y
- Ocaña-Peinado F, Valderrama MJ, & Bouzas PR (2013) A principal component regression model to forecast airborne concentration of Cupressaceae pollen in the city of Granada (SE Spain), during 1995–2006. Int J Biometeorol 57:483–486. doi: 10.1007/s00484-012-0527-9
- Oteros J, García-Mozo H, Hervás C, & Galán C (2013a) Biometeorological and autoregressive indices for predicting olive pollen intensity. Int J Biometeorol 57:307–316. doi: 10.1007/s00484-012-0555-5
- Oteros J, García-Mozo H, Hervás-Martínez C, & Galán C (2013b) Year clustering analysis for modelling olive flowering phenology. Int J Biometeorol 57:545–555. doi: 10.1007/s00484-012-0581-3
- Piotrowska K (2012) Forecasting the Poaceae pollen season in eastern Poland. Grana 51:263–269. doi: 10.1080/00173134.2012.659204
- Piotrowska K, & Kaszewski BM (2009) The influence of meteorological conditions on the start of the hazel (*Corylus L.*) pollen season in Lublin, 2001-2009. Acta Agrobot 62:59–66. doi: 10.5586/aa.2009.027
- Piotrowska-Weryszko K (2013) The effect of the meteorological factors on the *Alnus* pollen season in Lublin (Poland). Grana 52:221–228. doi: 10.1080/00173134.2013.772653
- Puc M (2012) Artificial neural network model of the relationship between *Betula* pollen and meteorological factors in Szczecin (Poland). Int J Biometeorol 56:395–401. doi: 10.1007/s00484-011-0446-1
- Puc M, & Wolski T (2013) Forecasting of the selected features of Poaceae (R. Br.) Barnh., *Artemisia L.* and *Ambrosia L.* pollen season in Szczecin, north-western Poland, using Gumbel's distribution. Ann Agric Environ Med 20:36–47.
- Ranzi A, Lauriola P, Marletto V, & Zinoni F (2003) Forecasting airborne pollen concentrations: Development of local models. Aerobiologia 19:39–45. doi: 10.1023/A:1022626107746

- Recio M, Trigo MM, Docampo S, Melgar M, García-Sánchez J, Bootello L, & Cabezudo B (2012) Analysis of the predicting variables for daily and weekly fluctuations of two airborne fungal spores: *Alternaria* and *Cladosporium*. Int J Biometeorol 56:983–991. doi: 10.1007/s00484-011-0509-3
- Ribeiro H, Cunha M, & Abreu I (2007) Definition of main pollen season using a logistic model. Ann Agric Environ Med 14:259.
- Ribeiro H, Santos L, Abreu I, & Cunha M (2006) Influence of meteorological parameters on *Olea* flowering date and airborne pollen concentration in four regions of Portugal. Grana 45:115–121. doi: 10.1080/00173130500520610
- Rodríguez-Rajo FJ, Astray G, Ferreiro-Lage JA, Aira MJ, Jato-Rodriguez MV, & Mejuto JC (2010a) Evaluation of atmospheric Poaceae pollen concentration using a neural network applied to a coastal Atlantic climate region. Neural Netw 23:419–425. doi: 10.1016/j.neunet.2009.06.006
- Rodríguez-Rajo FJ, Grewling L, Stach A, & Smith M (2009) Factors involved in the phenological mechanism of *Alnus* flowering in Central Europe. Ann Agric Environ Med 16:277–284.
- Rodríguez-Rajo FJ, Iglesias I, & Jato V (2005a) Variation assessment of airborne *Alternaria* and *Cladosporium* spores at different bioclimatical conditions. Mycol Res 109:497–507.
- Rodríguez-Rajo FJ, Jato V, & Aira MJ (2005b) Relationship between meteology and *Castaea* airborne pollen. Belg J Bot 138:129–140.
- Rodríguez-Rajo FJ, Jato V, Fernández-González M, & Aira MJ (2010b) The use of aerobiological methods for forecasting *Botrytis* spore concentrations in a vineyard. Grana 49:56–65. doi: 10.1080/00173130903472393
- Rodríguez-Rajo FJ, Valencia-Barrera RM, Vega-Maray AM, Suarez FJ, Fernandez-Gonzalez D, & Jato V (2006) Prediction of airborne *Alnus* pollen concentration by using ARIMA models. Ann Agric Environ Med 13:25.
- Rojo J, Orlandi F, Pérez-Badia R, Aguilera F, Ben Dhiab A, Bouziane H, Díaz de la Guardia C, Galán C, Gutiérrez-Bustillo AM, Moreno-Grau S, Msallem M, Trigo MM, & Fornaciari M (2016) Modeling olive pollen intensity in the Mediterranean region through analysis of emission sources. Sci Total Environ 551–552:73–82. doi: 10.1016/j.scitotenv.2016.01.193
- Sabariego S, Bustillo AM, Morales PC, & Cuesta P (2008) Forecasting airborne *Platanus* pollen in the Madrid region. Grana 47:234–240. doi: 10.1080/00173130802218574
- Sabariego S, Cuesta P, Fernández-González F, & Pérez-Badia R (2012) Models for forecasting airborne Cupressaceae pollen levels in central Spain. Int J Biometeorol 56:253–258. doi: 10.1007/s00484-011-0423-8
- Sadyś M, Skjøth CA, & Kennedy R (2016) Forecasting methodologies for *Ganoderma* spore concentration using combined statistical approaches and model evaluations. Int J Biometeorol 60:489–498. doi: 10.1007/s00484-015-1045-3
- Sánchez-Mesa JA, Galán C, & Hervás C (2005) The use of discriminant analysis and neural networks to forecast the severity of the Poaceae pollen season in a region with a typical Mediterranean climate. Int J Biometeorol 49:355–362. doi: 10.1007/s00484-005-0260-8
- Sánchez-Mesa JA, Galan C, Martínez-Heras JA, & Hervás-Martínez C (2002) The use of a neural network to forecast daily grass pollen concentration in a Mediterranean region: the southern part of the Iberian Peninsula. Clin Exp Allergy 32:1606–1612. doi: 10.1046/j.1365-2222.2002.01510.x
- Schäppi GF, Taylor PE, Kenrick J, Staff IA, & Suphioglu C (1998) Predicting the grass pollen count from meteorological data with regard to estimating the severity of hayfever symptoms in Melbourne (Australia). Aerobiologia 14:29–37. doi: 10.1007/BF02694592
- Sicard P, Thibaudon M, Besancenot J-P, & Mangin A (2012) Forecast models and trends for the main characteristics of the *Olea* pollen season in Nice (south-eastern France) over the 1990–2009 period. Grana 51:52–62. doi: 10.1080/00173134.2011.637577
- Sidel FFB, Bouziane H, Trigo MM, Haskouri FE, Bardei F, Redouane A, Kadiri M, Riadi H, & Kazzaz M (2015) Airborne fungal spores of *Alternaria*, meteorological parameters and predicting variables. Int J Biometeorol 59:339–346. doi: 10.1007/s00484-014-0845-1

- Silva-Palacios I, Fernández-Rodríguez S, Durán-Barroso P, Tormo-Molina R, Maya-Manzano JM, & Gonzalo-Garijo Á (2016) Temporal modelling and forecasting of the airborne pollen of Cupressaceae on the southwestern Iberian Peninsula. Int J Biometeorol 60:297–306. doi: 10.1007/s00484-015-1026-6
- Smith M, & Emberlin J (2005) Constructing a 7-day ahead forecast model for grass pollen at north London, United Kingdom. Clin Exp Allergy 35:1400–1406. doi: 10.1111/j.1365-2222.2005.02349.x
- Smith M, & Emberlin J (2006) A 30-day-ahead forecast model for grass pollen in north London, United Kingdom. Int J Biometeorol 50:233–242. doi: 10.1007/s00484-005-0010-y
- Stach A, Smith M, Prieto Baena JC, & Emberlin J (2008) Long-term and short-term forecast models for Poaceae (grass) pollen in Poznań, Poland, constructed using regression analysis. Environ Exp Bot 62:323–332. doi: 10.1016/j.envexpbot.2007.10.005
- Tassan-Mazzocco F, Felluga A, & Verardo P (2015) Prediction of wind-carried Gramineae and Urticaceae pollen occurrence in the Friuli Venezia Giulia region (Italy). Aerobiologia 31:559–574. doi: 10.1007/s10453-015-9386-2
- Tomassetti B, Bruno AA, Pace L, Verdecchia M, & Visconti G (2009) Prediction of *Alternaria* and *Pleospora* concentrations from the meteorological forecast and artificial neural network in L'Aquila, Abruzzo (Central Italy). Aerobiologia 25:127–136. doi: 10.1007/s10453-009-9117-7
- Tomassetti B, Lombardi A, Cerasani E, Sabatino AD, Pace L, Ammazzalorso D, & Verdecchia M (2013) Mapping of *Alternaria* and *Pleospora* concentrations in Central Italy using meteorological forecast and neural network estimator. Aerobiologia 29:55–70. doi: 10.1007/s10453-012-9262-2
- Toro FJ, Recio M, Trigo MM, & Cabezudo B (1998) Predictive models in aerobiology: data transformation. Aerobiologia 14:179–184. doi: 10.1007/BF02694203
- Verma KS, & Pathak AK (2009) A comparative analysis of forecasting methods for aerobiological studies. Asian J Exp Sci 23:193–198.
- Voukantsis D, Karatzas KD, Damialis A, & Vokou D (2010a) Forecasting airborne pollen concentration of Poaceae (Grass) and Oleaceae (Olive), using Artificial Neural Networks and Genetic algorithms, in Thessaloniki, Greece. In: The 2010 International Joint Conference on Neural Networks (IJCNN). Barcelona, pp 1–6
- Voukantsis D, Niska H, Karatzas K, Riga M, Damialis A, & Vokou D (2010b) Forecasting daily pollen concentrations using data-driven modeling methods in Thessaloniki, Greece. Atmos Environ 44:5101–5111. doi: 10.1016/j.atmosenv.2010.09.006
- Zhang Y, Bielory L, Cai T, Mi Z, & Georgopoulos P (2015) Predicting onset and duration of airborne allergenic pollen season in the United States. Atmos Environ 103:297–306. doi: 10.1016/j.atmosenv.2014.12.019

Anexo 1.B Estudios aerobiológicos de polen y esporas de hongos aerovagantes donde se han aplicado modelos basados en los procesos fenológicos (1998-2015).

Presentación

Modelos predictivos (ordenados alfabéticamente) basados en los procesos fenológicos recopilados del periodo 1998-2015.

Por columnas se muestra: el nombre del modelo, tipo de bioaerosol modelado o taxon, parámetro modelado y referencia bibliográfica.

Abreviaturas

+: El método presenta dos variaciones, con el promedio de las temperaturas máximas y la suma de la temperatura máxima.

Modelo	Taxon	Parámetro modelado	Referencia bibliográfica
Alternativo	Acer	Inicio del periodo	Siniscalco et al. (2015)
	Taxon Parametro modelado Referencia bibliográfica ivo Acer al. Inicio del periodo Siniscalco et al. (1998) Antus Inicio del periodo Chune et al. (1998) Antus Inicio del periodo Siniscalco et al. (2015) Anturs Inicio del periodo Siniscalco et al. (2015) Artemisia Inicio del periodo Siniscalco et al. (2015) Tarus Inicio del periodo Siniscalco et al. (2015) Tarus Inicio del periodo Chune et al. (1998) Ulture Inicio del periodo Tarus Inicio del periodo Anturs Inicio del periodo Anturs Inicio del periodo Zhung et al. (2015) Anturs Inicio del periodo Zhung et al. (2015) Inicio del periodo Zhung et al. (2015) Inicio del periodo Anturs Inicio del periodo Fleatalla Duración del periodo		
	Alnus	Inicio del periodo	Chuine <i>et al</i> . (1998)
			Siniscalco et al. (2015)
	Ambrosia Artemisia	Inicio del periodo	Siniscalco et al. (2015)
Días de grados de crecimiento (°GDD)	Buxus	Inicio del periodo	Chuine et al. (1998)
	Carpinus	Inicio del periodo	Siniscalco et al. (2015)
	Castanea		
Días de service (2000)	Juglans		
	Olea	Inicio del periodo	Chuine <i>et al</i> . (1998)
	Platanus		
	Platanus	Inicio del periodo	Siniscalco et al. (2015)
	Taxus	Inicio del periodo	Chuine <i>et al</i> . (1998)
	Ulmus		
Días de grados de crecimiento (°GDD)	Alnus	Inicio del periodo	Frenguelli & Bricchi (1998)
	<u> </u>		González-Parrado <i>et al</i> . (2006)
	Ambrosia	Duración del periodo	Zhang <i>et al.</i> (2015)
	A	Inicio del periodo	71 (1/2015)
	Artemisia	Inicio del periodo	Znang <i>et al</i> . (2015)
	Betula	Duración del periodo Inicio del periodo	Zhang <i>et al</i> . (2015)
	Corylus	Inicio del periodo	Frenguelli & Bricchi (1998)
	Cupressaceae	Fin del periodo	Malaspina et al. (2007)
		Inicio del periodo	Fuertes-Rodríguez et al. (2007)
			Malaspina et al. (2007)
	Olea	Día pico	Achmakh et al. (2015)
		Inicio del periodo	Achmakh et al. (2015)
			Galán <i>et al</i> . (2001)
			Galán <i>et al</i> . (2005)
	<u>Platanus</u>	Inicio del periodo	Alcázar <i>et al.</i> (2011)
	Poaceae	Duración del periodo Inicio del periodo	Zhang <i>et al</i> . (2015)
	Populus	Inicio del periodo	Frenguelli & Bricchi (1998)
	Corylus Inicio del periodo F Cupressaceae Fin del periodo M Inicio del periodo F M Olea Día pico A Inicio del periodo A M Olea Día pico A Inicio del periodo A M Olea Día pico A Inicio del periodo A M Olea Inicio del periodo A Poaceae Duración del periodo A Populus Inicio del periodo A Quercus Duración del periodo A Inicio del periodo C C	Zhang <i>et al.</i> (2015)	
		Inicio del periodo	nicio del periodo Siniscatco et al. (2015) nicio del periodo Siniscalco et al. (2015) nicio del periodo Chuine et al. (1998) nicio del periodo Frenguelli & Bricchi (1998) nicio del periodo Zhang et al. (2015) nicio del periodo Malaspina et al. (2007) nicio del periodo Fuertes-Rodríguez et al. (2007) malaspina et al. (2001) Galán et al. (2015) nicio del periodo Achmakh et al. (2015) nicio del periodo Achmakh et al. (2015) nicio del periodo Achmakh et al. (2015) nicio del periodo Zhang et al. (2015) nicio del periodo Zhang et al. (2015) nicio del periodo García-Mozo et al. (2000) García-Mozo et al. (2000) García-Mozo et al. (2000) Nicio del periodo </td
			Kasprzyk (2009)
			Siniscalco et al. (2015) Chuine et al. (1998) Siniscalco et al. (2015) Chuine et al. (1998) Siniscalco et al. (2015) Chuine et al. (1998) Frenguelli & Bricchi (1998) González-Parrado et al. (2006) Zhang et al. (2015) Zhang et al. (2015) Zhang et al. (2015) Zhang et al. (2015) Frenguelli & Bricchi (1998) Malaspina et al. (2007) Fuertes-Rodríguez et al. (2007) Malaspina et al. (2007) Galán et al. (2007) Achmakh et al. (2007) Galán et al. (2007) Galán et al. (2007) Achmakh et al. (2015) Galán et al. (2001) Galán et al. (2015) García-Mozo et al. (2001) García-Mozo et al. (2000) García-Mozo et al. (2000) Kasprzyk (2009) Rodríguez-Rajo et al. (2004b) Zhang et al. (2015) García-Mozo et al. (2009) García-Mozo et al. (2009) García-Mozo et al. (2009) Chuine et al. (1999) Osborne et al. (1999) Osbor
	Calin	Inicia del nomiado	Eranguelli & Briaghi (1008)
	Salix	lilicio del periodo	Flenguein & Bricchi (1998)
Estado de función forzada	Poaceae	Día n ico	García-Mozo et al. (2009)
Estado de Tulción foizada	AcerAcerAesculusAlnusAmbrosiaArtemisiaBuxusCarpinusCastaneaJuglansOleaPlatanusPlatanusPlatanusPlatanusPlatanusPlatanusOleaPlatanusCupressaceaeOleaOleaPlatanusPlatanusPlatanusPoaceaeOleaPoaceaePoaceaeOleaSalixUlmusción forzadaPoaceaeOleaarvasAesculusAlnusBetulaBuxusCarpinusCastaneaCorylusOleaPlatanusPatanusPatanusPatanusPatanusPlatanus<	Inicio del periodo	
Forc PO	Olea	Día pico	García-Mozo et al. (2009)
	0104	Inicio del periodo	Chunc et al. (1996) Siniscalco et al. (2015) Chuine et al. (1998) Frenguelli & Bricchi (1998) González-Parrado et al. (2006) Zhang et al. (2015) Zhang et al. (2015) Zhang et al. (2015) Frenguelli & Bricchi (1998) Malaspina et al. (2007) Fuertes-Rodríguez et al. (2007) Malaspina et al. (2007) Fuertes-Rodríguez et al. (2007) Achmakh et al. (2015) Galán et al. (2001) Galán et al. (2001) Galán et al. (2015) García-Mozo et al. (2000) García-Mozo et al. (2000) García-Mozo et al. (2004) Zhang et al. (2015) García-Mozo et al. (2004) Kasprzyk (2009) Rodríguez-Rajo et al. (2004) Zhang et al. (2015) Frenguelli & Bricchi (1998) García-Mozo et al. (2004) Chuine et al. (1999)
Forzado de Sarvas	Aesculus	Inicio del periodo	Chuine <i>et al</i> . (1999)
Rodríguez-Rajo e Salix Inicio del periodo Frenguelli & Bric Ulmus Vilmus Frenguelli & Brico Estado de función forzada Poaceae Día pico García-Mozo et a Inicio del periodo Inicio del periodo García-Mozo et a Forc PO Olea Día pico García-Mozo et a Inicio del periodo Inicio del periodo García-Mozo et a Forzado de Sarvas Aesculus Inicio del periodo Chuine et al. (199)			
	Betula		
	Buxus		
	Carpinus		
	Castanea		
	Corylus		
	Olea	Inicio del periodo	Chuine <i>et al.</i> (1999)
	DI		Osborne <i>et al.</i> (2000)
Forc PO Forzado de Sarvas	Platanus	Inicio del periodo	Chuine <i>et al.</i> (1999)
	Taxus		
	Uimus		

Modelo	Taxon	Parámetro modelado	Referencia bibliográfica
Forzado unificado	Olea	Inicio del periodo	Osborne <i>et al</i> . (2000)
Horas de grados de crecimiento (°GDH)	Betula	Duración del periodo	Zhang <i>et al</i> . (2014)
	0		71 (2014)
	Quercus	Duración del periodo	Zhang <i>et al</i> . (2014)
	4.7	Inicio del periodo	
Método de la hora fria	Alnus	Inicio del periodo	González-Parrado <i>et al.</i> (2006)
	Cupressaceae	Inicio del periodo	Fuertes-Rodríguez <i>et al</i> . (2007)
	Olea	Inicio del periodo	Rodríguez-Rajo <i>et al.</i> (2004a)
	Quercus	Inicio del periodo	García-Mozo et al. (2000)
			Rodríguez-Rajo et al. (2003)
			Rodríguez-Rajo et al. (2005)
Método del día frío	Alnus	Inicio del periodo	Novara <i>et al</i> . (2016)
	Corylus		
Paralelo	Acer	Inicio del periodo	Siniscalco et al. (2015)
	Aesculus	Inicio del periodo	Chuine et al. (1998)
Paralelo	Alnus		
	Alnus	Inicio del periodo	Siniscalco et al. (2015)
	Ambrosia	1	
	Artemisia		
	Buxus	Inicio del periodo	Chuine et al. 1998)
	Carpinus	Inicio del periodo	Siniscalco <i>et al.</i> 2015)
	Castanea	lilleto del periodo	Siniscules et ut. 2015)
	Luglans		
	Olea	Inicia dal namioda	Chuine at $al (1009)$
	Died		$\frac{1}{2} \frac{1}{2} \frac{1}$
	Plalanus	inicio del periodo	$\frac{\text{Chulle et al. (1998)}}{\text{Chulle et al. (2015)}}$
	T	T · · · · · ·	Siniscalco et al. (2015)
	Taxus Illmus	Inicio del periodo	Chuine et al. (1998)
Paralelo del tiempo térmico	Aesculus	Inicio del periodo	Chuine et al (1999)
Paralelo del tiempo térmico	Alnus	lilleto del periodo	
	Retula		
	Burus		
	Carpinus		
	Carpinus Cartan a		Io Chuine et al. (1998) Io Chuine et al. (1998) Siniscalco et al. (2015) Io Chuine et al. (1998) Io Chuine et al. (1998)
	Orea Inicio del periodo Platanus Inicio del periodo Taxus Inicio del periodo Ulmus Inicio del periodo Aesculus Inicio del periodo Alnus Betula Buxus Carpinus Castanea Corylus Olea Platanus Taxus Ulmus		
	Olea	Jastanea Juglans Dlea Inicio del periodo Chuine et al. (1998) Platanus Inicio del periodo Chuine et al. (1998) Siniscalco et al. (2015) Faxus Inicio del periodo Ulmus Aesculus Inicio del periodo Aluss Betula Buxus Carpinus Castanea Corylus Olea Platanus Inicio del periodo Chuine et al. (1999)	
	Alnus Inicio del periodo Novara et al. (2016) Acer Inicio del periodo Siniscalco et al. (2015) Acexulus Inicio del periodo Chuine et al. (1998) Alnus Inicio del periodo Siniscalco et al. (2015) Acexulus Inicio del periodo Siniscalco et al. (2015) Alnus Inicio del periodo Siniscalco et al. (2015) Antrenisia Buzus Inicio del periodo Chuine et al. (1998) Carpinus Inicio del periodo Siniscalco et al. 2015) Castanea Jugtans Inicio del periodo Chuine et al. (1998) Platanus Olea Inicio del periodo Chuine et al. (1998) Platanus Taxus Inicio del periodo Chuine et al. (1998) Ulnus Aesculus Inicio del periodo Chuine et al. (1998) Ulnus Betula Buzus Carpinus Carpinus Castanea Corylus Olea Platanus Inicio del periodo Chuine et al. (1999) Alnus Buzus Inicio del periodo Chuine et al. (1999) Alnus		
	Ulmus		
Paralelo Sarvas	Aesculus	Inicio del periodo	Chuine <i>et al.</i> (1999)
	Alnus		
	Betula		
	Buxus		
	Carpinus		
	Castanea		
	Corylus		
	Olea		
	Platanus		
	Taxus		
	Illmus		
Primavera cálida	r det dempo termico Aesculus Inicio del periodo Chuine et al. (1999) Alnus Betula Buxus Carpinus Castanea Corylus Olea Platanus Taxus Ulmus o Sarvas Aesculus Inicio del periodo Chuine et al. (1999) Alnus Betula Buxus Carpinus Castanea Corylus Olea Platanus Taxus Ulmus Vera cálida Acer Inicio del periodo Siniscalco et al. (2015) Alnus Inicio del periodo Chuine et al. (1998) Vera cálida Acer Inicio del periodo Chuine et al. (1998) Alnus Inicio del periodo Chuine et al. (1998)		
Buxus Carpinus Castanea Corylus Olea Platanus Taxus Ulmus Paralelo Sarvas Aesculus Inicio Alnus Betula Buxus Carpinus Carpinus Carpinus Castanea Corylus Olea Platanus Taxus Ulmus Primavera cálida Acer Inicio Alnus Inicio Anbrosia Inicio Antus Inicio Aunus Inicio Aunus Inicio Aunus Inicio Carpinus Inicio Carpinus Inicio Carpinus Inicio	Inicio del periodo	$\frac{1}{2} Chuine et al. (1998)$	
	Alnus	Inicio del periodo	$\frac{(1)}{(1)}$
	mero dei periodo	$\frac{\text{Chunc et al. (1990)}}{\text{Siniscoleo at al. (2015)}}$	
	rutanus Inicio del periodo Chuine et al. (1998) Taxus Inicio del periodo Chuine et al. (1998) Ulmus Inicio del periodo Chuine et al. (1998) el tiempo térmico Aesculus Inicio del periodo Chuine et al. (1999) Alnus Betula Buxus Castanea Carpinus Castanea Corylus Olea Platanus Taxus Ulmus Inicio del periodo Chuine et al. (1999) arvas Aesculus Inicio del periodo Chuine et al. (1999) arvas Aesculus Inicio del periodo Chuine et al. (1999) castanea Corylus Olea Platanus Buxus Carpinus Castanea Corylus Olea Platanus Castanea Corylus Olea Platanus Taxus Ulmus Castanea Corylus Olea Platanus Taxus Ulmus Inicio del periodo Siniscalco et al. (2015) cálida Acer Inicio del periodo Chuine et al. (1998) Alnus Inicio del periodo Chuine et al. (2015) Asseculus Inicio del periodo Chuine et al. (2015) Asterisia Inicio del periodo Chuine et al.	$\frac{1}{2} \frac{1}{2} \frac{1}$	
CastaneaJuglansOleaPlatanusTaxusUlmusParalelo del tiempo térmicoAesculusAlnusBetulaBuxusCarpinusCastaneaCorylusOleaPlatanusTaxusUlmusParalelo SarvasAesculusAlnusBetulaBuxusCastaneaCorylusOleaPlatanusTaxusUlmusBetulaBuxusCastaneaCorylusOleaPlatanusTaxusUlmusPrimavera cálidaAccerAesculusAlnusAnbrosiaArtemisiaBuxusCarpinus </td <td>Ambrosia</td> <td>micio del periodo</td> <td>Siniscaico el al. (2015)</td>	Ambrosia	micio del periodo	Siniscaico el al. (2015)
	Ariemisia	Inicia dal	Chuing at -1 (1000)
	Duxus Carpinus	Inicio del periodo	$\frac{\text{Cnume et al. (1998)}}{\text{Siniscalco et al. (2015)}}$
	Carpinus	meto del periodo	Siniscaico <i>ei ui</i> . (2015)
	Casianea		

Modelo	Taxon	Parámetro modelado	Referencia bibliográfica
	Juglans		
	Olea	Inicio del periodo	Chuine et al. (1998)
	Platanus	Inicio del periodo	Chuine et al. (1998)
		-	Siniscalco et al. (2015)
	Taxus Ulmus	Inicio del periodo	Chuine <i>et al</i> . (1998)
Q10	Poaceae	Inicio del periodo	Laaidi (2001a)
Secuencial	Acer	Inicio del periodo	Siniscalco et al. (2015)
	Aesculus	Inicio del periodo	Chuine et al. (1998)
	Alnus		
	Alnus	Inicio del periodo	Siniscalco et al. (2015)
	Ambrosia		
	Artemisia		
	Buxus	Inicio del periodo	Chuine <i>et al.</i> (1998)
	Carpinus	Inicio del periodo	Siniscalco et al. (2015)
	Castanea		
	Juglans	* * * * * * *	CI (1000)
	Olea	Inicio del periodo	$\frac{\text{Chuine et al. (1998)}}{(1008)}$
	Platanus	Taxon Parámetro modelado Referencia bibliográfica Inglans	
	Tanua		
	Amprosia <u>Artemisia</u> <u>Buxus</u> Inicio del periodo Chui <u>Carpinus</u> Inicio del periodo Sinis <u>Castanea</u> <u>Juglans</u> <u>Olea</u> Inicio del periodo Chui <u>Platanus</u> Inicio del periodo Chui <u>Sinis</u> <u>Taxus</u> Inicio del periodo Chui <u>Ulmus</u> zial del tiempo térmico <u>Aesculus</u> Inicio del periodo Chui <u>Alnus</u> <u>Betula</u> <u>Buxus</u> <u>Carpinus</u> <u>Castanea</u> <u>Corylus</u> <u>Olea</u> <u>Platanus</u> <u>Taxus</u> <u>Ulmus</u> <u>Cial Sarvas</u> <u>Aesculus</u> Inicio del periodo Chui <u>Alnus</u> <u>Betula</u> <u>Buxus</u> <u>Carpinus</u> <u>Castanea</u> <u>Corylus</u> <u>Olea</u> <u>Platanus</u> <u>Taxus</u> <u>Ulmus</u> <u>Etula</u> <u>Buxus</u> <u>Betula</u> <u>Buxus</u> <u>Chui</u> <u>Alnus</u> <u>Betula</u> <u>Buxus</u> <u>Chui</u> <u>Alnus</u> <u>Betula</u> <u>Buxus</u> <u>Betula</u> <u>Buxus</u>	Chume <i>et al.</i> (1998)	
Secuencial del tiempo térmico	Aesculus	Inicio del periodo	Chuine <i>et al</i> (1999)
Seedeneiar der dempo termico	Alnus	inicio del periodo	
	Betula		
	Buxus		
	Carpinus		
	Castanea		
	Corylus		
	Olea		
	Platanus		
	Taxus		odo Chuino <i>et al.</i> (1999)
Secuencial Sarvas	Ulmus		
Secuencial Sarvas	mpo térmico Aesculus Inicio del periodo Chuine et al. (1999) Alnus Betula Buxus Carpinus Castanea Corylus Olea Platanus Taxus Ulmus S Aesculus Inicio del periodo Chuine et al. (1999) Alnus Betula Buxus		
	Betula Buxus Carpinus Castanea Corylus Olea Platanus Taxus Ulmus Aesculus Inicio del periodo Chuine et al. (1999) Alnus Betula Buxus Curriero		
Secuencial Sarvas	Betula		
	Orda Inicio del periodo Chuine et al. (1998) Tavus Inicio del periodo Chuine et al. (1998) Ulmus Inicio del periodo Chuine et al. (1998) Poaccae Inicio del periodo Siniscalco et al. (2015) Acer Inicio del periodo Siniscalco et al. (2015) Acer Inicio del periodo Chuine et al. (1998) Almus Inicio del periodo Chuine et al. (2015) Arcensida Chuine et al. (2015) Amus Almus Inicio del periodo Siniscalco et al. (2015) Antremisia Chuine et al. (1998) Carpinus Inicio del periodo Chuine et al. (1998) Carpinus Carsinus Inicio del periodo Chuine et al. (1998) Platanus Inicio del periodo Chuine et al. (1998) Ulmus Inicio del periodo Chuine et al. (1999) Almus Inicio del periodo Chuine et al. (1999) Almus Inicio de		
	Carpinus		nicio del periodo Chuine et al. (1998) nicio del periodo Chuine et al. (2015) nicio del periodo Laaidi (2001a) nicio del periodo Siniscalco et al. (2015) nicio del periodo Chuine et al. (1998) nicio del periodo Chuine et al. (1999) nicio del periodo Laaidi et al. (2003) nicio del periodo Laaidi et al. (2011) nicio del periodo Ganzález-Parrado et al. (2014) nicio del periodo Ganzález-Parrado et al. (2014) nicio del periodo Ganzález-Parrado et al. (2014) nicio del periodo Chuine et al. (2015) nicio del periodo Chuine et al. (2010) nicio del periodo Chuine et al. (2010) nicio del periodo Chuine et al. (2011) nicio del periodo Chuine et al. (2013) nicio del periodo Chuine et al. (2014) nicio del periodo Chuine et al. (2015) nicio del periodo Chuine et al. (2016) nicio del periodo Chuine et al. (2017) nicio del periodo
	Castanea		
	Corylus	agains Inicio del periodo Chuine et al. (1998) Vatanus Inicio del periodo Siniscale et al. (2015) izsus Inicio del periodo Siniscale et al. (2015) izsus Inicio del periodo Siniscale et al. (2015) izsus Inicio del periodo Siniscale et al. (2015) icsculus Inicio del periodo Chuine et al. (1998) ilaus Inicio del periodo Siniscale et al. (2015) ilaus Inicio del periodo Chuine et al. (1998) ilatanus Inicio del periodo Chuine et al. (2015) ilaus Inicio del periodo Chuine et al. (2015) il	
	Died		
	T tatanus Tarus		
Secuencial Sarvas Secuencial Sarvas Secuencial Sarvas Aesculus Alnus Betula Buxus Carpinus Castanea Corylus Olea Platanus Taxus Ulmus Suma de temperatura Ambrosia			
Secuencial Sarvas Aesculus Inicio del periodo Chuine et al. (1999) Alnus Betula Buxus Carpinus Carpinus Castanea Corylus Olea Platanus Taxus Ulmus Ulmus Laaidi et al. (2003) Suma de temperatura Ambrosia Duración del periodo Laaidi et al. (2003) Inicio del periodo Betula Inicio del periodo Laaidi (2001b) Olea Inicio del periodo Galán et al. (2001)	Laaidi <i>et al.</i> (2003)		
	Inicio del periodo		
	Betula Buxus Carpinus Castanea Corylus Olea Platanus Taxus Ulmus temperatura Ambrosia Duración del periodo Laaidi (2001b) Olea Betula Inicio del periodo Laaidi (2001b) Olea Inicio del periodo Betula Inicio del periodo Plantago Inicio del periodo Poaceae Inicio del periodo		
	Plantago	Inicio del periodo	eriodo Laaidi <i>et al.</i> (2003) eriodo Laaidi (2001b) eriodo Galán <i>et al.</i> (2001) eriodo González-Parrado <i>et al.</i> (2014) eriodo Laaidi (2001a) Myszkowska (2014) eriodo García-Mozo <i>et al.</i> (2000) +
	Poaceae	Inicio del periodo	Laaidi (2001a)
			Galán et al. (2001) González-Parrado et al. (2014) Laaidi (2001a) Myszkowska (2014) García-Mozo et al. (2000) +
	Quercus	Inicio del periodo	García-Mozo <i>et al</i> . (2000) +
Suma de temperatura de doble umbral	Betula	Duración del periodo	Linkosalo <i>et al.</i> (2010)
Tiempo de forzado térmico	Aesculus	Inicio del periodo	Chuine <i>et al</i> . (1999)
	Alnus		
	Betula		
	Buxus Carrieus		
	Castanca		
	Cusiuneu		

Modelación espacio-temporal de polen y esporas de hogos aerovagantes de Catalunya (1994-2015)

Modelo	Taxon	Parámetro modelado	Referencia bibliográfica
	Corylus		
	Olea	Inicio del periodo	Chuine et al. (1999)
			Osborne <i>et al</i> . (2000)
	Platanus	Inicio del periodo	Chuine et al. (1999)
	Taxus		
	Ulmus		
Tiempo térmico	Olea	Inicio del periodo	Osborne <i>et al</i> . (2000)
Unidades de calor	Olea	Inicio del periodo	Galán <i>et al.</i> (2001)
	Quercus	Inicio del periodo	García-Mozo et al. (2002)
Unidades de forzado y frio	Alnus	Inicio del periodo	Pauling et al. (2014)
	Betula		
	Corylus		Chuine et al. (1999) Osborne et al. (2000) Chuine et al. (1999) Osborne et al. (2000) Galán et al. (2001) García-Mozo et al. (2002) Pauling et al. (2014) García-Mozo et al. (2008) Orlandi et al. (2006)
	Fraxinus		
	Poaceae		
	Quercus	Día pico	García-Mozo et al. (2008)
		Inicio del periodo	
Unidades de frio	Olea	Día pico	Orlandi et al. (2006)

Referencias bibliográficas del anexo 1.B

- Achmakh L, Bouziane H, Aboulaich N, Trigo MM, Janati A, & Kadiri M (2015) Airborne pollen of *Olea europaea L*. in Tetouan (NW Morocco): heat requirements and forecasts. Aerobiologia 31:191–199. doi: 10.1007/s10453-014-9356-0
- Alcázar P, García-Mozo H, Trigo MM, Ruiz L, González-Minero FJ, Hidalgo P, Díaz de la Guardia C, & Galán C (2011) *Platanus* pollen season in Andalusia (southern Spain): trends and modeling. J Environ Monit 13:2502. doi: 10.1039/c1em10355e
- Chuine I, Cour P, & Rousseau DD (1998) Fitting models predicting dates of flowering of temperate-zone trees using simulated annealing. Plant Cell Environ 21:455–466. doi: 10.1046/j.1365-3040.1998.00299.x
- Chuine I, Cour P, & Rousseau DD (1999) Selecting models to predict the timing of flowering of temperate trees: implications for tree phenology modelling. Plant Cell Environ 22:1–13. doi: 10.1046/j.1365-3040.1999.00395.x
- Frenguelli G, & Bricchi E (1998) The use of the pheno-climatic model for forecasting the pollination of some arboreal taxa. Aerobiologia 14:39–44. doi: 10.1007/BF02694593
- Fuertes-Rodríguez CR, González-Parrado Z, Vega-Maray AM, Valencia-Barrera RM, & Fernández-González D (2007) Effect of air temperature on forecasting the start of Cupressaceae pollen type in Ponferrada (Leon, Spain). Ann Agric Environ Med 14:237.
- Galán C, García-Mozo H, Cariñanos P, Alcázar P, & Domínguez-Vilches E (2001) The role of temperature in the onset of the *Olea europaea L*. pollen season in southwestern Spain. Int J Biometeorol 45:8–12. doi: 10.1007/s004840000081
- Galán C, García-Mozo H, Vázquez L, Ruiz L, Díaz de la Guardia C, & Trigo MM (2005) Heat requirement for the onset of the *Olea europaea L*. pollen season in several sites in Andalusia and the effect of the expected future climate change. Int J Biometeorol 49:184–188. doi: 10.1007/s00484-004-0223-5
- García-Mozo H, Chuine I, Aira MJ, Belmonte J, Bermejo D, Díaz de la Guardia C, Elvira B, Gutiérrez M, Rodríguez-Rajo J, Ruiz L, Trigo MM, Tormo R, Valencia R, & Galán C (2008) Regional phenological models for forecasting the start and peak of the *Quercus* pollen season in Spain. Agric For Meteorol 148:372–380. doi: 10.1016/j.agrformet.2007.09.013
- García-Mozo H, Galán C, Aira MJ, Belmonte J, Díaz de la Guardia C, Fernández D, Gutierrez AM, Rodriguez FJ, Trigo MM, & Dominguez-Vilches E (2002) Modelling start of oak pollen season in different climatic zones in Spain. Agric For Meteorol 110:247–257. doi: 10.1016/S0168-1923(02)00003-5
- García-Mozo H, Galán C, Gomez-Casero MT, & Dominguez E (2000) A comparative study of different temperature accumulation methods for predicting the start of the *Quercus* pollen season in Cordoba (South West Spain). Grana 39:194–199. doi: 10.1080/00173130051084322

- García-Mozo H, Galán C, Jato V, Belmonte J, Díaz de la Guardia C, Fernández D, Gutiérrez M, Aira MJ, Roure JM, Ruiz L, Trigo MM, & Dominguez-Vilches E (2006) *Quercus* pollen season dynamics in the Iberian Peninsula: response to meteorological parameters and possible consequences of climate change. Ann Agric Environ Med 13:209.
- García-Mozo H, Orlandi F, Galán C, Fornaciari M, Romano B, Ruiz L, Díaz de la Guardia C, Trigo MM, & Chuine I (2009) Olive flowering phenology variation between different cultivars in Spain and Italy: modeling analysis. Theor Appl Climatol 95:385–395. doi: 10.1007/s00704-008-0016-6
- González-Parrado Z, Fuertes-Rodríguez CR, Vega-Maray AM, Valencia-Barrera RM, Rodríguez-Rajo FJ, & Fernández-González D (2006) Chilling and heat requirements for the prediction of the beginning of the pollen season of *Alnus* glutinosa (L.) Gaertner in Ponferrada (León, Spain). Aerobiologia 22:47–53. doi: 10.1007/s10453-005-9008-5
- González-Parrado Z, Valencia-Barrera RM, Vega-Maray AM, Fuertes-Rodríguez CR, & Fernández-González D (2014) The weak effects of climatic change on *Plantago* pollen concentration: 17 years of monitoring in Northwestern Spain. Int J Biometeorol 58:1641–1650. doi: 10.1007/s00484-013-0768-2
- Kasprzyk I (2009) Forecasting the start of *Quercus* pollen season using several methods the evaluation of their efficiency. Int J Biometeorol 53:345–353. doi: 10.1007/s00484-009-0221-8
- Laaidi M (2001a) Forecasting the start of the pollen season of Poaceae: evaluation of some methods based on meteorological factors. Int J Biometeorol 45:1–7. doi: 10.1007/s004840000079
- Laaidi M (2001b) Regional variations in the pollen season of *Betula* in Burgundy: two models for predicting the start of the pollination. Aerobiologia 17:247–254. doi: 10.1023/A:1011899603453
- Laaidi M, Thibaudon M, & Besancenot J-P (2003) Two statistical approaches to forecasting the start and duration of the pollen season of *Ambrosia* in the area of Lyon (France). Int J Biometeorol 48:65–73. doi: 10.1007/s00484-003-0182-2
- Linkosalo T, Ranta H, Oksanen A, Siljamo P, Luomajoki A, Kukkonen J, & Sofiev M (2010) A double-threshold temperature sum model for predicting the flowering duration and relative intensity of *Betula pendula* and *B. pubescens*. Agric For Meteorol 150:1579–1584. doi: 10.1016/j.agrformet.2010.08.007
- Malaspina TT, Cecchi L, Morabito M, Onorari M, Domeneghetti MP, & Orlandini S (2007) Influence of meteorological conditions on male flower phenology of *Cupressus sempervirens* and correlation with pollen production in Florence. Trees 21:507–514. doi: 10.1007/s00468-007-0143-1
- Myszkowska D (2014) Poaceae pollen in the air depending on the thermal conditions. Int J Biometeorol 58:975–986. doi: 10.1007/s00484-013-0682-7
- Novara C, Falzoi S, Morgia VL, Spanna F, & Siniscalco C (2016) Modelling the pollen season start in *Corylus avellana* and *Alnus glutinosa*. Aerobiologia 32:555–569. doi: 10.1007/s10453-016-9432-8
- Orlandi F, Lanari D, Romano B, & Fornaciari M (2006) New model to predict the timing of olive (*Olea europaea*) flowering: A case study in central Italy. N Z J Crop Hortic Sci 34:93–99. doi: 10.1080/01140671.2006.9514392
- Osborne CP, Chuine I, Viner D, & Woodward FI (2000) Olive phenology as a sensitive indicator of future climatic warming in the Mediterranean. Plant Cell Environ 23:701–710. doi: 10.1046/j.1365-3040.2000.00584.x
- Pauling A, Gehrig R, & Clot B (2014) Toward optimized temperature sum parameterizations for forecasting the start of the pollen season. Aerobiologia 30:45–57. doi: 10.1007/s10453-013-9308-0
- Rodríguez-Rajo FJ, Dacosta N, & Jato V (2004a) Airborne olive pollen in Vigo (Northwest Spain): a survey to forecast the onset and daily concentrations of the pollen season. Grana 43:101–110. doi: 10.1080/00173130410019622
- Rodríguez-Rajo FJ, Dopazo A, & Jato V (2004b) Environmental factors affecting the start of pollen season and concentrations of airborne *Alnus* pollen in two localities of Galicia (NW Spain). Ann Agric Environ Med 11:35–44.
- Rodríguez-Rajo FJ, Frenguelli G, & Jato V (2003) The influence of air temperature on the starting date of *Quercus* pollination in the South of Europe. Grana 42:145–152. doi: 10.1080/00173130310016130
- Rodríguez-Rajo FJ, Méndez J, & Jato V (2005) Factors affecting pollination ecology of *Quercus* anemophilous species in north-west Spain. Bot J Linn Soc 149:283–297. doi: 10.1111/j.1095-8339.2005.00460.x

- Siniscalco C, Caramiello R, Migliavacca M, Busetto L, Mercalli L, Colombo R, & Richardson AD (2015) Models to predict the start of the airborne pollen season. Int J Biometeorol 59:837–848. doi: 10.1007/s00484-014-0901-x
- Zhang Y, Bielory L, Cai T, Mi Z, & Georgopoulos P (2015) Predicting onset and duration of airborne allergenic pollen season in the United States. Atmos Environ 103:297–306. doi: 10.1016/j.atmosenv.2014.12.019
- Zhang Y, Bielory L, & Georgopoulos PG (2014) Climate change effect on *Betula* (birch) and *Quercus* (oak) pollen seasons in the United States. Int J Biometeorol 58:909–919. doi: 10.1007/s00484-013-0674-7

Anexo 1.C Estudios aerobiológicos de polen y esporas de hongos aerovagantes donde se han aplicado "Otros modelos" (1998-2015).

Presentación

Modelos predictivos (ordenados alfabéticamente) correspondientes a la clasificación "Otros Modelos" recopilados del periodo 1998-2015.

Por columnas se muestra: el nombre del modelo, tipo de bioaerosol modelado o taxon, parámetro modelado y referencia bibliográfica.

Abreviaturas

***: Estiman la concentración por umbrales.
Aspec.-Penic.: Aspergillus-Penicillium.
¹ polen o esporas de hongos sin especificar.

Modelo	Taxon	Parámetro modelado	Referencia bibliográfica
Índice taxonómico	Quercus	Inicio del periodo	Kasprzyk (2009)
Índice bioclimático	Polen ¹	Duración del periodo	Valencia-Barrera et al. (2002)
	Quercus	Inicio del periodo	Kasprzyk (2009)
Kriging	Acer	Estimación espacial	DellaValle et al. (2012)
	Olea	Estimación espacial	Alba et al. (2006)
	Poaceae	Estimación espacial	DellaValle et al. (2012)
	Quercus		
	Polen de árboles ¹		
	Polen de hierbas1		
Krigin-Regresión lineal-Autocorrección espacial	Olea	Estimación espacial	Rojo <i>et al.</i> (2016)
Longitudinal	Acer	Estimación espacial	DellaValle et al. (2012)
	Poaceae		
	Quercus		
	Polen de árboles ¹		
	Polen de hierbas ¹		
Método de la estación más cercana	Polen de árboles ¹ Polen de hierbas ¹ más cercana Acer Estimación espacial DellaValle et al. (2012) Poaceae		
	Poaceae	é árboles ¹ e hierbas ¹ Estimación espacial DellaValle <i>et al.</i> (2012)	
	Quercus		
	Polen de árboles ¹		
	Polen de hierbas1		
Modelo de regresión del uso del suelo	AsperPenic.	Estimación espacial	Kallawicha et al. (2015)
	Cladosporium		
	Esporas de hongos ¹		
Predicción basado en las medias diarias	Poaceae	Inicio del periodo	Tassan-Mazzocco et al. (2015)
		Concentración diaria	_
		Concentración semanal	
	Urticaceae	Inicio del periodo	Tassan-Mazzocco et al. (2015)
		Concentración diaria	_
		Concentración semanal	
Vecino más cercano	Ambrosia	Concentración diaria	Matyasovszky & Makra (2012) ***

Referencias bibliográficas del anexo 1.C

- Alba F, Nieto-Lugilde D, Comtois P, Díaz de la Guardia C, De Linares C, & Ruiz L (2006) Airborne-pollen map for *Olea europaea L*. in eastern Andalusia (Spain) using GIS: Estimation models. Aerobiologia 22:109–118. doi: 10.1007/s10453-006-9024-0
- DellaValle CT, Triche EW, & Bell ML (2012) Spatial and temporal modeling of daily pollen concentrations. Int J Biometeorol 56:183–194. doi: 10.1007/s00484-011-0412-y
- Kallawicha K, Tsai Y-J, Chuang Y-C, Lung S-CC, Wu C-D, Chen T-H, Chen P-C, Chompuchan C, & Chao HJ (2015) The spatiotemporal distributions and determinants of ambient fungal spores in the Greater Taipei area. Environ Pollut 204:173– 180. doi: 10.1016/j.envpol.2015.04.020
- Kasprzyk I (2009) Forecasting the start of *Quercus* pollen season using several methods the evaluation of their efficiency. Int J Biometeorol 53:345–353. doi: 10.1007/s00484-009-0221-8
- Matyasovszky I, & Makra L (2012) Estimating extreme daily pollen loads for Szeged, Hungary using previous-day meteorological variables. Aerobiologia 28:337–346. doi: 10.1007/s10453-011-9238-7
- Rojo J, Orlandi F, Pérez-Badia R, Aguilera F, Ben Dhiab A, Bouziane H, Díaz de la Guardia C, Galán C, Gutiérrez-Bustillo AM, Moreno-Grau S, Msallem M, Trigo MM, & Fornaciari M (2016) Modeling olive pollen intensity in the Mediterranean region through analysis of emission sources. Sci Total Environ 551–552:73–82. doi: 10.1016/j.scitotenv.2016.01.193
- Tassan-Mazzocco F, Felluga A, & Verardo P (2015) Prediction of wind-carried Gramineae and Urticaceae pollen occurrence in the Friuli Venezia Giulia region (Italy). Aerobiologia 31:559–574. doi: 10.1007/s10453-015-9386-2
- Valencia-Barrera R, Comtois P, & Fernández-González D (2002) Bioclimatic indices as a tool in pollen forecasting. Int J Biometeorol 46:171–175. doi: 10.1007/s00484-002-0138-y

Anexo 1.D Estudios de dispersión de polen y esporas y sus respectivos módulos con escala desde meso-escalar hasta larga distancia (1998-2015).

Presentación

Modelos de dispersión (ordenados alfabéticamente) de aplicación desde una escala meso hasta una escala de larga distancia, recopilados del periodo 1998-2015.

Por columnas, se muestra: el nombre del modelo de dispersión, tipo de bioaerosol modelado o taxon, modelo meteorológico, módulo de emisión, área potencial o mapa forestal, configuración de salida del modelo de dispersión (especificando las dimensiones de la resolución y altitud o número de capas verticales) y, localización y referencia bibliográfica.

Abreviaturas

ACDEP: Atmospheric Chemistry and Deposition. AGROCLIM: Management of the national agro-climatic network of INRA AIMS: Integrated Aerobiology Modeling System. AMeDAS: Automated Meteorological Data Acquisition System. ANN: Redes Neuronales Artificiales. ARL: Air Resources Laboratory. ART: Aerosols and Reactive Traces Gases. BEIS: Biogenic Emissions Inventory System. BELD3: Biogenic Emissions Landcover Database version 3.1. BKG: Federal Agency for Cartography and Geodesy. CALMET: diagnostic meteorological model in 3 dimensions. CHENO.- AMARA .: Chenopodiaceae - Amaranthaceae. CHIRIME: chemistry-transport model. CLC: Corine Land Cover. CLIMINRA: Clima of the French National Institute for Agricultural Research CMAO: Community Multi-scale Air Quality Model. COAMPS: Coupled Ocean/Atmosphere Mesoscale Prediction System. CORINE: Coordinate information on the environment. COSMO: Consortium for Small Scale Modeling. DLM: Land-use data of the core region. ECMWF: European Centre of Medium Range Weather Forecast. EMEP: European Monitoring and Evaluation Programme. Eta: Meteorological model of the NCEP's. EURAD-IM: European Air Pollution and Dispersion-Inverse Model. FE: Factor de emisión. FIA: Forest Inventory and Analysis data. FNL: Final. GDAS: Global Data Analysis System. GDD: Growing Degree Days. GFS: Global Forecast System. GLC 2000: Global Land Cover 2000.

HIRLAN: High Resolution Limited Area Model.

HYSPLIT: Hybrid Single-Particle Lagrangian Integrated Trajectory Model.
IFS: Integrated Forecast System.
KAMM: Meteorological Model of Institute for meteorology and climate research.
LOTOS-EUROS: Long Term Ozone Simulation - European

LOTOS-EUROS: Long Term Ozone Simulation - European Operational Smog.

LULC: Land Use and Land Cover.

LWC: London Weather Centre.

MATCH: Mesoscale Atmospheric Transport and CHemistry. MEGAN: Model of Emissions of Gases and Aerosols from Nature. METRAS: Meteorological institute mesoescale model, University of Hamburg. MM5: Fifth-Generation Penn State/NCAR Mesoscale Model. MOCAGE: multiscale global chemistry and transport model. NASS CDL: National Agriculture Statistics Service Cropland Data Layer. NCAR: National Center for Atmospheric Research. NCEP: National Center for Environmental Prediction. NEXRAD: Next-Generation Radar. NLCD: National Land Cover Data. NR: No Reportado. NRCS: Natural Resource Conservation Service. NWS: National Weather Service. PELCOM: land-cover data set and the Pan-European Land Cover Mapping. RCR: Regular Cycle Reference. SILAM: System for integrated modelling of atmospheric composition. STaMPS: The Simulator of the Timing and Magnitude of Pollen Season. THOR: Integrated Air Pollution Forecast System. USGS: U.S. Geological Survey. WMO: World Meteorological Organisation.

WRF: Weather Research and Forecasting.

¹ polen o esporas de hongos sin especificar.

Modelos de predicción y dispersión aplicados a polen y esporas de hongos en el aire

				Módulo	•	-
Modelo de dispersiónTaxonACDEPAmbro.ACDEPBetulaBetulaBetulaAIMSPhakopART modelAmbroBetulaBetulaCALPUFFOleaPhakop	Taxon	Modelo meteorológico 1	Módulo de emisión 2	Mapa forestal o de área potencial 3	Configuración de salida	Localización y Referencia bibliográfica
AIMS	Ambrosia	THOR y modelo Eta	NA, backward	NA, backward	39X39 km, 800msnm	Región balcánica (Šikoparija et al. 2009) Poznan, Polonia (Smith et al. 2008) Polonia (Stach et al. 2007) Rzeszów, Kraków and Poznań, Polonia (Kasprzyk et al. 2011)
	Betula	THOR y modelo Eta	NA, backward	NA, backward	39X39 km, 800msnm	Copenhague, Dinamarca (Skjøth <i>et al</i> . 2007)
						Copenhague, Dinamarca (Skjøth <i>et al.</i> 2008) Londres, UK (Skjøth <i>et al.</i>
AIMS	Phakopsora	NCEP/NCAR: NWS, NEXRAD	FE asociado con el viento, la precipitación y el porcentaje de área infectada con roya	Hectáreas de soja cultivada reportadas por la National Agricultural Statistical Service and Ontario Ministry of Agriculture, Food and Rural Affairs	10X10km, con 8 niveles de presión	2009) Sureste de EE UU (Isard <i>et al.</i> 2007)
				Área infectada con Phakopsora	10x10 km, 500, 600, 700, 800, 850, 900, 950 y 1000 kPa	500, 700, EE UU (Isard et al. 2011) 50 y 1000 Is máx. Alemania (Zink et al. 2012) Is máx. Suiza (Vogel et al. 2008)
ART model	Ambrosia	Modelo COSMO	FE asociado con la fuerza del viento	Mapa forestal	7X7 km, 40 capas máx. nivel 24 km	Alemania (Zink et al. 2012)
	Betula	Modelos IFS y COSMO	Parametrización con temperatura, humedad y velocidad del viento (u*) para la emisión (K _e). Tiene en cuenta la producción total de polen por árbol en los diferentes periodos de floración (C _e)	Uso del suelo del inventario forestal nacional	7X7 km, 40 capas máx. nivel 24 km	Suiza (Vogel <i>et al</i> . 2008)
	Esporas de hongos ¹	Modelo COSMO	FE asociado al uso del suelo	Base de datos GLC 2000	0.125x0.125°, 40 capas máx. nivel 24 km	Europa (Hummel et al. 2015)
			FE asociado con la humedad específica de la superficie, índice de área foliar y el uso del suelo	Base de datos GLC 2000	0.125x0.125°, 40 capas máx. nivel 24 km	Europa (Hummel et al. 2015)
Esporas de hongos ¹ Modelo COSMO CALPUFF Olea COAMI Phakopsora MM5, CALMI	Olea	COAMPS	FE asociado con °GDD	Imágenes satelitales (1:50000) y Gtopo30	1x1 km	Córdoba, España (Hidalgo <i>et al</i> . 2002)
	MM5, CALMET	FE calculado en diseño experimental	Área experimental de 12m de diámetro con una área central de 6x6 m con gramíneas infestadas	2.5X2.5 km, 0.5 m	Oregon, EE UU (Pfender et al. 2006)	
CHIRIME	Betula	Preprocesador interno	Módulo de emisión del modelo SILAM	Mapa Europeo forestal de <i>Betula</i>	0.15x0.15°, 91 capas	Europa (Sofiev et al. 2015)
CMAQ	Ambrosia	MM5	Parametrización con la temperatura, la humedad y velocidad del viento (U*) para la emisión	LULC de USGS, BELD3	12x12 km, 29 capas desde 20m de la superficie a 50 mb nivel	EE UU oriental (Efstathiou <i>et al</i> . 2011)

		-	Módulo	-	_
Taxon	Modelo meteorológico 1	Módulo de emisión	Mapa forestal o de área potencial 3	Configuración de salida	Localización y Referencia bibliográfica
1010		(K _e) y estado			
Betula	MM5	Tenologico (C _e) Parametrización con la temperatura, la humedad y velocidad del viento (U*) para la emisión (K _e) y estado fenológico (C)	LULC de USGS, BELD4	12x12 km, 29 capas desde 20m de la superficie a 50 mb nivel	EE UU oriental (Efstathiou et al. 2011)
	WRF	STaMPS	Fracción vegetal y uso del suelo de la base de datos del NLCD, FIA, NRCS CDL/NASS	4X4 km, 29 capas desde 40m de la superficie hasta 50 mb nivel	Sur de Carolina, EE UU (Zhang <i>et al.</i> 2014)
Bromus Juglans Morus Olea Platanus Quercus	WRF	STaMPS	Fracción vegetal y uso del suelo de la base de datos del NLCD, FIA, NRCS CDL/NASS	4X4 km, 29 capas desde 40m de la superficie hasta 50 mb nivel	Sur de Carolina, EE UU (Zhang <i>et al</i> . 2014)
Acer	КАММ	Parametrización con la temperatura y velocidad del viento (u*) para la emisión (K _e) y resuspensión del polen (K _r)	Mapa forestal	4X4 km, 35 capas desde 14m hasta 450 m	Suroeste de Alemania (Helbig <i>et al.</i> 2004)
Betula	Preprocesador interno	Módulo de emisión del modelo SILAM	Mapa Europeo forestal de <i>Betula</i>	0.25x0.25°, 39-91 capas	Europa (Sofiev et al. 2015)
Cryptomeria	AMeDAS	Parametrización con la temperatura, velocidad del viento y la calidad de la flor masculina	Mapas de vegetación (1:25000) e imágenes satelitales	10x10 km, 1 capa	Tohoku, Japón (Kawashima & Takahashi 1999)
Betula	WRF	Módulo de emisión del modelo SILAM	Mapa Europeo forestal de <i>Betula</i>	15 km, 23 capas	Europa (Sofiev et al. 2015)
Alnus	GDAS - ARL	NA, backward	NA, backward	1X1°, 500msnm	Worcester, UK (Skjøth <i>et al.</i> 2015a)
	Betula Preprocesador interno Módulo de emisión del modelo SILAM Mapa Europeo forestal de Betula 0.25x0.25°, 39-91 capas Europa (Sofiev et al. 2015 Cryptomeria AMeDAS Parametrización con la temperatura, velocidad del viento y la calidad de la flor masculina 10x10 km, 1 capa Tohoku, Japón (Kawashin & Takahashi 1999) Betula WRF Módulo de emisión del modelo SILAM Mapa Europeo forestal de Betula 15 km, 23 capas Europa (Sofiev et al. 2015 & Worcester, UK (Skjøth et 2015a) Alnus GDAS - ARL NA, backward NA, backward 1X1°, 500msnm Worcester, UK (Skjøth et 2015a) GDAS - FNL - NA, backward NA, backward NR, 1500msnm Catalunya, España (Izquic	Polonia (Skjøth et al. 2015b)			
Bromus WRF STaMPS Fracción vegetal y uso del suelo de la sub del suelo de la obleta AX km. 29 capas desde 40m de la superficie hasta 50 mb nivel Sur de Carolina, EE U (Zhang et al. 2014) Moras base de datos del NLCD, FIA, NRCS 50 mb nivel Sur de Carolina, EE U (Zhang et al. 2014) Platanus Sur de Carolina, EE U uso del suelo de la Sur de Carolina, EE U (Zhang et al. 2014) Sur de Carolina, EE U (Zhang et al. 2014) DRAIS Acer KAMM Parametrización con la temperatura y velocidad del viento (u ^o) para la emisión (K,) y resuspensión del polen (K) 4X4 km, 35 capas desde 14m hasta 450 m Suroeste de Alemania (Helbig et al. 2004) EMEP Betula Preprocesador Módulo de emisión (K,) y resuspensión del model SILAM forstal de Betula 0.25x0.25°, 39-91 capas tartemo vegetación Earopa (Sofiev et al. 2 Eularian Type Cryptomeria AMeDAS Parametrización con la temperatura, vegetación 10x10 km, 1 capa Tohoku, Japón (Kawae & Takahashi 1999) Model WRF Módulo de emisión del model ol viento y la calidad de la imágenes saelitales 10x10 km, 1 capa Tohoku, Japón (Kawae & Takahashi 1999) HYSPLIT Ahues GDAS - ARL NA, backward NA, backward NA, backward NA, backward	Catalunya, España (Izquierdo <i>et al.</i> 2015)				
Alternaria	ARL	NA, backward	NA, backward	1X1°, 500msnm	Copenhague, Dinamarca (Skjøth <i>et al</i> . 2012)
	GDAS - ARL	NA, backward	NA, backward	1X1°, 100msnm	Bajadoz, España (Fernández- Rodríguez <i>et al.</i> 2015)
Bromus MRD Image: MRD Bromus WRF S Juglans Morus Olea Platanus Quercus DRAIS Acer DRAIS Acer KAMM P EMEP Betula Preprocesador M Eularian Cryptomeria AMeDAS MeDAS Type Interno d diffusion w M MM M M HYSPLIT Alnus GDAS - ARL Anbrosia ARL N GDAS - ARL N			NR, 500msnm	Worcester, UK (Sadyś et al. 2015b)	
Ambrosia	ARL	NA, backward	NA, backward	1x1°, 500msnm	Szeged, Hungría (Makra <i>et al.</i> 2016)
	GDAS	Modulu do emisión (K.) y estado fenológico (C.) Configuración do stalida (K.) y estado fenológico (C.) Configuración do stalida (K.) y estado fenológico (C.) EUU oriental (Efstathiou er al. 2011) Parametrización con (W ²) para la emisión (K.) y estado fenológico (C.) LULC de USG8, BELD4 12k1 2 km. 29 capas desde al. 2011) EUU oriental (Efstathiou er al. 2011) STaMPS Pracción vegetal y uso del suelo de la base de datos del NLCD, FIA, NRCS 4X4 km. 29 capas desde USD mi viel Sur de Carolina, EE UU (Zhang er al. 2014) STaMPS Fracción vegetal y uso del suelo de la base de datos del NLCD, FIA, NRCS 4X4 km. 35 capas desde UDL/NASS Sur de Carolina, EE UU (Zhang er al. 2014) I Parametrización con del modelo SILAM forestal de betada de polen (K.) 4X4 km. 35 capas desde vegetación (K) y rearapenión del polen (K.) Suroeste de Alemania (Helbig er al. 2004) Sador de loplen (K.) rearsalina forestal de Betala 0.25x0.25°, 39-91 capas (1.2000) e vegetación (K.) y rearapenión del modelo SILAM forestal de Betala 10x10 km. 1 capa (2.25x0.25°, 39-91 capas (2.25x0.25°, 39-91 capas (2.2004) Europa (Sofiev er al. 2015) AS Parametrización con masculina Magas de vegetación (1.23000) e valecidal del viento (1.23000) e stalada de la forestal de Betala 10x10 km. 1 capa (2.25x0.25°, 39-91 capas (2.2015) Europa (Sofiev er al. 2015) ARL NA, backward NA, backward 1X1°, 500msnm Worc			
				1x1°, 500, 1000 y 1500msnm	Llanura panónica (Šikoparija et al. 2013)
	GDAS - ARL	NA, backward	NA, backward	1x1°, 500, 1000 y 1500msnm	Poznań, Polonia (Grewling <i>et al.</i> 2016)
	_			2.5X2.5°, NR	Copenhague y Vigord, Dinamarca (Sommer <i>et al.</i> 2015)
	GDAS - FNL	NA, backward	NA, backward	1x1°, 500 y 1500msnm	Catalunya, España (Fernández-Llamazares <i>et al.</i> 2012)
	GDAS - FNL - ARL	NA, backward	NA, backward	NR, 1500msnm	Catalunya, España (Izquierdo et al. 2015)
	Taxon Betula Bromus Juglans Morus Olea Platanus Quercus Acer Betula Cryptomeria Betula Alternaria Ambrosia	Modelo meteorológicoTaxonModelo meteorológicoBetulaMM5Bromus Juglans Morus Olea Platanus QuercusWRFAcerKAMMBetulaPreprocesador internoCryptomeriaAMeDASBetulaWRFAlnusGDAS - ARLAlternariaARLGDAS - ARLGDAS - ARLAmbrosiaARLGDAS - FNL - ARLGDAS - FNL - GDAS - ARL	Modelo meteorológico Módulo de emisión Taxon (K,) y estado fenológico (C,) Betula MM5	Modelo meteorológico Módulo de emisión (K,) y estado fenológico (C,) Mapa forestal o de área potencial de potencial secondo fenológico (C,) Betula MM5 Parametrización con la temperatura, la humedad y velocidad del viento (U*) para la emisión (K,) y estado fenológico (C,) LULC de USGS, BELD4 WRF STaMPS Fracción vegetal y uso del suelo de la base de datos del NLCD, FIA, NRCS CDL/NASS Bromus WRF STaMPS Fracción vegetal y uso del suelo de la base de datos del NLCD, FIA, NRCS CDL/NASS Quercus WRF STaMPS Fracción vegetal y uso del suelo de la base de datos del NLCD, FIA, NRCS CDL/NASS Quercus Parametrización con la temperatura y velocidad del viento (K,) y resuspensión del modelo SILAM Mapa forestal hages de vegeta vegetación (1:25000) e inágenes satelitales flor masculina Betula Preprocesador del modelo SILAM Mapa Europeo forestal de Betula GDAS - FNL NA, backward MA, backward Alternaria ARL NA, backward NA, backward Ambrosia ARL NA, backward NA, backward Ambrosia ARL NA, backward NA, backward Ambrosia ARL NA, backward NA, backward	Modelo meteorológico Módulo de emisión (k, y estado fenológico (C,) Mapa forestal o de rea potencial Configuración de salida Betula MM5 Parametrización con la temperatura, la humedad y velocidad del viento U/UC de USGS, BELD4 12x12 km, 29 capas desde 20m de la superficie a 50 mb nivel WRF STaMPS Pracción vegetal y uso del suelo de la NCCD, FIA, NRCS CDL/NASS 4X4 km, 29 capas desde 40m de la superficie hasta 50 mb aivel Bronus WRF STaMPS Pracción vegetal y uso del suelo de la NCCD, FIA, NRCS CDL/NASS 4X4 km, 29 capas desde 40m de la superficie hasta 50 mb aivel Morus WRF STaMPS Pracción vegetal y uso del suelo de la NCCD, FIA, NRCS CDL/NASS 4X4 km, 35 capas desde 40m de la superficie hasta 50 mb nivel Morus Parametrización com del todo tel subisón 4X4 km, 35 capas desde 40m de la superficie hasta 50 mb nivel 50 mb nivel Morus Parametrización com del todo tel SULAM Mapa forestal de Betula 4X4 km, 35 capas desde 40m de la superficie hasta 50 mb nivel Betula Preprocesador interno Mapa forestal de Betula 10x10 km, 1 capa GDAS - FNL MA, backward Mapa forestal de Betula 10x10 km, 1 capa Betula WRF Módulo de emisión del modelo SILAM

				Módulo	-	_
		Modelo		Mapa forestal o de		Localización v Referencia
lelo de		meteorológico	Módulo de emisión	área potencial	Configuración de salida	bibliográfica
ersion	Taxon	GES	NA, backward	NA, backward	NR, 500 y 850 hPa	Región norte-central de Italia
		015	i i i, ouoi i i u u	1 (1 1) Outer (1 u u u	1 (14, 2000 y 020 m u	(Cecchi et al. 2007)
						Región central de Italia (Cecchi <i>et al</i> . 2006)
		NCEP	NA, backward	NA, backward	NR, 500, 1500 y 3000msnm	Hungría (Makra & Pálfi 2007)
		NR	NA, backward	NA, backward	NR, 500, 1500 y 3000msnm	Hamburgo, Alemania; Szeged, Hungría y Salónica, Grecia (Makra <i>et al.</i> 2010)
		WMO	NR	NR	ódulo Inpa forestal o de ca potencial Configuración de salida Localización y Reference bibliográfica A, backward NR, 500 y 850 hPa Región norte-central de (Cecchi et al. 2007) A, backward NR, 500, 1500 y Hungría (Makra & Pálfi 3000msnm 2007) A, backward NR, 500, 1500 y Hamburgo, Alemania; 3000msnm 2007) A, backward NR, 500, 1500 y Hamburgo, Alemania; 3000msnm 2008 Yeiger (Makra & Pálfi 3000msnm Creci (Makra et al. 2013) A, backward NR, 100, 1500, 2500 y Islas Canarias, España 3000msnm 1x1°, 500nsnm (Zquierdo et al. 2011) A, backward NR, 1500msnm Catalunya, España (Laguerdo et al. 2015) A, backward NR, 1500msnm Catalunya, España (Laguerdo et al. 2015) A, backward NR, 1500msnm Catalunya, España (Laguerdo et al. 2006) Na, backward NR, 1000, 1500 y Studiati, Klaipeda y Vili 1500msnm Veriankaite et 2010) Veriankaite et 2010) IA, backward NR, 000 y 3000msnm Groenlandia (Rousseau 2003) IA, backward NR, 000 y 3000msnm Groenlandia (Rousseau 2003) IA, backward NR, 100, 1500, 2500 y Isla Can	Llanura panónica (Šikoparija <i>et al.</i> 2013)
	Arecaceae Artemisia	GDAS	NA, backward	NA, backward	NR, 100, 1500, 2500 y 3000msnm	Islas Canarias, España (Izquierdo et al. 2011)
	Betula	GDAS - ARL	NA, backward	NA, backward	1X1°, 500msnm	Worcester, UK (Skjøth <i>et al.</i> 2015a)
	Modelo meteorológico Módulo de Q OFS NA, backwi NCEP NA, backwi NR NA, backwi WMO NR Arecaceae GDAS Artemisia GDAS Betula GDAS - ARL NR NA, backwi ARCEP NA, backwi MMO NR Arecaceae GDAS - ARL NR NA, backwi ARL NA, backwi NR NA, backwi ARL NA, backwi NR NA, backwi ACEP NA, backwi Softrytis CLIMINRA, NCEP NA, backwi Clarpinus NR NA, backwi Cheno GDAS NA, backwi Cheno GDAS NA, backwi Cladosporium GDAS NA, backwi Corylus GDAS - FNL - NA, backwi Cyperaceae GDAS NA, backwi MM5 NA, backwi ARL NR Na, backwi ARL NR Na, backwi				Worcester, UK y Wrocłow Polonia (Skjøth <i>et al.</i> 2015b)	
		GDAS - FNL - ARL	NA, backward	NA, backward	NR, 1500msnm	Catalunya, España (Izquierdo <i>et al.</i> 2015)
		NCEP	NA, backward	NA, backward	200x200 km, 500, 1000 y 1500msnm	Siauliai, Klaipeda y Vilnius, Lituania (Veriankaitė <i>et al.</i> 2010)
					NR, 500, 1000 y 1500msnm	Localización y Referencia bibliográfica Región norte-central de Italia (Cecchi et al. 2007) Región central de Italia (Cecchi et al. 2006) Hungría (Makra & Pálfi 2007) Hamburgo, Alemania; Szeged, Hungría y Salónica, Grecia (Makra et al. 2010) Llanura panónica (Šikoparija et al. 2013) Islas Canarias, España (Izquierdo et al. 2011) Worcester, UK (Skjøth et al. 2015a) Worcester, UK y Wrocłow Polonia (Skjøth et al. 2015b) Catalunya, España (Izquierdo et al. 2015) Siauliai, Klaipeda y Vilnius, Lituania (Veriankaitė et al. 2010) Lituania (Šauliene & Veriankaite 2006) Dinamarca (Mahura et al. 2007) Sudeste de Francia (Leyronas & Nicot 2013) A Groenlandia (Rousseau et al. 2003) Mar de plata, Argentina (Gassmann & Pérez 2006) Isla Canaria, España (Izquierdo et al. 2011) Worcester, UK (Sadyś et al. 2015a) Catalunya, España (Izquierdo et al. 2015) Islas Canarias, España (Izquierdo et al. 2011) Catalunya, España (Belmonte et al. 2015) Islas Canarias, España (Belmonte et al. 2003) Worcester, UK (Sadyś et al. 2004) Groenlandia (Rousseau et al. 2014) EE UU (Van De Water & Levetin 2001) Mar de plata, Argentina (Gassmann & Pérez 20
		NR	NA, backward	NA, backward	NR	Dinamarca (Mahura <i>et al.</i> 2007)
	Botrytis	CLIMINRA, US1116, AGROCLIM, F- 84000 Avignon	NA, backward	NA, backward	NR, 1000, 1500 y 200msnm	Sudeste de Francia (Leyronas & Nicot 2013)
	Carpinus Carya	NR	NA, backward	NA, backward	NR, 0, 1000 y 3000msnm	Groenlandia (Rousseau <i>et al.</i> 2003)
	Celtis	NCEP	NA, backward	NA, backward	2.5X2.5°, con 17 niveles de presión	Mar de plata, Argentina (Gassmann & Pérez 2006)
	Cheno Amara.	GDAS	NA, backward	NA, backward	NR, 100, 1500, 2500 y 3000msnm	Isla Canaria, España (Izquierdo <i>et al.</i> 2011)
	Cladosporium	GDAS	NA, backward	NA, backward	1x1°, 500msnm	Worcester, UK (Sadyś <i>et al.</i> 2015a)
	Corylus	GDAS - FNL - ARL	NA, backward	NA, backward	NR, 1500msnm	Catalunya, España (Izquierdo et al. 2015)
	Cyperaceae	GDAS	NA, backward	NA, backward	NR, 100, 1500, 2500 y 3000msnm	Islas Canarias, España (Izquierdo et al. 2011)
	Fagus	GDAS - FNL - ARL	NA, backward	NA, backward	NR, 1500msnm	Catalunya, España (Izquierdo et al. 2015)
		MM5	NA, backward	NA, backward	1x1 km, 1500msnm	Catalunya, España (Belmonte et al. 2008)
		NR	Na, backward	NA, backward	NR, 0, 1000 y 3000msnm	Groenlandia (Rousseau <i>et al.</i> 2003)
	Ganoderma	GDAS	NA, backward	NA, backward	1X1°	Worcester, UK (Sadyś <i>et al.</i> 2014)
	Juniperus	NR	NA, backward	NA, backward	NR, 10, 200, 500 m	EE UU (Van De Water & Levetin 2001)
	Nothofagus	NCEP	NA, backward	NA, backward	2.5X2.5°, 17 capas	Mar de plata, Argentina (Gassmann & Pérez 2006)
	Olea	ECMWF	NA, backward	NA, backward	15x15 km, 8 capas (entre los 20m -6km)	Andalucía, España (Hernández-Ceballos <i>et al.</i> 2014b)
		GDAS	NA, backward	NA, backward	NR, 100, 1500, 2500 y 3000msnm	Islas Canarias, España (Izquierdo <i>et al.</i> 2011)
	Ganoderma Juniperus Nothofagus Olea	GDAS - ARL	NA, backward	NA, backward	1x1°, 200 y 500msnm	Bajadoz, España y Évora, Portugal (Fernández- Rodríguez <i>et al</i> . 2014)

M di

			-	Módulo		_
		Modelo		Mapa forestal o de		Lessia Defenseis
Modelo de dispersión	Taxon	meteorológico 1	Módulo de emisión 2	área potencial	Configuración de salida	bibliográfica
uispersion	Turon	GDAS - FNL	NA, backward	NA, backward	NR, 100 y 800msnm (Intervalos de 100m)	Córdoba, España (Hernández-Ceballos <i>et al.</i> 2011b)
		GDAS - WRF - ARW	NA, backward	NA, backward	1X1°, 100, 300, 500, 700 y 1000msnm	Córdoba, España (Hernández-Ceballos <i>et al.</i> 2014a)
	Phakopsora	MM5	Factor de emisión (109 esporas/ha-d)	Empleo un espacio de 2x2° en Colombia donde se ha reportado <i>Phakopsora</i> y prueban con diferentes puntos de emisión (9-90)	1X1 km en EE UU, 40, 1000 y 5000msnm	Sureste de EE UU (Pan <i>et al.</i> 2006)
	Pinus	NR	NA, backward	NA, backward	NR, 500, 1000 y 1500msnm	Kevo, Finlandia (Ertl <i>et al.</i> 2012)
	Poaceae	GDAS	NA, backward	NA, backward	NR, 100, 1500, 2500 y 3000msnm	Islas Canarias, España (Izquierdo <i>et al</i> . 2011)
	Poaceae	NR	NA, backward	NA, backward	NR, 500, 1500 y 3000msnm	Hamburgo, Alemania; Szeged, Hungría y Salónica, Grecia (Makra <i>et al.</i> 2010)
	Polen ¹	NR	NA, backward	NA, backward	NR, 0, 1000 y 3000msnm	Groenlandia (Rousseau et al. 2006, Rousseau et al. 2008)
	Quercus	GDAS	NA, backward	NA, backward	1x1°, 23 capas	Córdoba, España (Hernández-Ceballos <i>et al</i> . 2011a)
		GDAS - ARL	NA, backward	NA, backward	1X1°, 500msnm	Worcester, UK (Skjøth <i>et al.</i> 2015a)
					111x111 km, 500msnm	El Cabril y Córdoba, España (Hernández-Ceballos <i>et al.</i> 2015)
		MM5 y modelo Eta	Factor de emisión	Base de datos BELD3.1	12x12 km, NR	EE UU (Pasken & Pietrowicz 2005)
		NR	NA, backward	NA, backward	NR, 0, 1000 y 3000msnm	Groenlandia (Rousseau <i>et al.</i> 2003)
	Tsuga	NR	NA, backward	NA, backward	NR, 0, 1000 y 3000msnm	Groenlandia (Rousseau <i>et al.</i> 2003)
	Urticaceae	NR	NA, backward	NA, backward	NR, 500, 1500 y 3000msnm	Hamburgo, Alemania; Szeged, Hungría y Salónica, Grecia (Makra <i>et al.</i> 2010)
LOTOS- EUROS	Betula	Preprocesador interno	Módulo de emisión del modelo SILAM	Mapa Europeo forestal de <i>Betula</i>	0.5x0.25°, 69-91 capas por encima de 35km	Europa (Sofiev et al. 2015)
MATCH	Betula	Preprocesador interno	Módulo de emisión del modelo SILAM	Mapa Europeo forestal de <i>Betula</i>	0.2X0.2°, 91 capas	Europa (Sofiev et al. 2015)
METRAS model	Quercus	Modelo METRAS	FE asociado al registro de polen, condiciones meteorológicas que establecen la emisión y deposición del polen	Datos de la DLM and DGM2000 de la BKG	500x500m, 32 capas	Norte de Alemania (Schueler & Schlünzen 2006)
MOCAGE	Betula	Preprocesador interno	Módulo de emisión del modelo SILAM	Mapa Europeo forestal de <i>Betula</i>	0.125x0.125°, 91 capas	Europa (Sofiev et al. 2015)
SILAM	Ambrosia	Preprocesador interno	Módulo de emisión del modelo SILAM	Mapa de Bullock <i>et al.</i> (2012)	0.2x0.2°, 8 capas por encima de 7km	Europa (Prank et al. 2013)
	Betula	HIRLAM	NA, backward	NA, backward	NR 20. 20.1 NB	Finlandia (Ranta <i>et al.</i> 2006)
					20x20 km, NR	Finlandia (Siljamo <i>et al.</i> 2007a)
		December 1	NTA Lasta 1		NK	Moscú, Rusia (Siljamo <i>et al.</i> 2007b)
EUROS MATCH METRAS model MOCAGE SILAM		interno	INA, DackWard	INA, DACKWARD	(10 capas)	Lituania (Veriankaitė <i>et al.</i> 2010)

Modelos de predicción y dispersión aplicados a polen y esporas de hongos en el aire

				Módulo		_
Modelo de dispersión	Taxon	Modelo meteorológico 1	Módulo de emisión 2	Mapa forestal o de área potencial 3	Configuración de salida	Localización y Referencia bibliográfica
				Mapa Europeo	75x75 km y 40x40km, de	Región de Moscú y Finlandia
				forestal de <i>Betula</i>	2 a 20msnm	(Siljamo <i>et al</i> . 2008)
			Módulo de emisión	CORINE,	1x1 km, 1capa	Finlandia (Sofiev et al. 2006)
			del modelo SILAM	PELCOM y	-	
				estudios forestales		
				Mapa Europeo forestal de <i>Betula</i>	75x75 km y 40x40km, de 2 a 20msnm	Región de Moscú y Finlandia (Siljamo <i>et al.</i> 2008)
					0.125x0.125°, 40-91 capas	Europa (Sofiev et al. 2015)
					por encima de 110 hPa	
	Olea	Preprocesador	NA, backward	NA, backward	15x15 km, 8 capas (20m -	Andalucía, España
		interno			6km)	(Hernández-Ceballos et al.
						2014b)

Referencias bibliográficas del anexo 1.D

- Belmonte J, Alarcón M, Avila A, Scialabba E, & Pino D (2008) Long-range transport of beech (*Fagus sylvatica L.*) pollen to Catalonia (north-eastern Spain). Int J Biometeorol 52:675–687. doi: 10.1007/s00484-008-0160-9
- Bullock J, Chapman D, Schafer S, Roy D, Girardello M, Haynes T, Beal S, Wheeler B, Dickie I, Phang R, Tinch R, Čivić K, Delbaere B, Jones-Walters L, Hilbert A, Schrauwen A, Prank M, Sofiev M, Niemelä S, Räisänen P, Lees B, Skinner S, Finch S, & Brough C (2012) Assessing and controlling the spread and the effects of common ragweed in Europe. NERC Centre for Ecology and Hydrology
- Cecchi L, Morabito M, Domeneghetti PM, Crisci A, Onorari M, & Orlandini S (2006) Long distance transport of ragweed pollen as a potential cause of allergy in central Italy. Ann Allergy Asthma Immunol 96:86–91. doi: 10.1016/S1081-1206(10)61045-9
- Cecchi L, Torrigiani TM, Albertini R, Zanca M, Ridolo E, Usberti I, Morabito M, Dall' PA, & Orlandini S (2007) The contribution of long-distance transport to the presence of *Ambrosia* pollen in central northern Italy. Aerobiologia 23:145–151. doi: 10.1007/s10453-007-9060-4
- Efstathiou C, Isukapalli S, & Georgopoulos P (2011) A mechanistic modeling system for estimating large-scale emissions and transport of pollen and co-allergens. Atmos Environ 45:2260–2276. doi: 10.1016/j.atmosenv.2010.12.008
- Ertl C, Pessi A-M, Huusko A, Hicks S, Kubin E, & Heino S (2012) Assessing the proportion of "extra-local" pollen by means of modern aerobiological and phenological records An example from Scots pine (*Pinus sylvestris L.*) in northern Finland. Rev Palaeobot Palynol 185:1–12. doi: 10.1016/j.revpalbo.2012.07.014
- Fernández-Llamazares Á, Belmonte J, Alarcón M, & López-Pacheco M (2012) *Ambrosia L*. in Catalonia (NE Spain): expansion and aerobiology of a new bioinvader. Aerobiologia 28:435–451. doi: 10.1007/s10453-012-9247-1
- Fernández-Rodríguez S, Sadyś M, Smith M, Tormo-Molina R, Skjøth CA, Maya-Manzano JM, Silva-Palacios I, & Gonzalo-Garijo Á (2015) Potential sources of airborne *Alternaria* spp. spores in South-west Spain. Sci Total Environ 533:165–176. doi: 10.1016/j.scitotenv.2015.06.031
- Fernández-Rodríguez S, Skjøth CA, Tormo-Molina R, Brandao R, Caeiro E, Silva-Palacios I, Gonzalo-Garijo Á, & Smith M (2014) Identification of potential sources of airborne *Olea* pollen in the Southwest Iberian Peninsula. Int J Biometeorol 58:337–348. doi: 10.1007/s00484-012-0629-4
- Gassmann MI, & Pérez CF (2006) Trajectories associated to regional and extra-regional pollen transport in the southeast of Buenos Aires province, Mar del Plata (Argentina). Int J Biometeorol 50:280–291. doi: 10.1007/s00484-005-0021-8
- Grewling Ł, Bogawski P, Jenerowicz D, Czarnecka-Operacz M, Šikoparija B, Skjøth CA, & Smith M (2016) Mesoscale atmospheric transport of ragweed pollen allergens from infected to uninfected areas. Int J Biometeorol 60:1493–1500. doi: 10.1007/s00484-016-1139-6
- Helbig N, Vogel B, Vogel H, & Fiedler F (2004) Numerical modelling of pollen dispersion on the regional scale. Aerobiologia 20:3–19. doi: 10.1023/B:AERO.0000022984.51588.30

- Hernández-Ceballos MA, García-Mozo H, Adame JA, Domínguez-Vilches E, Bolívar JP, De la Morena BA, Pérez-Badía R, & Galán C (2011a) Determination of potential sources of *Quercus* airborne pollen in Córdoba city (southern Spain) using back-trajectory analysis. Aerobiologia 27:261–276. doi: 10.1007/s10453-011-9195-1
- Hernández-Ceballos MA, García-Mozo H, Adame JA, Domínguez-Vilches E, De la Morena BA, Bolívar JP, & Galán C (2011b) Synoptic and meteorological characterisation of olive pollen transport in Córdoba province (south-western Spain). Int J Biometeorol 55:17–34. doi: 10.1007/s00484-010-0306-4
- Hernández-Ceballos MA, García-Mozo H, & Galán C (2015) Cluster analysis of intradiurnal holm oak pollen cycles at periurban and rural sampling sites in southwestern Spain. Int J Biometeorol 59:971–982. doi: 10.1007/s00484-014-0910-9
- Hernández-Ceballos MA, Skjøth CA, García-Mozo H, Bolívar JP, & Galán C (2014a) Improvement in the accuracy of back trajectories using WRF to identify pollen sources in southern Iberian Peninsula. Int J Biometeorol 58:2031–2043. doi: 10.1007/s00484-014-0804-x
- Hernández-Ceballos MA, Soares J, García-Mozo H, Sofiev M, Bolivar JP, & Galán C (2014b) Analysis of atmospheric dispersion of olive pollen in southern Spain using SILAM and HYSPLIT models. Aerobiologia 30:239–255. doi: 10.1007/s10453-013-9324-0
- Hidalgo PJ, Mangin A, Galán C, Hembise O, Vázquez LM, & Sanchez O (2002) An automated system for surveying and forecasting Olea pollen dispersion. Aerobiologia 18:23–31. doi: 10.1023/A:1014997310925
- Hummel M, Hoose C, Gallagher M, Healy DA, Huffman JA, O'Connor D, Pöschl U, Pöhlker C, Robinson NH, Schnaiter M, Sodeau JR, Stengel M, Toprak E, & Vogel H (2015) Regional-scale simulations of fungal spore aerosols using an emission parameterization adapted to local measurements of fluorescent biological aerosol particles. Atmospheric Chem Phys 15:6127–6146. doi: 10.5194/acp-15-6127-2015
- Isard SA, Barnes CW, Hambleton S, Ariatti A, Russo JM, Tenuta A, Gay DA, & Szabo LJ (2011) Predicting soybean rust incursions into the North American continental interior using crop monitoring, spore trapping, and aerobiological modeling. Plant Dis 95:1346–1357. doi: 10.1094/PDIS-01-11-0034
- Isard SA, Russo JM, & Ariatti A (2007) The integrated aerobiology modeling system applied to the spread of soybean rust into the Ohio River valley during September 2006. Aerobiologia 23:271–282. doi: 10.1007/s10453-007-9073-z
- Izquierdo R, Alarcon M, Periago C, & Belmonte J (2015) Is long range transport of pollen in the NW Mediterranean basin influenced by Northern Hemisphere teleconnection patterns? Sci Total Environ 532:771–779. doi: 10.1016/j.scitotenv.2015.06.047
- Izquierdo R, Belmonte J, Avila A, Alarcón M, Cuevas E, & Alonso-Pérez S (2011) Source areas and long-range transport of pollen from continental land to Tenerife (Canary Islands). Int J Biometeorol 55:67–85. doi: 10.1007/s00484-010-0309-1
- Kasprzyk I, Myszkowska D, Grewling Ł, Stach A, Šikoparija B, Skjøth CA, & Smith M (2011) The occurrence of Ambrosia pollen in Rzeszów, Kraków and Poznań, Poland: investigation of trends and possible transport of Ambrosia pollen from Ukraine. Int J Biometeorol 55:633–644. doi: 10.1007/s00484-010-0376-3
- Kawashima S, & Takahashi Y (1999) An improved simulation of mesoscale dispersion of airborne cedar pollen using a flowering-time map. Grana 38:316–324. doi: 10.1080/001731300750044555
- Leyronas C, & Nicot PC (2013) Monitoring viable airborne inoculum of *Botrytis cinerea* in the South-East of France over 3 years: relation with climatic parameters and the origin of air masses. Aerobiologia 29:291–299. doi: 10.1007/s10453-012-9280-0
- Mahura AG, Korsholm US, Baklanov AA, & Rasmussen A (2007) Elevated birch pollen episodes in Denmark: contributions from remote sources. Aerobiologia 23:171–179. doi: 10.1007/s10453-007-9061-3
- Makra L, Matyasovszky I, Tusnády G, Wang Y, Csépe Z, Bozóki Z, Nyúl LG, Erostyák J, Bodnár K, Sümeghy Z, Vogel H, Pauling A, Páldy A, Magyar D, Mányoki G, Bergmann K-C, Bonini M, Šikoparija B, Radišić P, Gehrig R, Seliger AK, Stjepanović B, Rodinkova V, Prikhodko A, Maleeva A, Severova E, Ščevková J, Ianovici N, Peternel R, & Thibaudon M (2016) Biogeographical estimates of allergenic pollen transport over regional scales: Common ragweed and Szeged, Hungary as a test case. Agric For Meteorol 221:94–110. doi: 10.1016/j.agrformet.2016.02.006

- Makra L, & Pálfi S (2007) Intra-regional and long-range ragweed pollen transport over southern Hungary. Acta Climatol Chorol 40–41:69–77.
- Makra L, Sánta T, Matyasovszky I, Damialis A, Karatzas K, Bergmann K-C, & Vokou D (2010) Airborne pollen in three European cities: Detection of atmospheric circulation pathways by applying three-dimensional clustering of backward trajectories. J Geophys Res Atmospheres 115:D24220. doi: 10.1029/2010JD014743
- Pan Z, Yang XB, Pivonia S, Xue L, Pasken R, & Roads J (2006) Long-term prediction of soybean rust entry into the continental United States. Plant Dis 90:840–846. doi: 10.1094/PD-90-0840
- Pasken R, & Pietrowicz JA (2005) Using dispersion and mesoscale meteorological models to forecast pollen concentrations. Atmos Environ 39:7689–7701. doi: 10.1016/j.atmosenv.2005.04.043
- Pfender W, Graw R, Bradley W, Carney M, & Maxwell L (2006) Use of a complex air pollution model to estimate dispersal and deposition of grass stem rust urediniospores at landscape scale. Agric For Meteorol 139:138–153. doi: 10.1016/j.agrformet.2006.06.007
- Prank M, Chapman DS, Bullock JM, Belmonte J, Berger U, Dahl A, Jäger S, Kovtunenko I, Magyar D, Niemelä S, Rantio-Lehtimäki A, Rodinkova V, Sauliene I, Severova E, Sikoparija B, & Sofiev M (2013) An operational model for forecasting ragweed pollen release and dispersion in Europe. Agric For Meteorol 182–183:43–53. doi: 10.1016/j.agrformet.2013.08.003
- Ranta H, Kubin E, Siljamo P, Sofiev M, Linkosalo T, Oksanen A, & Bondestam K (2006) Long distance pollen transport cause problems for determining the timing of birch pollen season in Fennoscandia by using phenological observations. Grana 45:297–304. doi: 10.1080/00173130600984740
- Rousseau D-D, Duzer D, Cambon G, Jolly D, Poulsen U, Ferrier J, Schevin P, & Gros R (2003) Long distance transport of pollen to Greenland. Geophys Res Lett 30:1765. doi: 10.1029/2003GL017539
- Rousseau D-D, Schevin P, Duzer D, Cambon G, Ferrier J, Jolly D, & Poulsen U (2006) New evidence of long distance pollen transport to southern Greenland in late spring. Rev Palaeobot Palynol 141:277–286. doi: 10.1016/j.revpalbo.2006.05.001
- Rousseau D-D, Schevin P, Ferrier J, Jolly D, Andreasen T, Ascanius SE, Hendriksen S-E, & Poulsen U (2008) Long-distance pollen transport from North America to Greenland in spring. J Geophys Res Biogeosciences 113:G02013. doi: 10.1029/2007JG000456
- Sadyś M, Kennedy R, & Skjøth CA (2015a) An analysis of local wind and air mass directions and their impact on *Cladosporium* distribution using HYSPLIT and circular statistics. Fungal Ecol 18:56–66. doi: 10.1016/j.funeco.2015.09.006
- Sadyś M, Skjøth CA, & Kennedy R (2015b) Determination of *Alternaria* spp. habitats using 7-day volumetric spore trap, Hybrid Single Particle Lagrangian Integrated Trajectory model and geographic information system. Urban Clim 14:429– 440. doi: 10.1016/j.uclim.2014.08.005
- Sadyś M, Skjøth CA, & Kennedy R (2014) Back-trajectories show export of airborne fungal spores (*Ganoderma* sp.) from forests to agricultural and urban areas in England. Atmos Environ 84:88–99. doi: 10.1016/j.atmosenv.2013.11.015
- Šauliene I, & Veriankaite L (2006) Application of backward air mass trajectory analysis in evaluating airborne pollen dispersion. J Environ Eng Landsc Manag 14:113–120. doi: 10.1080/16486897.2006.9636887
- Schueler S, & Schlünzen KH (2006) Modeling of oak pollen dispersal on the landscape level with a mesoscale atmospheric model. Environ Model Assess 11:179–194. doi: 10.1007/s10666-006-9044-8
- Šikoparija B, Skjøth CA, Alm Kübler K, Dahl A, Sommer J, Grewling Ł, Radišić P, & Smith M (2013) A mechanism for long distance transport of *Ambrosia* pollen from the Pannonian Plain. Agric For Meteorol 180:112–117. doi: 10.1016/j.agrformet.2013.05.014
- Šikoparija B, Smith M, Skjøth CA, Radišić P, Milkovska S, Šimić S, & Brandt J (2009) The Pannonian plain as a source of *Ambrosia* pollen in the Balkans. Int J Biometeorol 53:263–272. doi: 10.1007/s00484-009-0212-9

- Siljamo P, Sofiev M, & Ranta H (2007a) An approach to simulation of long-range atmospheric transport of natural allergens: an example of birch pollen. In: Borrego C, & Norman A-L (eds) Air Pollution Modeling and Its Application XVII. Springer US, Boston, MA, pp 331–339
- Siljamo P, Sofiev M, Severova E, Ranta H, Kukkonen J, Polevova S, Kubin E, & Minin A (2008) Sources, impact and exchange of early-spring birch pollen in the Moscow region and Finland. Aerobiologia 24:211–230. doi: 10.1007/s10453-008-9100-8
- Siljamo P, Sofiev M, Severova E, Ranta H, & Polevova S (2007b) Chapter 7.4 On influence of long-range transport of pollen grains onto pollinating seasons. In: Renner CB, & Borrego C (eds) Developments in Environmental Science. Elsevier, pp 708–716
- Skjøth CA, Baker P, Sadyś M, & Adams-Groom B (2015a) Pollen from alder (*Alnus* sp.), birch (*Betula* sp.) and oak (*Quercus* sp.) in the UK originate from small woodlands. Urban Clim 14:414–428. doi: 10.1016/j.uclim.2014.09.007
- Skjøth CA, Bilińska D, Werner M, Malkiewicz M, Adams-Groom B, Kryza M, & Drzeniecka-Osiadacz A (2015b) Footprint areas of pollen from alder (*Alnus*) and birch (*Betula*) in the UK (Worcester) and Poland (Wrocław) during 2005–2014. Acta Agrobot 68:315–323. doi: 10.5586/aa.2015.044
- Skjøth CA, Smith M, Brandt J, & Emberlin J (2009) Are the birch trees in Southern England a source of *Betula* pollen for North London? Int J Biometeorol 53:75–86. doi: 10.1007/s00484-008-0192-1
- Skjøth CA, Sommer J, Brandt J, Hvidberg M, Geels C, Hansen KM, Hertel O, Frohn LM, & Christensen JH (2008) Copenhagen – a significant source of birch (*Betula*) pollen? Int J Biometeorol 52:453–462. doi: 10.1007/s00484-007-0139-y
- Skjøth CA, Sommer J, Frederiksen L, & Gosewinkel Karlson U (2012) Crop harvest in Denmark and Central Europe contributes to the local load of airborne *Alternaria* spore concentrations in Copenhagen. Atmospheric Chem Phys 12:11107–11123. doi: 10.5194/acp-12-11107-2012
- Skjøth CA, Sommer J, Stach A, Smith M, & Brandt J (2007) The long-range transport of birch (*Betula*) pollen from Poland and Germany causes significant pre-season concentrations in Denmark. Clin Exp Allergy 37:1204–1212. doi: 10.1111/j.1365-2222.2007.02771.x
- Smith M, Skjøth CA, Myszkowska D, Uruska A, Puc M, Stach A, Balwierz Z, Chlopek K, Piotrowska K, Kasprzyk I, & Brandt J (2008) Long-range transport of *Ambrosia* pollen to Poland. Agric For Meteorol 148:1402–1411. doi: 10.1016/j.agrformet.2008.04.005
- Sofiev M, Berger U, Prank M, Vira J, Arteta J, Belmonte J, Bergmann K-C, Chéroux F, Elbern H, Friese E, Galan C, Gehrig R, Khvorostyanov D, Kranenburg R, Kumar U, Marécal V, Meleux F, Menut L, Pessi A-M, Robertson L, Ritenberga O, Rodinkova V, Saarto A, Segers A, Severova E, Sauliene I, Siljamo P, Steensen BM, Teinemaa E, Thibaudon M, & Peuch V-H (2015) MACC regional multi-model ensemble simulations of birch pollen dispersion in Europe. Atmospheric Chem Phys 15:8115–8130. doi: 10.5194/acp-15-8115-2015
- Sofiev M, Siljamo P, Ranta H, & Rantio-Lehtimäki A (2006) Towards numerical forecasting of long-range air transport of birch pollen: theoretical considerations and a feasibility study. Int J Biometeorol 50:392–402. doi: 10.1007/s00484-006-0027-x
- Sommer J, Smith M, Šikoparija B, Kasprzyk I, Myszkowska D, Grewling Ł, & Skjøth C (2015) Risk of exposure to airborne *Ambrosia* pollen from local and distant sources in Europe – an example from Denmark. Ann Agric Environ Med 22:625– 631. doi: 10.5604/12321966.1185764
- Stach A, Smith M, Skjøth CA, & Brandt J (2007) Examining Ambrosia pollen episodes at Poznań (Poland) using backtrajectory analysis. Int J Biometeorol 51:275–286. doi: 10.1007/s00484-006-0068-1
- Van De Water PK, & Levetin E (2001) Contribution of upwind pollen sources to the characterization of *Juniperus ashei* phenology. Grana 40:133–141. doi: 10.1080/00173130152625879
- Veriankaitė L, Siljamo P, Sofiev M, Šaulienė I, & Kukkonen J (2010) Modelling analysis of source regions of long-range transported birch pollen that influences allergenic seasons in Lithuania. Aerobiologia 26:47–62. doi: 10.1007/s10453-009-9142-6

- Vogel H, Pauling A, & Vogel B (2008) Numerical simulation of birch pollen dispersion with an operational weather forecast system. Int J Biometeorol 52:805–814. doi: 10.1007/s00484-008-0174-3
- Zemmer F, Karaca F, & Ozkaragoz F (2012) Ragweed pollen observed in Turkey: Detection of sources using back trajectory models. Sci Total Environ 430:101–108. doi: 10.1016/j.scitotenv.2012.04.067
- Zhang R, Duhl T, Salam MT, House JM, Flagan RC, Avol EL, Gilliland FD, Guenther A, Chung SH, Lamb BK, & VanReken TM (2014) Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease. Biogeosciences 11:1461–1478. doi: 10.5194/bg-11-1461-2014
- Zink K, Vogel H, Vogel B, Magyar D, & Kottmeier C (2012) Modeling the dispersion of *Ambrosia artemisiifolia L*. pollen with the model system COSMO-ART. Int J Biometeorol 56:669–680. doi: 10.1007/s00484-011-0468-8

Capítulo 2

Caracterización y clasificación espacio-temporal de polen y esporas de hongos aerovagantes en Catalunya

Resumen

La variabilidad estacional e interanual en las series aerobiológicas, dificultan las comparaciones espacio-temporales, así como el desarrollo de modelos predictivos debido principalmente al tipo de distribución que siguen estos datos. En este sentido, el presente capítulo se plantea como objetivos: 1) validar un modelo de distribución gamma que permita establecer comparaciones espaciales y temporales en las series anuales de polen y de esporas de hongos de Catalunya; y 2) establecer una clasificación genérica a partir del parámetro α del modelo. Se han analizado las series anuales de 29 tipos polínicos y 20 tipos fúngicos de ocho localidades de Catalunya. En general, los resultados obtenidos confirman que el parámetro α del modelo varía razonablemente de año a año, dependiendo de las condiciones meteorológicas, pero mostrando una buena estabilidad interanual y espacial. También se reporta que el taxon polínico Urticaceae y el taxon fúngico Cladosporium presentan la mayor estabilidad en sus series anuales tanto en la escala temporal como en la espacial. En cuanto a la clasificación genérica se obtuvieron cinco categorías de clasificación para polen y cinco para esporas de hongos. En la clasificación de los táxones polínicos se refleja la fuerte relación del parámetro α con la distribución ecológica (potencial y/o ornamental), mientras que la de las esporas de hongos se puede relacionar con el uso del suelo y el bioclima de la zona. Esta clasificación permite reducir el número de táxones empleados (uno por cada categoría) para el desarrollo de otros estudios, como por ejemplo en los modelos de predicción.

Caracter	ización y clasificación espacio-temporal de polen y esporas de hongos aerovagantes en	
Cataluny	a	_!
2.1.	Introducción	
2.2.	Material y métodos	
2.2.1	. Datos aerobiológicos	
2.2.2	2. Área de estudio	_
2.2.3	. Método estadístico	
2.3.	Resultados y discusión	
2.3.1	. Polen	
2.3.2	Esporas de hongos	1
2.4.	Conclusión	1
2.5.	Referencias bibliográficas	1
2.6.	Anexos	1

2.1. Introducción

La dispersión de polen y esporas de hongos es un importante proceso biológico y ecológico cuya aplicación en la alergología y la agricultura se ha incrementado en los últimos años (Kuparinen *et al.* 2007, Orlandi *et al.* 2010, Matyasovszky & Makra 2011). La existencia de redes aerobiológicas está permitiendo construir series históricas de concentración de estos bioaerosoles, con registros superiores a 20 años como los reportados por Ziello *et al.* (2012). Estas series históricas han sido empleadas en un gran número de estudios para desarrollar modelos de predicción de concentraciones (Belmonte & Canela 2002, Chuine & Belmonte 2004, Rodríguez-Rajo *et al.* 2006, Iglesias *et al.* 2007, Puc 2012, Recio *et al.* 2012, Aboulaich *et al.* 2013, Sadyś *et al.* 2016), así como para analizar el transporte a larga distancia (Belmonte *et al.* 2000, 2008, Zink *et al.* 2012, Prank *et al.* 2013), identificar el origen potencial de las emisiones (Izquierdo *et al.* 2011, Fernández-Rodríguez *et al.* 2014) entre otros objetivos que ya han sido mencionados en el Capítulo 1.

Muchos de estos estudios aerobiológicos, en especial los que aplican modelos predictivos, han empleado métodos estadísticos que requieren el cumplimiento de una distribución normal, ausente en la mayoría de estos datos (Grinn-Gofroń & Strzelczak 2008a, 2008b, Astray *et al.* 2010, Scheifinger *et al.* 2013, Fernández-Llamazares *et al.* 2014). Generalmente, los datos aerobiológicos no se ajustan a una curva simétrica de distribución normal de tipo $\bar{x} \pm s$ (que abarca el 68% de los datos) o por una del tipo $\bar{x} \pm 2s$ (que equivale al 95%). Ésto se debe a que los datos aerobiológicos, debido a la estacionalidad de las emisiones, presentan un alto número de días nulos (o de concentración cero) o de concentraciónes muy bajas, afectando al promedio y desviación estándar de la serie de datos (Limpert *et al.* 2008).

Teniendo en cuenta lo anterior, algunos autores han sugerido el uso de transformaciones preliminares en los datos (Stach et al. 2008, Dara 2013, Howard & Levetin 2014), por ejemplo transformaciones de la familia de Box-Cox (Shumway & Stoffer 2001), para acercar la distribución de las series aerobiológicas a una distribución normal. Frecuentemente se han empleado el logaritmo y la raíz cuadrada (Moseholm et al. 1987, Smith & Emberlin 2005, 2006, Stach et al. 2008, Matyasovszky & Makra 2011), siendo el primero el más utilizado pero reemplazando el uso de la función y = log x por y = log(x + 0.1) como una solución matemática para tratar los ceros de la series aerobiológicas. No obstante, la aplicación de una transformación logarítmica de los datos es equivalente a aplicar una distribución log normal a los mismos. Una de las desventajas del uso de las transformaciones preliminares para el desarrollo de los modelos predictivos es la posible incorporación de ruido (variabilidad en los resultados) a los datos iniciales y la compleja interpretación de los resultados obtenidos (Limpert *et al.* 2008, Grinn-Gofrón & Strzelczak 2008a, 2008b).

Otro aspecto relevante de la mayor parte de las series aerobiológicas anuales es el rápido incremento de las concentraciones en un periodo corto de tiempo (pocos días), que dificulta encontrar un modelo matemático que se ajuste a este hecho. Este último aspecto, junto con la variabilidad anual de los parámetros de inicio, fin y duración del periodo entre otros, generan que el análisis estadístico de las series de datos a lo largo del tiempo se deba realizar caso a caso. De hecho, estos análisis pueden ser más complejos si comparamos varios táxones, sobre todo si presentan características del periodo diversas (ej: concentración, duración, etc.). Es por esto que la mayoría de los estudios aerobiológicos publicados se dedican al análisis de un solo taxon o de unos pocos con comportamiento aerobiológico similar (Anexos 1.A, 1.B y 1.C).

Comtois (2000) planteó el uso de una distribución gamma como un modelo universal que brinda una solución a estos inconvenientes, puesto que este modelo puede describir la distribución de una serie anual de polen y, adicionalmente, permite comparar dos o más táxones de dos o más localidades con pocas o grandes diferencias en su comportamiento.

Belmonte & Canela, en el año 2003, aplicaron la distribución gamma a una serie de datos polínicos obteniendo resultados satisfactorios, mientras que Kasprzyk & Walanus (2014) hallaron que para definir las curvas polínicas eran más efectivis los modelos Gaussiano y de función logística diferencial.

La distribución gamma consta de dos parámetros, uno relacionado con la forma de la curva (alfa - α), que no tiene unidades, y uno escalar que se corresponde con la amplitud o propagación de la curva (beta - β) y cuyas unidades son, en este caso, las mismas con la que se expresa la concentración (Belmonte & Canela 2003). El parámetro α se calcula como el inverso del cuadrado del coeficiente de variación de la serie de datos, por lo que su estabilidad a través del tiempo es un indicador de la variabilidad de la concentración del taxon estudiado; en este sentido, cuanto mayor sea el parámetro α , más homogénea será la concentración a lo largo de una serie anual de datos. Por otro lado, el parámetro β se calcula como el cuadrado de la desviación estándar dividido por la media y se puede considerar como un indicador de la duración estacional del taxon. Como β guarda una relación de proporcionalidad inversa con α , se puede estimar que a mayor valor de β , menor número de días con presencia del bioaerosol en una serie anual.

La nota técnica de Belmonte & Canela (2003) sirve de referencia para el presente capítulo, puesto que estuvo basada en la aplicación de la distribución gamma(α,β) con la misma base de datos aerobiológicos que se trabaja en esta tesis, sólo que para un periodo de tiempo mucho menor y sólo para polen.

Teniendo en cuenta las características de estabilidad, plasticidad y consistencia de los parámetros de una distribución gamma, el presente capítulo analiza la aplicación de este modelo a los 29 tipos polínicos y 20 tipos de esporas de hongos reportados en las Tabla IV y Tabla V de la Introducción de las ocho estaciones aerobiológicas de Catalunya y para el periodo 1994-2015, con el objetivo de:

1. Validar un modelo de distribución gamma que nos permita caracterizar una serie anual de datos a través de los parámetros del modelo, de modo que nos permita comparar, para cada taxon, los diferentes años para una misma estación y las diferentes estaciones en un mismo año.

Así mismo, si el modelo es válido para los diferentes táxones, se buscará:

2. Establecer, mediante el parámetro *a*, una clasificación genérica de tipos de pólenes y esporas de hongos agrupándolos por su similitud en el comportamiento del parámetro.

De esta manera se podrá establecer una nueva clasificación genérica, menos subjetiva que la realizada con otros enfoques basados en una inspección visual de los gráficos, que facilitará la gestión de las bases de datos aerobiológicos. También permitirá estudiar las dinámicas atmosféricas de los diferentes táxones de forma más eficaz ya que se reducirá el número de ellos a un taxon representativo para cada una de las categorías de la clasificación genérica.

2.2. Material y métodos

2.2.1. Datos aerobiológicos

En el presente capítulo se emplearon 29 tipos polínicos de los cuales 19 táxones son arbóreos (Acer, Alnus, Betula, Castanea, Casuarina, Cupressaceae, Fagus, Fraxinus, Moraceae, Olea, Palmae, Pinus, Platanus, Populus, Quercus, Quercus caducifolios, Quercus perennifolios, Salix y Ulmus), tres arbustivos (Corylus, Ericaceae y Pistacia), siete herbáceos (Artemisia, Ambrosia, Chenopodiaceae-Amaranthaceae, Plantago, Poaceae, Polygonaceae y Urticaceae), y 20 tipos de esporas fúngicas: cinco ascósporas (Chaetomium, Leptosphaeria, Pleospora, Venturiaceae, Xylariaceae), cinco basidiósporas (Agaricus, Agrocybe, Coprinaceae, Ganoderma, Thelephoraceae) y 10 condiósporas (Alternaria, Arthrinium, Aspergillus-Penicillium, Cladosporium, Curvularia, Drechslera-Helminthosporium, Epicoccum, Pithomyces, Stemphylium, Torula). Más información se presenta en la sección IV de la introducción.

Se estableció como un criterio de exclusión en la clasificación general aquellos táxones y estacionesque presentan más de dos series anuales con menos de 10 dias no nulos (DNN).

2.2.2. Área de estudio

El área de estudio del presente capítulo se corresponde con las ocho estaciones aerobiológicas, distribuidas en cuatro fitoclimas de Catalunya, descritas en la sección III.

2.2.3. Método estadístico

El método estadístico aplicado ha sido un análisis de distribución gamma para cada año, estación y taxon estudiado; siempre y cuando los días no nulos (DNN, días con registros mayores al umbral de concentración nulo) fuese mayor o igual a 10 días/año (Tabla IV y V de la Introducción). De las múltiples ecuaciones de posible aplicación en la distribución gamma se aplica la llamada gamma(α,β)

$$f(x) = C(\alpha, \beta) x^{\alpha - 1} e^{-x/\beta}, x > 0$$

donde $C(\alpha,\beta)$ es una constante de normalización (la integral de la función f(x) deberá ser igual a 1); $\alpha \neq \beta$ son los parámetros del modelo y cumplen que la media de la serie de datos es igual a $\alpha\beta \neq$ la varianza a $\alpha\beta^2$.

El parámetro α presenta siempre valores mayores que cero. Para los valores α cercanos a cero la curva se presenta como una asíntota decreciente al eje de ordenadas, cuya pendiente de decaimiento irá disminuyendo a medida que el valor de α incremente; por otro lado, para $\alpha \ge 1$, la curva presenta

una asíntota creciente al eje de ordenadas hasta alcanzar su máximo valor, donde presentará una curva exponencial decreciente con un comportamiento similar a $\alpha < 1$.

En el modelo se determinaron los parámetros α y β de cada una de las series por el método "estimador del momento", siendo esta la forma más sencilla de obtener estos parámetros, teniendo en cuenta que la varianza es igual a $\alpha\beta^2$ y el promedio es igual a $\alpha\beta$, por tanto, el coeficiente de variación (CV), definido como la desviación estándar dividida por el promedio, es igual a $\alpha^{-1/2}$. El parámetro α , y por ende el CV, son parámetros libres de escala, por lo que el cambio en las unidades no afecta el valor del parámetro. Con el parámetro α se realizaron análisis de la estabilidad de las series anuales en una escala temporal (una misma estación y taxon a través del tiempo) y en una escala espacial, (un mismo año y taxon en todas las estaciones de muestreo). Así mismo, se estableció una clasificación genérica (espacio-temporal) para los táxones de polen y otra para las esporas de hongos a partir de los valores medios de α para cada estación y taxon. El análisis de la estabilidad del CV en una serie anual de datos aerobiológicos ya se ha desarrollado para Urticaceae (Belmonte & Canela 2002), *Platanus* (Gabarra *et al.* 2002) y *Cladosporium* (Belmonte *et al.* 2002), demostrando la consistencia del parámetro.

El nivel de significación del ajuste a la distribución gamma se evaluó mediante una prueba de χ^2 . Para ello se tiene en cuenta las 5 categorías establecidas para los umbrales de concentración (ver Tabla IV y V) y los parámetros α y β del modelo, que generan dos grados de libertad, suficientes para validar la prueba. No obstante, dada la alta variabilidad en el número de datos disponibles por serie analizada, la prueba sólo se considerará significativa si en todas las proporciones esperadas se obtiene una frecuencia mayor o igual al 1%. La prueba X^2 se empleó principalmente para establecer el grado de significación del ajuste de la distribución, y no como una validación que permita aceptar o rechazar el modelo gamma.

Los cálculos se desarrollaron con R, mientras que la representación espacial de la clasificación genérica se elaboró con Golden SURFER®. En este último, se empleó como herramienta de interpolación el método del "vecino más cercano", teniendo en cuenta que establece de manera constante el área de influencia de cada una de las estaciones

2.3. Resultados y discusión

2.3.1. Polen

La Tabla 2.1 muestra que el tipo polínico con mayor índice anual de polen (suma de las concentraciones medias diarias del año) es Cupressaceae, seguido de *Quercus* y *Pinus*, mientras que *Ambrosia, Casuarina* y *Fagus* presentan los menores índices. Asimismo, el taxon más frecuente a lo largo del año (con mayor valor DNN) es Urticaceae, seguido de Cupressaceae y Poaceae, entretanto los menos frecuentes vuelven a ser los mismos que presentaron el menor índice anual (*Ambrosia, Casuarina* y *Fagus*). A pesar de que la cantidad de granos de polen cuantificados depende en gran medida de la cobertura y uso del suelo del área de influencia del captador, los resultados coinciden con los táxones más abundantes y frecuentes reportados en otras localidades de España (Alba *et al.* 2000, Alcázar *et al.* 2000, Bermejo & García 2000, Candau *et al.* 2000, Cariñanos *et al.* 2000b, Dopazo *et al.* 2000b, 2000c, Garcia-Mozo *et al.* 2000,

González Minero *et al.* 2000, Méndez *et al.* 2000, Moreno-Grau *et al.* 2000, Paulino *et al.* 2000, Recio *et al.* 2000, Rodríguez *et al.* 2000a, 2000b, Ruiz *et al.* 2000, Sabariego *et al.* 2000, Sánchez *et al.* 2000, Silva *et al.* 2000, Tortajada & Mateu 2000, Trigo *et al.* 2000, Valencia-Barrera *et al.* 2000, Vega-Maray *et al.* 2000).

Taxon	Barcelona	Bellaterra	Girona	Lleida	Manresa	Roquetes- Tortosa	Tarragona	Vielha	Promedio	
Acer	53	156	163	434	618	45	35	12	189	
Acci	23	29	27	28	35	23	17	10	24	
Alnus	157	151	742	522	162	74	95	433	292	
	45	44	61	46	41	26	35	45	43	
Ambrosia	19	24	21	17	13	4	11	2	14	
	9	12	9	11	8	5	7	2	8	
Artemisia	145	163	78	368	171	107	222	367	203	
	69	64	48	71	69	59	73	65	65	
Betula	183	170	303	70	141	61	120	2149	400	
	38	39	49	25	35	22	28	71	39	
Castanea	248	160	524	69	97	69	166	599	241	
	46	41	58	27	32	29	39	46	40	
Casuarina	56	11	4	2	5	28	44	2	19	
	31	11	4	3	5	14	22	3	12	
ChenoAmara.	522	462	404	4341	921	609	559	85	988	
<u> </u>	182	1/4	156	235	197	191	182	63	172	
Corylus	216	218	548	114	204	88	8//	5239	938	
Cummassasasa	30	7227	71	10018	2027	29025	/3	101	11184	
Cupressaceae	255	253	236	10018	251	238	9804	1624	233	
Fricaceae	235	233	724	31	114	60	126	130	192	
Liteaceae	74	73	103	27	55	46	55	10	56	
Fagus	18	18	81	27	26	11	15	529	90	
1 4845	9	10	21	10	11	6	9	34	14	
Fraxinus	297	283	1875	290	444	179	396	6307	1259	
	79	77	107	70	88	64	90	73	81	
Moraceae	332	526	5557	517	394	424	828	17	1074	
	55	47	66	44	46	54	60	12	48	
Olea	1447	1195	966	2502	2705	7579	3459	138	2499	
	98	88	85	95	87	120	114	35	90	
Palmae	180	51	63	14	29	202	252	3	99	
	109	43	47	12	25	114	125	2	60	
Pinus	5196	8773	7551	3036	7578	11180	4942	5110	6671	
	208	205	211	169	207	190	188	154	191	
Pistacia	79	126	70	83	201	514	125	3	150	
DI	34	39	29	26	40	49	37	3	32	
Plantago	406	924	/13	994	3613	656	508	459	1034	
D1 -4	135	158	151	2160	1/9	130	120	135	14/	
Plalanus	10110	4455	04/3	2108	/4/4	405	1518	20	4840	
Dogcogo	1131	1425	2072	2303	2480	1300	1201	2155	1771	
Toaceae	203	212	2072	2303	2480	207	214	153	209	
Polygonaceae	79	74	126	130	71	64	75	145	95	
rorygonaeeae	53	52	71	74	49	44	46	66	57	
Populus	346	3704	736	1365	870	396	270	839	1066	
1	64	75	62	60	60	61	53	60	62	
Quercus	5927	8317	17561	4098	6130	5385	4429	1994	1763	
~	191	173	200	137	158	137	156	97	89	
Quercus	1144	2463	5712	720	1338	582	667	1479	4967	
caducifolios	99	93	129	84	8 <i>3</i>	74	79	69	140	
Quercus	4782	5854	11849	3378	4792	4803	3761	515	6730	
perennifolios	174	156	182	123	143	128	144	70	156	
Salix	50	110	248	161	132	52	48	253	132	
	31	43	54	51	48	26	30	54	42	
Ulmus	125	275	116	78	361	37	280	31	163	
I.I	48	53	36	29	47	26	49	20	38	
Urticaceae	2115	2123	2966	10/0	3089	3670	31/1	2263	2641	
Total		274 40784	20/	221	200	309	-380(3	22027	203	
	49173	49784		38914			181167		51/11/4	

 Tabla 2.1 – Promedio del índice anual de polen en estudio y del número de días no nulos (fondo gris) en las estaciones estudiadas.

En cuanto a los resultados a escala espacial, se observa que Roquetes-Tortosa es la estación con mayor cantidad anual de polen, seguido de Girona y Manresa, mientras que Vielha, Tarragona y Lleida, presentan las menores cantidades. Barcelona y Bellaterra presentan valores intermedios. En este caso, las estaciones con mayor índice se localizan en áreas con mayor cobertura vegetal (Institut d'Estadística de Catalunya 2014), favoreciendo los altos niveles anuales de polen. No obstante, Vielha, aunque considerada como una de las áreas con mayor cobertura vegetal (Institut d'Estadística de Catalunya 2014), presenta uno de los menores valores anuales de polen. Esto se puede atribuir a las condiciones meteorológicas de la zona, con elevada precipitación y bajas temperaturas, que pueden estar generando un proceso de lavado atmosférico, en el caso de las precipitaciones, y de supresión de los procesos de floración, en el caso de la temperatura (Figura V - Introducción). Entretanto, los bajos índices anuales de polen para Tarragona y Lleida pueden estar justificados por una menor representación de árboles ornamentales altamente poliníferos en el entorno urbano y por el alto porcentaje de suelo con cultivos en los alredeores (Tabla III-Introducción). En el caso de Tarragona también influye la proximidad del mar.

En la Tabla 2.2 se presenta un resumen de los parámetros α y β del modelo y los DNN en función del taxon. Los resultados muestran que α varía entre 0.018 (*Ambrosia*) y 0.465 (Urticaceae), presentándose mayores valores en aquellos tipos polínicos que presentan un mayor número de DNN (Tabla 2.2). También se observa que los táxones herbáceos (exceptuando *Ambrosia*) presentan mayores valores de α , junto con los táxones arbóreos *Pinus* y Cupressaceae. Si se tiene en cuenta la relación entre el parámetro α y el CV, se puede inferir que las concentraciones de los táxones con mayor α tienden a presentar menos heterogeneidad a lo largo del año con respecto a aquellos con un menor valor. Esto se corrobora por el valor de DNN de cada taxon, y confirma la relación existente entre α y DNN. También permite explicar porqué Cupressaceae y Poaceae, que a pesar de estar aerovagantes más tiempo a lo largo del año lo hacen con concentraciones heterogéneas, presentan valores de α menores que *Plantago* y Chenopodiaceae–Amaranthaceae, especialmente en la estación de Vielha (Anexo 2.A).

Si analizamos la estabilidad del parámetro α a través del tiempo en una misma estación (Anexo 2.A), el taxon con mayor variación interanual es *Fagus*, seguido de *Ambrosia* y *Casuarina*. Asimismo, Urticaceae, Chenopodiaceae-Amaranthaceae y *Pinus* son los táxones que menos variación interanual presentan. Los táxones de mayor variación coinciden con ser plantas no autóctonas de la zona de estudio y poco frecuentes en el espectro aerobiológico. Por otro lado, como ya fue demostrado en Belmonte *et al.* (2008) y Fernández-Llamazares *et al.* (2012) en el caso de *Fagus* y *Ambrosia* algunas de las aportaciones registradas en Catalunya han sido atribuidas a fenómenos de transporte atmosférico de larga distancia. Este hecho también puede explicar la menor variabilidad en Urticaceae, Chenopodiaceae-Amaranthaceae y *Pinus*, al ser táxones autóctonos de la zona mediterránea y estar mayor numero de días presentes en el aire.

Por otro lado, la estación con mayor homogeneidad en las concentraciones de polen a través del tiempo es Barcelona, mientras que Vielha es la más heterogénea (Anexo 2.A). Esto se puede atribuir a la diversidad de táxones presentes en cada una de las áreas. En el caso de Barcelona, predominan las especies de uso ornamental como *Platanus, Populus* o Cupressaceae (Institut Municipal de Parcs i Jardins, Ajuntament de Barcelona, 2014), las cuales emiten además de grandes

	1		DNN
			DNN Dromen di s
Tayon	Promedio (mín_máx_)	Promedio (mín_méx_)	Promedio
Taxoii	(111111118x.)	(IIIIIIIIIax.)	(IIIIIIIIIax.)
Acer	0.033	22.0	25
4.7	(0.00/-0.076)	(0.7-162.4)	(3-45)
Alnus	0.050	20.3	44
A	(0.009-0.089)	(1.2-244)	(13-84)
Ambrosia	0.018	2.9	9
Autominia	(0.003-0.074)	(0.7-28.0)	(0-30)
Artemisia	0.085	9.1	(10, 110)
Patula	(0.022-0.158)	(1.2-94.1)	(19-110)
Венина	(0.0059	23.8	(2.05)
Castanea	0.048	(0.7-230.3)	(2-93)
Cusianca	(0.015-0.127)	(0.7-96.3)	(6-79)
Casuarina	0.022	(0.7-90.3)	13
Casiarina	(0.003-0.086)	(0.7-12.7)	(1-45)
Cheno - Amara	0.292	12.7	178
Cheno: 7 mara.	(0.066-0.619)	(1 2-104 0)	(34-264)
Corvlus	0.066	42.8	60
Corylas	(0.008-0.144)	(1.8-552.0)	(24-129)
Cupressaceae	0 114	312.1	237
Cupiessuecue	(0.043-0.351)	(16.8-2932.0)	(125-289)
Ericaceae	0.071	10.4	60
	(0.009-0.143)	(0.7-186.8)	(11-132)
Fagus	0.022	5.9	14
0	(0.003-0.075)	(0.7-133.3)	(1-71)
Fraxinus	0.095	46.7	82
	(0.014-0.178)	(2.0-842.7)	(38-127)
Moraceae	0.055	80.0	50
	(0.011-0.136)	(0.7-835.0)	(4-91)
Olea	0.057	138.4	92
	(0.009-0.111)	(1.7-891.0)	(16-147)
Palmae	0.111	2.7	61
	(0.003-0.352)	(0.7-17.0)	(1-171)
Pinus	0.133	156.3	193
	(0.051-0.296)	(13.0-802.0)	(114-266)
Pistacia	0.052	7.4	33
	(0.003-0.106)	(0.7-55.9)	(1-64)
Plantago	0.229	18.1	149
DI	(0.072-0.449)	(2.1-307.0)	(72-225)
Platanus	0.051	306.7	90
D	(0.014-0.101)	(1.3-1618.0)	(15-235)
Poaceae	0.226	25.3	212
Delesses	(0.111-0.492)	(6.8-105.3)	(119-287)
Polygonaceae	0.111	2.5	57
	(0.024-0.226)	(0.9-9.1)	(18-101)
Populus	0.070	63.3 (2 5 524 6)	62 (24.07)
Quanaua	(0.013-0.100)	(5.3-324.0)	(24-97)
Quercus	(0.041.0.220)	(1677810)	(74, 270)
Quercus coducifolios	0.027	(10.7-781.0)	(74-270)
Zuerens cadaenonos	(0.014-0.180)	(4 3-357 1)	(36-178)
Quercus perennifolios	0.094	161.1	146
Quereus perennitonos	(0.021-0.195)	(5 8-688 0)	(36-253)
Salix	0.057	7 6	42
	(0.014-0.116)	(1.0-52.6)	(13-77)
Ulmus	0.061	9.5	41
	(0.021 - 0.129)	(0.9-77.5)	(9-71)
Urticaceae	0.465	16.8	269
	(0.163-0.835)	(3.3-49.5)	(94-347)

Tabla 2.2 -	- Resumen	de los pa	rámetros	$\alpha, \beta y$	DNN po	r tipos polínicos.
-------------	-----------	-----------	----------	-------------------	--------	--------------------

DNN: días no nulos.

cantidades de polen que no siempre puede ser dispersado por las corrientes de aire, tendiendo a concentrarse y mantenerse cerca de la zona de emisión (Cariñanos & Casares-Porcel 2011). Por el contrario, Vielha presenta unas condiciones geoclimáticas excepcionales (zona de alta montaña con elevada precipitación y bajas temperaturas) que estarían limitando los procesos de floración y por tanto de emisión y dispersión del polen.
La prueba χ^2 (Anexo 2.A) muestra que sólo seis táxones presentan una significancia mayor en el 50% de los casos (Cupressaceae, *Pinus*, Poaceae, *Quercus*, *Quercus* perennifolios y Urticaceae). Les siguen nueve táxones con una significanción promedio entre 10 y 50% (*Artemisia*, Chenopodiaceae-Amaranthaceae, *Corylus*, *Fraxinus*, Moraceae, *Olea*, *Plantago*, *Platanus* y *Quercus* caducifolios), y nueve con una significanción por debajo del 10% (*Acer*, *Alnus*, *Betula*, *Castanea*, Ericaceae, *Fagus*, *Pistacia*, *Populus* y *Ulmus*). cinco táxones no presentaron ningún tipo de significancia (*Ambrosia*, *Casuarina*, Palmae, Polygonaceae y *Salix*). Por otro lado, Girona, Tarragona y Bellaterra se establecen como las estaciones con mayores valores de significación, mientras que Lleida, Vielha y Roquetes-Tortosa presentan los menores.

La primera categoría está conformada por un taxon: Urticaceae (I), presentando como valores promedio de todas las estaciones (excepto Vielha) un α mayor de 0.400 y 281 DNN (Tabla 2.3). La segunda categoría está conformada mayoritariamente por táxones herbáceos y uno arbóreo (Tabla 2.3), presentando un α entre 0.200 y 0.449 y DNN desde 116 hasta 218. La tercera categoría de clasificación, con un α entre 0.080 y 0.171 y valores de DNN entre 45 y 233, la forman el resto de táxones herbáceos exceptuando *Artemisia* (Tabla 2.3). La cuarta categoría es la más amplia y muestra el mayor número de táxones con un mismo rango de α para todo el territorio. Está conformada principalmente por táxones arbóreos, tres de los cuatro táxones arbustivos y un taxon herbáceo (*Artemisia* en Lleida y Vielha). El valor de α varía entre 0.040 y 0.079 con DNN desde 25 hasta 190. Finalmente, la quinta categoría de clasificación está conformada por táxones de tipo arbóreo con valores de α por debajo de 0.040 y 42 DNN (Tabla 2.3).

En la Figura 2.1 se representa la distribución espacial de la clasificación genérica establecida a través del parámetro α que se muestra en la Tabla 2.3. En función de su escala de valores, se determinan cinco categorías de clasificación para los 29 táxones polínicos. ocho táxones presentan una sola categoría (*Acer, Castanea, Corylus,* Cupressaceae, *Fagus,* Moraceae, *Pistacia,* Polygonaceae, *Quercus, Salix* y Ulmus), 19 táxones están en dos (*Alnus, Artemisia, Betula, Casuarina,* Chenopodiaceae-Amaranthaceae, Ericaceae, *Olea, Pinus, Plantago, Platanus, Quercus* caducifolios y *Quercus* perennifolios) y Palmae que presenta tres categorías. Tal y como se indicó en el apartado 2.3.3. Material y métodos, la serie taxon-estación sólo se incluirá en la clasificación genérica si no presenta más de dos series anuales con menos de 10 DNN. Por ello se ha descartado para la clasificación genérica el taxon *Ambrosia* en todas las estaciones (ver anexo 2.A); *Casuriana* en todas las estaciones menos en Barcelona y Tarragona; *Fagus* en todas las estaciones menos en Vielha; *Acer* en Tarragona y Vielha; Moraceae y *Pistacia* en Vielha; y Palmae en Lleida y Vielha.

La clasificación espacial obtenida por medio del parámetro α , está acorde con la posible distribución ecológica de los táxones estudiados. Un ejemplo de ello podría ser los táxones Palmae y *Fagus*; el primero se distribuye generalmente en zonas cálidas o templadas, mientras el segundo es un taxon de climas característicos del norte de Europa y así queda reflejado en la Figura 2.1. En este mismo orden de ideas, los resultados también evidencian la influencia del clima en el comportamiento de las series anuales de los tipos polínicos. Si observamos el caso de la estación de Vielha, presenta un comportamiento casi siempre diferente de las restantes estaciones, atribuible por estar ubicada en el Pirineo y por ello tener unas condiciones climáticas (específicamente en temperatura y precipitación) muy diferentes al resto de estaciones estudiadas. Estas características podrían estar favoreciendo el índice de polen y el número de días con presencia de polen (DNN) de

			Promec	no del grupo	
	Taxon	Estaciones del grupo	α	β	DNN
	Urticaceae (I)	Excepto VIE	0.483	16.2	281
	ChenoAmara. (I)	Excepto VIE	0.313	13.2	188
	Plantago (I)	Excepto MAN/TAU/TOR	0.265	8.0	148
	Poaceae (I)	Excepto TOR/VIE	0.238	23.7	218
	Palmae (I)	BCN/TAU/TOR	0.216	3.0	116
	Urticaceae (II)	VIE	0.214	32.4	151
	Plantago (II)	MAN/TAU/TOR	0.171	32.2	145
	Poaceae (II)	TOR/VIE	0.162	34.5	180
	ChenoAmara. (II)	VIE	0.136	2.0	63
	Pinus (I)	Excepto TOR	0.134	137.3	192
	Cupressaceae	Todas	0.113	372.8	233
	Polygonaceae	Todas	0.110	2.5	57
	Quercus	Todas	0.107	180.0	156
	Fraxinus (I)	Excepto VIE	0.098	17.8	82
	Quercus perennifolios (I)	Excepto VIE	0.096	172.0	150
	Artemisia (I)	Excepto BTU/LLE/VIE	0.090	4.9	63
	Populus (I)	BCN/TOR	0.091	12.5	62
	Quercus caducifolios (I)	Excepto VIE	0.088	58.3	91
α	Ericaceae (I)	GIC/TOR	0.088	14.5	75
de	Palmae (II)	BTU/GIC	0.080	2.5	45
ión	Pinus (II)	TOR	0.072	436.0	190
nci	Artemisia (II)	BTU/LLE/VIE	0.068	15.6	67
ı fu	Quercus caducifolios (II)	VIE	0.067	72.3	69
en	Corylus	Todas	0.064	54.3	61
rías	Ericaceae (II)	Excepto GIC/TOR	0.064	7.5	50
<u>g</u> 01	Populus (II)	Excepto BCN/TOR	0.064	76.6	62
ate	Ulmus	Todas	0.059	8.7	38
Ŭ	Olea (I)	Excepto VIE	0.058	173.3	98
	Moraceae	Excepto VIE	0.057	84.0	53
	Salix	Todas	0.057	7.6	42
	Pistacia	Excepto VIE	0.056	8.4	32
	Quercus Perennifolios (II)	VIE	0.055	33.7	70
	Platanus (I)	Excepto LLE/VIE	0.054	317.6	97
	Fraxinus (II)	VIE	0.054	373.4	73
	Alnus (I)	Excepto TOR	0.051	21.8	45
	Castanea	Todas	0.048	15.0	40
	Fagus	VIE	0.048	31.8	34
	Casuarina (I)	BCN	0.046	4.0	31
	Palmae (III)	MAN	0.045	3.2	25
	Betula (I)	Excepto LLE/TAU/TOR	0.043	43.7	47
	Platanus (II)	LLE/VIE	0.034	118.6	42
	Acer	Excepto TAU/VIE	0.034	25.7	27
	Olea (II)	VIE	0.033	18.9	35
	Betula (II)	LLE/TAU/TOR	0.032	10.2	25
	Alnus (II)	TOR	0.031	8.3	26
	Casuarina (II)	TAU	0.030	4.4	2.2

Tabla 2.3 – Clasificación g	genérica de los tip	oos polínicos mediante el j	parámetro α del modelo g	gamma

táxones de climas fríos como *Betula* y *Fagus*, entre otros; mientras que se limita en el caso de táxones como *Olea*, Urticaceae, Chenopodiaceae-Amaranthaceae, Moraceae o *Pistacia* que requieren temperaturas más suaves.

2.3.2. Esporas de hongos

La Tabla 2.4 muestra que el tipo de espora fúngica más abundante en la atmósfera de Catalunya es *Cladosporium*, seguido de Coprinaceae y *Agrocybe*. Por el contrario, los táxones fúngicos menos abundantes son *Curvularia*, *Pithomyces* y *Chaetomium*. En función del parámetro DNN, el taxon más frecuente en la atmósfera a lo largo del año es *Alternaria*, seguido de Coprinaceae y *Cladosporium*; mientras que *Curvularia*, Venturiaceae y *Chaetomium* son los menos frecuentes. Los resultados obtenidos en cuanto a los tres táxones más abundantes, son consistentes con los presentados en otros estudios (Li & Kendrick 1995, Díaz et al. 2006, Oliveira et al. 2009, 2010, Mallo et al. 2011, Recio et al. 2012).

			en las es	staciones de	e Cataluny	a.		oos (10	B B B B B B B B B B
				Esta	ción				
Taxon	Barcelona	Bellaterra	Girona	Lleida	Manresa	Tarragona	Roquetes- Tortosa	Vielha	Promedio
Agaricus	2543	5653	7820	2546	2615	1794	2435	2035	3430
	143	187	168	125	162	113	177	103	147
Agrocybe	10974	30712	23383	7928	23330	14422	14947	25717	18927
0 2	245	264	256	204	249	214	224	199	232
Alternaria	9383	11700	13051	36182	21068	10242	14097	2027	14719
	301	321	277	300	322	299	321	165	288
Arthrinium	1323	1718	1028	1515	1968	1352	1096	200	1275
	130	163	120	145	164	126	122	31	125
AsperPenic.	5212	5638	6981	4928	5435	4570	5364	3298	5178
1	95	100	110	95	94	80	99	69	93
Chaetomium	224	178	140	182	165	240	79	43	156
	47	33	33	42	34	33	22	11	32
Cladosporium	199677	305264	356063	577936	463408	218094	323553	161883	325735
1	238	283	258	279	292	234	272	168	253
Coprinaceae	11655	36867	45448	27368	27490	13331	19749	30511	26552
1	296	304	288	265	265	261	279	233	274
Curvularia	49	89	78	72	231	40	36	65	83
	9	13	12	16	22	9	10	8	12
DreshHelmi.	2144	2218	2319	3956	3711	2700	1679	620	2418
	193	204	187	218	220	206	188	95	189
Epicoccum	1498	1406	2984	3777	1869	944	806	1147	1804
1	155	170	193	216	185	130	126	114	161
Ganoderma	1690	4004	6708	1760	1297	1568	1355	14761	4143
	170	192	195	150	128	152	142	150	160
Leptosphaeria	2022	6124	6151	3647	7681	4114	3762	1932	4429
1 1	158	192	165	160	174	180	161	124	164
Pithomyces	156	153	231	125	159	114	114	191	155
,	32	35	50	33	37	28	32	44	36
Pleospora	1864	2810	1747	5807	4163	3052	3090	814	2918
1	188	203	160	198	207	208	195	112	184
Stemphylium	875	961	862	1926	1679	850	822	101	1010
	137	148	127	188	169	136	140	31	135
Thelephoraceae	1259	2643	4001	389	3310	1203	1090	1893	1974
•	124	161	161	74	167	114	121	116	130
Torula	753	729	1173	2618	1120	750	772	326	1030
	102	104	128	185	128	101	117	53	115
Venturiaceae	138	257	128	33	204	103	80	451	174
	25	31	20	11	24	15	20	24	21
Xylariaceae	634	1812	3165	588	1153	594	481	2898	1416
-	105	1.50	1.77	0.6	105	00	0.0	1.50	10 (

Tabla 2.4 – Promedio del índice anual de esporas de hongos en estudio y del número de días no nulos (f	condo gris)
en las estaciones de Catalunya.	

En cuanto a la distribución espacial se observa que las estaciones del interior presentan los mayores índices anuales de esporas (de mayor a menor: Lleida, Manresa, Girona y Bellaterra), seguidas de las de la zona litoral (Roquetas-Tortosa, Tarragona y Barcelona) y la de la zona de montaña (Vielha) (Tabla 2.4). Esta variación puede explicarse por la complejidad de factores que afectan su presencia como la fisiología del taxon, las condiciones meteorológicas o el uso del suelo (Carlile et al. 2001, Boddy et al. 2014). Los altos niveles de esporas reportados en la zona interior de Catalunya, en especial en Lleida, se pueden atribuir al tipo de uso de suelo (principalmente agrícola), mientras que los menores valores anuales en la zona de montaña y del litoral se pueden atribuir a la temperatura, siendo en Vielha por el frío y en el litoral por el calor, con temperaturas posiblemente fuera del rango óptimo de esporulación de los táxones estudiados (Vélez-Pereira et al. 2016).

En la Tabla 2.5 se presenta el resumen de los parámetros del modelo gamma y DNN obtenidos para cada tipo de espora fúngica. Al igual que en el caso del polen, la serie taxon-estación sólo se

	L		0
	α	eta	DNN
Taxon	promedio	Promedio	Promedio
	(mínmáx.)	(mínmáx.)	(mínmáx.)
Agaricus	0.198	71.5	152
	(0.012-0.874)	(5.1-740.9)	(18-309)
Agrocybe	0.773	500.3	238
	(0.047-1.330)	(0.3-6356.5)	(20-362)
Alternaria	0.511	97.6	293
	(0.116-1.072)	(10.4-712.3)	(78-358)
Arthrinium	0.201	22.8	132
	(0.013-0.776)	(3.8-77.0)	(16-231)
Aspergillus-Penicillium	0.203	162.2	95
	(0.01-5.621)	(21.5-996.6)	(12-246)
Chaetomium	0.080	12.5	36
	(0.005-0.254)	(2.4-448.8)	(10-94)
Cladosporium	0.798	1391.7	256
	(0.324 - 2.340)	(245-10620.0)	(66-361)
Coprinaceae	0.289	357.2	279
	(0.047 - 1.141)	(5.6-1843.2)	(23-356)
Drechslera-Helminthosporium	0.026	17.1	197
	(0.003-0.114)	(2.7-101.7)	(19-314)
Epicoccum	0.446	19.5	166
	(0.032-0.973)	(2.8-92.3)	(13-305)
Ganoderma	0.313	33.3	166
	(0.026-1.027)	(3.4-255.3)	(10-275)
Leptosphaeria	0.356	96.6	167
	(0.030-0.679)	(3.1-1024.1)	(13-324)
Pithomyces	0.164	5.6	38
	(0.028-0.411)	(2.6-24.3)	(13-78)
Pleospora	0.088	42.3	187
	(0.011-0.187)	(7.2-397.1)	(27-278)
Stemphylium	0.266	10.3	140
	(0.089-0.525)	(2.7-48.3)	(11-250)
Thelephoraceae	0.328	33.8	135
	(0.043-0.748)	(2.7-607.4)	(22-261)
Torula	0.222	14.3	119
	(0.017-0.979)	(5.5-98.4)	(10-272)
Xylariaceae	0.225	20.7	129
	(0.010-0.752)	(4.1-269.3)	(22-265)

DNN: días no nulos.

incluirá en la clasificación genérica si no presenta más de dos series anuales con menos de 10 DNN. Por ello, se han eliminado los táxones *Curvularia* y Venturiaceae en todas las estaciones, y *Chaetomium* en Vielha (ver Anexo 2.B).

Los resultados del modelo gamma muestran que *Cladosporium*, *Agrocybe* y *Alternaria* son los táxones que presentan el valor más alto de α , mientras que *Chaetomium*, *Pithomyces* y *Leptosphaeria* los más bajos (Tabla 2.5). En función del tipo de espora, también se observa que las conidiósporas presentan valores de α altos y medios, seguidos de las basidiósporas con valores medios y finalizando con las ascósporas con valores bajos. Recordando que el parámetro α es una medida indirecta del CV de la concentración diaria en una serie anual, se puede establecer que los táxones con mayor valor en este parámetro presentan una menor heterogeneidad en las concentraciones a lo largo del año. Esto coincide con los táxones que reportan un α mayor por estar presentes más días del año, exceptuando Coprinaceae (DNN mayor de 270) que presenta una distribución más heterogénea en sus concentraciones (Tabla 2.5).

La estabilidad del parámetro α a través del tiempo permite comparar los periodos de esporulación de esporas en un mismo lugar. Los resultados muestran que *Agrocybe* presenta la mayor variación interanual, mientras que *Cladosporium*, la menor (Anexo 2.B). La alta variabilidad del parámetro α en *Agrocybe* puede ser explicada por la tendencia anual de este taxon a incrementar sus

concentraciones en Catalunya (Vélez-Pereira *et al.* 2016). Asímismo, Girona es la estación con mayor heterogeneidad interanual, mientras que Barcelona y Vielha son las más homogéneas. La mayor variabilidad presentada en Girona se puede atribuir a las mayores variaciones entre la temperatura mínima y la temperatura máxima en el periodo de muestreo, lo que podría estar provocando cambios en la esporulación. En el caso de Barcelona y Vielha, el comportamiento de las temperaturas y disponibilidad de agua pueden estar favoreciendo la estabilidad en las emisiones. Barcelona presenta la menor oscilación térmica y Vielha las temperaturas más bajas, lo que puede estar limitando los incrementos en las concentraciones y por ende la variación anual. Asímismo, los altos registros de precipitación anual y días con lluvia en ambas estaciones (Figura V - Introducción) estarían regulando los procesos de esporulación.

El comportamiento del parámetro α descrito anteriormente se corrobora al analizar la estabilidad espacial del parámetro para cada año y taxon. *Cladosporium* es el taxon más estable a través de los años, mientras que *Aspergillus-Penicillium*, que presenta un comportamiento esporádico como también se indica en Oliveira *et al.* (2010), es el más heterogéneo. También se observa que el año más variable es 1998, posiblemente por presentar la menor precipitación anual en el área y periodo de estudio. Contrario a esto, el año 2014 se establece como el más homogéneo, y coincide con ser el segundo año con más precipitación (Anexo 2.B).

En general, los resultados de ajuste χ^2 (Anexo 2.B) mostraron altos valores de significación en todos los táxones, siendo *Alternaria*, *Pleospora* y Coprinaceae los que presentan los mejores valores, mientras que *Aspergillus-Penicillium*, *Agrocybe* y *Drechslera-Helminthosporium* presentan los menores. En cuanto a los resultados por estaciones se observó que Tarragona y Roquetes-Tortosa presentaron los mejores ajustes y, Barcelona y Bellaterra los menores.

La clasificación genérica creada a partir de los valores de α muestran que la primera categoría está conformada por *Cladosporium* en todas las estaciones, presentando valores de α superiores a 0.60 y 253 DNN en promedio. La segunda categoría lo conforman nueve táxones, siendo *Alternaria* y *Ganoderma* los únicos que se comportan igual en las ocho estaciones. Los valores de α varían entre 0.30 y 0.59 y presentan entre 149 y 288 DNN. La tercera categoría está conformada por 10 táxones, siendo *Pleospora* el taxon con el mismo comportamiento en toda el área de muestreo. Los valores de α van desde 0.20 hasta 0.29 con valores medios de DNN entre 104 y 278. La cuarta categoría está conformada por 11 táxones, donde *Leptosphaeria* y *Aspergillus-Penicillium* se clasifican igual para todas las estaciones. Su valor α varía entre 0.10 y 0.19, y los DNN entre 42 y 164. Finalmente, la quinta categoría está conformada por cuatro táxones mostrando valores de α menores a 0.10 y DNN cercanos a los 30 (Tabla 2.6).

En la Figura 2.2 se representa la distribución espacial de la clasificación genérica establecida. Al igual que en el caso de los tipos polínicos, el parámetro α fue el usado para clasificar, mientras que el DNN se emplea como un parámetro secundario para definir las categorías. Para comprender la información representada en esta Figura es necesario consultar la Tabla 2.5. En la propuesta de clasificación se plantean cinco categorías que contienen los 18 táxones. Seis de ellos se presentan en una sola categoría (*Alternaria, Leptosphaeria, Aspergillus-Penicillium, Ganoderma* y *Cladosporium*), ocho táxones, en dos (*Chaetomium, Agaricus, Drechslera-Helminthosporium*,

Agrocybe, Coprinaceae, *Pithomyces*, *Stemphylium* y Thelephoraceae) y cuatro, en tres (*Arthrinium*, *Epicoccum*, *Torula* y Xylariaceae).

Taxon Estaciones del grupo a β DNN Cladosporium Todas 0.780 1396.5 253 Alternaria Todas 0.504 94.7 288 DrechHelmi. (I) Excepto VIE 0.476 17.7 204 Torula (I) LLE 0.433 20.1 197 Epicoccum (I) BTU/GIC/LLE/MAN 0.385 22.3 191 Ganoderma Todas 0.351 316.9 272 Stemphylium (I) Excepto VIE 0.351 316.9 272 Stemphylium (I) Excepto VIE 0.348 10.9 149 Xylariaceae (I) GIC 0.327 38.3 177 Agrocybe (I) BTU/GIC/LLE/MAN 0.317 561.1 246 Coprinaceae (II) Excepto BCN/GIC/VIE 0.249 398.2 278 Xylariaceae (II) Excepto BCN/GIC/VIE 0.246 20.5 148 Coprinaceae (II) BCN/TAU/TOR 0.239 13.8 137				Promed	io del grupo	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Taxon	Estaciones del grupo	α	β	DNN
AlternariaTodas0.50494.7288 $DrechHelmi. (I)$ Excepto VIE0.47617.7204 $Torula (I)$ LLE0.43320.1197 $Epicoccum (I)$ BTU/GIC/LLE/MAN0.38522.3191 $Ganoderma$ Todas0.351316.9272 $Coprinaceae (I)$ BCN/GIC/VIE0.351316.9272 $Stemphylium (I)$ Excepto VIE0.34810.9149 $Xylariaceae (I)$ GIC0.32738.3177 $Agrocybe (I)$ BTU/GIC/LLE/MAN0.317561.1246 $Pleospora$ Todas0.25942.2184Coprinaceae (II)Excepto BCN/GIC/VIE0.249398.2278 $Xylariaceae (II)$ Excepto BCN/GIC/VIE0.24620.8125 $Pleospora$ Todas0.25943.2148 $Coprinaceae (II)$ Excepto BCN/GIC/VIE0.24620.8125 $Arthrinium (I)$ BTU/GIC/LLE/MAN0.24622.5148 $Epicoccum (II)$ BCN/TAU/TOR/VIE0.236442.7224 $Agaricus (I)$ Excepto LLE/TAU/VIE0.236442.7224 $Agaricus (I)$ Excepto LLE/TAU/VIE0.19023.8114 $Arthrinium (II)$ BCN/TAU/TOR0.17124.3126 $DrechHelmi. (II)$ VIE0.1699.590Thelephoraceae (II)LLE0.16394.3164 $Torula (III)$ BCN/TAU/TOR0.16394.3164 <tr< td=""><td></td><td>Cladosporium</td><td>Todas</td><td>0.780</td><td>1396.5</td><td>253</td></tr<>		Cladosporium	Todas	0.780	1396.5	253
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Alternaria	Todas	0.504	94.7	288
Torula (I) LLE 0.433 20.1 197 Epicoccum (I) BTU/GIC/LLE/MAN 0.385 22.3 191 Ganderma Todas 0.353 38.9 164 Coprinaceae (I) BCN/GIC/VIE 0.351 316.9 272 Stemphylium (I) Excepto VIE 0.348 10.9 149 Xylariaceae (I) GIC 0.327 38.3 177 Agrocybe (I) BTU/GIC/LLE/MAN 0.317 561.1 246 Pleospora Todas 0.259 42.2 184 Coprinaceae (II) Excepto BCN/GIC/VIE 0.249 398.2 278 Xylariaceae (II) Excepto GIC/VIE 0.246 20.8 125 Arthrinium (I) BCN/TAU/TOR 0.239 13.8 137 Torula (II) BCN/TAU/TOR 0.232 37.4 142 Torula (II) BTU/GIC/MAN/TOR 0.220 9.7 104 Epicoccum (III) BCN/TAU/TOR 0.220 9.7 104 <t< td=""><td></td><td>DrechHelmi. (I)</td><td>Excepto VIE</td><td>0.476</td><td>17.7</td><td>204</td></t<>		DrechHelmi. (I)	Excepto VIE	0.476	17.7	204
Epicoccum (I) BTU/GIC/LLE/MAN 0.385 22.3 191 Ganoderma Todas 0.333 38.9 164 Coprinaceae (I) BCN/GIC/VIE 0.351 316.9 272 Stemphylium (I) Excepto VIE 0.348 10.9 149 Xylariaceae (I) GIC 0.327 38.3 177 Agrocybe (I) BTU/GIC/LLE/MAN 0.317 561.1 246 Coprinaceae (II) Excepto BCN/GIC/VIE 0.249 398.2 278 Xylariaceae (II) Excepto BCN/GIC/VIE 0.246 20.8 125 Arthrinium (I) BTU/GIC/LLE/MAN 0.246 22.5 148 Epicoccum (II) BCN/TAU/TOR 0.239 13.8 137 Agaricus (I) Excepto LLE/TAU/VIE 0.236 442.7 224 Agaricus (I) Excepto LLE/TAU/VIE 0.232 37.4 142 Torula (II) BTU/GIC/MAN/TOR 0.229 14.0 123 Drech-Helmi.(II) VIE 0.169 9.5		Torula (I)	LLE	0.433	20.1	197
Ganoderma Todas 0.353 38.9 164 Coprinaceae (I) BCN/GIC/VIE 0.351 316.9 272 Stemphylium (I) Excepto VIE 0.348 10.9 149 Xylariaceae (I) GIC 0.327 38.3 177 Agrocybe (I) BTU/GIC/LLE/MAN 0.317 561.1 246 Pleospora Todas 0.259 42.2 184 Coprinaceae (II) Excepto BCN/GIC/VIE 0.246 20.8 125 Xylariaceae (II) BTU/GIC/LLE/MAN 0.246 22.5 148 Epicoccum (II) BCN/TAU/TOR 0.239 13.8 137 Agrocybe (II) BCN/TAU/TOR/VIE 0.236 442.7 224 Agaricus (I) Excepto LLE/TAU/VIE 0.232 37.4 142 Thelephoraceae (I) Excepto LLE/TAU/VIE 0.220 9.7 104 Epicoccum (III) VIE 0.169 9.5 90 Thelephoraceae (II) ULE 0.168 7.7 74		Epicoccum (I)	BTU/GIC/LLE/MAN	0.385	22.3	191
Coprinaceae (I) BCN/GIC/VIE 0.351 316.9 272 Stemphylium (I) Excepto VIE 0.348 10.9 149 Xylariaceae (I) GIC 0.327 38.3 177 Agrocybe (I) BTU/GIC/LLE/MAN 0.317 561.1 246 Pleospora Todas 0.259 42.2 184 Coprinaceae (II) Excepto BCN/GIC/VIE 0.249 398.2 278 Xylariaceae (II) Excepto GIC/VIE 0.246 20.8 125 Arthrinium (I) BTU/GIC/LLE/MAN 0.246 22.5 148 Coprinaceae (II) Excepto GIC/VIE 0.239 13.8 137 Agrocybe (II) BCN/TAU/TOR 0.239 13.8 137 Agrocybe (II) BCN/TAU/TOR 0.236 442.7 224 Agaricus (I) Excepto LLE/TAU/VIE 0.236 442.7 224 Agaricus (I) BTU/GIC/MAN/TOR 0.220 9.7 104 Epicoccum (III) VIE 0.190 23.8 114<		Ganoderma	Todas	0.353	38.9	164
Stemphylium (I) Excepto VIE 0.348 10.9 149 Xylariaceae (I) GIC 0.327 38.3 177 Agrocybe (I) BTU/GIC/LLE/MAN 0.317 561.1 246 Pleospora Todas 0.259 42.2 184 Coprinaceae (II) Excepto BCN/GIC/VIE 0.249 398.2 278 Xylariaceae (II) Excepto GIC/VIE 0.246 20.8 125 Arthrinium (I) BTU/GIC/LLE/MAN 0.246 22.5 148 Epicoccum (II) BCN/TAU/TOR 0.239 13.8 137 Agrocybe (II) BCN/TAU/TOR/VIE 0.236 442.7 224 Agrocybe (II) BCN/TAU/TOR/VIE 0.232 37.4 142 Torula (I) Excepto LLE/TAU/VIE 0.232 37.4 142 Torula (II) BTU/GIC/MAN/TOR 0.229 14.0 123 DrechHelmi. (II) VIE 0.190 23.8 114 Arthrinium (II) BCN/TAU/TOR 0.171 24.3 126		Coprinaceae (I)	BCN/GIC/VIE	0.351	316.9	272
Xylariaceae (I) GIC 0.327 38.3 177 Agrocybe (I) BTU/GIC/LLE/MAN 0.317 561.1 246 Pleospora Todas 0.259 42.2 184 Coprinaceae (II) Excepto BCN/GIC/VIE 0.249 398.2 278 Xylariaceae (II) Excepto GIC/VIE 0.246 20.8 125 Arthrinium (I) BTU/GIC/LLE/MAN 0.246 22.5 148 Epicoccum (II) BCN/TAU/TOR 0.236 442.7 224 Agrocybe (II) BCN/TAU/TOR 0.236 442.7 224 Agrocybe (II) BCN/TAU/TOR/VIE 0.236 442.7 224 Agrocybe (II) BCN/TAU/TOR 0.232 37.4 142 Torula (II) BTU/GIC/MAN/TOR 0.229 14.0 123 DrechHelmi. (II) VIE 0.190 23.8 114 Arthrinium (II) BCN/TAU/TOR 0.163 94.3 164 DrechHelmi. (II) VIE 0.168 7.7 74 <td></td> <td>Stemphylium (I)</td> <td>Excepto VIE</td> <td>0.348</td> <td>10.9</td> <td>149</td>		Stemphylium (I)	Excepto VIE	0.348	10.9	149
Agrocybe (I) BTU/GIC/LLE/MAN 0.317 561.1 246 Pleospora Todas 0.259 42.2 184 Coprinaccae (II) Excepto BCN/GIC/VIE 0.249 398.2 278 Xylariaceae (II) Excepto GIC/VIE 0.246 20.8 125 Arthrinium (I) BTU/GIC/LLE/MAN 0.246 22.5 148 Epicoccum (II) BCN/TAU/TOR 0.239 13.8 137 Agrocybe (II) BCN/TAU/TOR/VIE 0.236 442.7 224 Agaricus (I) Excepto LLE/TAU/VIE 0.232 37.4 142 Torula (II) BTU/GIC/MAN/TOR 0.229 14.0 123 DrechHelmi. (II) VIE 0.190 23.8 114 Epicoccum (III) BCN/TAU/TOR 0.169 9.5 90 Arthrinium (II) BCN/TAU/TOR 0.169 9.5 90 Arthrinium (II) BCN/TAU/TOR 0.163 94.3 164 Torula (III) LLE 0.163 94.3 164		Xylariaceae (I)	GIC	0.327	38.3	177
Pleospora Todas 0.259 42.2 184 Coprinaceae (II) Excepto BCN/GIC/VIE 0.249 398.2 278 Xylariaceae (II) Excepto GIC/VIE 0.246 20.8 125 Arthrinium (I) BTU/GIC/LLE/MAN 0.246 22.5 148 Epicoccum (II) BCN/TAU/TOR 0.239 13.8 137 Agrocybe (II) BCN/TAU/TOR/VIE 0.236 442.7 224 Agaricus (I) Excepto LLE/TAU/VIE 0.232 37.4 142 Torula (II) BTU/GIC/MAN/TOR 0.229 14.0 123 Drech-Helmi. (II) VIE 0.220 9.7 104 Epicoccum (III) VIE 0.190 23.8 114 Arthrinium (II) BCN/TAU/TOR 0.171 24.3 126 Xylariaceae (III) VIE 0.169 9.5 90 Thelephoraceae (II) LLE 0.163 94.3 164 Torula (III) BCN/TAU/VIE 0.150 64.9 122		Agrocybe (I)	BTU/GIC/LLE/MAN	0.317	561.1	246
Coprinaceae (II) Excepto BCN/GIC/VIE 0.249 398.2 278 Xylariaceae (II) Excepto GIC/VIE 0.246 20.8 125 Arthrinium (I) BTU/GIC/LLE/MAN 0.246 22.5 148 Epicoccum (II) BCN/TAU/TOR 0.239 13.8 137 Agrocybe (II) BCN/TAU/TOR/VIE 0.236 442.7 224 Agaricus (I) Excepto LLE/TAU/VIE 0.232 37.4 142 Torula (II) BTU/GIC/MAN/TOR 0.229 14.0 123 DrechHelmi. (II) VIE 0.190 23.8 114 Arthrinium (II) BCN/TAU/TOR 0.120 9.7 104 Epicoccum (III) VIE 0.190 23.8 114 Arthrinium (II) BCN/TAU/TOR 0.171 24.3 126 Xylariaceae (III) TOR 0.169 9.5 90 Thelephoraceae (II) LLE 0.163 94.3 164 Torula (III) BCN/TAU/VIE 0.150 64.9 122		Pleospora	Todas	0.259	42.2	184
xylariaceae (II) Excepto GIC/VIE 0.246 20.8 125 Arthrinium (I) BTU/GIC/LLE/MAN 0.246 22.5 148 Epicoccum (II) BCN/TAU/TOR 0.239 13.8 137 Agrocybe (II) BCN/TAU/TOR/VIE 0.236 442.7 224 Agaricus (I) Excepto LLE/TAU/VIE 0.236 442.7 224 Agaricus (I) Excepto LLE/TAU/VIE 0.232 37.4 142 Thelephoraceae (I) Excepto LLE 0.232 37.4 142 DrechHelmi. (II) VIE 0.220 9.7 104 Epicoccum (III) VIE 0.190 23.8 114 Arthrinium (II) BCN/TAU/TOR 0.171 24.3 126 Xylariaceae (III) VIE 0.169 9.5 90 Thelephoraceae (II) LLE 0.163 94.3 164 Torula (III) BCN/TAU/VIE 0.150 64.9 122 Agaricus (II) LLE/TAU/VIE 0.150 64.9 122		Coprinaceae (II)	Excepto BCN/GIC/VIE	0.249	398.2	278
P Arthrinium (I) BTU/GIC/LLE/MAN 0.246 22.5 148 Epicoccum (II) BCN/TAU/TOR 0.239 13.8 137 Agrocybe (II) BCN/TAU/TOR/VIE 0.236 442.7 224 Agaricus (I) Excepto LLE/TAU/VIE 0.236 442.7 224 Agaricus (I) Excepto LLE/TAU/VIE 0.234 73.7 167 Thelephoraceae (I) Excepto LLE 0.232 37.4 142 Torula (II) BTU/GIC/MAN/TOR 0.229 14.0 123 DrechHelmi. (II) VIE 0.120 9.7 104 Epicoccum (III) VIE 0.190 23.8 114 Arthrinium (II) BCN/TAU/TOR 0.171 24.3 126 Xylariaceae (III) TOR 0.169 9.5 90 Thelephoraceae (II) LLE 0.163 94.3 164 Torula (III) BCN/TAU/VIE 0.150 64.9 122 Agaricus (II) LLE/TAU/VIE 0.150 64.9 <t< td=""><td>α</td><td>Xylariaceae (II)</td><td>Excepto GIC/VIE</td><td>0.246</td><td>20.8</td><td>125</td></t<>	α	Xylariaceae (II)	Excepto GIC/VIE	0.246	20.8	125
Epicoccum (II) BCN/TAU/TOR 0.239 13.8 137 Agrocybe (II) BCN/TAU/TOR/VIE 0.236 442.7 224 Agaricus (I) Excepto LLE/TAU/VIE 0.234 73.7 167 Thelephoraceae (I) Excepto LLE 0.232 37.4 142 Torula (II) BTU/GIC/MAN/TOR 0.229 14.0 123 DrechHelmi. (II) VIE 0.220 9.7 104 Epicoccum (III) VIE 0.190 23.8 114 Arthrinium (II) BCN/TAU/TOR 0.190 23.8 114 Arthrinium (II) BCN/TAU/TOR 0.169 9.5 90 Thelephoraceae (II) LLE 0.168 7.7 74 Leptosphaeria Todas 0.163 94.3 164 Agaricus (II) LLE/TAU/VIE 0.150 64.9 122 Agaricus (II) LLE/TAU/VIE 0.133 163.9 94 Agaricus (II) LLE/TAU/VIE 0.133 163.9 94	de	Arthrinium (I)	BTU/GIC/LLE/MAN	0.246	22.5	148
Agrocybe (II) BCN/TAU/TOR/VIE 0.236 442.7 224 Agaricus (I) Excepto LLE/TAU/VIE 0.234 73.7 167 Thelephoraceae (I) Excepto LLE 0.232 37.4 142 Torula (II) BTU/GIC/MAN/TOR 0.229 14.0 123 DrechHelmi. (II) VIE 0.220 9.7 104 Epicoccum (III) VIE 0.190 23.8 114 Arthrinium (II) BCN/TAU/TOR 0.171 24.3 126 Xylariaceae (III) TOR 0.169 9.5 90 Thelephoraceae (II) LLE 0.168 7.7 74 Leptosphaeria Todas 0.163 94.3 164 Agaricus (II) LLE/TAU/VIE 0.150 64.9 122 Agaricus (II) LLE/TAU/VIE 0.133 163.9 94 Agaricus (II) LLE/TAU/VIE 0.133 163.9 94 Chaetomium (I) LLE 0.129 97 42	ón	Epicoccum (II)	BCN/TAU/TOR	0.239	13.8	137
Agaricus (I) Excepto LLE/TAU/VIE 0.234 73.7 167 Thelephoraceae (I) Excepto LLE 0.232 37.4 142 Torula (II) BTU/GIC/MAN/TOR 0.229 14.0 123 DrechHelmi. (II) VIE 0.220 9.7 104 Epicoccum (III) VIE 0.190 23.8 114 Arthrinium (II) BCN/TAU/TOR 0.171 24.3 126 Xylariaceae (III) TOR 0.169 9.5 90 Thelephoraceae (II) LLE 0.168 7.7 74 Leptosphaeria Todas 0.163 94.3 164 Agaricus (II) LLE/TAU/VIE 0.150 64.9 122 Agaricus (II) LLE/TAU/VIE 0.133 163.9 94 Agaricus (II) LLE/TAU/VIE 0.133 163.9 94 Chaetomium (I) LLE 0.129 97 42	nci	Agrocybe (II)	BCN/TAU/TOR/VIE	0.236	442.7	224
Thelephoraceae (I) Excepto LLE 0.232 37.4 142 Torula (II) BTU/GIC/MAN/TOR 0.229 14.0 123 DrechHelmi. (II) VIE 0.220 9.7 104 Epicoccum (III) VIE 0.190 23.8 114 Arthrinium (II) BCN/TAU/TOR 0.171 24.3 126 Xylariaceae (III) TOR 0.169 9.5 90 Thelephoraceae (II) LLE 0.168 7.7 74 Leptosphaeria Todas 0.163 94.3 164 Argaricus (II) LLE/TAU/VIE 0.150 64.9 122 AsperPenic. Todas 0.133 163.9 94 Chaetomium (I) LLE 0.129 97 42	fu	Agaricus (I)	Excepto LLE/TAU/VIE	0.234	73.7	167
Yet Torula (II) BTU/GIC/MAN/TOR 0.229 14.0 123 DrechHelmi. (II) VIE 0.220 9.7 104 Epicoccum (III) VIE 0.190 23.8 114 Arthrinium (II) BCN/TAU/TOR 0.171 24.3 126 Xylariaceae (III) TOR 0.169 9.5 90 Thelephoraceae (II) LLE 0.168 7.7 74 Leptosphaeria Todas 0.163 94.3 164 Agaricus (II) LLE/TAU/VIE 0.150 64.9 122 AsperPenic. Todas 0.133 163.9 94 Chaetomium (I) LLE 0.129 9.7 42	en	Thelephoraceae (I)	Excepto LLE	0.232	37.4	142
DechHelmi. (II) VIE 0.220 9.7 104 Epicoccum (III) VIE 0.190 23.8 114 Arthrinium (II) BCN/TAU/TOR 0.171 24.3 126 Xylariaceae (III) TOR 0.169 9.5 90 Thelephoraceae (II) LLE 0.168 7.7 74 Leptosphaeria Todas 0.163 94.3 164 Torula (III) BCN/TAU/VIE 0.159 11.9 85 Agaricus (II) LLE/TAU/VIE 0.150 64.9 122 AsperPenic. Todas 0.133 163.9 94 Chaetomium (I) LLE 0.129 97 42	ías	Torula (II)	BTU/GIC/MAN/TOR	0.229	14.0	123
Open System Epicoccum (III) VIE 0.190 23.8 114 Arthrinium (II) BCN/TAU/TOR 0.171 24.3 126 Xylariaceae (III) TOR 0.169 9.5 90 Thelephoraceae (II) LLE 0.168 7.7 74 Leptosphaeria Todas 0.163 94.3 164 Torula (III) BCN/TAU/VIE 0.159 11.9 85 Agaricus (II) LLE/TAU/VIE 0.150 64.9 122 AsperPenic. Todas 0.133 163.9 94 Chaetomium (I) LLE 0.129 97 42	gor	DrechHelmi. (II)	VIE	0.220	9.7	104
O Arthrinium (II) BCN/TAU/TOR 0.171 24.3 126 Xylariaceae (III) TOR 0.169 9.5 90 Thelephoraceae (II) LLE 0.168 7.7 74 Leptosphaeria Todas 0.163 94.3 164 Torula (III) BCN/TAU/VIE 0.159 11.9 85 Agaricus (II) LLE/TAU/VIE 0.150 64.9 122 AsperPenic. Todas 0.133 163.9 94 Chaetomium (I) LLE 0.129 9.7 42	ate	Epicoccum (III)	VIE	0.190	23.8	114
Xylariaceae (III) TOR 0.169 9.5 90 Thelephoraceae (II) LLE 0.168 7.7 74 Leptosphaeria Todas 0.163 94.3 164 Torula (III) BCN/TAU/VIE 0.159 11.9 85 Agaricus (II) LLE/TAU/VIE 0.150 64.9 122 AsperPenic. Todas 0.133 163.9 94 Chaetomium (I) LLE 0.129 9.7 42	Ü	Arthrinium (II)	BCN/TAU/TOR	0.171	24.3	126
Thelephoraceae (II) LLE 0.168 7.7 74 Leptosphaeria Todas 0.163 94.3 164 Torula (III) BCN/TAU/VIE 0.159 11.9 85 Agaricus (II) LLE/TAU/VIE 0.150 64.9 122 AsperPenic. Todas 0.133 163.9 94 Chaetomium (I) LLE 0.129 9.7 42		Xylariaceae (III)	TOR	0.169	9.5	90
Leptosphaeria Todas 0.163 94.3 164 Torula (III) BCN/TAU/VIE 0.159 11.9 85 Agaricus (II) LLE/TAU/VIE 0.150 64.9 122 AsperPenic. Todas 0.133 163.9 94 Chaetomium (I) LLE 0.129 9.7 42		Thelephoraceae (II)	LLE	0.168	7.7	74
Torula (III) BCN/TAU/VIE 0.159 11.9 85 Agaricus (II) LLE/TAU/VIE 0.150 64.9 122 AsperPenic. Todas 0.133 163.9 94 Chaetomium (I) LLE 0.129 97 42		Leptosphaeria	Todas	0.163	94.3	164
Agaricus (II) LLE/TAU/VIE 0.150 64.9 122 AsperPenic. Todas 0.133 163.9 94 Chaetomium (I) LLE 0.129 9.7 42		Torula (III)	BCN/TAU/VIE	0.159	11.9	85
AsperPenic. Todas 0.133 163.9 94 Chaetomium (I) LLE 0.129 9.7 42		Agaricus (II)	LLE/TAU/VIE	0.150	64.9	122
Chaetomium (I) LLE 0.129 97 42		AsperPenic.	Todas	0.133	163.9	94
		Chaetomium (I)	LLE	0.129	9.7	42
<i>Pithomyces</i> (I) GIC/VIE 0.114 6.4 48		Pithomyces (I)	GIC/VIE	0.114	6.4	48
Pithomyces (II) Excepto GIC/VIE 0.086 5.2 35		Pithomyces (II)	Excepto GIC/VIE	0.086	5.2	35
Stemphylium (II) VIE 0.086 4.0 31		Stemphylium (II)	VIE	0.086	4.0	31
Chaetomium (II) Excepto LLE/VIE 0.077 13.6 35		Chaetomium (II)	Excepto LLE/VIE	0.077	13.6	35
Arthrinium (III) VIE 0.045 16.6 33		Arthrinium (III)	VIE	0.045	16.6	33

Tabla 2.6 – Clasificación	genérica de los ti	pos de esporas o	le hongo mediante el	parámetro α del modelo s	zamma.
Tublu 210 Clubilleucion	Scher lea ac 105 h	pos de esportas	ie nongo meanance ei	pur unicer o la der modero g	

Los táxones clasificados en una sola categoría para las ocho estaciones de estudio son considerados cosmopolitas, presentes en la mayoría de los espectros aerobiológicos fúngicos, exceptuando a *Aspergillus-Penicillium* que es reportado con una menor frecuencia (Díaz *et al.* 2006, Mallo *et al.* 2011, Hasnain *et al.* 2012, Almaguer *et al.* 2013, Damialis *et al.* 2015). Asímismo, todos ellos se ven fuertemente influenciados por los cambios de humedad presente en el clima mediterráneo e incluso se ha reportado que su esporulación se ve favorecida por la precipitación, especialmente en *Cladosporium, Pleospora, Leptosphaeria y Alternaria* (Rúa-Giraldo 2013).

Para los táxones que se presentan distribuidos en dos categorías, se destacan *Drechslera-Helminthosporium* y *Stemphylium*, donde la estación de Vielha presenta un comportamiento diferente al resto del área de estudio; comportamiento que puede ser explicado por el requerimiento de temperaturas cálidas que estos hongos necesitan para una óptima esporulación (Rossi *et al.* 2005, Grinn-Gofroń & Bosiacka 2015), ausente en esta estación de alta montaña. Adicionalmente, el taxon *Stemphylium* en Vielha presenta una mayor variabilidad estacional anual en comparación con *Drechslera-Helminthosporium*, a pesar de contar con altos niveles de humedad que favorecen su esporulación. Esto se puede explicar ya que su rango de esporulación se establece entre los 15 y 25°C (Rossi *et al.* 2005) y la temperatura promedio anual de esta estación se reporta por debajo.

Para el caso del Coprinaceae, su distribución obedece posiblemente más a la precipitación de la zona, que favorece su esporulación (Morales *et al.* 2006), que al hábitat natural de muchas de sus especies (en pastizales bien abonados, parques, bordes de caminos, terrenos removidos, bosques en general),. En este caso, los valores de α más elevados se registran en Vielha, Girona y Barcelona, siendo estas tres estaciones las que presentan mayores valores de precipitación anual (Figura V-Introducción).

Pithomyces, a pesar de ser reconocido como un taxon de aire seco y poco frecuente en el espectro aerobiológico (Rúa-Giraldo 2013), presenta una mayor estabilidad en las estaciones de Girona y Vielha, con los mayores niveles de precipitación, días con lluvias y humedad relativa de las estaciones estudiadas. Ésto concuerda con Domsch *et al.* (2007), quienes aseveran que las mayores esporulaciones de *Pithomyces* ocurren después de la lluvia. La diferencia entre los diversos estudios, se puede explicar por la baja frecuencia del taxon en el espectro y por ser reportado con mayores concentraciones durante el verano (Kasprzyk *et al.* 2004, Stępalska & Wołek 2005, Oliveira *et al.* 2009, Mallo *et al.* 2011, Hasnain *et al.* 2012), cuando las precipitaciones son menos intensas y frecuentes y las temperaturas más elevadas (Figura V-Introducción).

Chaetomium se describe como un hongo indicador de la humedad, especialmente en espacios interiores (Codina *et al.* 2008, Andersen *et al.* 2011, McMullin *et al.* 2012), así como un colonizador oportunista en restos de gramíneas, cultivos de cereales o sus semillas y su temperatura de esporulación que oscila entre 18 y 20 °C (Domsch *et al.* 2007). Estas características permiten explicar la gran diferencia en los valores de α en la estación de Lleida con respecto a las restantes estaciones, que además reportan poca frecuencia y niveles bajos del taxon (Tabla 2.4). Aparte del alto uso agrícola del suelo en Lleida, con plantaciones de cereales y gramíneas forrajeras (Departament d'Agricultura, Ramaderia, Pesca i Alimentació *et al.* 2014), los mayores valores de humedad relativa durante el otoño y el invierno pueden estar favoreciendo la presencia de las esporas de este taxon en esta zona.

El taxon Thelephoraceae muestra una distribución espacial similar a *Chaetomium* (exceptuando Vielha) pero con valores inversos, con una menor estabilidad en las concentraciones de Lleida y mayor en el resto. Esto se puede atribuir a la disponibilidad de agua en el área de estudio, ya que Thelephoraceae requiere de una acumulación mínima de precipitaciones y de valores altos de humedad para el crecimiento del basidioma (Ramírez-López *et al.* 2013). Estas condiciones se pueden estar presentando en todas las estaciones (excepto Lleida) a finales del verano, favoreciendo la formación del basidioma y la esporulación por las precipitaciones acumuladas previas y el aumento de la humedad relativa.

La ecología del *Agrocybe* es compleja de establecer por su alta flexibilidad al estrés ambiental y por tratarse de hongos saprobios en localidades con intervención antrópica como campos y pastizales, bordes con pastos, jardines, entre otros (Malysheva & Kiyashko 2011). Éstas características permiten explicar en parte la distribución obtenida de *a*, presentando mayor estabilidad de las concentraciones en la zona interior del territorio, y variando más en la zona de montaña (Vielha) por ser más fría, y la zona litoral (Barcelona, Tarragona y Roquetes-Tortosa) por ser cálida. Adicionalmente, para Catalunya y coincidiendo con Morales *et al.* (2006), los mayores valores de este taxon se presentan a finales de otoño, periodo en el cual las temperaturas mínimas y máximas

presentan su oscilación intermedia y la humedad relativa está en aumento. Esto puede estar favoreciendo el desarrollo del basidioma de *Agrocybe* tal y como lo reporta Philippoussis *et al.* (2001), mientras que los periodos cortos de temperaturas cálidas de finales del otoño pueden favorecer la esporulación.

El taxon *Agaricus* es reportado como saprobio de la hojarasca y restos de vegetales en descomposición (Kerrigan *et al.* 1998). Estas características explican el comportamiento del parámetro α con mayor estabilidad en ambientes rural/urbano, exceptuando Girona que aunque es urbano, está ubicado en la segunda área comarcal con mayor cobertura boscosa (Tabla III; Institut d'Estadística de Catalunya 2014).

En cuanto a los táxones que se representan en tres categorías, destaca el comportamiento de *Arthrinium y Epicoccum*. Ambos táxones se establecen como tipos fúngicos con una frecuencia de moderada a baja en el espectro aerobiológico de Asia y Suramérica (Hasnain *et al.* 2005, Ho *et al.* 2005, Mallo *et al.* 2011), mientras que en Europa *Epicoccum* se presenta con más frecuencia (Kasprzyk *et al.* 2004, Oliveira *et al.* 2009). Ambos son táxones de climas templados o cálidos, presentando *Epicoccum* mayor facilidad de esporulación a temperaturas cálidas, mientras que *Arthrinium* se puede ver limitado (Stępalska & Wołek 2005, Domsch *et al.* 2007, Oliveira *et al.* 2010, Crous & Groenewald 2013). Estas respuestas a la temperatura permiten explicar el comportamiento de α en la Figura 2.2. La zona del interior (Bellaterra, Girona, Manresa y Lleida) presenta un α mayor, por registrar temperaturas templadas, seguida de unos valores de α medios en el litoral (Barcelona, Tarragona, Roquetes-Tortosa) con temperaturas frías. Por otro lado, los valores de α para una misma zona son mayores en *Epicoccum* atribuible a que éste se presenta en mayor frecuencia en el espectro aerobiológico (Tabla 2.4). Finalmente, los resutados muestran que estos táxones pueden ser empleados como indicadores bioclimáticos de la temperatura.

El hábitat de Xylariaceae se puede clasificar en cuatro categorías: corteza de árboles, árboles o ramas de árboles en decaimiento, en hojarasca y en estiércol de animales (Whalley 1985, Whalley 1996). Asimismo, es reportado en una gran variedad de zonas climáticas, a pesar de que algunas especies de esta familia presentan características restrictivas, requierendo bajas temperaturas para su crecimiento, pero algo más templadas para su maduración (Whalley 1985, Whalley 1996). Este comportamiento puede estar justificado por la cercanía a la temperatura de crecimiento reportada por U'Ren *et al.* (2016) de 21.5°C. Girona es la estación con valores promedio cercanos a esta temperatura y es la que presenta los mayores valores de α , mientras que Roquetes-Tortosa presenta la temperatura media más alta de las estaciones de muestreo, que esta por encima de la temperatura criterio, y muestra los valores más bajos del parámetro α ; el resto de las estaciones, presentan valor promedio de esta temperatura.

Finalmente, *Torula* es reportado como un taxon saprobio de zonas templadas, con preferencia por las gramíneas, pero también es reconocido como un taxon cosmopolita (Domsch *et al.* 2007). Esta última característica es confirmada por los estudios de Stępalska & Wołek (2005), Oliveira *et al.* (2010) y Mallo *et al.* (2011) quienes reportan a este taxon como un hongo de frecuencia moderara a alta en los espectros aerobiológicos de esporas, aunque sus picos son reportados en diferentes estaciones del año. El comportamiento del parámetro α puede ser justificado por el uso del suelo en

cultivos de gramíneas. Según el Departament d'Agricultura, Ramaderia, Pesca i Alimentació (2014) Lleida es el área con mayor cobertura agrícola seguidas por Manresa, Girona, Roquetes-Tortosa, Bellaterra, Tarragona, Barcelona y Vielha, resultados que coinciden con los valores de α reportados.

En general, con los resultados obtenidos del parámetro *a* se puede observar que los niveles de esporas de hongos pueden ser empleados como indicadores de factores bioclimáticos como la temperatura (*Agrocybe*, *Drechslera-Helmintosphorium*, *Stemphylium*), la disponibilidad del agua (Coprinaceae, *Pithomyces*, Teleforaceae y Xylariaceae) o la interacción de varios de ellos (*Arthrinium* y *Epicoccum*), asi como indicadores del uso del suelo (*Agaricus*, *Chaetomium* y *Torula*). Por otro lado, se identificaron los táxones que por su homogeneidad espacio-temporal y su carácter alergénico, pueden ser empleados en el desarrollo de modelos de predicción en sistemas de alerta temprana (*Alternaria*, *Aspergillus-Penicillium*, *Cladosporium*, *Ganoderma*, *Leptosphaeria* y *Pleospora*).

2.4. Conclusión

El modelo de distribución gamma es válido para describir el comportamiento de una serie anual de concentraciones diarias de polen y esporas de hongos, permitiendo realizar comparaciones espaciotemporales. Teniendo en cuenta los resultados del parámetro α para cada tipo de bioaerosol estudiado, se ha propuesto una clasificación genérica con cinco categorías. En el caso de polen los resultados muestran una fuerte relación del parámetro con la distribución ecológica (potencial y/o ornamental) de los táxones. En cambio, para las esporas de hongos, los resultados identifican los táxones indicadores del uso del suelo o del bioclima. La clasificación genérica propuesta mejora la gestión de la base de datos aerobiológica de Catalunya, ya que el estudio de las dinámicas anuales se puede reducir a un número menor de táxones representativos, uno por cada categoría, los cuales podrían ser empeados, además, para el desarrollo de modelos de predicción.

2.5. Referencias bibliográficas

- Aboulaich N, Achmakh L, Bouziane H, Trigo MM, Recio M, Kadiri M, Cabezudo B, Riadi H, & Kazzaz M (2013) Effect of meteorological parameters on Poaceae pollen in the atmosphere of Tetouan (NW Morocco). Int J Biometeorol 57:197–205. doi: 10.1007/s00484-012-0566-2
- Alba F, Díaz de la Guardia C, & Sabariego S (2000) Aerobiología en Andalucía: estación de Granada (1999). Rea 6:31–34.
- Alcázar P, Cariñanos P, Galán C, & Domínguez-Vilches E (2000) Aerobiología en Andalucía: estación de Priego de Córdoba (1999). Rea 6:27–30.
- Almaguer M, Aira M-J, Rodríguez-Rajo FJ, & Rojas TI (2013) Study of airborne fungus spores by viable and nonviable methods in Havana, Cuba. Grana 52:289–298. doi: 10.1080/00173134.2013.829869
- Andersen B, Frisvad JC, Søndergaard I, Rasmussen IS, & Larsen LS (2011) Associations between fungal species and water-damaged building materials. Appl Environ Microbiol 77:4180–4188. doi: 10.1128/AEM.02513-10
- Astray G, Rodríguez-Rajo FJ, Ferreiro-Lage JA, Fernández-González M, Jato V, & Mejuto JC (2010) The use of artificial neural networks to forecast biological atmospheric allergens or pathogens only as *Alternaria* spores. J Environ Monit 12:2145–2152. doi: 10.1039/C0EM00248H
- Belmonte J, Alarcón M, Avila A, Scialabba E, & Pino D (2008) Long-range transport of beech (*Fagus sylvatica L.*) pollen to Catalonia (north-eastern Spain). Int J Biometeorol 52:675–687. doi: 10.1007/s00484-008-0160-9

- Belmonte J, & Canela MA (2002) Modelling aerobiological time series. Application to Urticaceae. Aerobiologia 18:287–295. doi: 10.1023/A:1021323610112
- Belmonte J, & Canela MA (2003) Modeling aerobiological pollen data with the gamma distribution. http://lap.uab.cat/aerobiologia/general/pdf/altres/TESAGamma.pdf
- Belmonte J, Gabarra E, & Roure J (2002) Fungal spores spectrum in Catalonia (NE Spain), 1995-2001. In: Communicated at the 7th International Congress on Aerobiology. Montebello, Canada,
- Belmonte J, Vendrell M, Roure JM, Vidal J, Botey J, & Cadahía À (2000) Levels of *Ambrosia* pollen in the atmospheric spectra of Catalan aerobiological stations. Aerobiologia 16:93–99. doi: 10.1023/A:1007649427549

Bermejo D, & García C (2000) Aerobiología en Aragón: estación de Zaragoza (1999). Rea 6:55–58.

- Boddy L, Büntgen U, Egli S, Gange AC, Heegaard E, Kirk PM, Mohammad A, & Kauserud H (2014) Climate variation effects on fungal fruiting. Fungal Ecol 10:20–33. doi: 10.1016/j.funeco.2013.10.006
- Candau P, Pérez Tello AM, González Minero P, & Morales J (2000) Aerobiología en Andalucía: estación de Sevilla (1999). Rea 6:51–54.
- Cariñanos P, & Casares-Porcel M (2011) Urban green zones and related pollen allergy: A review. Some guidelines for designing spaces with low allergy impact. Landscape Urban Plan 101:205–214. doi: 10.1016/j.landurbplan.2011.03.006
- Cariñanos P, Galán C, Alcázar P, & Domínguez E (2000a) Aerobiología en Andalucía: estación de Chirivel (1999). Rea 6:15–18.
- Cariñanos P, Galán C, Alcázar P, & Domínguez E (2000b) Aerobiología en Andalucía: estación de Córdoba (1999). Rea 6:19–22.
- Carlile MJ, Watkinson SC, & Gooday GW (2001) 4 Spores, dormancy and dispersal. In: Carlile MJ, Watkinson SC, & Gooday GW (eds) The Fungi (Second Edition). Academic Press, London, pp 185–243
- Chuine I, & Belmonte J (2004) Improving prophylaxis for pollen allergies: predicting the time course of the pollen load of the atmosphere of major allergenic plants in France and Spain. Grana 43:65–80. doi: 10.1080/00173130410019163
- Codina R, Fox RW, Lockey RF, DeMarco P, & Bagg A (2008) Typical levels of airborne fungal spores in houses without obvious moisture problems during a rainy season in Florida, USA. J Invest Allergol Clin Immunol 18:156.
- Comtois P (2000) The gamma distribution as the true aerobiological probability density function (PDF). Aerobiologia 16:171–176. doi: 10.1023/A:1007667531246
- Crous PW, & Groenewald JZ (2013) A phylogenetic re-evaluation of *Arthrinium*. IMA Fungus 4:133–154. doi: 10.5598/imafungus.2013.04.01.13
- Damialis A, Vokou D, Gioulekas D, & Halley JM (2015) Long-term trends in airborne fungal-spore concentrations: a comparison with pollen. Fungal Ecol 13:150–156. doi: 10.1016/j.funeco.2014.09.010
- Dara F (2013) Forecasting daily Urticaceae pollen count by artificial neural networks. Int J Innovative Res Dev 2:63–71.
- Departament d'Agricultura, Ramaderia, Pesca i Alimentació, Secretaria General, & Estudis i Prospectiva agrària i Alimentària (2014) Superfícies, rendimients i produccions comarcals dels conreus agrícoles. Any 2014. http://agricultura.gencat.cat/web/.content/de_departament/de02_estadistiques_observatoris/02_estructura_i_producc io/02_estadistiques_agricoles/01_llencols_definitius/fitxers_estatics/produccions_comarcals/Produccions_comarcals _web_2014.pdf. Accessed 27 Sep 2016
- Díaz AH, Sabariego SR, Gutiérrez MB, & Cervigón PM (2006) Study of airborne fungal spores in Madrid, Spain. Aerobiologia 22:133. doi: 10.1007/s10453-006-9025-z
- Domsch KH, Gams W, & Anderson T-H (2007) Compendium of soil fungi, Second edition. IHW-Verlag, Eching
- Dopazo A, Méndez J, & Aira MJ (2000a) Aerobiología en Galicia: estación de Viveiro (1999). Rea 6:123-126.
- Dopazo A, Rodríguez FJ, & Aira MJ (2000b) Aerobiología en Galicia: estación de A Coruña (1999). Rea 6:111-114.
- Dopazo A, Seijo MC, & Aira MJ (2000c) Aerobiología en Galicia: estación de Santiago de Compostela (1999). Rea 6:115–118.

- Fernández-Llamazares Á, Belmonte J, Alarcón M, & López-Pacheco M (2012) *Ambrosia L*. in Catalonia (NE Spain): expansion and aerobiology of a new bioinvader. Aerobiologia 28:435–451. doi: 10.1007/s10453-012-9247-1
- Fernández-Llamazares Á, Belmonte J, Delgado R, & De Linares C (2014) A statistical approach to bioclimatic trend detection in the airborne pollen records of Catalonia (NE Spain). Int J Biometeorol 58:371–382. doi: 10.1007/s00484-013-0632-4
- Fernández-Rodríguez S, Skjøth CA, Tormo-Molina R, Brandao R, Caeiro E, Silva-Palacios I, Gonzalo-Garijo Á, & Smith M (2014) Identification of potential sources of airborne *Olea* pollen in the Southwest Iberian Peninsula. Int J Biometeorol 58:337–348. doi: 10.1007/s00484-012-0629-4
- Gabarra E, Belmonte J, & Canela MA (2002) Aerobiological behaviour of *Platanus* L. pollen in Catalonia (North-East Spain). Aerobiologia 18:185–193. doi: 10.1023/A:1021370724043
- Garcia-Mozo H, Galán C, & Domínguez E (2000) Aerobiología en Andalucía: estación de El Cabril (1999). Rea 6:23–26.
- González Minero P, Candau P, Morales J, & Pérez AM (2000) Aerobiología en Andalucía: estación de Huelva (1999). Rea 6:35–38.
- Grinn-Gofroń A, & Bosiacka B (2015) Effects of meteorological factors on the composition of selected fungal spores in the air. Aerobiologia 31:63–72. doi: 10.1007/s10453-014-9347-1
- Grinn-Gofroń A, & Strzelczak A (2008a) Artificial neural network models of relationships between *Alternaria* spores and meteorological factors in Szczecin (Poland). Int J Biometeorol 52:859–868. doi: 10.1007/s00484-008-0182-3
- Grinn-Gofroń A, & Strzelczak A (2008b) Artificial neural network models of relationships between *Cladosporium* spores and meteorological factors in Szczecin (Poland). Grana 47:305–315. doi: 10.1080/00173130802513784
- Hasnain SM, Akhter T, & Waqar MA (2012) Airborne and allergenic fungal spores of the Karachi environment and their correlation with meteorological factors. J Environ Monit 14:1006. doi: 10.1039/c2em10545d
- Hasnain SM, Fatima K, Al-Frayh A, & Al-Sedairy ST (2005) One-Year pollen and spore calendars of Saudi Arabia Al-Khobar, Abha and Hofuf. Aerobiologia 21:241–247. doi: 10.1007/s10453-005-9000-0
- Ho H-M, Rao CY, Hsu H-H, Chiu Y-H, Liu C-M, & Chao HJ (2005) Characteristics and determinants of ambient fungal spores in Hualien, Taiwan. Atmos Environ 39:5839–5850. doi: 10.1016/j.atmosenv.2005.06.034
- Howard LE, & Levetin E (2014) *Ambrosia* pollen in Tulsa, Oklahoma: aerobiology, trends, and forecasting model development. Ann Allerg Asthma Im 113:641–646. doi: 10.1016/j.anai.2014.08.019
- Iglesias I, Rodriguez-Rajo FJ, & Méndez J (2007) Behavior of *Platanus hispanica* pollen, an important spring aeroallergen in northwestern Spain. J Invest Allergol Clin Immunol 17:145.
- Institut d'Estadística de Catalunya I (2014) Anuari estadístic de Catalunya. Usos del sòl. Comarques, àmbits i províncies. http://www.idescat.cat/pub/?id=aec&n=202. Accessed 5 Sep 2016
- Izquierdo R, Belmonte J, Avila A, Alarcón M, Cuevas E, & Alonso-Pérez S (2011) Source areas and long-range transport of pollen from continental land to Tenerife (Canary Islands). Int J Biometeorol 55:67–85. doi: 10.1007/s00484-010-0309-1
- Kasprzyk I, Rzepowska B, & Wasylów M (2004) Fungal spores in the atmosphere of Rzeszow (south-east Poland). Ann Agric Enviro Med 11:285–289.
- Kasprzyk I, & Walanus A (2014) Gamma, Gaussian and logistic distribution models for airborne pollen grains and fungal spore season dynamics. Aerobiologia 30:369–383. doi: 10.1007/s10453-014-9332-8
- Kerrigan RW, Carvalho DB, Horgen PA, & Anderson JB (1998) The indigenous coastal Californian population of the mushroom *Agaricus bisporus*, a cultivated species, may be at risk of extinction. Mol Ecol 7:35–45. doi: 10.1046/j.1365-294x.1998.00294.x
- Kuparinen A, Markkanen T, Riikonen H, & Vesala T (2007) Modeling air-mediated dispersal of spores, pollen and seeds in forested areas. Ecol Model 208:177–188. doi: 10.1016/j.ecolmodel.2007.05.023
- Li D-W, & Kendrick B (1995) A year-round outdoor aeromycological study in Waterloo, Ontario, Canada. Grana 34:199–207. doi: 10.1080/00173139509429043
- Limpert E, Burke J, Galán C, Trigo MM, West JS, & Stahel WA (2008) Data, not only in aerobiology: how normal is the normal distribution? Aerobiologia 24:121–124. doi: 10.1007/s10453-008-9092-4

- Mallo AC, Nitiu DS, & Sambeth MCG (2011) Airborne fungal spore content in the atmosphere of the city of La Plata, Argentina. Aerobiologia 27:77–84. doi: 10.1007/s10453-010-9172-0
- Malysheva EF, & Kiyashko AA (2011) Contribution to the study of *Agrocybe pediades* complex (Agaricales) in Russia based on nrITS sequences. Mycologia Balcanica 8:115–124.
- Matyasovszky I, & Makra L (2011) Autoregressive modelling of daily ragweed pollen concentrations for Szeged in Hungary. Theor Appl Climatol 104:277–283. doi: 10.1007/s00704-011-0431-y
- McMullin DR, Sumarah MK, & Miller JD (2012) Chaetoglobosins and azaphilones produced by Canadian strains of *Chaetomium globosum* isolated from the indoor environment. Mycotoxin Res 29:47–54. doi: 10.1007/s12550-012-0144-9
- Méndez J, Seijo C, & Iglesias I (2000) Aerobiología en Galicia: estación de Ourense (1999). Rea 6:127-130.
- Morales J, González-Minero FJ, Carrasco M, Ogalla VM, & Candau P (2006) Airborne basidiospores in the atmosphere of Seville (South Spain). Aerobiologia 22:125. doi: 10.1007/s10453-006-9019-x
- Moreno-Grau S, Elvira-Rendueles B, Angosto JM, Bayo J, Moreno J, Belchí J, & Moreno-Clavel J (2000) Aerobiología en Murcia: estación de Cartagena (1999). Rea 6:139–142.
- Moseholm L, Weeke ER, & Petersen BN (1987) Forecast of pollen concentrations of Poaceae (Grasses) in the air by time series analysis. Pollen et spores 29:305–321.
- Oliveira M, Ribeiro H, Delgado JL, & Abreu I (2009) The effects of meteorological factors on airborne fungal spore concentration in two areas differing in urbanisation level. Int J Biometeorol 53:61–73. doi: 10.1007/s00484-008-0191-2
- Oliveira M, Ribeiro H, Delgado L, Fonseca J, Gastel-Branco MG, & Abreu I (2010) Outdoor allergenic fungal spores: comparison between an urban and a rural area in Northern Portugal. J Invest Allerg Clin 20:117.
- Orlandi F, Sgromo C, Bonofiglio T, Ruga L, Romano B, & Fornaciari M (2010) Yield modelling in a Mediterranean species utilizing cause–effect relationships between temperature forcing and biological processes. Sci Hortic 123:412–417. doi: 10.1016/j.scienta.2009.09.015
- Paulino R, Tormo R, Silva I, & Muñoz AF (2000) Aerobiología en Extremadura: estación de Cáceres (1999). Rea 6:107–110.
- Philippoussis A, Zervakis G, & Diamantopoulou P (2001) Bioconversion of agricultural lignocellulosic wastes through the cultivation of the edible mushrooms *Agrocybe aegerita*, *Volvariella volvacea* and *Pleurotus* spp. World J Microb Biot 17:191–200. doi: 10.1023/A:1016685530312
- Prank M, Chapman DS, Bullock JM, Belmonte J, Berger U, Dahl A, Jäger S, Kovtunenko I, Magyar D, Niemelä S, Rantio-Lehtimäki A, Rodinkova V, Sauliene I, Severova E, Sikoparija B, & Sofiev M (2013) An operational model for forecasting ragweed pollen release and dispersion in Europe. Agric For Meteorol 182–183:43–53. doi: 10.1016/j.agrformet.2013.08.003
- Puc M (2012) Artificial neural network model of the relationship between *Betula* pollen and meteorological factors in Szczecin (Poland). Int J Biometeorol 56:395–401. doi: 10.1007/s00484-011-0446-1
- Ramírez-López I, Villegas Ríos M, & Cano-Santana Z (2013) Phenotypic plasticity of the basidiomata of Thelephora sp. (Thelephoraceae) in tropical forest habitats. Rev Biol Trop 61:343–350.
- Recio M, Trigo MM, Docampo S, & Cabezudo B (2000) Aerobiología en Andalucía: estación de Málaga (1999). Rea 6:43–46.
- Recio M, Trigo MM, Docampo S, Melgar M, García-Sánchez J, Bootello L, & Cabezudo B (2012) Analysis of the predicting variables for daily and weekly fluctuations of two airborne fungal spores: *Alternaria* and *Cladosporium*. Int J Biometeorol 56:983–991. doi: 10.1007/s00484-011-0509-3
- Rodríguez FJ, Dopazo A, & Jato V (2000a) Aerobiología en Galicia: estación de Santiago de Lugo (1999). Rea 6:119– 122.
- Rodríguez FJ, Seijo MC, & Jato V (2000b) Aerobiología en Galicia: estación de Vigo (1999). Rea 6:135-138.
- Rodríguez-Rajo FJ, Valencia-Barrera RM, Vega-Maray AM, Suarez FJ, Fernandez-Gonzalez D, & Jato V (2006) Prediction of airborne *Alnus* pollen concentration by using ARIMA models. Ann Agric Enviro Med 13:25.

- Rossi V, Bugiani R, Giosué S, & Natali P (2005) Patterns of airborne conidia of *Stemphylium vesicarium*, the causal agent of brown spot disease of pears, in relation to weather conditions. Aerobiologia 21:203–216. doi: 10.1007/s10453-005-9002-y
- Rúa-Giraldo AL (2013) Aerobiología de las esporas de Pleosporales en ambientes intra y extradomiciliarios de Barcelona. Aplicación a la clínica en población alérgica. Info:eu-repo/semantics/doctoralThesis, Universitat Autònoma de Barcelona
- Ruiz L, Cano E, & Díaz de la Guardia C (2000) Aerobiología en Andalucía: estación de Jaén (1999). Rea 6:39-42.
- Sabariego S, Díaz de la Guardia C, Alba F, & Mota JF (2000) Aerobiología en Andalucía: estación de Almería (1999). Rea 6:11–14.
- Sadyś M, Skjøth CA, & Kennedy R (2016) Forecasting methodologies for *Ganoderma* spore concentration using combined statistical approaches and model evaluations. Int J Biometeorol 60:489–498. doi: 10.1007/s00484-015-1045-3
- Sánchez JA, Hidalgo PJ, de Pablos L, Galán C, & Domínguez E (2000) Aerobiología en Castilla La Mancha: estación de Ciudad Real (1999). Rea 6:63–66.
- Scheifinger H, Belmonte J, Buters J, Celenk S, Damialis A, Dechamp C, García-Mozo H, Gehrig R, Grewling L, Halley JM, Hogda K-A, Jäger S, Karatzas K, Karlsen S-R, Koch E, Pauling A, Peel R, Sikoparija B, Smith M, Galán C, Thibaudon M, Vokou D, & De Weger LA (2013) Monitoring, modelling and forecasting of the pollen season. In: Sofiev M, & Bergmann K-C (eds) Allergenic pollen, 1st edn. Springer Netherlands, New York, London, pp 71–126

Shumway RH, & Stoffer DS (2001) Time Series Analysis and Its Applications. Springer

- Silva I, Moreno A, Muñoz AF, & Tormo R (2000) Aerobiología en Extremadura: estación de Badajoz (1999). Rea 6:103–106.
- Smith M, & Emberlin J (2005) Constructing a 7-day ahead forecast model for grass pollen at north London, United Kingdom. Clin Exp Allergy 35:1400–1406. doi: 10.1111/j.1365-2222.2005.02349.x
- Smith M, & Emberlin J (2006) A 30-day-ahead forecast model for grass pollen in north London, United Kingdom. Int J Biometeorol 50:233–242. doi: 10.1007/s00484-005-0010-y
- Stach A, Smith M, Prieto Baena JC, & Emberlin J (2008) Long-term and short-term forecast models for Poaceae (grass) pollen in Poznań, Poland, constructed using regression analysis. Environ Exp Bot 62:323–332. doi: 10.1016/j.envexpbot.2007.10.005
- Stępalska D, & Wołek J (2005) Variation in fungal spore concentrations of selected taxa associated. Aerobiologia 21:43–52. doi: 10.1007/s10453-004-5877-2
- Tortajada B, & Mateu A (2000) Aerobiología en Comunidad Valenciana: estación de Burjassot (1999). Rea 6:99-102.
- Trigo MM, Recio M, Docampo S, & Cabezudo B (2000) Aerobiología en Andalucía: estación de Antequera (1999). Rea 6:47–50.
- Valencia-Barrera RM, Vega A, Fernández-González D, Mencia J, & Díaz C (2000) Aerobiología en Castilla y León: estación de Ponferrada(1999). Rea 6:67–70.
- Vega-Maray A, Fernández-González D, Valencia-Barrera R, Santos F, & Latasa M (2000) Aerobiología en Castilla y León: estación de León (1999). Rea 6:67–70.
- Vélez-Pereira AM, De Linares C, Delgado R, & Belmonte J (2016) Temporal trends of the airborne fungal spores in Catalonia (NE Spain), 1995–2013. Aerobiologia 32:23–37. doi: 10.1007/s10453-015-9410-6
- Whalley AJS (1985) Xylariaceae: some ecological considerations.

Whalley AJS (1996) The Xylariaceous way of life. Mycol Res 100:897-922. doi: 10.1016/S0953-7562(96)80042-6

- Ziello C, Sparks TH, Estrella N, Belmonte J, Bergmann KC, Bucher E, Brighetti MA, Damialis A, Detandt M, Galán C, Gehrig R, Grewling L, Gutiérrez Bustillo AM, Hallsdóttir M, Kockhans-Bieda M-C, De Linares C, Myszkowska D, Pàldy A, Sánchez A, Smith M, Thibaudon M, Travaglini A, Uruska A, Valencia-Barrera RM, Vokou D, Wachter R, de Weger LA, & Menzel A (2012) Changes to airborne pollen counts across Europe. PLoS ONE 7:e34076. doi: 10.1371/journal.pone.0034076
- Zink K, Vogel H, Vogel B, Magyar D, & Kottmeier C (2012) Modeling the dispersion of *Ambrosia artemisiifolia L*. pollen with the model system COSMO-ART. Int J Biometeorol 56:669–680. doi: 10.1007/s00484-011-0468-8

2.6. Anexos

Anexo 2.A Valores de los parámetros del modelo de distribución gamma, días no nulos y su nivel de significaición para cada serie anual, estación y tipo polínico estudiado.

Presentación

En este anexo se presentan los resultados del cálculo de los parámetros de la distribución gamma para el tipo polínico estudiado, año y estación.

Los táxones se ordenan alfabéticamente.

Para cada taxon se presentan dos tablas:

- ✓ en la primera se observan los resultados de DNN, α , β y nivel de significación por cada serie estación-año.
- ✓ en la segunda se muestra un resumen de los estadísticos descriptivos de cada uno de estos parámetros por estación de muestreo.

Abreviaturas

a: Parámetro alfa del modelo gamma. β: Parámetro beta del modelo gamma. Coef R.: Coeficiente de correlación. Desv.: Desviación estándar. DNN: Días No Nulos. Máx.: Máximo. Med.: Mediana. Mín.: Mínimo. Prom.: Promedio. Sig.: Nivel de significación. ***: $p \le 0.001$ **: 0.001*: <math>0.01†: <math>0.05 .

:	۳ 	Barcelona			Bellaten	ra		Ű	irona			Lleida			W	anresa		×	oquetes-T	ortosa	+	Ta	rragona			Vielha		Τ
Ano Di	NN a	ß	Sig. 1	NNU	α	p Sig.	DNN	ø	β	SIg.	DNN N	α	<i>b</i> 3	Ig. DN	N a	β	Sig.	DNN	a	p N	g. DNI	ä	β	SIg.	DNN	α	b N	ŝ
1005 7	0.060	0 4.4		24	0.018 3	33.7					╞							╞							t	t	ł	Τ
1996 2	13 0.032	2 6.5		33	0.047	9.0	23	0.035	25.0	T	29 0	038	IT.	3	2 0.076	7.3		╞			27	0.051	7.4					Ľ
1997 3	9 0.064	4 5.0		40	0.047 1/	0.4	29	0.037	12.3		31 0	.042	4.3	4.	3 0.056	13.2					27	0.043	2.8					
1998 4	12 0.052	2 6.1		36	0.055 7	7.2	13	0.025	5.7		35 0	.045	15.7	ю	8 0.038	28.3		-			16	0.015	4.2					
1999 4	10 0.057	7 7.3		33	0.053 1	1.0	38	0.059	13.9		34 0	.022 3	11.8	2	4 0.039	6.5					22	0.045	1.6					
2000 2	33 0.037	7 3.2		27	0.035 5	9.3	16	0.016	15.0		32 0	.041	15.3	4	0.045	22.0					34	0.045	7.2					
2001 1	9 0.022	2 4.7		17	0.012 2	1.4	15	0.015	12.1		25 0	.032	8.0	=	2 0.034	0.7					5	0.010	2.3					
2002 1	8 0.028	8 4.1		22	0.010 3.	34.4	4	0.014	19.4		24 0	.010	70.5	5	5 0.022	19.8					ε	0.007	2.3					
2003 1	7 0.028	8 3.7		29	0.032 1.	5.4	17	0.020	10.9		26 0	.036 2	33.0	3.	5 0.037	41.8					∞	0.016	1.7				_	
2004	22 0.039	9 3.4		26	0.029 1	4.0	39	0.043	21.3		29 0	036	16.0	4	1 0.019	94.3		+	+		<u></u> :	0.032			13	.015		
2005	9 0.042	2 2.7		19	0.025 2	21.6	30	0.032	11.8		15 0	.016	\$7.3	5	2 0.031	90.5					16	0.024	3.8		9	.016	6.	
2006	6 0.033	3 2.9		21	0.040 I.	(2.3	2	0.024	25.3		16 20	1 510.	29.7	mi li	3 0.027	90.6		18	020	6.6	n :	0.012	4					Τ
2007 2	25 0.041	2.8		37	0.043 8	8.2	35	0.040	1.1		28 0	- 020 - 200	55.7	4	2 0.052	26.6		16 20	.028	2.1	<u>8</u>	0.034	U.I.		12 0	.033	2.0	
2008	24 0.038	8 2.5		×	0.033	2.7	3	07070	30.6		2/ 0	1 /00.	62.4	γ 1	0.030	0.66		n 67	cc0.	- I		070.0	4.1			170	7	Τ
2009	9 0.028	8 3.8		27	0.038 8	8.8	35	0.032	19.4		25 0	.017 I	21.5	2	/ 0.032	72.4		20 6	.031	5.7	17	0.022	5.9		0	.029 (
2010	20 0.044	4 2.0		52	0.031	9.7	35	0.026	15.1		26	010	48.2	τ, Έ	2 0.025	60.4		25 0	044	4.3	19	0.049	4		9	.021	0.	Τ
2011 2	25 0.035	5 3.9		35	0.054 8	8.1	37	0.053	12.4		30 0	.025 4	18.6	3	8 0.027	148.5		31 6	.042	5.3	16	0.030	3.3		19 0	.044	.6	
2012	0.043	3 1.3		26	0.018 3	31.0	19	0.020	10.5		28 20	020	38.2 = 2	ς Γ	7 0.034	126.0	*	26 (j	044	2.5	15	0.027	3.1		9	.016	ۍ . و	Τ
2013	0.017	. 5.3		32	0.028	7.6	41	0.041	0.61		30	- 170	8./0	4	0.041	36.6	•	18	.024	3.0	77	0.046	7.7		0	.024	4. 0	
2014	0.029	1.9		32	0.044 6	0.0	2	0.051	12.1		39 0	:025	34.3	4	0 0.041	6.17	*	24 0	.036	3.4		0.036	2.5		41	.034		٦
NU	NN N	8		NNC		8	DNN	"	8		NNC		8	NC	" N	8		NNG		8	UND	~	B		NNU	0	8	Γ
Me.	0011	2 -			010	L .	-	0.014			15	500	2 0	5 ²	0010	2 5			000	2	-	0.015	-			210		
Máv A	0.064	C L L		10	0.010 5	1.0	5 5	0.050	30.6		20	015	0.0	- 4	2 0.019	1.0		31 0	020	1.7 5.6	<u>5</u>	120.0	1.1		0101	C10.		T
Drow 7	2 0.000	, c		10	c cco.o	101		CC0.0	2.00	Ī		1 200	1.20	ń t	0.0.0	C.0+1		2 2 2	200	0.0	#C 02	1000	t:/		12	1000	0.1	I
Mad 2	0000 6	0 F		C7	1035 1	10	20	20.0	13.0		0 80		0.70	ή h	1000 +	0.00		0 10	050	3.5	17	0.034			1 C	020	1	Τ
Dev S	2 0.017 2 0.017	16		1	1014 8	N.1	101	0.013	64	t	9	- CTO		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.013	47.4		- 0 - 4	110	2.0	9	0.018	2.5		2 ~	016	t. c	Γ
Coef R.	0.74	0.61			0.79 -0	1.46	2	18.0	0.03			148 -1	7.17		0.20	0.28			1.87 -1	113		0.86	0.56		2	0.78 0	39	Γ
	1.00	10.0							2010	1		0.1-0			00	0.00						0000	0.000			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	2	1
													Alr.	sm														
	B	3arcelona			Bellater	ra		Ű	irona			Lleida			M	anresa		R	oquetes-T	ortosa		Ta	rragona			Vielha		
Año Dì	NN a	β	Sig. I	NNG	α	β Sig.	DNN	α	β	Sig.	DNN	α	B S	ig. DN	N a	β	Sig.	DNN	α	β Si	g. DNN	ы И	β	Sig.	DNN	α	β Si	50
1994 5	1 0.086	5 5.4		58	0.070 6	5.2								\vdash											┢		┝	
1995 4	16 0.076	5 4.4		49	0.089 4	4.0																					-	
1996 4	18 0.077	7 4.1		50	0.087 4	4.0	49	0.088	17.2		4	.051 2	94.1	5	9 0.058	2.8					34	0.047	4.7					Γ
1997 4	15 0.043	3 11.2		57	0.046 1.	2.0	84	0.080	42.0		78 0	.068 4	14.7	9	0.056	15.3					47	0.058	5.7					
1998 4	11 0.044	4 6.7		43	0.051 6	6.2	39	0.049	20.5		64 0	.034 5	57.4	3(5 0.049	5.5					31	0.053	3.3					
1999 4	17 0.067	7 6.6		49	0.070 7	7.9	63	0.074	30.7	**	52 0	090	15.0	4	9 0.057	8.8					36	0.033	10.0					
2000 3	32 0.033	3 11.3		33	0.040 1.	0.2	53	0.042	24.4		36 0	.036 5	30.0	3,	3 0.036	10.9					24	0.048	2.0					
2001 4	12 0.029	9 18.3		42	0.030 1	4.9	52	0.053	35.4	*	44 0	.023 4	17.5	3.	5 0.039	11.3					21	0.015	9.6					
2002 4	15 0.040	0 15.4		41	0.066 2	3.8	54	0.075	19.1		43 0	.043 2	27.2	4,	3 0.042	14.4					31	0.059	3.0					
2003 4	49 0.082	2 4.5		4	0.074 3	3.7	56	0.086	11.5		46 0	.026	34.8	5	0 0.085	3.6					31	0.053	2.2					
2004 6	61 0.055	5 16.7		26	0.019 5.	52.2	65	0.032	98.2		62	.035	70.2	0	8 0.065	12.6		+			56	0.074	6.5		56	.048	5.9	Τ
2005	12 0.054	4 4.9		42	0.036 (6.4	92	0.034	19.9		43 0	.046	6.2	4	0.039	c./					67	0.055	3.5		33 0	.036	×,	
2006	0.049	6 IU.5		4	0.056 1	0.2	2	0.062	54.7		9	.030	22.4	ri i	3 0.029	C.81		0 22	029	9.8	5	0.058	6.6		44	.045	5.7	Τ
2007	<u> </u>	5.5		40	0.0/1	7.0	92	0.04/	23.4	40.45	32 0	.016	0.80	ν, γ	0.044	4.0		15 0	.031	7.1	87	0.054	7.0		24 0	.032	ن ا	÷
2008	19 0.035	9 1/.8		6	0.035 I	0.3	63	c/0.0	1.60	***	9	.039 (96.9	* ~	/ 0.043	11.3 -		32	.036	4.9	<u>२</u>	0.042	C.0		0	.060	• · ·	
2009	51 0.066	6 8.5		49	0.057	7.5	69	0.075	32.0	÷	55 U	.043	25.6	4	8 0.061	8.7		41 0	.025	1.5	43	0.080	7.4		54 0	.078 1.	4.6	
2 0102	5 0.071 2007	1.5		<u>د</u> 1	0.04/ 5	1.0	20	0:030	1.60		0 C		0.14	ά č	100.0	0.4) (I	170	0.4	67	0.040	4 - c		0 25	2 750	5.5	Τ
C102	1/0.0	1.0		14	0 050.0	1.0	C 13	0.050	0.00	-;	10 24	2 PPO	0.70	n r	2000 0	0.00		200	000	0.C	5 f	9000	711		10	000	0.0	Γ
2012	4 0.056	C.0 2		33	c 890.0	56	10	0.067	57.3	-	40 0	012 2	14.0		150.0 0	0.02		20 00	ccn:	2.C	20	0000	161		40 40	c 940	1.0	Τ
2014 4	12 0.065	5 4.6		35	0.053 5	5.0	67	0.064	32.0		35 0	043	0.8	Ĩ,	5 0.057	4.9		24	037	3.6	35	0.038	6.1		35 0	033	0.5	Γ
										1																		1
DI	NN a	β		NNC	α	β	DNN	α	β		DNN	α	β	DN	N a	β		DNN	α	β	DND	Να	β		DNN	α	β	
Mín. 3.	2 0.029	3.3		32	0.019 2	2.6	39	0.032	11.5		32 0.	012 1	5.0	12	3 0.025	2.8		13 0	600:	1.2	21	0.014	2.0		24 0	032 0	5.8	
Max 6	1 0.086	5 18.3		58	0.089 51	2.2	84	0.088	98.2		78 0.	.068 2.	44.0	6	3 0.085	20.0		41 0	.056 2	94.2	56	0.080	16.1		62 0	078 7	8.1	
Prom. 4	5 0.057	7 8.6		4	0.056 9	9.2	99	0.062	38.1		47 0.	.037 5	53.5	4	1 0.049	9.7		26 0	031	8.3	34	0.047	6.2		45 0	.046 2	7.5	
Med. 4	6 0.056	5 6.7		4	0.056 6	5.4	61	0.064	32.0		44 0.	.036 4	17.5	3	7 0.049	8.8		25 0	.031	4.9	34	0.048	5.9		46 0	.045 2	1.2	
Desv.	6 0.016	5 4.8		~	0.018 11	0.4	=	0.017	21.3	1	=	014	19.8	-	0.014	5.1		3 8	012	7.4	∞	0.017	3.7		12 0	014 2	4.2	Т
Coef R.	0.39	0.26			0.10 0.	1.40		0.34	0.45		7	1.54 -(9.11		0.49	0.25		-	9.21 (1.15		0.58	0.08		-	9.67 0	44	

Acer

					\$				č		Ì			Ambi	rosia	ĺ			ļ	, 6	8	Ì		8		ł				
Año -	NINI V	Barcelor	1a R Cio	DMN	ñ,	ellaterra	Sin	DNN	5	rona	Sia	DNIN	~ Lleida	8		INI N	danresa	Sin	DNIN	Koquetes	s-1 ortosa	Sia	DNIN	1 arrage	na R C	Sio DA	Ň	V IEINA R	Sia	
1004	00	003	P 1 215.		0.016	202	-9-C-	VINIT	5	7	316		5	4	<u>ت</u> م	5	2	9.6		5	4	216.	-	5	4	19. 1	5	2	216.	12
1995	6 0.0	012 3		13	0.010	5.6																				+				1.00
1996	16 0.0	011 24	4.5	13	0.009	9 28.0		14	0.010	3.9	Π	12 0.	035	1.5	-	900.0	26.4	H				Π	18 0	.025	2.9	Η	H	H		<u> </u>
1997	18 0.0	033 2	8	36	0.071	2.5		=	0.020	3.6		12 0.	028	2.8	-	6 0.042	1.1						7 0	017	1.0					
1000	11 0.0	023 1	2	31	0.074	1 20		s 1	0.012	1:8	1	15 0.	030	2.5	_ 4	7 0.042	0.9	_					6 : 0 :	020	1.1	+	+			
2000	10 CI	007 2	g -	<u>c</u> ~	0.014	7.1		61 4	0.040	7.0	Ī	17 O	070	1.2		0.000	8.0						17 0	/00/	12.4		+			
2001	3 00	008 0	1.7		0.008	10		-	710.0	<u>t</u>	I	0 - 9	017	C. 10		0000	0.7						2 0	005	1.2		+			1.0
2002	10 0.0	027 1		, «	0.017	7 2.2		01	0.028	1.8		20.0	900	.4	, 4.	0.010	2.4						1 0	006	1.4					
2003	12 0.0	016 6	.8	16	0.016	9.4		4	0.013	1.4		10 0.	016 4	1.3	-	2 0.023	4.6						7 0	014	2.3					1
2004	8 0.0	010 7	.8	19	0.025	5.6		12	0.008	25.2		10 0.	018 4	1.3	-	8 0.035	2.6						13 0	.018	5.7					-
2005	6 0.0	010 4	1.2	9	0.012	2 1.8		9	0.015	1.8		8	022	0.1		0:00	0.7						6 0	017	1.8					
2006	7 0.0	011 4	1.5	2	0.021	1.4		~	0.016	5.1	1	14	027	0.0	-	0.02(1:0		9	0.018	0.7		9	800	5.2	_	0.00	4.1		
2007	8 0.0	013 1	∞. t	4	0.011	0.7		6.	0.013	2.6		6 .0	023	2 1	7	0.011	0.7		т С	0.007	1.0		5 0 0	007	2.8		0.00	3 0.7		
2002	0.0	2 000		× 1	0.010	0.1		4 6	0.011	1.0	1	-0 -0 -0	219	/ v		0.010	0.1		7 2	0.00	7 I.	I	د ا	/00/	1.0		0.00	2.1 0.0		
2010	0.0 9	019	C. L.	<u>t</u> ~	0.017			01	0.016	2.6	Ī	14 14 0)42	C 10		0.012	0.7	ŀ	<u>-</u> "	600.0	0.7	I	- 0 	013	1.1		0.00	0.7		
2011	12 0.0	032 0	.8	6	0.023	0.0		-	0.019	0.9		19 0.	052 (1 0.029	0.8		,	0.003	0.7		, 4 0	010	1.0		0.00	5 1.2		100
2012	9 0.0	019 1	S	9	0.013	1.3		5	0.015	0.9		9 0.	022	1.4		0.015	1.0		-	0.003	0.7		5	013			0.01	5 1.2		-
2013	10 0.0	022 1	(∞ ⊆	0.018	3 1.8		= =	0.027	1.2		16 0.	037	6.1	~ `	0.015			4	0.014	0.7		о с ∞ г	012	2.7		0.00	5 0.7		
7014	<u></u>	7 610	7.1		070.0	en l			c70'0	0.1	1		000	¹		0.010	6.0			010.0	6.0	1		cIn	<u>-</u>		0.0	-n		
Ē	NNN a		8	DNN	α	8		DNN	α	β		DNN	α	ß	NO	IN a	β		DNN	α	β		NNQ	α	β	ND		β		
Mín.	10 0.0	0.0		9	0.009	0.8		9	0.008	1.2	ľ	10	016	5.0		300.0	0.8		L			ľ	12	.007	2.9	┢	┞			
Max	18 0.0	033 24	1.5	36	0.074	28.0		20	0.040	25.2		19 0.	052 0	5.7	-	9 0.044	26.4						18	.025	12.4					100
Prom.	13 0.0	024 5.		18	0.030	6.4		13	0.022	5.3	F	14 0.	31 2	2.7	-	5 0.031	6.1					Γ	14	019	6.2					_
Med.	12 0.0.	023 2	.5	15	0.023	4.0		11	0.020	2.6		14 0.	129 1	2.3	-	7 0.034	1.8						14 0	.021	4.8					
Desv.	3 0.0	013 5	4.	6	0.022	6.3		4	0.013	5.9	1	ю 0	017	6.1	.,	0.017	6.2	+				1	~ ~	000	3.2	t	+	+		
COELK.	0.0	0/ 0	58		0.90	CI:0			70.72	0.27		0	80 0	:03		0./3	0.40	_					_	00	00.0				_	
														Arter	nisia															
		Barcelon	la		Be	ellaterra			5	rona			Lleida			V	fanresa			Roquetes	s-Tortosa			Tarrago	ona			Vielha		
Año	9 NNC	α	β Sig.	DNN	α	β	Sig.	DNN	α	β	Sig.	NNO	α	βS	ig. DN	IN α	β	Sig.	DNN	α	β	Sig.	DNN	α	β 5	Sig. DN	ίNα	β	Sig.	
1994	48 0.0	094 2	.6	48	0.089	2.5						+	+	+	+											+	+	-		
1995	56 0.0 81 0.0	032 1.	3.7	88	0.034	4 20.0		67	0100	64	I	0 82	136 0	-	*	0.070	14.2	*					6	115	8 3					
1997	88 0.1	100 9	* 01	16	0.085	144	*	10	0.096	4.4		110 0.	2 DSU	3.7 *	** 10	0.081	21.2	***					0 26	084	16.2	*				1.00
1998	88 0.0	096 5	4.1	8	0.130) 4.6		59	0.105	2.4	ſ	95 0.	052 2	* 6.7.	**	9 0.091	6.9	ŀ	L			ſ	94 0	1601	9.8	*	ŀ	ŀ		
1999	91 0.0	073 6	5.6	62	0.095	5 2.8		63	0.094	3.8		76 0.	037 3	9.6 *	** 6	9 0.065	7.8						78 0	.082	7.4					1000
2000	90 0.1	154 2		80	0.062	7.3		28	0.123	1.8		8 8 0	074 8	*	**	1 0.087	2.3	_				1	42	095	1.5		+	+		
1002	0.1 1.0 88	105 2	0 ×	85	0.109	2.2 6.0		40	0.057	2.4	I	0 70	0/0	0./ 5.6		01.0	7.8 0.6	***				I	00 05	0/0	8.0	t	+	-		
2003	49 0.0	073 2	.5	59	0.073	4.2		34	0.067	2.6		65 0.	037 2	* 6.2	*	0.091	5.9						77 0	.092	4.4					100
2004	61 0.0	077 6	5.4	67	0.090	6.8		59	0.096	4.7		94 0.	059 1	9.7 *	** 9	0 0.125	5.6						84 0	.078	11.4	* 4	7 0.04	5 22.7		_
2005	50 0.0	069 4		58	0.077	3.1		51	0.102	1.9		69 0.		t.1	· 2	5 0.113	2.3		\$	0.000	ć		50 0	064	7.7	0	0.07	1 21.6		
2002	56 0.1	111	- 0	22	0.002	1.1		40	0.088	C.2	I	6 6 0 0	1 050	45 *	× +	0.110	0.7		9 2 2 2 2 2 3	0.078	35	I	د د ده	105	5.0		0.11	1.4	***	
2008	72 0.1	111 2	8	72	0.075	6.1		37	0.048	3.0		.0 69 0.	069	1.1	9	3 0.119	1.9		09	0.077	4.7		78 0	690	11.8	9 **	8 0.06	7 21.9		
2009	79 0.1	158 2	.3	56	0.083	3.5		42	0.106	1.2		77 0.	074 9	* 6.6	9	6 0.105	2.6		99	0.115	2.3		44 0	076	5.9	6	4 0.06	5 27.2	*	100
2010	81 0.1	104 3	8.8	54	0.044	1 11.6		52	0.105	2.0		68 0.	051 1	8.5 *	** 5	2 0.098	3.1		81	0.094	6.3		99 0	.082	13.0 *	*** 4	3 0.07	11.3		-
2011	80 0.1	113 3	8. 4	99	0.072	6.3		20	0.093	2.2		70 0. 75 0.	063	5.4	9 4	0.116	2.7		89 7	0.146	1.6		86 0	102	2.9	2	0.06	3 19.2		
2012	76 01	107 4	0	5	180.0	2 2 2		07 24	01110	2.0	I	73 0.	147 5	3.8 *	د م **	0.040	141		i t	0.087	46	I	70	102	4.1 0 1		01.0	5 25 3	*	
2014	64 0.1	105 3	0.0	66	0.055	9.1		37	0.087	1.3		54 0.	95	6.9	9	9 0.128	3.0	L	58	0.099	3.4		62 0	090	7.4	00	5 0.06	8 15.9		
																														1 5
	o NNC	α 1	8	DNN	ø	8		NNG	α	β		NNN	ĸ	ß		α	β	_	NNG	υ	ß		NNG	α	g g	I	α N	×		
Mín.	48 0.0	032 1	6; Ľ	33	0.034	1.7		19	0.037	1.2	1	45 0.)22 000	1.1	4	0.042	1.9	+	6	0.062	1.6	1	45 0 0	055	1.5	4 0	0.04	5 4.7		1.1
Prom	70 00	109 4	5.1	164	0.077	6.6		48	0.088	0.4 2.7		110 73 0	999 991	4.1 5.6	10	0.00	21.2		91 285	0.140	3.4		74 0	086	2.01	2 2	11.0 5	0 173		
Med.	68 0.10	102 3.		65	0.077	.9		20	0.094	2.3		70 0.	052 1	7.5	9	8 0.093	3.1	_	28	0.085	3.4		78 0	.084	7.4	9	5 0.06	7 19.2		The second
Desv.	14 0.0	328 2.	80	15	0.024	4.3		15	0.023	1.3	ľ	15 0.	021 2	3.8	-	5 0.023	5.3		13	0.025	1.5		17 0	.018	3.6	-	4 0.02	0 7.4		
Coef R.	0.4	43 0.	15		0.53	0.36			0.74	0.60		0	04 0	33	_	-0.07	0.75			0.58	0.46		-	0.43	0.56		0.0(0.34		1

	- :0	Sig.	Τ		Ι		Τ		Ι		Τ	-trate	**	**	*	*	*	*	Γ	Ι	***	* *	*	7	Γ										Sig.					Γ		Γ		Γ		*				Γ	Ι			:	*		7	Γ]
	اء ~ ا	μ	1		1		1		1		1	0.0	134.0	186.3	47.9	62.7	160.8	94.5	243.3	55.4	, ccc	222.6	250.5	1+2.1	8	4	47.9	250.5	146.2	149.7	74.6	0.22		ıa	8						ľ	t		t	Ī	96.3	18.1	1.61	707	38.7	23.0	2.02	0.00	/1.1	45.2	27.0	18.3	B	а (18.1	96.3	37.9	27.0	25.1	0.30
	Vielt	α	t		t		t		1		t	1000	0.056	0.035	160.0	0.044	0.038	057	0.56	0000	0.040	0.039	0.044	0001		3).035	160.0	0.050	0.044	0.016	0.09		Vielb	α					ſ	ľ	t	ľ	t		090.0	0.058	039	0.065	0.045	050	7001	747	1.0.54	0.064	0.029	0.050		3	0.029	0.065	0.049	0.050	0.012	0.00
	DATAT	NIN	1		t		1		1		1		95	78	72	41	76 (85	85	00	00	0/	89	5	DNN	1111	4	95	72	72	15 (DNN	┢				t	t	t		t	ľ	58	29	29 (47 (30	40	44 F	10	10	28	42 (43	DNN		29	64	47	47	2	
Ì	- :0	Ng.	1		1		1		1		1		1						ľ	I	I	1		1											Sig.					ſ		ľ		ľ					I	ľ	I	Ī	1		1			Ī		1				1	
	gona	β		d	0.8	14.9	1:2	0.1	0.7	1.7	12.7	6.62	22.5	12.0	26.4	87.5	2.9	771	210	66	0.0	35	8.4 20.6	0.02	R	2	0.8	87.5	16.8	12.3	19.8	0.33		arragona	β			27.4	9.2	8.0	24.0	9.5	7.5	7.6	16.0	24.9	8.0	4.4	4.2	63	7176	1/.0	0.0	20.1	9.9	14.0	2.5	R	2	2.5	27.4	12.2	9.2	8.1	0.0
8	Tarr	а		ELO O	/(0.0	0.056	0.023	0.025	0.006	0.095	0.028	0.015	0.026	0.024	0.021	0.013	0.031	0.034	0.022	0.021	10000	0:030	0.024	170'0		3	0.013	0.095	0.032	0.025	0.020	0.50			α			0.052	0.044	0.053	0.033	0.028	0.024	0.029	0.019	0.047	0.065	0.055	0.060	0.050	2000	0+0.0	1000	C2U.U	0.056	0.023	0.036		8	0.019	0.065	0.042	0.047	0.015	0.40
	DAINT			ļ	6	51	9	77	7	45	29	3	37	27	35	32	21	37	38	00	07	61	25		DNN	N INTOT	2	51	29	29	10				DNN			99	44	54	55	3 8	21	29	21	50	50	32	33	2	5 6	с с	00	48	42	36	19	DNN	NINICI	19	99	39	36	12	
	-:	210																	L		ļ	4												osa	Sig.							L		L				L		Ļ	ļ		1		4										
8	es-Tortos	μ													19.8	14.0	1.6	5 8	13.6	2.4	+.C	4	2.7	-	в	4	1.6	19.8	8.1	5.8	6.3	-0.47		letes-Tort	β													4.2	2.0	00	2 4	0.0 7 A	4°.	C.11	3.2	5.7	3.0	a	d	2.0	11.5	4.4	3.5	2.9	0.38
6	Roquete	a													0.013	0.018	0.062	0.049	0.016	0.024	0.000	0.028	0.035	CC010		5	0.013	0.062	0.032	0.034	0.016	0.74		Rogu	a													0.021	0.020	0.046	01010	0.071	1/0.0	0.034	0.058	0.033	0.042		8	0.020	0.077	0.045	0.042	0.020	C&.U
	DAINT	DINN													5	20	29	30	10	17	77 -	<u>8</u>	18	77	DNN	NINIT	<u>_</u>	39	23	21	8				DNN													51	=	. 10	1 24	,	.	9	34	21	26	DNN	NINICT	Ξ	45	29	26	<u></u>	
	с; -	219					4				4								L		ļ	4													Sig.							L		L				L		Ļ							_								
	nresa	β		d	8.0	22.6		3.0		3.6	22.6	C.61	69.6	8.8	25.5	49.6	4.6	7.3	12.2	4 T C	1 t	4.7	8.5	11.0	в	4	0.8	69.6	15.5	8.7	18.2	0.46		nresa	β			7.1	4.9	4.5	7.4	1.9	4.7	82	14.3	19.9	4.9	2.1	1 0		10.01	10.0	5 t	Q./	9.0	8.7	7.5	B	d	1.7	19.9	6.7	6.0	4.5	0.42
	Ma	ä		0.000	0.033	0.053	0.025	0.04 /		0.081	0.028	0.019	0.020	0.024	0.023	0.007	0.029	0.056	0.030	0.066	0000	0.039	0.053	2000		5	0.007	0.081	0.037	0.031	0.019	0.34		Ma	α			0.092	0.058	0.061	0.057	0.037	0.034	0.050	0.028	0.037	0.049	0.019	0.033	0.038	0.027	10000	0.040	0.034	0.048	0.018	0.023		3	0.018	0.092	0.042	0.037	0.017	0.81
	DAN	DNN		:	=	56	= ;	51		50	43	38	52	28	39	31	26	43	38	35	30	52	41 26	R	DNN	NINIT	=	56	35	37	12		a		DNN			09	43	39	4	81	29	37	26	4	35	12	10	00	41	5	17	сс	¥	21	27	DNN	NINICT	12	99	32	34	12	
Betula	-: v	516.					1				1								L														astane		Sig.							L		L						Ļ															
:	eida	þ		-	1.8	13.3	1:2	4./	0.7	3.0	5.5	3.0	20.0	4.5	8.8	7.1	5.3	5 0	19.5	010	1.2	9.2	7.2	0.5	B	a	1.2	20.0	6.9	5.1	5.6	0.75		leida	β			5.1	0.7	6.0	2.8	3.5	61	64	16.5	6.5	3.8	0.8	2.1	10	1.7	1.0	0.0	4.2	4.7	9.8	3.2	B	a	0.8	16.5	5.2	4.4	3.7	0.12
		α		0.000	0.030	0.054	0.027	0.027	0.014	0.045	0.052	0.037	0.027	0.035	0.027	0.028	0.026	0.039	0.018	0.050	7000	0.024	0.040	00070	2	3	0.018	0.060	0.036	0.032	0.014	0.36		Π	α			0.098	0.018	0.049	0.063	0.051	0.043	0.051	0.015	0.064	0.033	0.042	0.030	0.042	0000	070.0	0.000	6/0.0	0.057	0.020	0.071		3	0.015	0.098	0.048	0.046	0.023	0.81
	TANT.	DNN			<u></u>	38	13	19	ς 2	29	32	61	48	28	29	26	20	96	3 5	60	77	53	38	17	DNN	VIVIOT I	<u></u>	48	27	28	6				DNN			42	9	41	35	35	21	31	20	43	25	15	13	3 6	77	60 50	3:	4	32	20	34	DNN		13	43	5	29	9	
	0;"	Ng.	4				4				4	44	*						L			4													Sig.			***									*	L		Ļ	1		1		*										
2	hrona	β		6	8.2	38.2	2.8	1/.2	2.3	9.2	12.0	5/.4	44.2	38.6	8.3	58.9	17.1	167	34.7	210	0.0	3.7	18.3	1.26	B	-	2.3	58.9	22.5	17.1	17.8	0.30		dirona	β			25.8	18.1	18.0	56.7	20.8	8.0	353	32.6	55.9	28.4	12.8	26.8	243	40.0	40.0	12.4	15.8	40.8	33.5	6.1	B	d	6.1	56.7	27.3	25.8	15.1	0.39
Ì		8		0.040	0.049	0.040	0.069	0.049	0.034	0.077	0.071	0.03/	0.044	0.024	0.113	0.022	0.049	0.048	0.034	220.0	0.000	0.09	0.065	0000		5	0.022	0.113	0.051	0.049	0.022	0.35			ø			0.127	0.067	0.105	0.059	0.044	0.075	0.039	0.046	0.058	0.065	0.057	0.044	0.063	0.026	000.0	0.0.0	0.069	0.049	0.047	0.075		3	0.036	0.127	0.063	0.059	0.023	0.45
			+	;	5	51	35	54	9	64	28	9 9	2	55	67	41	53	48	215	76	0 1 0	2	89	5	DNN		2	72	49	51	14				g. DNN			74	62	92 2	77	54	57	42	40	78	79	50	61	48	0F 5	10	t t	70	63	23	4	INNU	NINIM	9	79	59	57	<u> </u>	_
	C: -	BIC	∞	0.		0		~				~ "		~	~	5	5	~								-			~					terra	Si		~		6				-			~								~			_								
	Sellaterra	b	13 23.	13.		55 30.	1.C	-9 IO.	20 20	3.4	12.	502	3 59. 2	9 8.2	88 16	9 43	:3 7.6	4 14	4 74	0	2 2.4	4 	1 5.1		R	2	9	5 59.3	2 14.8	8 10.0	3 14.5	0.52		Bellat	B	2 22.2	6 13.8	1 7.5	2 14.0	5 7.8	3 9.3	7 12.5	7 6.0	3 7.7	7 7.5	0 32.5	1 8.4	8 3.8	6 20	8 10			2.0 2.4	11.	6 5.1	0 8.0	9 3.6	N		2 2.0	3 32.5	8 9.6	7 7.8	5 6.5	PC-0
ľ		NN G	20.0	5 0.03	S 0.02	1 0.05	2 0.05	3 0.04	0.02	3 0.12	5 0.04	0.02	5 0.02	5 0.02	2 0.05	3 0.01	9 0.03	5 0.03	7 0.04	2 0.02	70'0 -	0.04	0 0.05		N N	1	8 0.01	53 0.12.	11 0.04.	13 0.03	12 0.02.	0.40			NN Q	56 0.04	50 0.05	46 0.07	35 0.02	48 0.05	55 0.08	18 0.04	35 0.04	35 0.04	27 0.03	45 0.03	37 0.05	17 0.02	25 0.04	22 0.04	12 0.06	30.0 1.0	0.02	48 0.03	49 0.07	30 0.04	35 0.04	" N	2	17 0.02	56 0.08.	t0 0.04	37 0.04	12 0.01.	0.40
$\left \right $		lg. I UI	4	ю́ -	-	9	~i	4	~	0	46	7	ν, i	ñ	5.	4	4	4	~) (č	ň č	77 B	4 4	ť	NU	1			4	4					Sig. DN	Ľ																						NC	1	-	-	4			-
	3	2			رن ان	.7		<i>.</i> ,	<u>~</u>			4.7	9.0	.6	0	1.5	0.	×	L		1 0						2	5	6	5	8.	9		elona	-		5		6	4				4	6	ن د	0	9		~	. 4	2		0		5	_			_	.0	-	0	2	
	Barcelon		24 16	25 15	- 1 20	66 22	42	9 00	21	94 4	43 15	24 24	18	24 15	22	12 93	41 6.	36 28	35 14	2 22	00	42 0	51 1(32 31	7	A A			14 93.	17 20.	15.	1 23.	4 0.1		Barc		19 20	16 9.	30 7.	51 4.	14 8.	(3 19	15 33	91 16	34	18 21	50 33	16 16	72 4.	L 0	- 0 - 12	20 20	t 17 17		2C 22	52	30 24	54 4.	A A	4	4	38.	16.	16 16	4	8 0.4
	IN I	VIN 0	0.0	14 0.0	0.0	6 0.0	0.0	7 0.0	0.0	8 0.0	0.0	8 0.0	9 0.0	6 0.0	0.0	1 0.0	1 0.0	4 0.0	000	0.0	0.0	0.0	0.0		IN N	2	2 0.01	6 0.05	0 0.05	0 0.03	2 0.02	0.5.			NN a	8 0.0	1 0.04	6 0.0	8 0.06	7 0.06	0 0.06	8 0.0	3 0.02	6 00	3 0.0	6 0.05	5 0.0	10.0	0 0 0	0.05		0.0	0.0.	0.0	0.00	6 0.0,	3 0.0	" N		1 0.02	0.05	6.0 0.0	6 0.04	0.01	0.1)
$\left \right $	6	0	4 5	95	9 9	97 6	86	99 4	3	01	02	20 ; 21 ;	4	3	90	07 3	98	5	01			2	13		NU	1		6	1	4		R.			jo Di	4	15 4	36 5	37 3.	86	9 60	00	11 4	-C()3 4	4	15 5	90	17 2	200				1	12	13	4		1	~ ~	6	4	4	~	Υ.
	Λã	M	195	195	161	195	<u>19</u>	191	ă	200	50	202	200	200	ă	200	200	200	201	100	107	201	201				üŬ	Max	Pron.	Med.	Desv	Coef			Añ	66	199	199	199	6	199	200	200	100	200	200	200	200	200	000	000	102	102	107	201	201	201		1	Ψ.	Max	Pron	Med.	Desv	Coel

— 118 —

							ł						Ŭ	isuarine	~			┟										
-		arcelona			Bellate	stra	t	ł	Girona		_		leida			Manresa		+	Roquet	tes-Tortosa		ł	Tarrag	ona			Vielha	
Año I	α NN	β	Sig. I	NNO	ø	β	Sig.	NNC	αβ	Sig.	NN	ø	β	Sig.	DNN	ä	8 Si	ö.	Na	β	Sig.	DNN	α	βS	ig. DN	α	β	Sig.
1005	21 0.028 21 0.040	3 6.4	t		0.015	4. L	t	t	ł	ł		4			t	╏	ł	+	+			t	t	t	ł	+	+	
1996	21 0.041	2.0	t	. ~	0.018	1.1	Ľ	2	006 1.2	0		0.010	0.7		8	023 0	œ.	ŀ				21	0.018	6.9	ŀ	L	Ŀ	
1997	38 0.050	9 4.0		26	0.056	1.3									7 0.	018 1	0.					26	0.048	1.6				
1000	38 0.048 77 0.051	3.5	t	4 c	0.036	0.8	t		008 1.0		+	4				0 0 800		╉	+			19	0.030	3.3	ł	+	4	
2000	100.0 17	54	t	14	0.000	80	t	- ~	012		9	0.011	16		4 9	017 0	1					2 =	0.025	1:1	ŀ		ŀ	
2001	28 0.029	7.0		=	0.015	2.7	T	2 0	005 1.2		0	0.006	0.7		5 0.	014 0	-7-					12	0.018	4.9				
2002	42 0.051	4.1	t	9	9.017	0.7	t	0 9	009 0.0		7	0.006	0.7		4	010 1	0.					4	0.012	0.7				
2003	42 0.082	1.4		8	0.020	1.1		8 0	024 1.(0	5	0.015	0.7		8 0.	021 0	8.					31	0.048	3.7				
2004	35 0.061	2.2		9	0.015	0.9		9	020 1.6	<i>5</i>	4	0.010	1.0		13 0.	027 1	.3					27	0.047	2.4	S	0.010	1.7	
2005	31 0.062	2 1.7		2	0.017	1.0		4 0	008 1.4			0.003	0.7		5 0.	007 2	œ.					31	0.043	3.4	2	0.00	0.7	
2006	24 0.015	5 12.7	┥	8	0.018	1:3		5	012 1.6	~	-	0.003	0.7		6 7	000	r.		0.015	1.8		33	0.022	12.3	-	0.003	0.7	
2007	26 0.051	1.7		- ·	0.017	1.0		- 0	003 0.7			0.003	0.7		8 ·	018 1	61	41	0.030	1.7		30	0.023	8.5		0.003	0.7	
2008	14 0.028	2.7		4 5	0.010	×.	t	0 0	0.00		`	0100	t			003		0 2	0.007	3.1		50	0.027	3.1		0.00	0.0	
2009	37 0.046	4.7		5	0.029	1.5	Ì	4 -	010	-	9 1	0.018	0.7		4 •	010	0. 0	2 2	0.019	4.0		15	0.028	3.0	4	0.010	1:0	
2010	3.5 0.046 15 0.066	C.2 C		11	670.0	1.4	t	4 %			n -	0.013	6.0		4 4 0 0	1 010	0.0	77	0.05/	1.8 2.7		30	0.020	C.0 C.0		0000	-	
2012	36 0.058	2.3	t	19	0.038	C 1	t	0 0 0 4	017 0.		-	0000	0.7		5 C	008	0.	5 2	0.017	9.2 6 ()		76	2000	2.8	n ∝	0.024	0.7	
2013	25 0.044	1 5.0		6	0.018	2.3		5 0	015 0.7		-	20010			2 0.0	006 0	L.	- =	0.027	2.5		23	0.035	4.2		40.0	3	
2014	25 0.032	2 6.6	Η	12	0.015	4.3	Η	5 0	011 1.3		m	0.010	1.0		7 0.	010 2	6.	7	1 0.019	7.4		26	0.029	5.1	-	0.00	0.7	
	NIN ~	β		NIN	~	B		INN	~ R		DNN	~ 1	В		DNN		8	DN	" N	B		DNN	~	β	NC	~ N	B	
		<i>d</i>			3	а 0 0			α b			3	Р			2			1 0 01	d .			2010	д I			4	
Min.	14 0.015	1.4) II	C10.0	0.8	t	+	+		+					+	+	21	0.017	1.1		11	0.018	1.1	+	-		
Prom.	31 0.046	4.0	t	14	0.030	1.7	t	t	ŀ	ŀ	ŀ	Ļ			t	ŀ	ł	f E	0.028	3.8		33 5	0.031	4.6	ŀ	ŀ	ŀ	
Med.	31 0.046	3.5		14 0	1.029	1.3												1	0.027	3.2		25	0.028	3.5				
Desv.	8 0.017	2.6		4	0.018													9	0.015	2.5		7	0.012	3.0				
Coef R.	0.70	-0.28			0.93	0.12													0.93	-0.01			0.54	0.63				
												Chan	onodiace	44 eo	onthor	000												
	0	aroalona	ŀ		Dollato	United	ľ	I	Geomo	l	ł		upoulace		זמו מזורוומר	Managa	l	ł	Domot	ac Torton		I	Tormo	040	ł	ĺ	Vialha	
Año	NN N	Rectoring	Sio L	NNC		8	Sio	NNC		Sio	ND	* ·	R	Sio	DNN		8 Si	NC		R2-1 01034	Sio	NNC	du lu	R S	io. DN	N N		Sic
1004	50 0371	4		102	7.107	2 0 2	- - - - - - - - - - - - - - - - - - -		л Д	io I	1177	5	2	-1 6 -		5			5	4	-1e.	111177	5	- -		5	2	-1e.
1995	83 0.145	9.3	***	204 (1.233	7.6	***	t									╏					ľ	ľ		ł			
1996	87 0.290	4.9	*	161	0.288	5.0	t	155 0	397 3.0	~	239	0.266	58.9	***	188 0.	243 13	* 6.5	ŀ				203	0.331	8.6	*		L	
1997	78 0.219	7.4	***	212 (0.283	6.3	***	181 0	414 4.8	~	254	0.139	61.3	***	235 0.	309 11	1 **	*				214	0.240	* 6.8	××			
1998	0.304	1 5.4	* *	196 (0.275	6.9	**	171 0	408 3.0	5	262	0.211	72.0	***	188 0.	209 9	.9 **	*				222	0.227	* 6.6	**			
1999	98 0.436	5 3.7		191	0.484	2.7		186 0	351 5.		264	0.331	26.1		180 0.	336 6	0.					194	0.305	4.7	*			
2000	191 0.381	0.4 0.6		1/1	0.390	3.8	t	145	351 3.0		250	0.324	20.5		1/6	284	5. 4					163	0.245	4.3	┥			
1002	114.0 012		-	10/	0.420	2.0	T	117 0	200 2.1		240	167.0	5.72		189 0.	/ CU2	K. 00	÷ *				101	0700		**			
2002	70 0.2.0	1 1 1	***	141	1150	6.6	***	133 0	201 3.		238	0.242	36.0		212 O.	007 10	** T S	*				169	0.145	د.ر 103 *	**			
2004	68 0.306	3.8	t	166 (0.268	4.9	t	168 0	370 4.7	*	229	0.258	48.2		190	280 14	+	ŀ	ŀ			194	0.275	6.7 *	**	0.120	2.8	
2005	86 0.303	3 4.5		162	0.371	2.8		172 0	340 3.9	_	227	0.282	38.4	**	208 0.	393 5	* 0.					177	0.336	4.4	** 61	0.146	1.5	
2006	70 0.259	4.5		152 (0.256	3.7		162 0	359 3.		204	0.138	64.8	***	192 0.	240 12	2.5	16	3 0.274	4.4		206	0.354	5.9	6]	0.125	2.4	
2007	59 0.274	4.0		165	0.356	2.8		171 0	349 3.5		190	0.221	55.2		185 0.	330 7	0.	15	3 0.226	4.8		198	0.258	7.3	**	0.141	1.5	
2008	175 0.339	3.3		170	0.390	3.7	1	150 0	355 2.8	~	231	0.240	64.9	*	194	426 4	s:	* 19	6 0.366	4.0		188	0.267	5.8	**	0.066	3.8	
2009	88 0.346	6 4.3		175	0.371	2.7		156 0	341 3.(254	0.234	72.3	**	211 0.	371 7	e. 6	21	9 0.368	5.7	* •	141	0.254	* .	** 76	0.185	1.5	
2010	21C.U C/1 0 0 08	3.4		183	102.0	3.5	t	150 0	200 27		147	0.170	00 1	***	100 0.	102 14	0.4	77	2 0.468	4.7		106	0.210	0./ 3.0	2, 2	0.120		
2011	75 0 381	4 P C		163	1321	2.6	t	121	371 1/	a	747	0.106	00.1 88.6	***	108	378 4	ţσ	18	0306	4.8	÷	159	0.000	53	70 X	0 10	191	
2013	80 0.277	4.7		146	0.282	2.8	t	149 0	359 2.0		248	0.233	104.0	**	184 0.	312 7	2	15	9 0.474	2.8		161	0.256	4.6	52	0.126	1.2	
2014	77 0.338	3.3	F	167 (0.352	2.8	t	159 0	306 3.9		213	0.174	74.8	* **	215 0.	448 5	9.	22	1 0.619	3.9	***	158	0.275	3.9	7	0.157	2.0	
	NN a	β		NNC	α	β	1	NNC	αβ		DNN	Να	β		DNN	α 1	8	ND	Na	β		DNN	α	β	DN	Nα	β	
Mín.	59 0.145	3.3		146 (0.152	2.4	1	121 0.	291 1.0	<u>,</u>	<u>1</u>	0.138	22.3		176 0.	182 4	ŝ	15	3 0.226	2.8		141	0.145	2.9	8	0.066	1.2	
Max	16 0.436 0.007	9.4		212 (0.484	8.9	T	186 0.	414 5.		264	0.331	104.0		235 0.	448 16	6.4	22	2 0.619	5.7		222	0.354	10.2	ŝ	0.195	3.8	
Med	010 0 304	2.0	T	170 6	1321	4.4	t	156 0 156 0	351 3.	+ 12	107	0.233	1.40 613		19/ V.	200	7 0	10	4 0.368	4:4		185	407.0	0.4 8.8		0130	2.4 L	
Dev	14 0.077		t	170	172	7.7 1 0	ľ	170	0.0 0.0		147	0.056	01.0		15 0. 15 0.	070 3	, «	20	0123	80		107 22	0.050	0.0	5 9	0.036		
Coef R.	0.45	0.01			0.16	0.38	۲		45 0.7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3	0.30	0.05		0	38 0.	10	à	0.65	0.35		1	0.23	0.43	-	0.75	-0.0-	

Г															*	Ē				٦						-	1.1	ſ			1	Ē				-			-	Ē			~	1	Г	-	ר					Т	Т	1
	Sig				L				+	1		WW	* *	*	**	÷	**	*					_							Sig	+	ŀ		_					**				* *	*								ł	+	
-					L					0.000	0.2CC	107.0	104.0	754 C	395.0	141.0	393.0	480.0	220.0	2077	β	104.0	552.(291.5	254.(0.40			ielha	β	1								42.5	16.8	22.7	43.2	90.6	50.4 999	0000	22.1	/10	β	16.8	90.6	48.2	43.2	C.C2	2220
1	8				L					0.000	0.042	0.070	0.006	0.102	0.047	0.072	0.045	0.044	0.058	0000	α	0.029	0.102	0.061	0.058	-0.43			>	α		L							0.146	0.211	0.152	0.125	0/0/0	0.114	0100	01.0	07170	α	0.070	0.211	0.135	0.126	11 0-	1111
	NNC									đ	89	96	00	00	107	85	129	105	110	2	DNN	85	129	98	33	2				DNN									8/1	147	146	152	135	153	142	142 176	1/4	DNN	125	180	155	152	8	
	Sig.	ò		* *				***	*	99	e e	*					***		-)											Sig.		***	**	***	***	**	* *	* *	***	**	**	***	* *	***	**	* * *								
	golla <i>B</i>		-	50.0	14.4	156.2	35.6	24.7 00 E	5.86	11.0	2.04	51.0	2.20	50.6	50.0	21.1	126.9	9.3	22.9 6.4	5	β	6.4	290.7	58.3	35.6 60 5	0.41			gona	β		268.2	289.8	169.2	184.2	66.8	129.3	161.7	1.181	190.7	184.1	126.0	848.7	145.7 411.6	411.0	301.6 184.4 367.4	+"/OC	β	66.8	848.7	239.7	184.1	2.671 720.	40.00-
E			0.070	0.050	0.048	0.056	0.041	0.038	0.034	0.085	0.045	0.045	0.011	0.047	0.080	0.079	0.041	0.086	0.095	70110	α	0.011	0.132	0.064	0.056	0.14			Tarra	ø	1	0.140	0.098	0.103	0.129	0.182	0.163	0.122	0.131	0.162	0.114	0.207	0.082	0.100	0.002	0.125	671.0	α	0.078	0.207	0.132	0.129	17 CCU.U	1 110
	NNO		9	84	63	94	69	44	3 F	1	06 03	28	C/ 0L	99	78	71	87	12	78	8	DNN	4	94	72	2	2	1			DNN	I	255	265	236	208	234	240	249	272	277	289	275	214	150	162	275 273	617	DNN	208	289	256	263 33	77	
Ī	Sig.	0							1		I									1							1	I		Sig.	1								1	**	**	**	* +	***	**	* * *			Γ			T	T	1
	8			Ī					1	Ī	I	, c c	3.0	63	57	2.6	7.2	7.6	1.8	2	β	1.8	28.6	8.1	6.3	0.28			ortosa	β	1	T			Ī	Ī	t		1	363.0	\$27.0	170.0	703.0	0.00	037.0	332.0 33.0	N./CC	β	35.0	932.0	397.9	170.0	0.31	1 100
	u l			t					+	+	t	050	110	110	155	044	043	042	065		α	110	065	042	043	32		ľ	oquetes-T	ø	t	t				t	┝		t	044	3 690	088 1	074 2	101	1 000	2 000 1 001 1 001	1 07	8	044	126 2	085 1)86 I	20 07	74
ſ		\vdash	-						+	+	╏	- -	5 C		00	6 0.0	9 0.0	4	8 0.0	3	NN	6 0.0	7 0.0	0 0	5 0	0			ž	NZZ	ł	ŀ		+		╞	┝		╢	0.0	38 0.0	46 0.(0.0		22	18 0. 18 0.		NZ	10 0.0	59 0.	36 0.0	38 0.1	5 C	5
ł	ig. D								+		t		., e	4 (*	, 4		0				D		7	e, 1				ł	+	ig. Di	t	**	*	* *	* *	**	┝	* *	* *	**	** 2	**	~ ^ ~	2 C	1 C	2 C	9	D	5	2	~	7		1
	S			1 00	<i>.</i>	3	6	4 -	_ [2 0	, o	0. 4		2 0	0	~	0 %		_	6	8			7				s	ł	* 9:	* 1.	* *	4 -	*	9	* 9.	S. 4	5 4 *	* 6	* 0.		t. C		. * *	-		9	5	×.		7.22	-
			ć	1 1	8 17.	1 7.	2.	xò t		4.	C V		0 1				×	.0	0 5.		β	5	115	13.	.7 20	-0-			Aanresa	β	ł	651	5 706	393	162	386	41	5 247	95.	82	96	8 123	44	201	100	121	767	β	41.	706	254	252	-0	;
ĺ			0.00	0.112	0.035	0.092	0.100	0.035	0.065	0.114	0.084	20.00	0.00	0.084	0.085	0.072	0.072	0.078	0.080	20.00	ø	0.00	0.114	0.073	0.078	0.65			~	α	4	0.065	0.055	0.071	0.110	0.078	0.351	0.116	0.135	0.141	0.105	360.0	0.072	0.00	260:0	0.135	-71-0	α	0.055	0.351	0.118	0.105	0.60	1111
S	NND		6	80	59	65	52	29	÷	80	0	49	10	0t	62	44	63	54	58	3	DNN	29	80	55	20	2		ceae		DNN	4	230	255	232	264	242	286	263	275	237	246	225	254	107	P20	2.04 2.76 2.68	700	DNN	223	286	250	72 4	4	
Corylı	Sio.																											pressa		Sig.	4	***	**	*	***	**	**	*		***	**	*		***	***	* *							ļ	
	siua 8		00	6.8	12.0	4.4	3.4	3.6	13.2	1.2	1.11	0.8	4.0	40.4	68	9.6	8.3	12.0	5.0		β	2.1	48.2	9.4	6.8	-0.26		Ũ	sida	β		102.7	329.9	150.2	156.7	87.3	83.0	271.2	199.0	459.0	488.6	400.1	491.5	C.1.C.7	1.444.1	1080.7	C-102	β	74.4	1744.1	434.3	329.9	+12+	1010
-	a Lik		0.000	0.084	0.017	0.071	0.063	0.039	0.025	0.070	0.037	0.057	660.0	0.056	0.061	0.023	0.057	0.046	0.075	2000	α	0.008	0.084	0.049	0.053	0.61			Ĕ	a		0.149	0.071	0.087	0.002	0.123	0.152	0.068	0.071	0.058	0.047	0.066	0.089	760.0	0.091	0.062	/00.0	α	0.044	0.152	0.087	0.081	2000	1
	DNN		6	20	26	44	32	24	31	39	55	40	00 20	48	47	33	57	51	53	7	DNN	24	57	40	40	=	1			DNN	1	209	221	225	007	227	214	215	260	204	206	222	243	240	417	251 213	617	DNN	173	260	222	217	17	
	Sig.	ò				*				44	*				***					1										Sig.		***	***	***	***	***	**	* *	***	***	***	***	* * *	***	**	* * *								
	8		4	21.6	12.5	22.9	12.6	12.5	26.0	0.6	4/.4 1	1.1	131 6	26.7	20.5	17.9	17.3	27.5	31.9	0.41	β	4.9	131.6	26.9	20.5	0.48			ona	β		370.3	100.0	119.3	153.7	116.5	214.2	134.1	96.8 520 A	69.5	115.1	192.0	315.9	335.0	216 5	273.7 208.1	1.025	β	69.5	538.0	218.4	154.1	120.1	1
č				0.078	0.047	0.086	0.057	0.063	0:059	0.10/	0.048	8 0.00	10000	0.077	0 111	0.054	0.096	0.075	0.079	001-0	α	0.020	0.111	0.074	0.077	0.20			Giro	α	1	0.103	0.153	0.100	0.104	0.099	0.106	0.127	0.130	0.174	0.120	0.124	0.110	0.007	0.070	0.090	160.0	α	0.043	0.174	0.110	0.106	0.00	1 2010
	NNC		72	02	37	77	51	38	55	//	11	00	0/ 60	74	75	12	82	78	90	3	DNN	37	92	- 10	- <u>7</u>	2	1			DNN	t	230	224	205	206	200	251	224	260	239	259	232	244	730	205	205 267 246	0+7	DNN	200	267	235	239	17	
Ī	Sig.	0							1		1		I	I						1							1	Ì		Sig.	**	***	**	***	***	**	* *	* *	****	**	**	**	* + * +	***	**	* *			Γ			T	T	1
	8	5.8	16.6	5.3	8.8	13.6	6.6	6.7		5.5	18.5	5.5 7.5	V L91	±-/01	80	2.8	6.1	6.7	2.5 6.6	2.0	β	2.0	167.4	14.8	6.6 35.7	0.14			erra	β	42.9 112 5	67.3	219.3	101.4	105.8	158.8	56.3	229.5	90.2 337 5	174.7	168.6	231.0	516.6	C.UCI	217.0	51/.0 111.5 468.0	400.2	β	42.9	516.6	204.3	198.6	1.001	1 270
	Dellat	.144	054	.114	.059	079	.061	049	.068	c01.	4CU.	600.	010	060	105	076	780.	770.	860.	2000	α	010	144	.078	000	.45			Bellate	α	111	233	.084	.130	060	107	.196	160	070	.078	.089	.095	.082	201.	000	.144 .144	CON	α	690	233 :	117	095	.049 1.26	
	NNC	90 0	61 61	80	60	76 0	44 0	35 0	4 (> 0	63 2	0 00	49 0	0 00	0	0	43 0	65 0	59 0	50 0	R	NN	35 0	90 0	59 0	60 0					NNO	243 0 248 0	261 0	246 0	253 0	264 U	248 0	254 0	245 0	282 0	233 0	261 0	256 0	268 0	240 0	0 245	24.0 0 284 0 260 0	7007	NNO	230 0	284 0	252 0	248 U		-
ł	Sig.	0		ľ					t	t	İ	Ì	t	ľ	t	t	t	ŀ		1					T	t	1	ł	1	Sig. I	* *	* * *	* *	***	* * *	* *	* *	* *	* * *	* *	* * *	* *	* *	***	***	* *							t	1
	8	0.0	5.4	0.		6.2	L.1	2.0	<u>.</u>			0. 4	4 I V	1.0		2 5	0.0	6.9	5.3		8	is.	5.1	5.8	1.	35			la	β	2.3 10.6	18.7	6.9	18.3 5 2	8.2	8.6	18.8	0.3	9.2 13 5	8.5	27.6	53.6	1.4	1.0	77.J	1.0 1.0 1.0	1.0	8	9.2	1.4	4.6	9.6	2.2	1 10
-	Daliceloi	10 6	46 5 5 1	200 200	54 8	8 16	56 7	51 5	- ` 8 :	0 0 0	~ 06	5/ 5/ 2 0			24 9	112	76 10	37 6	73 5 tk 7			7 2	11 0	1	2 2 2 2	8 0.			Barcelor		83 7	50 14	77 36	25 14	1/ 1(15 73	10	49 14	90 21	89 5 1	32 5	04 12	98 15	71 42	92 IS NO 26) 0 0 0 0	15 55 15 73	2		7 55	39 42	21 18	14 0	x 0	-
	N N	0.1	4 0.0	0.0	2 0.0:	9 0.0	8 0.0.	3 0.0	0.0	0.0		0.0		0.0	1 0.0	5 0.0	9 0.0	8 0.0	0.0	200	Να	5 0.01	1 0.11	0.0	0.0	0.2				N	0.1	8 0.16	0.0	8 0.1	1.0	0.0	3 0.1	4 0.0	0.1	6 0.15	1 0.1(0.0	0.0		2 0.0	0.10		Να	2 0.07	7 0.18	4 0.12	4 0.1	010	1
$\left \right $	NC	1 7(5 62		52	9 6	9	4	4			4 5	- L	14	59) (C	1 55	39 5	3 6		DN	36	74	1. 55	- - -	-			1	NO	22	222	7 24	s 25	20	26	2 27.	3 25	26	542	7 23	8 23	20	20	20	37 58 7 7	5 	DN	22.	28	1. 25	- - -	-	
	Año	1994	1007	1997	1998	1995	2000	2001	2002	2002	2005	2002	2005	2005	2006	2010	2011	2012	2013	107		Mín.	Max	Prom	Med.	Coef B				Año	1004	1996	1997	3661	2000	2001	2002	2003	2004	2006	2007	2005	2005	2010	1102	2013	-107		Mín.	Max	Prom	Med.	Coef L	

Γ	io.					Π			Γ				Τ		Ι	I					Γ			Γ		à				Τ			Π			Γ			ž		Π		٦		Γ				Τ
	S		H			+	t	┢	6	4	0		-	~ ~	<u>م</u> م	0 0	040	_		6	4	5	9 18			-	┢	⊢		+	t				2. 00	0	9	0 (x, v	2 00	4	.3		-	∞	3.3		oc τ	. 00
Vielha	β		H				+		0	3 1.	1.	1.	Ö	0.0	× -					5 m			-0 -0 -0 -0	Viallas		4				+					0	19	.9	; ē		4 f	ю.	3 133	è.	1	0	9 133	31	20 V	0 t
	α		L						0.045	0.043	0.053	0.069	0.032	0.036	0.012	20.0	0.035	2		0.066	0.046	0.04	0.01:			3					Į.		Ц	0.000	0.036	0.069	0.029	0.032	0.043	0.061	0.025	0.048	0.041	ø	0.02	0.06	0.048	0.043	0.74
	DNN		L						15	20	18	28	=	13	12	07 C	22 19 26	NNC	-	28	6	19	•		DMIN								Ц	ī	3 7	47	21	54	54 104	34	15	99	27	DNN	13	71	36	¥ 5	9
I	Sig.																								c:~	, a b																							
oona	β		2.2	7.3	29.4	3.9	5.1	3.5	6.5	1.0	7.1	3.6	1:7	22.5	2.4	0.7	6.6 1.6	в	4 0	29.4	7.2	5.1	0.27	0000	gona	Ч			1.4	14	1:0	0.7	0.7	0.7	0.9	5.3	2.6		1.2	2.3	1.0	3.9	1.4	β	=	12.2	4.6	2.6	0.74
Tarm	a		0.116	0.063	0.014	0.058	0.093	0.064	0.067	0.102	0.054	0.101	0.119	0.065	160.0	0016	0.060 0.094	~	0.014	0.119	0.071	0.067	0.030	Town		5	T		0.014	0.003	0.018	0.003	0.012	0.006	0.017	0.022	0.030	0 0 0	0.045	0100	0.007	0.012	0.008	α	0.022	0.043	0.030	0.030	CTU.U
I	NN		59	61	52	38	54 46	48	62	37	60	71	58	74	80 93	09 37	57 57 44	DNN	37	74	54	57	=		DAINT		T		9	0	۷	-	4	2 2	t, 9	25	18		0 2	2 5	e	6	4	NND	<u></u>	25	61	<u>»</u>	2
ľ	Sig.		H			Π	T		F						İ	Ì			ľ	Ī	t			ľ	C: a	-10: -10:		t		1	T		Π			F		1	T	T	Π		1		ľ		T	T	T
ntoea	β		H			H	t	t	t		8.	8.7	0.0	4.0	2 c	j c	0.9 1.4	8		1.4	33	8.	.58	antico o		4	t	ŀ		1	t	T		t	t	0.0	0.	5.7	8.0	0.	5.0	0.1	0.	ß	8.	0.1	6.0	6.1	40
netec-Tr			H			\mid	ł	+	\vdash		8	×,	4	0	2				0		0	0	4 7	Matao T.	netes-1 (+	-		+					+	4	5	0 0	0 9		6	8	0			8	4	<u>.</u>	- 6
Roo	v v		H						L		0.06	0.04	0.0	0.12	0.10	100	0.05	~ I		0.15	0.0	0.02	0.02	Dec	r I no	3				+						0.0	0:0(0.0	0.0	0.0	0:0	0.02	0:0	I a	0.02	0:02	0.02	0.02	0.0
H	DN		H						L		33	43	51	56	19 F	5	23	ING		619	46	47	13	ł						+				_		~	3	- 1	= 0	<u>,</u> w	3	17	4	IND	=	17	<u></u>	4 -	r
I	Sig.	4	H												+	ŀ					L				c:o	16				4				_		L		4							L				
IPCS	β		2.2	12.4	1.6	3.2	1.4	9.4	3.5	2.5	3.5	2.7	2.7	3.5	3.4	10.9	2.8 2.8	В	7 -	16.9	5.6	3.4	5.0 0.52		nesa 0	Ч			0.9		4.2		1.3		2.8	5.4	1.4	0.7	8.0	1.7	0.7	9.2	0.7	β	0.9	11.4	5.4	5.4	0.68
Mar	a		0.119	0.047	0.120	0.059	0.038	0.077	0.056	0.058	0.080	0.082	0.049	0.076	0.072	2010	0.100		0000	0.120	0.069	0.059	0.029	Mar		3			0.023	100	0.014		0.035	0.000	200.0	0.029	0.017	0.003	0.076	0.012	0.008	0.029	0.015	α	0.014	0.035	0.026	0.029	0.80
I	NNC		55	73	₅₈	46	23	80	45	39	57	51	33	60	48	00 67	02 36 68	NNC	72	23	55	57	10		INING	NINIC	t	t	6	01	2	T	15	00	e –	19	6		10	2 9	6	27	5	NNC	2	38	19	15	2
accac	Sig. I		H			H	t		ŀ						t	t				t	t			gus	1		t			t	t		H			ŀ		1			H		┨		┢			t	t
EIIC			-	~ ~	0	<u>∞</u> ,	8		4	6	4	6	0	.9		t -	- 6 4	-	r	~ ~	-	. 6	39	Fa			t	╞	×		7	2	×		0.1	9	7	0,0			-	L	7	-	0	9.	-	0 '	. S
Lleida			-	- ⁵		0			-	0.0	1 2	5	-			4 -							0	T laida		-			2		2	-	-	99			0		م م ر	10	0		2		· · ·	50	6 6	<u>, , , , , , , , , , , , , , , , , , , </u>	0.0
I	α		0.057	0.032	0.081	0.045	0.051	0.0	0.066	0.083	0.032	0.041	0.037	0.037	0.061	200.0	0.065	~	0.024	0.097	0.055	0.061	0.019			3			0.019	0.00	0.02(0.005	0.019	2000	00.0	0.023	0.00	0.010	0.02	00.0	0.00	0.063	0.01(ø	0.005	0.063	0.027	0.023	0.73
	DNN		20	36	31	16	24	37	90	30	19	26	15	5 2	5	41	30 26	NNG	15	5 14	27	26	~		DAIN				10	m :	SI	~	9	;	7 -	13	7	4	1	- m	6	33	~	DNN	2	33	61	4	2
I	Sig.		**	* *	* *		*	*			***				*	;	* *								ci.o	, L										L									L				
cona	β		21.3	46.6 0.6	19.5	41.8	5.3 33.5	19.6	17.8	13.7	68.1	7.3	15.9	10.6	13.6	97 D	35.3 61.4	Я	7 2 2	68.1	26.7	19.6	18.3 0.13	0.000	ona o	д		1.0	4.7	1.2	9.0	1.7	9.2	9.0	6.0	12.9	2.6	1.8	3.5	7.4	1.0	18.0	0.9	β	0.9	18.0	8.0	8.2	0.92
Ë	α		0.111	0.078	0.113	0.041	0.115	0.119	0.092	0.137	0.051	0.137	0.131	0.143	0.126	0.057	0.074	~	0.041	0.143	0.096	0.101	0.033	ć	5	3		0.012	0.040	0.024	0.041	0.013	0.048	0.022	0.053	0.025	0.033	0.012	0.030	0.036	0.018	0.067	0.043	α	0.025	0.075	0.045	0.041	0.86 0.86
I	DNN		117	132	132	86	77	103	108	89	66	113	<u>9</u>	107	106	CO1	110 103	DNN		132	103	103	15		DNIN	NINT	T	4	25	6 ;	2 4	- 50	27	- 9	20	37	21	9	95 2	26	9	56	16	DNN	16	59	32	27	t
	Sig.																								Cia	-51E							Π												ſ		T	Ì	
rra	8	4.4	15.2	19.1	8.6	6.4	3.3	24.5	3.8	3.7	13.6	3.5	2.8	10.0	1.2	4.01	7.3	R	2 0 0	24.5	9.5	8.6	5.7 0.44		orra	4 00	2.4	0.7	2.3	0.7	1.6 0.7	1.0	1:9	0.7	0.7	1.7	1.8	0.7	4.2	5.3	0.7	3.3	1:0	B	1.0	15.1	3.9	2.4	0.79
Rellate	α	680	059	082	075	066	039	054	086	078	039	108	128	096	0/2	056	062 076		000	128	975	075	022	Dolloto	Bellat	200	031	003	024	022	0.06	007	031	003	011	029	015	005	120	013	005	041	010	×	013	041	027	028	79
	NN	23 0.0	21 0.0	92 <u>0</u> .	79 0.	55 0.	0 0 0	2 0.	53 0.	53 0.	50 0.	70 0.	0 62	28	13 0.		0 0 0 0 0 0	N,		0 0	200	0.0	-0 0		VIN		4 0 0	1	17 0.	0 8	4 c	30.0	16	- 2	4	14 0.	9 0.	0 - -		0	2 0.	24 0.	4	N7	0 0.(3 0.	7 0.4	5 0.	50
h	ig. D]							,	Ē	4,								â	1				-	ł				┝								-					\vdash		-	D	F	e e	_	-	t
	S			6 ~	20		~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	. 8	5		5	5								×			200		0	2	+		0							~				~					┝			+	
troelona	β	3.1	10.3	14.	19.	13.	2.8	186.	2.6	6.3	H.	3.6	9.6	12.	-6	4 1	5.1 8.3	W	2 0	186	19.61	9.3	39.8 0.20	1400	arcelona	-	2.1	0.5	2.2	0.0	40	1.2	2.4	0.0	0.7	3.5	0.5	0.0	7.7	5.8	0.5	2.5		B	2.1	15.9	4.7	2.8	0.7
R	α	0.110	0.063	0.091	0.048	0.059	0.019	0.009	0.110	0.059	0.040	0.101	0.059	0.069	0.046	0.025	0.064 0.048	2	0000	0.136	0.065	0.059	0.033	à	Ξ́,	2007	0.000	0.006	0.028	0.006	0.009	0.005	0.026	0.000	0.011	0.016	0.011	0.003	0.036	0.010	0.003	0.055	0.007	α	0.016	0.055	0.028	0.024	0.87
	DNN	19	82	94 70	94	17	17	81	65	99	60	71	۶	92	69	16	69 63	NNU	57	94	74	71	=		DNIN		7	7	17	~ ~	<u>م</u> د	1 14	12	2	4	13	4	- 8	77	14	-	29	~	DNN	=	31	61	0 0	•
	Año	1005	1996	1997	1999	2000	2001 2002	2003	2004	2005	2006	2007	2008	2009	2010	1102	2012 2013 2014		Min	Max	Prom.	Med.	Desv. Coef R.		Δñο	1004	1995	1996	1997	1998	2000	2001	2002	2003	2005	2006	2007	2008	2010	2010	2012	2013	2014		Mín.	Max	Prom.	Med.	Coef R.

Γ	is.						Π			**		**	*	* *	***	**	Γ	**	٦				Τ] [io.	Τ	Ē		Π						Γ					Ē				Γ					1
	8 S	╞		╞			\parallel			2.5 *	5.8	8.2 5	* 0.6		4.1 2 0 *	* 1 5	7.1	2.7	<u> </u>	8	5.8	12.7	73.4	4.1	03				B S	+						\vdash		_, ,	10	6	5	5-	- 0	3.4	4	6.	8	L.	3.4	6.	4.	02	
Vialha		╞			-				+	8 17:	8 46	0 54	1 18	4 73	20 11	73, 73	5 61	4 84	-		5 40	8 84	4 37	8 39 28 28	0			Vielha	_	╉	ŀ		+			H		4.	0 4	4 0	100	9 v 0 v	- 4 -	+ -	7 1.	7 1.			4	9 2	3	5 1 0.	
I	N a								+	0.09	0.04	0.03	0.04	0.09	0.06	0.03	0.02	0.03	00.0	Na	0.02	0.05	0.05	40:0 C0 0	0.5				Ø	+								0.01	0.03	0.04	0.01	0.02	0.02	0.01	0.02	0.03	N	00	0.04	0.02	0.03	0.01	
H	IND .	L							+	66	49	55	68	87	89	78	58	82	7	IND	49	66	12	27			┟	_	IND .	+	ŀ		+			H		12	12	16	4	20	16	12	13	16	IND	2	16	14	13	.9	
	Sig									-				+			-							_					Sig	+		*		~				1	*	*	+				*			┞	5				
en on en en				9.5	6.4	8.1	3.6	2.9	31.0	10.8	5.1	13.1	16.4	7.9	13.6	12.0	12.0	16.8	+ +	β	2.9	31.0	11:2	10.0 6 5	0.19			rragona	ø	+	0.6	42.2	75.2	13.2	18.5	16.4	63.9	9.2	29.6	58.7	12.3	48.8	152	28.6	50.8	31.7	B	00	152.0	49.8	42.2	c. <u>ee</u> 91.0	
Ţ.	a a			0.059	0.150	0.133	0.105	0.061	0.037	0.119	0.128	0.120	0.067	0.156	0.102	0.170	0.140	0.105	0.14/	α	0.032	0.156	0.106	0.111	0.64		8	Ta	ø	1	0.031	0.064	0.041	0.105	0.034	0.069	0.028	0.092	0.092	0.055	0.055	0.080	7000	0.068	0.052	0.053	ø	0.027	0.105	0.056	0.053	0.025	
	DNN			65	79 73	68	62	38	2 89	93	<i>LL</i>	101	97	108	16	101	121	95 01	78	DNN	38	127	8	26 C				_	DNN	4	23	59	72	16 69	38	56	62	26	99	91	20 20	9/ 52	r 6	68	48	67	DNN	23	91	59	59	9	
	Sig.									L				4			L						4					-	Sig.	1													ļ	L				L				_	
e-Tortoe	β											4.5	3.5	8.8	18.3	5 V 6	12.6	2.0	6.5	β	2.0	18.3	7.2	0.4 6.2	0.05		8	s-Tortos	β		L								18.6	11.3	11.1	19.7	20.0 2010	12.3	18.6	13.9	в	-	82.1	25.2	18.6	23.0	
Pomoto	a											0.063	0.107	0.072	0.041	0.148	0.045	0.156	0.080	a	0.041	0.156	0.088	0.041	0.46			Roquete	a										0.046	0.057	0.049	0.044	0.020	0.096	0.073	0.090	a	0.070	0.096	0.060	0.057	0.022	
	DNN				T	I			T	t		42	61	67	64	78	64	89	e e	DNN	42	78	65	49 C	2			ľ	DNN	İ	t			t	Ī	t		İ	39	52	52	99 (71	68	50	59	DNN	30	68	54	52	2	l
	Sig.									I									1							1			Sig.	T									Ī				*	* *	***			ľ					
00	β	F		5.9	6.6	0.6	5.0	7.4	9.0	10.9	8.1	13.4	6.4	7.6	7.01	14.4	13.7	21.7	- - -	β	5.0	21.7	10.4	9.0	0.33	1		sa	β	t	1.8	12.3	4.9	7.4	3.5	21.1	9.5	6.2	23.3	4.9	7.2	34.0	43.2	24.6	25.7	42.2	B	×	43.3	17.9	12.3	0.32	
Manree		┝		103	178	133	119	055 137	117	135	126	109	140	149	C71	141	092	998	060	α	355	178	120	911	64		;	Manres	8	t	027	061	160	041 077	090	048	070	066	052	081	059 072	270	747 JSK	087	777	963	8	707	01	061	190	73	
	N	F		9 0.	3 0.	0.0	6 0.	9.0		0. 20	6 0.	2 0.	9 0.	0	0 0 0 0		7 0.0	00	5	N	6 0.0	0.	0.0		0			ł	Z	ł	-	7 0.0	3 0.0	1 2	6 0.0	9.0	2 0.0	8 0	0 0 0	6 0.0	3 0.0		4 6	0 0 0	2 0.0	5	N,	-	0.0	0:0	7 0.0	0.0	
	D ii	L		5	= 0	~ ∞	7	4 0) =	6	7	∞	=	<u>ہ</u> م	0 =	6	= •		ĮŪ	4	1(~	~~~~			ceae	+	ă ŵ	ł	-	*	5.	4 v		4	4	4 (0 00	4	4	0 <	1 V	*	5	9	Ĩ		- 9	4	4	-	
1.1	Si	L		5								3	2	<u>~</u> .							-	0			5		Mora		Si	╉	_	5 **		2 10	0	0			0 -		0			*		*			2			5	
I laida				12.0	7.5	5.7	7.6	3.4	1.6	4.4	4.1	22.0	65.2	15.0	19.	151	12.7	1.6	747	β	2.4	65.2	13.2	14	-0.3			Lleida	β	4	16.	25.0	36.	16	18.	21.3	29.	21.5	28.	12.	30.0	22.	/c 103	26.	34.	76.	B		103.	31.0	25.(7.0-	
	æ			0.102	0.137	0.113	0.073	0.120	0.104	0.126	0.115	0.039	0.014	0.068	0.061	0.078	0.081	0.133	700.0	ø	0.014	0.137	0.094	0.104	0.43				ø	1	0.053	0.079	0.057	0.042	0.052	0.063	0.040	0.047	0.021	0.059	0.020	0.064	10.03	0.072	0.041	0.064	a	0.020	0.092	0.052	0.052	0.019	
	DNN			99	94 5	63	58	57	6	98	67	48	47	72	2/ 13	5 08	2	79	ŧ	DNN	47	94	20	13	2				DNN	4	32	40	57	6 83	37	55	37	36	38	44	4:	4 7	24 26	64 64	35	46	DNN	\$	64	4	40	4	
	Sig.			* * *	*	*	***	3	***				* *	* *	e e	***	*	* *	,										Sig.	1	**	*	* *	• **	****		*-	44		***													
rona	β			46.4	107.4	103.2	128.4	129.9	0.02	57.6	10.3	65.2	17.4	80.3	34.1 48.0	42.8	31.1	50.4	(1)	β	10.3	129.9	59.1	35.8	-0.34			rona	β		835.0	764.0	223.0	379.0	334.0	420.0	694.0	281.0	109.0	115.0	557.0	326.0	0.026	148.0	268.0	498.0	g	109.0	835.0	420.7	379.0	0.20	
3	8			0.128	0.075	0.082	0.049	0.036	0.083	0.099	0.167	0.102	0.164	0.114	0.004	0.142	0.162	0.156	C60.0	α	0.036	0.167	0.111	0.030	0.52		2	G	a		0.048	0.042	0.105	0.057	0.057	0.048	0.046	0.047	0.042	0.036	0.020	0.018	0.000	0.036	0.040	0.033	ø	0.018	0.105	0.043	0.042	0.020	
	DNN			93	106	94	101	61	107	127	108	110	110	11	120	971	112	126	771	DNN	61	127	106	01 8	2				NNG		99	67	64	c8 19	59	71	77	69	۰۸ وا	84	67	9/ 05	19	48	62	67	DNN	48	85	67	67	2	
	Sig.																												Sig.													*	***		**	**							
torro	β	6.3	22.4	5.0	7.7	14.0	5.8	4.1	2.6	4.7	8.6	9.7	5.6	6.6	20.0	28.3	19.7	8.9).c	β	2.6	28.3	10.3	2.8 7 0 F	0.40			iterra	β	2.2	5.9	5.3	6.4	6./ 5.4	74.4	33.8	28.5	0.7	0.7c	15.3	10.6	1/.6	73.5	72.8	35.4	40.1	в	2 2 2	88.1	29.4	17.6	27.4	
Bolle	a	0.094	0.047	0.064	0.131	0.082	0.077	0.073	0.00 0.00	0.134	0.078	0.086	0.114	0.149	0.044	0.045	0.046	160.0	0.1/2	α	0.044	0.172	0.087	0.035	0.36	1	2	Bell	α	0.019	0.043	0.085	0.064	0.058	0.018	0.036	0.042	0.092	0.026	0.091	0.067	0.096	1000	0.049	0.065	0.073	α	0.018	0.096	0.056	0.055	0.025	
	DNN	75	73	52	86	78	60	53	54	6	80	86	83	92	16	8	91	86 95	8	DNN	52	93	11	80					DNN	10	58 F	52	37	42	45	59	43	54	51	62	45) Q	n 15	6 09	56	59	DNN	0	67	47	50	E	
	Sig.																		1							1			Sig.														***										
but	β	5.0	17.2	3.5	5.2	14.1	3.8	2.7	5.25	5.9	8.3	12.5	16.0	9.5	15.8	9.17	37.7	9.8	0.0	β	2.7	37.7	12.9	9.8	0.18	1		ona	β	7.2	9.8	12.9	6.3	5.6	4.6	6.6	11.5	23.9	9.5	7.3	4.4	9.1	30.7	13.7	19.2	16.0	8	44	38.2	13.2	10.5	0.00	
Rarrol	a		059	092	.155	073	121	069	000	107	054	086	.049	.112	C80.	100	031	104	N71	α	022	155	082	085	29		,	Barcel	α	024	025	074	.083	050	082	107	.073	.058	094	094	.110	.150	2007	080	075	.069	α	104	136	074	074	027 80	
	NN	<u>59 0.</u>	87 0.	<u>59 0.</u>	91 0	77 0.	79 0.	47 0	72 0	92 0.	68 0.	81 0.	77 0.	89 0.	84 73	0 90	93 0.	99 0	16	NN	47 0.	99 0.	79 0.	/9 0. 13 0.	0			$\left \right $	NN	15 0. 77 0.	25 0.	54 0.	54 0.	510	48 0.	74 0.	75 0.	65 0.	62 0. 0.	72 0.	59 0.	80 0	48 0	61 0.	62 0.	56 0.	NN	15	80 0.	55 0.	56 0.	16 0	
	jo D	94	95	96	97	66	00	01	70	940	05	.90	07	80	60		12	13	+	Ď	ji	ax	ų.	. DG	FR.			1	I ou	94	96	97	98	00	01	02	03	20	90	07	80	60 9		12	13	14	D		ax	.u	.pc	sv. F.R.	
	Aî	19	195	19	19	191	<u> 20</u>	200	200	3 Ř	20(20	20(20	02	201	201	20	3		Mi	M	Pro	Des	Coef				E .	19	- <u> ě</u>	190	16	20(50	50	20	200	305	20(20	07	200	50	20,	20		ľ	Ma	Pro	Me	Coef	ĺ

Γ	ig.	Π			Π			Γ				Τ	Γ		Γ										1	ſ		.ia	Τ	L				Ι	Γ				Τ	Γ		Γ			T	٦				Τ	T	Τ
	8 8	Η	t		\mid	t	t	t		2	0.5	5.7 5 0	0.0	2.0	3.2	.2	.9 4.7	5.0	ß	-	4.7	8.9	5.8	5.0				8	t	t				t	t				/		2		0.	5		-	8			t	t	t
Violha		Н	ł		\mid		╞	H		15 2	26 9	24	 t 99	25 4	15 2.	25 7	13 8 19 4	8		0	75 4	33 1	25 1	21 1		V.C.H	Vielha	_	ł	ŀ		+	+	ł	ŀ						0 90)8 1	33	90)6 – u		\vdash		╉	╉	╉
I	N a	Н	+			-		ŀ		0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	N	Ö	0.0	0.0	0.0	0.0				α N	+	ŀ		-	+	ł	ŀ			0.0	0.0		0.00		0.00	0.0	0.0	0.0	N			+	+	+
H	DN i	Н	*	*	* •	*		H	*	* 41	* 28	* 35	377 t	* 50	- - -	* 32	* 43	30	ND	-	50	35	34	9		ł		UN IN	╉	ŀ		+	+	╉	ŀ			- (ς v	- 0	- 2		3		7 0	-	DN	\vdash	\vdash	╉	╋	+
I	Sig	H	*	4 **	*	5 *	*	∞	** 6	** -	** ÷	** 7	+ 0	3 **	3 **	** 6	** 6 **	9				6	6					Sig	╉	ŀ		+		╉				_	┦	ŀ		┝				_				+		. 5
rro cona	β	Ц	129	198.	116.	312.	92.6	130.	100.	164.	294.	251.	107.	283.	758.	189.	419.	239.	β	9.09	758.	229.	189.	0.1.0			urragona	β	4	3.1	3.2	3.0	2.3	0.4 2 5	5.1	4.3	3.6	3.7	4.7	0.0	5.7	3.4	2.4	1.9	2.1	2.1	β	1.9	6.4	35	5.1	-0.2
Ē	ø		0.045	0.034	0.052	0.034	0.091	0.027	0.047	0.034	0.045	0.035	0.066	0.062	0.019	0.042	0.028 0.066	0.052	α	0010	0.091	0.046	0.047	0.018		E	Ĩ	a		0.183	0.279	0.287	0.194	0.141	0.078	0.193	0.352	0.248	277-0	0.247	0.172	0.280	0.324	0.302	0.301	0.183	α	0.063	0.352	0.226	0.076	0.87
H	DNN	Ц	125	101	121	93 80	114	89	127	138	138	124		108	117	131	115	97	DNN	89	138	114	115	2		ł		NND	+	93	140	140	103	6 y	73	122	171	147	801	£ [115	146	159	130	1130	=	DNN	73	171	125	150	3
	Sig.	Ц	1					L			777	* *	***	***	**	* *	* *	***		L							8 9	Sig.	4	Ļ				+					4	Ļ		L								4	4	+
e-Tortoe	β										0.000	308.0	422.0	400.0	590.0	199.0	684.0 129.0	891.0	ß	129.0	891.0	439.0	400.0	242.9		E	s-1 ortos	β										ç	2 2 0	0.6	4.0	2.8	2.7	1.9	3.0	2.4	β	1.9	4.0	2.8	2.2	0.16
Romete	a										0.040	0.040	0.046	0.053	0.037	0.063	0.047 0.084	0.060	a	0.037	0.084	0.053	0.047	0.015			Koquete	α										0170	0.152	0.153	0.239	0.247	0.339	0.330	0.228	0.196	a	0.133	0.339	0.226	0.228	0.83
	DNN	H					Ī	t			90	06	114	147	135	130	131 105	126	DNN	06	147	122	126	=				DNN		t				t	t			ę	8/	03	168	122	160	153	101	106	DNN	78	168	119	100 21	t.
	Sig.	Π							* * *	***	**	+ **	* *	***	* * *	* *	* * *										i	Sig.																T	Ī	1					T	Ī
00	β	Π	24.8	36.7	27.9	24.9	21.7	70.6	532.3	176.5	83.7	263.8	1.89.1	512.5	441.5	571.2	118.3 821.0	85.6	β	99	821.0	226.5	118.3	238.7			sa	β	T	1.2	1.4	13.5 2 -	0.7	t -	2.0	4.0	2.0	17.0	8.0	14	2.4	4.1	1.1	1.6	2.0	2.2	β	0.7	17.0	3.2	1.6 4.4	-0.34
Manro	a	Η	050	078	067	079	081	039	031	041	065	045	033	032	025	020	053 025	072	a	020	080	050	045	023		M	Manre	a	t	058	066	007	048	011	047	038	048	000	020	920	039	022	065	047	033	051	α	006	077	045	048	58
I	NZ	Н	4	7 0.0	9.0	9 0.0	0.0	0.0	14 0.0	7 0.0	0.0	2 0	4 6 0.0	8 0.0	2	7 0.0	0.0 0.0 0.0	10.0	N,	4	4 0.0	8 0.0	6 0.0	0				Z	ł	3	2 0.0	9.0	0.0		200	7 0.0	0.0	0		0 0	8 0.0	5 0.0	7 0.0	0.0	2	-	N,	3 0.0	7 0.0	0.0		; 0
3	ش م	Н	v.	7	*	-1 00	6	7	*	*				6 8	*	6	* *	=	Ĩ	Υ Υ	, =	∞	∞ .	-		Jae		ă ă	ł	5	3	-	- (0 4	, 6	3	<u></u>	- (21 0	4 -	- 6	101	2	61	2 0	-	Ĩ	_	<u>с</u>	~ ~	4	+
Š	Sig	H			*				÷	*				*	*	_	\$ \$	~	_		~	-		-		Paln		Sis	ł	ŀ			+	+				+	┦	ŀ		┝			ł	-				+		-
laida	β	Ц	946	75.7	2.68	20.5	75.6	42.4	103	193.	97.6	1/1.	52.5	461.	254.	49.9	347. 399.	193.	B	40.4	461.5	153.	94.6	0.32		1-14	Jeida	β	4	2.6	1.8	3.7	2.8	7.4	1.8	1.1	1.4	4		1.1	3.2	1.4	1.1	0.8	0.8	1.4	β	0.8	9.4	2.1	1.4 1.4	0.17
	ø		0.076	0.055	0.053	0.062	0.066	0.049	0.068	0.044	0.070	0.045	0.073	0.045	0.035	0.057	0.044 0.043	0.062	α	0.035	0.076	0.055	0.055	0.012				ø		0.013	0.036	0.014	0.019	0.050	0.022	0.025	0.029	0.026	/70.0	0.018	0.015	0.018	0.024	0.043	0.045	0.032	α	0.009	0.050	0.029	0.016	0.61
Ļ	DNN	Ц	100	96	109	107	103	8	103	115	₩ 2000 2000 2000 2000 2000 2000 2000 20	2/ 20	87	108	8	98	103	83	DNN	73	115	96	66	2		ļ		NND	1	6	19	4	51 7	2 C	11	10	13	= =	2 0	h 0	6	6	10	15	2 2	2	DNN	10	22	4	51 -	F
	Sig.	Ц												+-			* *											Sig.											1			L										
-ono	β		27.2	24.4	18.3	29.0 345	24.9	54.9	67.3	32.1	48.6	42.1	+1.0	103.8	57.8	47.0	66.7 118.0	103.2	β	164	118.0	50.4	42.1	29.9			rona	β		5.3	2.1	3.7	1.7	7.2	2.2	4.1	2.0	2.1	9.1 0	1.3	1.1	1.3	1.5	1.2	2.3	13.5	β	-1.1	13.5	2.8	2.0	-0.11
ē	a		0.093	0.103	0.085	0.076	0.095	0.030	0.058	0.071	0.058	0.063	0.111	0.048	0.042	0.050	0.042	0.040	α	0.030	0.111	0.066	0.058	0.023		č	3	α		0.062	0.126	0.099	0.142	10.041	0.077	0.073	0.188	0.094	0.124	0.081	0.100	0.073	0.089	0.061	0.053	0.013	α	0.013	0.188	0.088	0.081	0.87
	DNN		85	102	82	108	94	55	93	101	18	//	69	82	64	78	82 104	79	DNN	55	108	86	84	2				DNN		52	68	69	89	67	48	54	66	59	8C	10	40	35	44	52	32	31	DNN	22	66	49	48 20	77
	Sig.													*														Sig.																								
arro	β	44.7	45.6	38.3	18.6	62.9 72.0	65.9	39.1	69.0	32.7	65.4	8.6/	26.4	110.0	110.6	56.3	60.0 46.4	56.0	β	171	110.6	51.9	46.4	-0.18			terra	β	3.2	1.3	1.7	2.1		1.4	2.2	6.0	1.4	2.3	3.1	34	1.3	2.4	2.2	1.2	2.5	2.5	β	1.1	6.0	2.2	2.1	-0.06
Bolla	α	0.062	0.047	0.087	0.094	0.059	0.056	0.044	0.056	0.070	0.053	0.046	0.101	0.061	0.036	0.057	0.068	0.070	α	1 036	0.101	0.067	0.062	0.019			Bella	α	0.048	0.097	0.089	0.067	0.055	0.087	0.077	0.031	0.107	0.068	10.0	0.051	0,122	0.078	0.087	0.089	0.039	0.052	α	0.031	0.122	0.072	0.068	0.65
	DNN	106	77	66	88	100	118	75	97	28 :	18	70	93	96	89	86	81 94	79	NNC	57 (118	88	88	4				DNN	3 30	43	52	47	22	64	47	43	50	50	4 4	37	56	52	52	39	31	37	NNC	22 (56	43	6 7 0	n
	Sig.	Ħ			H								t		**		*									ľ		Sig.						Ī					t	Ì		ſ			Ì	1				1	t	Í
eu.	8	26.4	13.8	\$7.8	24.0	59.8	17.0	34.6	59.1	38.2	51.6	14.6	18.7	12.5	24.5	55.4	23.0	76.1 T	B	3.8	24.5	1.5	3.6	13.9			° –	β	5.1	2.8	2.7	4.9	1.5	0 1	3.8	2.7	3.0	2.5	3.1 1 0	2.3	3.1	2.4	2.3	1.7	2.0	1.4	8	1.4	5.1	2.7	2.7	1.12
Raroalo		96	14	53 8	179	120	80	42 5	171 6	090	1000	80	60	63 1	46	09	90 5	. 020		40 -	09 11	69 6	68 5	19			Barcelo	~	59	65	95	48	38	10	18	86	70	70	20	28	29	18	. 99	56	95	74		34	38	96	10	1 - 1
	NN N	7 0.0	5 0.0 0 0 0 0	3 0.0	9.0	08 0.0	18 0.0	0.0	10 0.0	14 0.0	8000	24 0.(5 0.1	72 0.0	8.0.0	33 0.6	21 0.0	5 0.0	NN a	00	10 11	8 0.0	5 0.0	0.0				ZZZ	5 0.1	0.1 0.1	36 0.1	27 0.1	32 0.2	00 04	22 0.1	14 0.1	97 0.1	16 0.1	1.0 1.0	17 0 1 0	36 0.2	72 0.1	44 0.2	12 0.2	03 0.1	00	IN a	5 0.1	14 0.3	0.1	0.0	0.6
	IO C	4	0 9 0 9	7 9	6 : 8	5		2 9	3	4 9 0	5	0 x	6	9 10	0	1	2 9 3 12	4	DN	×	112	n. 9,	I. 9.	- 		$\left \right $	1	o Di		8 8 9	7 1(8	5		2	3 1	4	2		- 0	9 13) 	1 14	2	2 °	4	NO	7	x 14			
	Añc	199.	199.	199	199	199	200	200.	200	200	200	200	2005	200	2010	201	201.	201-		Mín	Max	Pron	Med	Coef			~ •	Ant	199.	199(199	1993	199	2002	2002	200	200	200	200	2002	2000	2010	201	201.	201	707		Mín	Max	Pron	Daey	Coef

	Sia	.a.				Ι		Ι	I	Ι	•	***	***		*	***	**	***	* *	* *	ala ala ala]			Sig.			Ι]							
	8	~	T	Π		1		1		1	1	104.4	09 3	100.5	105.8	L C 21	190.9	191.3	294.4	123.3	7/0.4	8		C.66	294.4	C.101	150.5	0.41			ла	β	Π		I		T	T				-	0.7	1.0	0.7	2.1	0.7	1.5	1.4	0.7	<u>-</u>	β						
11 11 1		5	t	H		1	T	t	T	t	-	1714	0/0	114	100	0.84	080	088	085	0.079	080.	a a	2007	9/07	0.121	C60.0	0.17	0.52			Vielł	α	H	Ì	t	t	F	t				200	C003	.008	014	.006	004	600)	.012	110.0	100.	α	ŀ				1	Ī
	NNC		t	Η		+		t		t	9	148	001	140 0	153	156	119	175 0	182 0	168 0	ICI	NNC		114	182 (ICI	102	17				NNC	H		t	t	╞	╞					- v	9 9 9	5	3 (-	4	5.	4 0	- -	NNC	┢				+	
ľ	Sio		T	* *	**	* *	***	1	**		***	İ	*	İ	ľ	**	***	**	**	***	de de de			1	Ī	1	Ī		1			Sig. 1	H	Ī	İ	ľ	T	ŀ				t	ľ						1	T	1	Ē	ŀ				1	1
	8	2		107.3	82.2	96.2 26.2	86.3	75.5	13.0	/1:0	149.9	0/.0	83.3 64.7	996	20.07	0.61.0	160.0	234.5	163.9	73.4	4./02	B		15.0	367.4	120.9	80.5	0.00	1		ona	β		г с	1.7	4.2	4.7	3.4	2.7	7.0	10.9	5.5 7 2	2.1	4.7	1.7	12.2	3.0	18.4	6.6	4.6	14.0	β	1.7	18.4	6.5	4.7	4.6	0.32
E	a lailag	5	T	0.117	0.107	0.146	0.067	0.116	001	160.0	0.051	C171	0.136	175	100	117	0103	260 0	0.100	0.118	100	<i>u</i>		100.0	0.215	c717	/11/	0.23			Tarrag	a	H	074	0.0/4	0900	0.062	0.081	0.064	0.042	0.027	020	0.074	061	0.092	0.104	0.47	0.036	0.047	0.052	+0.1	α	027	0.104	0.061	0.060	0.019	0.52
	NNC			190	195 (226 (161	140	0/1	100	190	077	173	209 0	184	155	206	2.08 (197 0	208 0		DNN		140	226 (180	061	3				DNN		35	00	37 (44 0	42	34 (34 (26 (67	33	43 (36 (50 (31 (37 (39	32 (DNN	26 (50 (37 (36 (9	
ľ	Sio		T	Π		1		1	Ī	1		I	***	**	**	***	***	**	**	***	al a de de		ľ	1	Ī	1			1			Sig.	H		Ì	ľ		ſ				1	I		*	*		***	1	*			r				1	1
	8	1	Ī			1		1	Ī	1	Ī	I	0.960	349.0	0.172	758.0	0.190	332.0	507.0	248.0	0.205	8	100	248.0	802.0	150.0	549.0	0.36	1		ortosa	β		I	Ì	T	T	t				1	5.6	19.6	34.0	22.7	22.5	39.9	38.2	5.4	6.00	β	5.4	55.9	27.1	22.7	16.6	0.38
		-				┥		t		t	-	t	056	0.66	058	054	077	076	080	102	0/0	<i>a</i>		104 102	102	7/0	0/0	25			oquetes-T	a			t	t	╞	╞				t	055	045	063	084	024	047	064	106	/60	α	024	106	090	057	024	50
c			┢	Η		┥		┥	ł	+	+	ł	52 0	76 0	81	015	02 0	0 200	96 0.	92 0.		NN		0 7C	215 00	89 0.	92 0. 1.0	o 0			R	NN	Н	ł	ł			╞				╢	34 0	53 0.	53 0.	62 0.	37 0.	38 0.	64	52 0.		NN	34 0.	64 0.	50 0.	53 0.	-0	0
ł	Sio			* *		* *		***	16 16 16 16 16 16 16 16 16 16 16 16 16 1	de de de	* + +	***	*	*-			**	***	* *	* *						1	T					Sig. I		T	t	t		ŀ				t	t		\vdash				1		1		┢				1	1
	8			92.2	3.5	90.4	8.1	29.2	6.5	0.4 0.4	71.2	15.5	10	986	0.7	57.6	19.3	1.00	51.0	4.0	1.60	8		8.1	92.1	5.1	13.3 2 0	0.9			7	8		0	0.7	2.1	1.1	1.0	1.5	5.0	3.8	0.0	5.5	8.1	5.0	6.0	0.7	4.2		4.7	0.7	β	2.5	2.6	1.3	8.1	3.5	.29
;				-	65 5	29	7 6/	15	/0	80.	59 I	 10	45 47 47	26 1		, 1 66	20 2	25 22	22	34	7 07		, IS	7 00	08	47	54 1	21 95 0			Manres			20	00	13	. 14	53	31 1	61	45 2	60	1 53	146	69	53 1	38 1	50 2	54	53			<u> </u>	85 3	55 1	53	4	34 1 0
			+	8 0.1	8 0.1	9 0.1	3 0.1	0.1	1.0 60	0.2	0.1	1.0	0.0	0 0 0 1			10 0	3 01	3 0.1	0 0.1	10	N		0.1	0.2	0.1	1.0	0.0				NI NI		00	7 0.0	8 0.0	9 0.0	3 0.0	4 0.0	1 0.0	9 0:0	/ 0.0		2 0.0	0.0	2 0.0	3 0.0	4 0.0	6 0.0	0.0	0.0	N N	8 0.0	2 0.0	0:0	1 0.0	0.0	0
ns		i i		5	:* 19				ă È	77	77	47		*)C *:	4 ~	:* 22	**	* 21	7	NG		-	24	4	1	1		icia		g. DN	Н	-	7 t	. 4	m	ω.	3	4	ŝ	γ. γ.	0 0	4	4	5	3	4	4	4 -	+	ND	6	5	4	4		
Pun	S	5	+	9	9	* ~ (6		4 0	7 4	6.	-	_ ~	**		**		** 0	5 **	2 **	0			ہ . م	6.	0	~ 4			Pistc		Si							_				. ~					2		-			~	7		_	_	0
		2	_	, 39.	5 73.	92.	16.	29.	- 18 - 18	21.	42.	<u>.</u>	43	99 1	.00	146	119	70	146	62.	171	8	2	<u>-</u>	146	0	00.	41.			Lleida	β	μ	4	2 t	3.5	3.5	3.5	2.5	3.6	7.0	20 E	30	2.8	1.9)'6	5 7.2	11.	5		-	β	0	20.	9.	3.5	4	0.4
	× 7	-		0.17	0.093	0.16	0.12	0.19	0.12	0.412.0	0.172	0.13(0.145	0 122	0.15	0.080	0.11(011	0.12	0.11	-14 	a I		0.08	0.213	0.158	0.12	-cu:n				ю Л	μ	. 100	0.04	0.05	0.038	0.045	0.029	0.06	0.040	0.04	0.03	0.06	0.05(0.037	0.026	0.034	0.048	0.038	10.0	a	0.026	0.061	0.043	0.041	0.010	0.55
ł	Ñ		+	156	* 177	213	164	180	150	107	163	C07	121	178	170	165	160	181	181	176	14	IND		171	213	109	100	7				IND .	Н	LC	25	31	23	27	21	30	25	8 8	3 5	30	23	31	21	27	33	53	2	IND	13	36	27	27	9	-
	Sio	-		*	2 **	*	·**	4,	**	0	6	-	- **	*	*	**	·** 6	÷	***	ر م		_		+ 0	- 0		0 0	4				Sig						-				+			-				+		+					_	_	_
ċ		2		3 116.	1 163.	9 80.	67	6 135.	8 53.4 6 160	1001	5 141	00	113	88	104	1 200	6 183	6 140	4 206	69.69.	109.	8 B	2 2	20.0	5 206.	124.	110.	-0.0			Girona	β		10	2 4 0	1 2.6	2 3.8	0 4.3	1 2.8	9 4.5	2 4.1	2.0	9 2.6	1 2.8	6 3.4	5 5.5	5 3.9	4 6.5	7 2.2	5.7	1.0	β	2.0	2 8.1	4.1	7 3.9	1.6	0.5:
		-		0.19	7 0.13	0.22	0.15	0.14	0.15	01.0	0.19	0.29	0.19	0.25	018	013	0.15	2 0 18	0.14	0.21	0.18	N N		0.100	0.29	0.18	0.18	0.38				х N		0.02	0.01	0.04	0.05	0.04	0.05	0.05	0.08	0.01	0.03	0.04	0.06	0.05	0.02	0.04	0.04	0.07	0.00	Ν	0.02	0.082	0.050	0.047	0.014	C&.0
$\left \right $	DN	. *	+	* 21(* 237	* 23(23	* 192	* 10.	- 19 ⁴	* 192	- 7 1 7	* 198	* 375	***	200	* 220	* 215	* 195	* 215	507	IND		102	244	117	117	3				g. DNI	H	-	30	23	29	28	25	36	36	67	2 55	28	33	33	16	25	2	43	7+	IND	91	43	29	28	2	-
	Sic	*	6	** 	*		*	** * 0. <	· · · · · · · · · · · · · · · · · · ·	0.1	* * * *	4-4 4-4	4. * * *	** 6	*	2 00	**	*	*	8. o	7.				m t		0,0	20				Sig	~	+ 0			•	+	-	•	-		+ 10			2	10	5			_			2		_	~	6
		4 103	4 IUJ 8 67.	4 385	5 248	9 188	0 85.	1 246	2 I 1 2	171 0	8 168	0 240	3 321	0 354	010	7 273	8 353	4 485	5 378	8 366	7 7 7 80	8	2	./0	8 485.	240.	0 240	0.0			Bellaterra	β	2 2.8	1 4 4	0 1 0	3.5	9 3.9	6 2.4	1 6.	4 2.9	4 7.0	2 C		3 2.9	9 4.9	0 15.	8 1.5	0 39.	3.5	×	- <u>-</u>	β	0	2 39.	2 6.9	3.5	9 8.3	0.0
ľ		1 0 13	7 0.16	5 0.07	9 0.12	0.14	9 0.13	0.09	0.11	60°0 /	0.11	0.10	0.05	5 0.09	010		1 0.06	5 0.08	0.07	5 0.05	60.0	0 7		0.00	0.16	0.10	60.0	0.25			H	Nα	0.09	0.08	CO.O	0.07	0.07	0.07	0.04	0.08	0.04	0.07	0.04	0.08	0.03	0.04	0.04	0.03	0.08	0.05	CO.0	a V	0.03	0.09	0.06	0.05	0.01	CO.0
	NG	*	.07	* 210	* 21	* 25	18	18	* 20		* 210	101	12	19	200	01	6	20	210	20:	19.1	IND	È	1/1	25(707	207	9				DN.	45	46	20	42	46	4	35	45	34	8	+ 20	48	23	43	20	35	4	5	4	DNI	20	52	39	40	6	-
	Sie	*		**	9	*	-		.**		** *					*	1 (r	*	*													Sig	H									+	+					~+									+	_
	R	202	37.2	187.	222.	102.	30.5	105.	715	217	116.	7/0	54.6	82	517	118	135	127	121.	59.6	1.05	8	2000	50.5	222.	93.3	10.4	0.28			arcelona	β	2.1	4.2	1 V	3.5	2.8	3.0	3.7	3.3	4.3	5. I 7	14	0.0	2.8	5.5	1.3	10.4	3.2	3.6	0	β	0.9	10.4	3.7	3.3	2.2	0.50
¢	~	0 133	0.181	0.102	0.094	0.194	0.234	0.147	0.20)	0.173	0.110	0.133	0.128	0 148	0 177	0.153	0.147	0 154	0.140	0.194	0.176	w l	0000	0.094	0.234	801.0	0.026	0.21			B	α	0.062	0.048	2000	0.060	0.085	0.069	0.053	0.072	0.060	0.061	0.040	0.080	0.069	0.074	0.063	0.041	0.064	2/0.0	/cn:n	α	0.032	0.085	0.060	0.062	0.014	0.71
	NNC	185	206	222	211	266	194	183	209	191	223	727	153	188	000	218	217	213	203	225	130	DNN		<u>61</u>	266	707	607	3				DNN	28	30	20	35	46	39	32	40	38	67 20	18	32	37	40	28	34	33	39	f	DNN	8	46	34	34	~	
	Año	1004	1995	1996	1997	1998	1999	2000	1002	2002	2003	2004	2005	2002	2008	2000	2010	2011	2012	2013	2014			WIII.	Max	From.	Dage	Coef R.				Año	1994	1995	1007	1998	1999	2000	2001	2002	2003	2004	2002	2007	2008	2009	2010	2011	2012	2013	2014		Mín.	Max	Prom.	Med.	Desv.	Coef K

Г			Ľ			Π		Τ	*		Т	Г	Т	*	*		ا ٦					П					Π		Γ	Π					Т	Γ		Т	T	Τ	Γ		٦	Γ			Т		Г
	Sig	+	ŀ		-	\square		-	*		+	ŀ	ł	**	*	*	*		+			H	_			Sig		ł	-	H	_	_	L		+	ŀ		+	ł	+	L		4		┞		+		
elha	β								6.0	2.9	2.9	2.8 2.8	44	5.6	4.4	4.7 5.1	4.8	β	2.8	6.0	4.7	Ξ	0.16		elha	β								0	0.0	2.4	2.4	4,4	7.01	10.6	3.5	4.6	17.3	β	1.3	19.7	6.7	5.8 6.3	0.01
Ņ	α		L						0.314	0.280	0.222	0350	0 300	0.289	0.422	0.292	0.401	α	0.222	0.422	0.292	0.062	0.78		Vi	α									100.0	0.063	0.048	0.030	0.021	0.021	0.020	0.031	0.021	α	0.020	0.065	0.035	0.016	0.67
	DNN	1	Γ			Π			128	125	68	137	154	102	173	147	164	DNN	68	173	135	25				DNN		I	Ī	Π			Γ		27	30	27	2 2	11	27	15	25	19	DNN	15	30	52	3 4	<u>,</u>
	Sig.		**		***		***		***	**	***	***	**	***		*	*									Sig.														**									
Buc	β	1	13.8	7.8	9.5	4.2	5.4	4.2	17.9	8.8	8.7	13.0	20.6	12.4	5.6	6.2 14.7	9.8	β	4.2	20.6	8.8	5.1	0.11		ona	β		61.3	97.1	82.4	75.1	85.6	127.5	73.9	70.5	74.0	83.0	120.9	00.0 6.4.5	88.4	158.4	87.4	139.1	β	60.2	158.4	88.3	82.4 78.7	-0.24
Tarrage	a la	t	184	259	124	.118	.142 082	195	660	.129	168	103	146	151	213	123	145	α	082	259	147	.045	.65		Tarrage	α		059	048	049	049	046	031	030	043	052	.038	032	780	068	047	.045	040	α	030	.082	049	013	210
	NN	ł	63 0	88 0	⁺ 22 0	72 0	04	30 0	34 0	0 60	18 0	27 15 0	1 2	49 0	28 0	04 0 29 0	4	NN	72 0	88	23 0	25 0	_			NN		0 68	87 0	80 0	70 0	0 0	57 0	72 0	0 0	27 0	92 0	58 0	80 0	73 0	86	59 0	58 0	NN	57 0	27 0	76 0	7/ 81	,
	ig. D	t											**			*						Η				ig. D	Η	t		Η			H					t	t		ŀ		┥		┢		t		
tosa		+	t					t			0	<u>-</u> زر	; c	9	0;	6 6		~			2 0	0	13		tosa	~		t		Η			H			S	Γ.	• و	ŧ, ₹	t	9.	6:	5	~	-	Ľ.	<u>ور</u> ۲	e e	50
intes-Toi		+	ŀ						H		80	1 1 2		· · · ·	8 10	2 9	2	_	6	6	2 2	5	-0-		tetes-To	_			_	H	_		H			8 35	0 15	9 35	2 2 1 2	2 21	8 32	9 15	33		9 15	35	9 25	22	.0-
Rom	α	4	L								0.13	013	0.15	0.210	0.18	0.17	0.23	a	0.12	0.29	0.13	0.05	0.46		Roqi	α										0.04	0.06(0.02	0.04	0.06	0.04	0.05	0.04	a	0.02	0.06	0.04	0.043	0.79
	NND	4				Ц					66	135	141	142	140	123	148	NND	66	148	135	19				DNN	4			Ц						57	58	4:	5	8 29	50	52	55	DNN	4	62	8 8	75	۱ ۱
	Sig.		* *	* *			*	***	*-	* **	* *	* *		L	* * *	* *										Sig.							*	•		* *		***	* **	***	* *	*	* *		L				
CSeat	β		15.1	18.1	C.CI	6.6	2.1	95.2	115.7	39.9	104.0	133.3	35.7	80.1	195.3	28.5 96.1	24.5	β	2.1	307.0	39.9	78.0	0.26		nesa	β		36.9	59.7	64.8	77.8	75.8	260.6	115.1	515.3	716.7	629.6	550.0	6.107	1232.5	1332.9	577.1	1516.6	β	36.9	1516.6	501.0	212.3	0.75
Mar	a		0.201	0.353	0.237	0.188	0.259	0.139	0.163	0.104	0.098	0.135	0.718	0.193	0.108	0.161 0.123	0.276	α	0.072	0.353	0.183	0.070	0.06		Mar	a		0.058	0.061	0.071	0.048	0.038	0.055	0.054	0.036	0.034	0.050	0.039	0.041	0.029	0.025	0.047	0.042	a	0.025	0.091	0.047	0.04/	-0.53
	DNN	1	184	200	101	115	122	194	194	151	132	176	200	189	179	178	718	DNN	115	225	183	28				DNN		70	71	69	99	63	79	94	C.4	103	100	76	90	86	115	84	110	DNN	63	118	86	54	1
ntago	Sig.	1	L	÷- •		***	***	-	Π		1	*	Ī	L	*	* *	*		1	Ī		Π		ttanus		Sig.	Π	ľ		Π	* *		L		I	ſ		244	**	*	**		*		ŀ		T	Ī	
F16	8	I	11.9	4.1	6.7	6.3	8.4	10.0	15.6	22.0	12.3	151	154	24.1	5.4	14.7 12.1	8.7	β	4.1	24.1	12.1	5.4	0.00	Plc	Ŧ	β		15.0	08.3	42.6	74.1	04.9	11.7	39.2	1.0.1	46.2	27.7	42.8	49.5 00.8	29.8	40.1	36.7	20.0	β	42.8	20.0	30.5	50./ 18.4	0.09
Lleid	α	ł	275	149	247	289	180	263	244	184	205	241	258	200	331	178 409	221	×	178	149	257	075	40		Lleid	α		159	048	038	022	000	046	031 2	014	024	028 1	035	070	022 4	033 5	029 1	030	8	. 14	900	33 2	1 050	40
	NN	╉	74 0.3	83 0.4	54 0.	49 0.1	61 0. 48 0.	56 0.	91 0.	42 0.	56 0.	47 U.	87 0	57 0.	58 0.	29 0. 88 0.	35 0.	NZZ	29 0.	0.0	0.1 0.2 0.2	8	0			NN	$\left \right $	2	3 0.0	7 0.0	0.0		0.0	8	0 0	0.0	88 0.0	5 0.0		8000	6 0.0	3 0.	5	N	3 0.0	0.0	0.0	7 0	0.
	ß. D]		-	*		* 1.	*	*	-	-					*	* *	**	ñ	-				_			ig. Di	Η			ľ				÷.	**	**	**	***	* *	*	<i>w</i> ,	*	**	ĮŪ	4				
	s s	ł	0	- t	0;	2 *	4 v *	*	4	∞	5-		. 9	-	5 *	* *	4		4,	9. 4	9	6	88			s s		8	1.2	4	0.2	0.0	5.9	2.7		5.1 *	* 0.6	* 7	× •	* 2.8	3.2	8.9 *	5.6 *		4	2.6).6	1.0	27
Girona		+	1.9.	10	- 10 10	.4 9.	8 7 8 8		5.9.	5 5.	4 0	8 II	1 2	5 7.	9 6.	10 10 10	6	Å	8 6	0 r	4 6 7.	8	9 0.		Girona	1		130	3 20	57 83	17 290	10 24(14	9 192	9 22(36	0 359	19 57(50 24. 66 16 ⁴	10 IO	7 500	3 46	8 64	4	7 83	3 64	7 300	1 24(5 17'	0 0
	α N	+	5 0.31	0.30	0.26	5 0.22	0.2(8 0.28	3 0.3(0.25	0.3(0.74	0.0	0.2	t 0.30	0.22	1 0.42	Να	0.20	0.42	0.26	0.05	0.7			αN		00	0.0	0.05	0.0	00	0.0	0:0	0.06	0.06	0.00	0.00	20.0	0.0	0.0	3 0.06	0.0	Να	0.02	0.08	0.05	0.0	0.5
	IND	+	166	192	176	125	12(128	178	155	142	13(151	152	164	110	174	IND	110	192	701	22	_			IND	4	52	87	69	93	8 P	65	85	12	136	128	2	10	20	62	103	94	IND	52	136	93	2 2	<u>,</u>
	Sig	-*	*	* *				*	*-	*	*	*	*	ŀ	* *	**	-		4			Ц				Sig	* *	÷ *	*	*	* *		*		*	****	* *	* *		*	*	* *	*		L		4		
laterra	β	17.0	16.9	12.6	12.2	13.5	4.8	15.0	18.2	11.2	9.6	10.9	14.9	13.5	9.5	6.5 7.9	7.3	β	4.8	18.2	11.2	3.7	0.01		llaterra	β	131.0	10/.0	186.0	270.0	193.0	113.0	236.0	157.0	175.0	294.0	182.0	185.0	0.062	346.0	836.0	103.0	322.0	β	103.0	836.0	232.8	155.5	-0.27
Bel	α	0.188	0.232	0.353	0.202	0.177	0.226	0.197	0.220	0.159	0.181	0.737	0 165	0.170	0.291	0.173 0.244	0.252	α	0.159	0.353	0.220	0.059	0.81		Bel	α	0.065	0.061	0.068	0.050	0.065	0000	0.044	0.055	0.048	0.043	0.082	0.073	10.00	0.052	0.026	0.078	0.052	ø	0.026	0.098	0.058	0.016	0.33
	DNN	154	166	201	155	127	155	151	184	150	122	140	136	147	164	114 140		DNN	114	201	154	26				DNN	100	133 76	87	104	86	92 92	93	92	0/ 2/0	105	86	59	88	22	4	72	62	DNN	59	133	s 8	88	1
	Sig.																									Sig.	* *	* **	* *	**	* *	* *	* *	* *	***	* *	*	* *	* * *	* * *	* *	* *	* *						
lona	β	4.9 2 5	0.7	5.0	4.2	4.3	2.3	5.0	4.7	2.8	3.7	2.9	66	7.4	4.7	4.3 8.0	4.0	β	2.3	8.0	4.7	1.5	0.35		lona	β	795.0	656.0 823.0	1019.0	948.0	1120.0	676.0	874.0	497.0	244.0	373.0	226.0	331.0	601.0	645.0	1618.0	948.0	1356.0	β	187.0	1618.0	752.9	387.0	0.13
Barce	α	0.177	0.208	0.357	0.303	0.272	0.301	0.225	0.215	0.245	0.188	0.180	207.0	0.175	0.272	0.206 0.210	0.246	α	0.175	0.357).25	0.052	0.68		Barce	α	0.074	0.101	0.072	0.075	0.061	0.065	0.061	0.058	9.062	0.057	0.101	0.073	960.0	0.00	0.037	0.042	0.040	α	0.037	0.101	0.066	1001	0.14
	NND	86	146 146	175	144	138 (129	129	137	119	100	131	141	131	147	115	<u>5</u>	DNN	98	175	137 (-			DNN	162	202	216	235	226	207	183	185	180	190	159	119	5	182	149	152	140	NNO) 611	235 (179 (32	76
	Año	1994	1996	1997	1999	2000	2001	2003	2004	2005	2006	2008	2000	2010	2011	2012 2013	2014		Mín.	Max	Med.	Desv.	Coef R.			Año	1994	2006 1996	1997	1998	1999	2001	2002	2003	2005	2006	2007	2008	2010	2010	2012	2013	2014		Mín.	Max	Prom.	Med.	Loef R.

ſ	Sia	.a.,				Τ		1	ľ		* * *	***	* * *	*		*	*	*	××	*]			Sig.	i i																			7				Γ			
	R I	2									93.4	37.8	47.2	44.5	44.4	38.5	53.5	39.3	45.5	36.0 27.9		β	979	03.4	46.2	44.4	17.0	0.05	1		ha	8										62	4.0	2.1	3.5	2.3	3.2	2.9	2.6	3.6	3.0	3.0	8	2	6.2	33	3.0	Ξ	0.38
1.214	v Icii	5		H		1	T	Ì	t	ľ	0.143	0.127	0.113	0.155	0.139	0.140	0.159	0.165	0.148	0.130		α	5113	198	0.170	0.143	0.023	0.47			Viell	۳ ۲							1	Ī	İ	145	0.106	0.120	0.115	0.130	0.116	0.163	0.192	0.118	0.144	0.153	a	5 101	001.0	0.137	0.130	0.026	0.52
	NNC			H		+	t	t	t	t	178 (170 (120 (152 (148 (160 (119 (176 (147 (140 (NNC	611	181	151	157	22.					NNC								T	t	12	65 (47	61 (62 (68 (52 (85 (61	72 (82 (NNC		4/ 85	67	65 (0	12	
ľ	Sig			*	*	* ***	* *	***	**	***	***	***	***	* *	*	***	***	**	***	***	1		ŀ	Ī	t		ľ		1			Sig.	0							Ī	İ	ľ	Ī	ſ								1			T	ſ		F	
		2		19.7	10.3	10.6	11.5	0./	12.5	7.3	30.4	14.8	40.9	26.9	12.5	20.3	19.4	13.2	13.7	29.0 19.4		β	73	40.9	17.6	13.7	8.7	0.15	1		ona	8			3.2	1.6	2.8	2.1	1.8	1.8	477	t:7	3.0	5.9	3.3	5.1	1.6	3.1	2.2	1.6	1.5	2.1	8	× -	5.9	2.6	2.4	12	0.21
E		5		0.260	.364	0.326	0.226	180	0.192	0.254	0.190	0.210	0.131	0.178	0.219	0.271	0.207	0.221	0.149	0.126		α	9710	364	1014	207	0.62	0.53			Tarrag	а 1			0.086	0.158	0.123	0.075	0.057	0.054	0.080	100	017	0.064	0.102	0.48	0.135	0.070	0.094	0.077	0.113	0.087	α		1.047	0.87	080	0.030	0.75
	NNU			250 (259 (262 (225 (c 1	205 (211 (249 (207 (234 (217 (187 (182 (236 (212 (183 (185 (DNN	175 (267 (213	011	28	î				DNN			48 (73 (67 (39	30	27	40 77	17	45	53	60 (45 (42 (4	48 (37	48	48 (DNN	Ę	17	46 (45 (12	
ľ	Sia			Π		1	Ī	Ì	ľ		ſ		***	* *	*	**	***	**	* *	* *	1		ŀ	Ī	ľ	I	ľ		1			Sig.	0								Ì	I	Ī	ſ								٦		ľ	T	ſ		Γ	
	R R	2		Ħ		1	T	Ì	t		ſ		23.0	32.7	14.1	17.8	28.6	24.3	20.4	28.4 15.9		β	141	207	22.8	03.0	63	0.24			ortosa	8	_							Ī	I	I	Ī	2.3	3.0	2.5	2.0	3.3	1.9	2.2	1.6	1.9	8		33	2.3	2.2	0.6	0.44
	w	-		Η		┥		t	t		ŀ		131	133	192	226	152	173	162	195 279		α	121	000	177	173	036	44			oquetes-T	- - -									t	t	t	082	086	069	080	063	093	055	660	084	a		ccn	079	082	014	.37
6	NN			Н		┨	+	ł	ŀ		┝		96 0.	97 0.	95 0.	39 0.	27 0.	15 0.	96 0.	86 0. 21 0		NN	86 0	30 0	080	01 0	18				Ř	NN									ł		╞	42 0.	63 0.	42 0.	42 0.	42 0.	48 0.	34	38 0.	43 0.	NN		24 63 0. v.	44 0.	42 0.	8	0
ł	Cia D			* *	**	*	77	**	* *	***	* * *	* * *	-		-	***	C ***	***	***	C ***		D			4 (*)	1 -						Sig. D									t	t	t		-							-		-		F		┢	
	8			2.2	9.3	5.7	0.5	1.0	4.9	6.2	5.3	3.8	4.2 -	7.1 3	7.5	5.0	. 6.6	° 3.8	°. 8.0	0.2		β	<i>c</i>	53		6.5	105	38				8 8			6.	6.		5	9	0	ہ <u>ہ</u>	o –	. 0	0	.6		1.	∞.	e.	œ.	<u>∞</u> .	5	8					5	44
M	INIAILIESA			76 2:	81 19	22	99		33 t	30 3(39 10	24 10	71 5.	51 47)6 I.	53 53	58 46	3. 3.	12 70	54 7(55 4 [°]			с 8	21 10	10	3 2	20	4 0.			Manresa	\vdash			58 2	58 1	22	76 1	4	1	1 10	0 E	- C	33	74 2	46 2	12 2	~ ~	99	-	3	73 2			- 4	202	34 2	5 0	9 0.
	×	5		3 0.23	5 0.35	2 0.29	0.3	0.22	0.2	7 0.2	7 0.13	2 0.22	5 0.13	1 0.15	4 0.2(2 0.16	7 0.16	8 0.2(2 0.1	1015		N a	0	7 0 35	100	0.00	000	0.1				N N			0.06	0.16	0.13	0.0	0.0	0.0	0.0		00	0.0	0.0	0.0	0.1	0 ^{.0}	0.0	0:0 0	0.1	0.00	N		0.16	0.0	0.0	0.0	0.8
sae	NC			* 25.	27	25	212	4 73 F	* 27.	25	* 28'	210	* 23	* 22	61	24	23	23	22	* 22		ND	19	28	230	23	24			aceae	_	DN			38	82	64	32	~	21	20	10	45	64	50	31	90	33	44	<u></u>	55	36	ND		9 Z	49	45	19	
Poace	Sio	-		**		+	+	**	**	-}	**		**	**	*	*	*	*	*	* *					ŀ					olygon		Sie						_			+		+	╞				_	_	_	_	_		ŀ	+	╞	╞	L	
1.14		2		25.1	8.9	24.6	10.1	2.01	20.3	18.3	71.2	18.0	29.4	24.8	10.7	38.0	30.8	9.1	27.9	28.5		β	89	712	22.2	202	14.3	0.36		P	Lleida	8			9.1	1.4	3.5	1.7	2.1	1.4	01	3.0	35	2.6	3.1	3.1	2.6	3.1	2.0	2.9	1.9	1.7	8	<u>۽</u> -	+	2.8	2.6	1.7	0.48
		5		0.361	0.459	0.383	0.435	0.270	0.277	0.367	0.203	0.326	0.214	0.250	0.419	0.245	0.269	0.492	0.252	0.388		α	0.203	0.492	0.335	0.355	0.087	0.11				8			0.069	0.173	0.176	0.159	0.154	0.099	0.148	01710	0.161	0.106	0.162	0.134	0.170	0.141	0.134	0.141	0.205	0.187	α		700.U	0.154	0.159	0.037	0.38
ļ	NNC			241	242	256	254	240	242	242	274	219	224	217	215	230	228	243	221	254 198		DNN	198	274	236	141	8					DNN			91	70	101	69	82	42	70	080	CC	56	85	76	82	73	99	8	2	8	DNN	ç	7	75	76	15	
	Sig	à		**	*	* *	* *	***			***	* *	***	*	*	**	***	**	*	* *					Ļ		L					Sig.																				_				L			
		2		35.2	16.2	18.7	34.3	0.02 20.0	21.3	20.9	63.5	25.4	27.9	24.5	18.5	32.7	34.1	19.4	22.7	43.6		β	16.7	63.5	0.00	0.62	113	0.44			irona	8	-		4.3	2.3	3.6	2.2	5.0	2.0	2.2	35	3.0	2.0	3.0	2.6	1.9	2.4	1.8	2.7	2.1	2.5	8	2	43	2.7	2.5	0.7	0.25
		3		0.279	0.357	0.318	0.206	0.111	0.257	0.300	0.189	0.216	0.182	0.230	0.252	0.186	0.180	0.242	0.202	0.204		α	E	0 357	0.226	0.206	0.057	0.19				8			0.180	0.220	0.142	0.171	0.148	0.105	0.127	0110	0.126	0.171	0.125	0.134	0.138	0.128	0.153	0.080	0.191	0.114	α	0000	0.220	0.143	0.138	0.033	0.85
ł	NNU			230	247	214	229	200	186	178	246	210	206	203	187	212	205	216	159	222 210		DNN	159	747	207	210	23	ì				DNN			67	95	LL	86	62	53	00	8	64	72	82	69	99	67	74	45	82	90	DNN	1	3 6	12	69	4	
	Sig	***	***	**	* *	10 AL	* *	**	**	***	**	***	***	* *	*	**	**	*	*	**					ŀ							Sig.												L											-				
I come		217	17.5	23.8	18.1	12.5	14.8	16.4	21.1	13.9	42.8	13.1	29.0	23.1	13.5	26.9	16.6	11.5	11.5	12.1		β		47.8	18.0	16.6	7.6	0.07			llaterra	8	1.6	1.2	1.9	2.5	3.5	1.4	1.6		17	3.0	2.6	2.7	2.7	1.7	2.5	1.6	1.6	1:9	1.7	1.4	8	2 -	3.5	2.0	1.9	0.6	0.59
è		0.240	0.290	0.238	0.280	0.351	0.226	0.101	0.188	0.256	0.162	0.188	0.114	0.171	0.260	0.164	0.180	0.256	0.201	0.259		α	0 114	0351	0000	0.220	0.054	0.54			Be	a	0,112	0.117	0.119	0.134	0.091	0.103	0.118	0.065	0.062	0.147	0.075	0.084	0.092	0.074	0.090	0.093	0.123	0.074	0.081	0.080	a	0.00	0.147	0.099	0.092	0.025	0.83
ļ	NNC	100	275	217	252	239	199	200	216	217	223	197	193	203	191	191	184	210	178	180 214		DNN	178	275	211	210	25					DNN	54	48	59	77	2	48	57	34	с С	08	49	55	62	37	53	4	54	8	39	36	DNN		t 8	52	23	13	
	Sig	*	***	**		* *	* 7	***	***	*	***	* * *	* * *	*		* *	**	* *	* * *	* * *												Sig.																											
and have	CEIOIIA		11.0	12.5	9.2	10.2	13.2	17.0	17.7	13.6	23.8	14.3	21.2	13.7	6.8	25.7	15.2	13.4	15.2	25.3 17.4		β	89	757	15.4	14.3	5.1	-0.06			celona	8	2.0	0.9	1.7	1.8	2.6	1.5	3.7	1.6	5.5	C.4	4.6	3.3	1.7	1.6	3.0	2.3	1.8	2.1	2.5	1.8	8		4.6	2.4	2.1	1.0	-0.01
C	Dal	0.767	0.250	0.260	0.358	0.306	0.235	0.200	0.263	0.235	0.171	0.143	0.124	0.182	0.265	0.165	0.216	0.196	0.167	0.138		α	0 124	0 358	0.216	0.213	0.059	0.41			Ban	ø	0.097	0.136	0.096	0.140	0.131	0.159	0.097	160.0	5000	0.076	0.054	0.067	0.085	0.089	0.068	0.083	0.121	0.091	0.099	0.091	a		0.159	0.097	0.091	0.026	0.71
	DNN	181	101 263	221	218	234	197	731	223	204	216	194	192	174	174	196	190	197	180	201 193		DNN	174	263	203	107	22					DNN	42	50	51	71	76	67	99	47	40	0 1	43	50	47	44	46	49	55	46	56	46	DNN	ç	74	52	49	10	
	Año	1007	1995	1996	1997	1998	1999	2000	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013 2014			Mín	Max	Drom	Med	Desv	Coef R.				Año	1994	1995	1996	1997	1998	1999	2000	2001	2002	2002	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014			Max	Prom.	Med.	Desv.	Coef R.

ſ	Sio	ò		Π			Γ				Ι			Γ	***	* *		Ι				Ι						Γ	lio	.976.				Ι	I				Τ	Γ				Τ	*		* * *			Τ	Γ		Π	
		┢	t	H		t	t				4.6	ر./ ۹	5		8.7	. 8.6	L.7	4.5	. 8			0.0	7.4	7.7	5.4	29		I			t	\mid		t	t		\square		0.0	2.7	0.0	<u>د.</u>		0.7		4.8	4.3	0		0.U	5.6	3.7	5.2	34
11 . 1 .	v leina		+		_	+	╞					0 10 7	8 6	0 5(8 16	8 31	4 50	9 15	× ×			0 E		4 5	8	0- 0		Vielha						╉	ŀ				0 I	9 8	1 70	8	9 5	5 IS	+ 9 6 1	4	6 20				1 ×	9 6	1 5	3 -0
	~ 7					_	ŀ				0.15	0.01	0.02	0.05	0.02	0.02	0.03	0.01	0.07		8 00	0.01	0.00	0.03	0.03	0.8		I	~	5				4	ŀ				0.11	0.08	0.04	0.09	0.07	0.00	0.05	0.06	0.08	~	8 00	50	0.07	0.07	0.02	0.2
ł	ND					+	L				6	42	56	64	72	59	63	46	54			47	619	59	15				NNC					+	ŀ				106	87	100	104	116	74 86	108	91	94	AND		116 116	86	100	13	
	Sia	-					L				4			L				4				4						I	Sig	.o.		**	*	* *	**		**		***	**	* *	*	***	de de de	***	***	**			_	L			
	agona			5.1	3.5	5.1	7.6	3.7	6.1	4.1	5.3	7.6	7.9	8.6	22.2	32.2	18.0	15.9	20.2	•	d ,	C.C	2772 10.6	7.6	7.8	0.65		aoona	aguia R	2		83.6	80.5	70 5	C.27 101.9	20.3	195.1	6.99	5.5CI 9.09	126.9	219.5	61.2	228.9	122.7	228.7	102.4	178.3	a	900	0.87C	126.6	102.4	61.9	0.02
E	1 111			0.040	0.090	0.097	0.046	0.063	0.061	0.063	0.096	0.060	0.077	0.083	0.096	0.054	0.077	0.072	0.063		8000	0.040	0.072	0.072	0.017	0.66		Tarr	1 411	5		0.130	0.118	0.135	0.064	0.194	0.066	0.082	0.079	0.111	0.083	0.143	0.114	0.000	0.064	0.074	0.115	2	8 200	0.00 1	0.104	0.099	0.033	0.10
	DNN			24	49	51 26	43	45	41	45	65	43 51	52	59	71	66	65	28	60	14141		54	12	52	12				NNC	LING		178	182	214	115	120	116	161	161	197	177	141	136	130	177	132	164	DNIN		214	156	161	28	
	Sia	ò																											Sia											*	***		* -	- +	-		***							
	R R											12.6	6.2	10.0	20.7	12.6	24.9	13.0			P	94.0	24.9 13.3	12.6	6.3	-0.06		Ortoca	R I	4										141.2	159.8	74.6	241.3	/1.0	212.0	147.2	287.9	a	d 2	0.17	172.2	159.8	73.4	0.64
	v l	ŀ		$\left \right $		t	t				+	<i>CL</i> 0	084	660	082	960	052	105	107	ł	a 2000	707	005	960	030	51		metec.		5				t	t				t	062	056	108	076	0110	880	087	960		a 200	900	084	087	021	38
ŕ		╞		$\left \right $	-	+	┝				┥	0	0.1	80	0.0	55 0.0	64	0 0	5 0.	1.00			0 0	10	5 0.	0		R				$\left \right $		╉	ŀ					14 0.	24 0.	40	51 0.	32 0.	000	20 0.	86 0.	un,		14 86 0	39 0.	32 0.	12 0.	0
ł	io			$\left \right $			t				+									2	1							ł	io D			*	* .	*	t		*	*	1	-	1	-	***		*	**	I **			-	-	-		-
				m	5	0 0	6	4	_	∞		0 7			4	5	_		o 0	ł		n -	- ~	,	9	~		I	S			*	5	*		5	* 6.	°	e, c	¹ ∞:	· 6:	~	6. o	ין ה	. 4	: e: *	×.			0 4	. 9.	0.	6	8
	anresa			Ξ	13.	<u>9</u> <u>-</u>	26	20	40	39.	33.	44	19	23.	61.	45.	35.	46	74.		d :		35	35.	18.	0.3		Janresa		4		154	107	156	49.40	29.	207	158	105 05	117	241	50	236	182	321	102	283	ä	9	321	154	156	84.	0.2
Í				0.034	360.0	0.105	0.056	0.060	0.082	0.074	0.071	0.045	0.094	0.077	0.065	0.065	0.077	0.064	0.061		200	0.054	0.071	0.069	0.019	0.43				s		0.071	0.153	0.092	0.125	0.160	0.108	0.103	0.096	0.111	0.059	0.144	0.106	160.0	0.085	0.165	0.138	~	0000	0 165	0.115	0.108	0.031	0.00
s	NNC			31	58	66 56	52	55	67	55	79	80 9	99	60	63	62	60	55	65	14141		10	609	60	6				DNN			185	172	194	171	151	171	146	144	155	134	127	159	120	185	156	190	DNN	NING	194 194	157	156	22	
nIndo	Sio	ò																*	* *								horon	nn Land	Sig	-9-7-		* *	* *	* *	* *		* *	-	* **	*			•	***	*	*								
	R R			29.7	39.4	21.2	42.3	28.2	64.7	63.2	38.6	158.9	30.3	100.8	58.4	99.0	166.1	90.5	42.9 89.4	¢	<i>d</i>	717	1.001	58.4	42.6	-0.29	,	- epi	R	4		115.7	167.7	07.7	85.8	16.7	142.8	105.6	1.9.4 5.6.5	91.9	227.8	29.5	222.8	78.0	7411	75.6	250.9	a	d 1	10.7 250.9	126.7	113.1	69.8	-0.13
-	" TIG			0.064	.098	0.07	0.087	0.074	0.066	0.080	0.087	0.042	0.062	0.035	0.085	0.055	0.039	0.052	060.0	ľ	8	870.0	067	0.067	0.21	0.43		d. I	, TIC	s	Ī	0.110	0.067	0.149	0.102	0.188	0.093	0.083	160.0	0.100	0.061	0.181	0.088	760.0	1095	0.144	.096		8	1001	0.108	0.096	0.37	0.18
	NNC			47	61	00 65	59	67 (52 (58 (85	2 4	57 0	65	68	69	61 (51	09 09	1.01	NINI	95	60	09	6			I	NNC			166	145 (208	109	150 (151 (107	1.03	113	103 (128	126	102	140	134 0	131	MIN		201	137 (134 (29 (
ľ	Sio	0				T	t				1	t		t				1	L			t	t					h	Sig		Ī	* *	* *	* *	***	*	*	* *	***	* *	***	**	***	***	**	***	***		-	t	t	T	Π	
	8			0.4	4.5	9.2	3.1	2.2	9.8	3.4	8.6	8.0	2.0	0.2	1.0	22.9	0.4	6.2	6.6		<i>d</i>	7.6	4.8	7.6	7.1	.24			8	- -		48.0	67.0	90.0	96.0	94.0	39.0	95.0	2/.0	78.0	67.0	73.0	04.0	00.0	81.0	33.0	85.0	9	0 00	0.6/ 81.0	52.1	39.0	84.5	9.25
č				055 2	160	077	032	035 3	076 1	061	114	180	099 2	103	065 7	024 1	094 3	036	- c/n		200	1 4 1 4	1 4 1	070 2	025 2	60 (Giron		5		094 6	124 2	138 2	122 138 3	152 1	092 4	159 3	c 660	140 3	080 4	212 1	096 6	1 6/0	083 7	092 6	138 4			1 610	119 4	122 4	034 1	04
	NN	┢	-	47 0.	0.	69 56 0.	11 0.	49 0.	56 O.	⁴⁹ 0.	36 0.	000	57 0.	77 0.	71 0.	58 0.	58 0.	46 0.0	.0 cc	1.00		-0 -0	0.0	- - - - - - - - - - - - - - - - - - -	4 0.	0		I	NN			22 0.	06 0.	36 0.	/0 16 0.	97 0.	38 0.	74 0.	0 77	20 0.	09 0.	69 0.	01 0.	53 0. 53 0.	-0 -0 -0 -0	88 0.	07 0.	un,		28 70 0	010	06 0.	1 0.0	0
ł	io D	- -	**	**	*	* *		4	-	4	*		**	**		-			*	2		•, •						H	io D	۵ *		**	**	* *		**	-	**		*	** 2	1	*		* *	**	** 2		-		1 6	2	e1	-
		0	iv. 	ώ *	0.0	. 0	3.4	3.4	2.4	3.8		0.4	*	* 9.7	8.7	1.6	3.8	7				0.4	o, c	. 8.	'.3	35				4	. 0.	5.3 *	*	+:2 * = = = =		1.4 *	7.0	* *	+.4 7 2 ~	. 8	.7 *	* 4.7		· * 7.6	0 7	* 1.3	*			4 5	6	14	5	30
	sellaterra	3 70	0 65	1 79	3 170	2 15	8 26	6 23:	0 162	6 193	7 132	3 28	7 80	9 127	1 228	3 394	6 113	6 35 ²	2 24			00 E	7 211	1 192	112	3 -0.		Rellaterrs		5 54	9 57	9 16:	5 16	4 17	4 0 10	0 16	4 127	8 12:	0 124	5 232	7 310	2 10	4 300	0 20.	0 200	5 172	8 234				176	4 164	8 79	5 -0.
ĺ		0.06	0.10	0.08	0.05	0.06	0.03	0.03	0.05	0.04	0.07	0.04	0.10	0.07	0.05	0.03	0.06	0.03	0.05		2007	01.0	0.05	0.05	0.02	0.6				018	0.23	0.10	3 0.16	0.13	0.12	0.10	8 0.12	0.11	0.13	0.07	2 0.07	7 0.18	0.11	0110	013	0.12	5 0.13	~		0.03	0.13	0.12	0.03	0.55
ł	NC	55	96	78	73	S 19	65	<i>LL</i>	69	72	95	20 02	85	8	83	67	84	96 F	c/ 02		INICI	6 30	75	73	10			H	NC	216	221	18	185	212	163	182	168	126	146	153	162	157	154	132	361	141	205	and		n71	172	163	31	
	Sio						L				+			L				_											Sig	20		***	*	***	***	* *	***	***	***	***	***		* +++++++++++++++++++++++++++++++++++++	***	***	*	***			_	Ļ		μ	
	rceiona R	65	14.4	7.1	7.0	1.6	14.5	5.4	16.6	6.2	6.9	11.5	7.5	10.0	12.3	18.9	16.0	20.3	20.0	¢	d	4.0 20.2	11.8	11.9	4.7	0.11		celona	R	25.7	41.6	130.3	140.2	119.2	113.8	113.3	282.2	104.5	C.CUI	146.8	108.0	39.9	224.9	545.4	5 666	192.4	207.6	B	950	27.62	148.2	119.2	85.6	-0.22
¢	0 0	0113	0.061	0.072	0.093	0.076	0.071	0.103	0.082	160.0	0.113	0.081	0.100	0.094	0.094	0.073	0.079	0.070	0.070		8 000	0.061	0.086	0.082	0.015	0.06		Rar	2 Da	0.212	0.188	0.098	0.131	0.134	0.112	0.094	0.079	0.112	0.095	0.085	0.107	0.169	0.106	0.06/	060.0	0.094	0.126	*	8000	100.0	0.116	0.107	0.036	0.42
	NNC	48	75	64	63	63 56	61	67	67	53	80	54 65	63	65	70	99	65	53	71	14141		49	00 44	65	∞				DNN	206	231	191	187	238	230 183	184	162	183	160	197	179	159	184	164	217	170	201	DNIN	DININ	758	191	184	26	
	Año	1994	1995	1996	1997	8661	2000	2001	2002	2003	2004	2005	2007	2008	2009	2010	2011	2012	2013			Min.	Prom	Med.	Desv.	Coef R.			Año	1994	1995	1996	1997	1000	2000	2001	2002	2003	2004	2006	2007	2008	2009	2010	2012	2013	2014			Max Max	Prom.	Med.	Desv.	Coef R.

Capítulo 2

ſ		-in	Т	Π				Т	Г	Т	Г	Т	Г	Т	Г	Т	L	Т	L		*									ſ		50		T	1	r	Τ	Г			Г	Γ	Г				Т		Т	Г	٦				Т	Т	
	ć	<u>10</u>	+	H		+		╉	ł	+				- 10			- - -	2 0	~ 、	. 4	**	_	0	œ.	3	1	∞	9				Si	+	_	┦	ł		ŀ				. 9	6	1	0	_	6	~	0	, v	-		- ~	.5	-	9	0
	Vielha	θ.		H		4		ł			2	35			23	90	178	77	157	47	171	β	19.	171	72.	53.	54.	-0-			Vielha	β	-		+						ð	24.	17.	56.	14.	34.	49.	10.	47.	~; [0]		β	5.	101	33.	24.	-07
		α						1			0.075	0000	0.076	0.070	0.076	0.070	2/0.0	0.061	2000	ccu.u	0.080	α	0.035	0.085	0.067	0.072	0.015	0.29				α						L			0.084	0.053	0.069	0.030	0.069	0.057	0.021	0.064	0.055	0.069	2222	α	0.021	0.084	0.055	0.057	0.39
	TATAC			L		4		4			73	01	0, 89	99	8 2	13	57	509	50	202	68	DNN	57	81	70	70	9					DNN	4		4			L			83	78	72	74	69	97	36	59	24 7	90 69	3	DNN	36	67	2	72	2
	ż	20 20 20						1								ļ																Sig.			***	**	***	÷			**		***	***	*	*	* *		* 1	***	-						
	agona	р		68.7	26.5	12.0	8.5	48.4	413	100	20.1	10.0	25.4	18.0	11.2	70.0	0.90	20.2	201	8.2	48.5	β	6.3	68.7	27.2	20.1	18.4	-0.23			agona	β			43.2	6.60 A A A	6 0 9	91.1	16.1	191.2	01.5	68.2	109.1	217.2	63.0	216.5	157.9	120.3	220.1	165.0	1001	β	16.1	220.1	117.0	102.8	-0.12
	Tarr	ä		0.061	0.087	0.067	0.076	0.014	0.057	0 100	0.073	2000	0.100	0.121	0.074	0.007	0.002	0.046	0.000	0.080	0.078	α	0.014	0.126	0.079	0.080	0.026	0.66			Tarn	a			0.153	0.134	1000	0.064	0.195	0.055	0.072	0.121	0.106	0.074	0.126	0.105	0.079	0.088	0.059	0.067	1010	α	0.055	0.195	0.099	160.0	0.21
	TANK	ININIA		69	79	85	64	36 60	o0 26	70	83	104	175	80	°, C9	70	77	609	00	67	16	DNN	36	125	79	79	20					DNN		į	171	201	163	111	113	103	153	145	181	162	132	129	125	118	154	122		DNN	103	201	145	147	17
	t	51ë.																														Sig.											*	**		* *	*	*-		**]						
	ortosa	μ	T	Π				1	I	I	I	I	47.0	14.5	23.0	10.5	12.8	0.01	7 01	9.8	27.6	β	9.8	47.9	21.4	19.5	11.6	0.00			ortosa	β			1	I	I	L				T	96.9	149.0	67.6	233.6	66.5	208.0	203.5	144.0 271.7		β	66.5	271.7	160.1	149.0	0.75
	oquetes-1	3	t	H				t	t	t	t	t	070	355	200	70	940	010		211	112	ø	049	112	277	076	025	45			oquetes-T	8	+		t	t	t	t					J66	055	98	072	108	964	082	280		α	055	108	080	082	29
	N R		ł	Н		+		╢	ł	ł		+	00	200	00 70				- 4	5 00	0.0	Z	1 0.0	5 0.1	5 0.0	1 0.(1 0.0	0.			Rc	Ŋ	+		╉	ł	+	ŀ					0.0	13 0.(25 0.(15 0.(21 0.1	24 0.0	45 0 0 0		; - 2	NN	0.0	30 0.1	30 0.0	24 0.(50 7
	2		┢	Н		+		ł					F					***		20	*	Ĩ	9	9	7	7	-			ł		ig. DN	+		╢	*		ŀ					=	* 1.	1	×* 17	*	1	* 1	* *		ĮQ	-	<u> </u>	-		4
	č	2	+	6	2		_											*		+ 10	S.	_	_	6	-+	_		4				Si	+	-		*	4 -	-	_	5	• • ×		~	1 *	-	4	~	*	6	4	-		_	6	9	∞,	
	anresa	θ		118.	51.	13.	22.	34.	- F0	18	37.	10.	47.0	. 76	17	- 17	22.	64	-t c	30.	105.	β	10.0	118.	46.4	43.4	28.4	-0.0			anresa	β	4		61	00. 167	43.4	42.5	23.	188.	121.	64.	114.	250.	54.	225.	184.	223.	306.	98. 273	5 4	β	23.4	306.	141.	127.	-0.0
ő	2	8		0.047	0.090	0.112	0.087	0.031	0.083	0000	0.101	0.050	0000	0.064	0.102	0.000	0.114	0.106	0010	0.076	0.082	α	0.031	0.142	0.086	0.089	0.026	0.54		ø	N	α			0.088	0.077	0.122	0.119	0.140	0.090	0.086	0.118	0.077	0.051	0.101	0.087	0.076	0.077	0.078	0.138	111	α	0.051	0.140	0.098	0.090	0.26 0.26
cifolio	10.02			65	84	89	73	40 5	00 82	76	2 8	72	7/	87	86	60	10	10	5	84	92	DNN	45	111	83	85	4			nitolic		DNN			178	185	166	127	138	145	127	155	137	117	110	139	86	117	165	170	2	NND	98	185	143	139	4
s cadu	ć	5.B.																												peren		Sig.			* *	* * *		* *		·	* *					*	* *		* -	(*							
Duercu	ida "	μ		46.8	42.5	20.2	21.0	29.5	37.8	176	213	14.8	37.5	141	9.6	31.0	25.1	25.0	200	12.5	26.1	β	4.3	46.8	25.7	25.9	12.1	0.11		nercus	ida	β			79.3	0101	71.0	71.7	14.9	117.1	04.5 141 8	49.9	71.2	223.4	27.0	206.9	128.3	66.2	227.2	74.2	11127	β	14.9	241.7	112.7	94.5	-0.14 -0.14
	Lle	8	Ī	0.085	0.082	0.170	0.079	0.091	0.081	0.007	0.084	0.102	0.067	0.083	0112	0.070	0.072	0.065	0.050	0 099	0.102	α	0.058	0.170	0.092	0.084	0.027	0.49	Ì		Lle	α	1		0.111	0.133	0.063	0.085	0.170	0.087	0.0.0	0.145	0.094	0.057	0.158	0.083	0.080	0.073	0.090	0.130	1 10010	α	0.057	0.170	0.099	0.089	0.15
	TATA C	NINI	T	108	89	146	108	95 I (19	-00 79	57	58	73	2 89	8 9	8 8	8	73	2 02	00	8 8	58	DNN	57	146	84	83	22					DNN	1		154	+61	143	167	135	133	101	68	109	92	109	117	82	107	120	128		DNN	82	188	124	125	17
	ż	olë.		*	**		de de de	**	**	***	**		*	*	**	***	I	**	I	***	***									I		Sig.			***	***	***	**	*	10 AL 10	***	**	***	***	÷	* *	**	**	* *	* *	1					T	
	na	μ		203.5	110.7	78.3	100.2	166.2	40.7	116.0	C-011	100 3	151 7	69.4	169.2	185.8	357 1	100 0	164.2	107.4	271.9	β	46.9	357.1	157.5	164.3	75.1	-0.29			na	β			500.0	224.0	0.72.0	317.0	174.0	373.0 375.0	349.0	209.0	283.0	427.0	115.0	475.0	659.0	492.0	688.0	581.0 417.0	- ~	β	115.0	688.0	374.2	365.0	-0.29
	Gio	β	T	0.112	0.118	0.155	0.143	0.154	0.084	141	1003	101	101.0	000	101	1171.0	001.0	001	1000	120	0.093	α	0.067	0.180	0.114	0.112	0.028	0.48			Giro	α	1		0.077	0110	8000	0.102	0.120	120.0	0.089	0099	0.118	0.072	0.142	0.081	0.056	0.080	0.074	0.078	- nn17	α	0.056	0.142	0.094	089	0.16
	10100		t	124	118	173	178	141	85	3	144	145	166	135	126	071	101	106	001	110	120	NNC	85 (178 (130 (124 (24 (NNO	1		219	211	253 1	195	179 0	120	205	198	193 0	185 0	152	183	163	130	169	1/1		NNC	120 (253 (183 (185 (50
		olg.	T	Π	*	T		***		Ì	T	+		Ī	t	***	***	**	ľ	*	***									Ì		Sig.	1	-	***	***	***	**	*	××	**		***	**	*-	*	*	***	**	**	1	Ē			1	T	
	rra •	4	50.3 50.3	23.9	18.7	55.5 	0.76	50.1 en e	ou.o 375	57.0	10.6	55.0	20.2	15.7	12.8	0.4	70.7	20.0	2.22	5.03 20.3	91.7	β	3.9	30.0	3.0	34.5	52.4	0.06			rra	β	31.1	45.2	71.0	24. / 82 4	40.2	11.7	76.8	18.7	10.0	70.6	34.1	40.5	01.8	88.2	68.9	52.0	82.6	78.1	1.07	β	81.1	40.5	67.5	54.7	0.39
	Bellate	α	600	088	076 1	063	090	054	129	980	120	170	140	0.0	1 050		076	0.64		083	108	ø	041	129 2	078	076 8	124	28 (Bellate	α	174	193	093	114		060	114	1 160	008	960	046 2	059 3	127 1	086 2	071	082 2	085	1880		а в	046	193 3	100	093 1	133 c
			07 U	36 0.	36 0.	.0 88	<u>72</u> 0.	000					00	04				20		12 0.	01 0.	- N	0.0	12 0.	10.0	2 0.0	9.0	0.				NN	06 0.	0 0.	71 0.	04 0		55 0.	74 0.	49 0.	12 U.	26 0.	37 0.	28 0.	48 0.	37 0.	0	19 0.	0.0	2/ 0.	; 	NN	0.0	11 0.	56 0.	49 0.0	4 5 0
	2					~		~ -					-								*	D	~	-	5	5	-	-		ł		ig. D	61	2	* *	**	** 1 C	1 *	1 **	1	* *	-	**	** 1	-	*	**	**	***	* *		D	-	5	-	-	•
		<u> </u>	0 0	_	7		-	x 5	+ r	: 0		n 0		, «				, c	4 0	6	*		~	L.	_	3	0	~				S		9	* *	د م	*	> %	7 *	0.0	, ,	0	*	.2 *	0		*	*	× •	ين « * *	-		_	L.	9	9.0	~ ~ ~
	arcelona	d .	12.	1	5 36.	15.	26.	x F	101	00	35	10	40	11	15	10	46	DF I		10	65.	β	8.8	101.	37.	35.	24.	0.2			arcelona	β	1 23.	40	136	11	00	116	60.	206	182	45.	105	0 105	41.	3 201	315	184	277	190		β	23.	313.	130.		-0.2
	-	8 0	0.143	0.074	0.105	0.08	0.071	01.0	0.060	0.116	0.075	0.05	0.070	0.01	3110	0.086	00.0	0.00	0000	0.078	0.096	α	0.052	0.143	0.092	0.088	0.026	0.05			E	α	0.174	0.145	0.080	0.10	0121	0.101	0.115	20.0	0.000	0.133	0.082	0.089	0.118	360:0	0.06	0.07	80.0	0.08.	~~~~	α	0.061	0.174	0.104	0.100	0.58
			115	8	85	87	83	2 G	102	103	65	116	123	108	101	51	90	20	211	50	97	DNN	83	123	66	97	12					DNN	195	215	172	202	077	174	181	129	142	164	175	157	136	169	<u>4</u>	146	190	179		DNN	129	249	174	173	2
	4 2 4	DIRA	1995	1996	1997	1998	1999	2000	2002	2003	2004	2006	2005	2002	2008	0007	2010	20102	1107	2013	2014		Mín.	Max	Prom.	Med.	Desv.	Coef R.				Año	1994	1995	1996	1997	1000	2000	2001	2002	2002	2005	2006	2007	2008	2009	2010	2011	2012	2015 2014	1177		Mín.	Max	Prom.	Med.	Lesv. Coef R.

Capítulo 2

	Sig.	2																												0:0	Sig.]						Ι
ha	8										10.3	11.3	7.6	88	0.0	63	787	77	18.2	10.6	β	6.3	28.7	11.7	10.3	6.4	0.29		ha		β										2.4	1.4	=	1.2	7. S	ζ.ζ.	× 1	1.0 7 7	0 0) - C	7.7	β	1.1	3.3	2.0	0.2	0.87
Vial	α [ľ	Ī	Π			ľ				0.116	0.040	0.070	2/0.0	0.070	0.095	0.040	0.066	0.059	0.071	α	0.040	0.116	0.072	0.071	0.021	0.39		Vial		α	1	I	I	ľ	I	t				0.047	0.021	0.031	0.047	0.045	0.060	00.0	0.042	0.046	0.045	C#0'0	α	0.031	0.060	0.045	0.040	0.87
	DNN	ſ					t					45	47	53	60	41	58	45	61	50	DNN	41	77	54	53	10				DAINT	DNN	t	ľ	Ì	ľ	Ī	t				23	6	2	20	21	30	2 0	14	30	22	C7	DNN	10	36	21	17	
	Sig.																													0: °	Sig.																										
gona	B			2.7	5.5	1.1	1.6	1.8	2.2	1.5	2.1	1.1	8.1	1.7	1.0	25	5.2	2.6	5.6	2.7	β	1.1	6.2	2.7	2.2	1.5	0.42		0000	guia	μ		8.4	77.0	4.4	42.8	17.5	7.9	1.11	3.8	5.5	10.6	37.1	14.3	5.9 1 01	19.4	21.0	21.2	101	1.21	7.4	β	3.8	42.8	15.7	1.2.1	0.46
Tarm	a			0.046	0.048	0.063	0:030	0.028	0.048	0.042	0.055	0.060	0.061	0.063	0.002	0.064	0.054	0.048	0.028	0.052	α	0.028	0.092	0.052	0.052	0.017	0.60		Tarm		a		0.038	0000	0.047	0.043	0.029	0.041	0.061	0.044	0.097	0.088	0.046	0.045	0.083	0.069	0.042	0.010	0.072	210.0	/00/0	α	0.029	0.097	0.056	0.046	150
	DNN			28	41	34 25	15	13	28	20	27	24	31	6 1	36	31	34	90	25	31	DNN	13	43	29	30	∞				TANT	DNN		ų	P 5	32	9	46	39	40	30	56	58	53	47	99	49	70	60 26	202	6	2	DNN	30	65	49	10	2
	Sig.																	L													Ng.																		ļ								1
e-Tortoea	8	-											1.6 2.6	2.5	3.7	9.7	0.0	40	1.8	9.9	β	1.6	9.6	3.9	2.6	2.7	0.38		e Tortoeo	0 1 0 1 0 2 0 1 0 2 0 0 0 0 0 0 0 0 0 0	β												1.5	1.5	5. I	1.0	7.7	3.1	00	000	7.0	β	0.9	3.1	8. I.	0.7	0.47
Romete	a												0.042	0.034	550.0	720.0	0.084	0.044	0.049	0.024	α	0.024	0.084	0.044	0.042	0.018	0.5I		Domate	- volucio	a												0.062	0.040	0.059	0.0/1	0.061	0.040	0.054	10.067	/00/0	a	0.040	0.071	0.057	0.061	0.67
	DNN											-	8 6	3 [34	+6 80	30	24	21	32	DNN	8	39	27	24	2				DAIAT	DNN												26	20	58	92 5	15	3 8	Q E	33	66	DNN	17	33	26	5	,
	Sig.																													0:2	Sig.														*												
Ireca	B			1.0	3.7	3.7	5.9	5.3	15.1	35.0	12.6	5.9	9.0 2 2	2.6	4 C	14.0	13.0	114	3.5	4.4	β	1.0	35.0	8.2	5.3	7.9	0.32		Map 0	ncsa	β		15	7.3	6.3	11.6	5.3	3.1	4.9	15.2	47.3	19.4	11.3	34.4	35.9	20.1	12.0	C//	0.02	177	1//	β	1.5	77.5	23.9	2.CI 7.77	0.47
Mar	a			0.040	0.116	0.090	0.032	0.047	0.041	0.014	0.057	0.073	0.062	0.056	0.106	0.034	0.043	0.042	0.095	0.072	α	0.014	0.116	0.060	0.056	0.027	0.37		Mar		a		0.060	0.066	0.041	0.044	0.068	0.085	0.068	0.051	0.041	0.066	0.065	0.023	0.049	0.000	/ 50.0	0.024	0000	0.081	100:0	a	0.023	0.085	0.053	1 CU:0	0.05
	DNN			15	61	56 48	29	32	61	49	2	51	60	ŧ 72	5	7C	57	46	50	48	DNN	15	71	47	49	14				DAINT	DNN		74	47 CV	34	45	42	4	40	53	69	60	47	41	41	10	00	46	40	105	60	DNN	24	69	47	10	2
	Sig.																											Sum1		C:	Sig.																										
ida	B			7.9	8.8	4.9	8.8	2.8	25.9	8.9	8.9	19.6	5.8 5.7	3.8	41	5.7	116	59	4.0	11.2	β	2.8	25.9	8.6	7.9	5.6	-0.03		ida	ua o	β		0	60	1.6	4.2	6.0	2.5	2.0	2.7	2.0	4.0	2.1	5.5	8.4	5.0	ς Γ	0.1	100	5.7	7:0	β	1.6	10.9	4.3	4.2	0.42
ol I	a 1	ſ		0.059	0.081	0.035	0.070	0.076	0.023	0.055	0.066	0.029	0.064	0.080	0.000	0.071	0.058	0.072	0.113	0.075	α	0.023	0.113	0.065	0.070	0.021	0.49		ol 1		a	1	0.025	0.064	0.027	0.052	0.037	0.062	0.060	0.073	0.058	0.069	0.064	0.034	1.000	10.0	0.049	0.048	0.040	0.060	700.0	a	0.027	0.073	0.052	0.013	120
	DNN			35	61	30 41	65	4	48	48	65	51	53 10	40	54	t, 65	212	95	67	52	DNN	35	65	52	52	×				DATAT	DNN	1	2	35	13	27	25	34	27	36	32	37	26	23	15	17.	e 9	90 8	36	9 9	76	DNN	13	37	29	51	,
	Sig.																													C: ~	Sig.																										
rona	B			6.4	10.5	33	4.4	5.3	7.9	11.2	8.7	30.5	28.5	1.61	28.4	24.1	14.0	29.8	10.2	52.6	β	3.3	52.6	16.5	11.2	12.8	0.25		-ono	01181	β		3 6	0.0	1.8	10.1	4.8	2.1	2.9	2.2	5.7	4.9	7.4	3.9	8.0	4.0	C.01	0,4 0,0	12	0.0	Ċ,Y	β	1.8	10.5	5.7	4.4 2.8	040
3	e a			0.043	0.072	0.064	0.071	0.071	0.058	0.042	0.089	0.022	0.034	0.055	0.047	0.035	0.064	0.020	0.078	0.026	α	0.020	0.089	0.054	0.058	0.020	0.28		ë	5	α		0.076	0.065	0.029	0.061	0.030	0.046	0.057	0.065	0.073	0.040	0.056	0.058	/80.0	0.105	0.041	0.056	0.075	0.056	000.0	α	0.029	0.103	0.060	8cU.U 0.010	0.82
	DNN			34	74	35	51	49	46	48	75	62	99	07 24	50	51	55	26 26	59	67	DNN	26	75	54	55	13				TAIAT	DNN		30	67	12	48	20	22	29	33	45	27	39	33	4 2 2	90	67	66 76	14	787	40	DNN	12	54	36	cc	:
	Sig.																													0:2	Sig.																										
llaterra	8	15.0	5.5	9.1	4.8	3.7	13.4	3.9	2.9	3.1	4.6	7.4	6.3	5.3	609	3.5	5.5	39	5.7	2.4	β	2.4	23.8	6.8	5.3	5.1	0.15		Interro		β	3.8	9.4 7 C	40	2.7	14.0	14.1	5.6	6.3	5.8	14.0	9.8	36.8	17.7	13.9 6.7	8.7	20.4	10.1	57	1.0	·•	β	2.7	36.8	5.11 2.1	×.×	0.18
Ro	a	0.027	0.081	0.022	0.080	0.074	0.024	090.0	0.069	0.057	0.073	0.038	0.051	0.050	0.054	+0.056	0.046	0.058	0.046	0.089	α	0.022	0.089	0.055	0.056	0.019	0.50		Ba		α	0.083	0.000	0.060	0.075	0.088	0.048	0.087	0.086	0.086	0.085	0.103	0.033	0.044	0.107	0.086	0.04/	0000	0.004	10.084	+00.U	α	0.033	0.107	0.075	0.021	0.47
	DNN	95	54	22	58	51	34	40	42	36	59	35	22	41	46	96	8 8	8 %	33	4	DNN	22	59	43	42	2				NING.	DNN	43	‡	46	43	60	45	55	50	59	64	61	55	45	99	<u></u> с	4 4 8	66	205	24	8	DNN	43	99	52	<u>с</u> ×	
	Sig.			H			-						+							L										010	Sig	+					-										+								+	-	
realona	B	с ч	16	1.7	2.5	2 8 8 8	2.7	1.7	5.2	2.0		1.4	2.3	0.0	00	4.4	5.6	2.5	5.0	2.7	β	1.4	5.2	2.6	2.5	1.0	0.14		recol On a		β	3.1	91	4.7	2.7	6.0	6.4	3.0	8.5	4.0	3.5	8.3	4.0	3.9	3.9	4.5	0.0	7.0	0.1		1.6	β	1.6	8.5	4.6	4.0	0.22
Ro	a	0.068	0.074	0.036	0.083	0.082	0.060	0.038	0.047	0.040	0.044	0.062	0.061	0000	0.045	0.037	0.043	0.037	0.042	0.056	α	0.027	0.095	0.055	0.056	0.018	0.87		Ba		ø	0.129	001.0	0.000	0.063	0.099	0.106	0.106	0.066	0.053	0.100	0.054	0.080	0.064	0.092	180.0	800.0	0.064	0.078	0.000	760'0	α	0.053	0.129	0.080	0.021	290
	DNN	36	36	19	45	35	38	18	35	21	54	28	36	2c 18	48	21	31	5	37	36	DNN	8	48	31	35	6				DAIN	DNN	54	70 70	44	32	12	19	55	53	37	55	54	4	37	28	49	40	28 10 10	44	40	1	DNN	32	12	49	10	
	Año	1004	1995	1996	1997	1998	2000	2001	2002	2003	2004	2005	2006	2008	2000	2010	1100	2012	2013	2014		Mín.	Max	Prom.	Med.	Desv.	Coef R.			Año	Ano	1994	1006	1007	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2002	2010	2012	2012	2014	+102		Mín.	Max	Prom	Desv	Coef R.

		Sig.											* * *	* * *	+	**	* *	***	* * *	**	*	*	* * *							
	lha	β											34.6	35.0	12.3	30.0	40.9	22.3	35.1	43.8	20.2	44.3	38.2	β	12.3	44.3	32.4	35.0	10.3	000
	Vie	α											0.246	0.223	0.209	0.163	0.170	0.263	0.191	0.228	0.264	0.172	0.224	α	0.163	0.264	0.214	0.223	0.036	0 - 0
		DNN											139	170	120	127	142	168	94	183	175	162	172	DNN	94	183	150	162	28	
		Sig.			**	*	**	***	**	**	*	***	***	***	*	***	***	***	*	***		***	*							
	agona	β			28.6	27.2	27.5	20.9	13.2	10.8	13.3	10.9	26.5	17.3	12.1	18.7	16.3	36.7	5.7	16.1	7.3	13.1	14.1	β	7.3	36.7	17.9	16.1	7.9	0 0 0
	Tarn	α			0.772	0.659	0.545	0.481	0.402	0.466	0.474	0.475	0.431	0.437	0.640	0.363	0.532	0.391	0.709	0.534	0.699	0.544	0.505	α	0.363	0.772	0.529	0.505	0.116	0 0
		DNN			321	346	347	335	280	286	292	312	318	281	310	300	329	231	317	321	303	305	297	DNN	231	347	307	310	27	
		Sig.													***	**	* *	***	***	**	**	***	***							
	s-Tortosa	β													11.2	28.0	24.4	34.8	21.6	25.1	24.3	27.1	24.9	β	11.2	34.8	24.6	24.9	6.2	000
	Roquete	a													0.494	0.290	0.422	0.418	0.489	0.464	0.409	0.409	0.494	a	0.290	0.494	0.432	0.422	0.065	
		DNN													294	298	322	333	327	333	314	264	310	DNN	264	333	311	314	22	
		Sig.			÷	*	**	**		*	* *	**		**	* **	**	* *	*			*	**								
	esa	β			25.3	49.5	28.2	10.4	7.9	11.1	14.9	23.0	27.2	14.2	12.7	10.2	12.3	16.2	9.4	14.1	11.1	19.9	9.0	β	7.9	49.5	17.2	14.1	10.1	
	Mani	α			0.746	0.603	0.469	0.619	0.571	0.521	0.744	0.481	0.419	0.433	0.341	0.393	0.314	0.454	0.466	0.446	0.483	0.456	0.780	α	0.314	0.780	0.513	0.469	0.133	0.00
		DNN			302	327	318	275	285	285	312	316	295	257	262	264	244	286	262	277	283	282	307	DNN	244	327	286	285	23	
icaceae		Sig.					* *		+				*			*	*	***	*-		*	+								
Urt	la	β			6.8	7.1	7.5	5.1	3.9	3.4	3.3	6.3	10.7	15.6	4.2	6.7	13.3	13.6	6.0	6.6	6.6	13.8	9.4	β	3.3	15.6	7.9	6.7	3.8	
	Lleic	a			.668	.460	.549	.414	.508	.467	.572	.490	.338	.261	(477	.343	.284	.412	.461	.390	.373	.362	.520	α	.261	.668	.439	.460	.102	
		NNC	╞		240 (224 (244 (216 (223 (202 (213 (227 (239 (188 (219 (202 (221 (266 (229 (222 (214 (234 (198 (NNC	188 0	266 0	222 0	222 0	18 0	
		Sig. 1			*	**			***	**			***			*	*					**	* *							
	na	β			32.8	25.9	27.9	29.3	19.4	15.7	14.0	20.3	34.9	11.5	5.4	7.3	12.3	13.0	8.8	10.6	11.8	20.0	9.0	β	5.4	34.9	17.4	14.0	9.0	
	Giro	α			0.678	0.835	0.581	0.536	0.480	0.396	0.528	0.425	0.344	0.422	0.628	0.560	0.463	0.503	0.473	0.542	0.380	0.402	0.733	α	0.344	0.835	0.522	0.503	0.128	0 = 0
		DNN			288	317	288	308	261	262	259	224	276	245	247	262	253	279	260	270	204	280	287	DNN	204	317	267	262	27	
		Sig.	*	*-	*	***	*	***	+	***	*	**			***		*	***	*		*		*							
	terra	β	14.5	10.6	15.1	22.4	11.8	12.1	11.8	9.1	10.6	14.3	14.1	9.3	8.5	10.9	13.8	15.3	11.1	13.8	8.3	13.3	12.2	β	8.3	22.4	12.5	12.1	3.1	
	Bella	α	0.632	0.700	0.550	0.595	0.602	0.491	0.409	0.404	0.429	0.354	0.417	0.405	0.354	0.338	0.415	0.415	0.381	0.490	0.470	0.378	0.465	α	0.338	0.700	0.462	0.417	0.100	000
		DNN	320	310	304	309	319	259	265	273	276	259	258	242	230	233	286	278	245	273	264	244	288	DNN	230	320	273	273	28	
		Sig.	***	* * *	* *	* *	* *	***	**	***	* *	*	**	***	* * *		*	**	*	**	* *	***	***							
	elona	β	22.3	16.5	23.8	36.6	20.3	18.1	12.7	14.1	19.0	14.8	12.7	9.8	5.8	6.2	8.5	16.4	16.2	15.6	13.9	22.5	11.2	β	5.8	36.6	16.0	15.6	6.9	0.00
	Barce	α	0.596	0.601	0.599	0.520	0.548	0.440	0.572	0.382	0.460	0.450	0.474	0.487	0.496	0.532	0.472	0.483	0.385	0.495	0.374	0.350	0.498	α	0.350	0.601	0.486	0.487	0.074	
		DNN	298	344	341	322	337	310	315	303	316	298	297	296	287	264	290	302	272	302	279	298	315	DNN	264	344	304	302	21	f
		Año	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014		Mín.	Max	Prom.	Med.	Desv.	4 4 4
			1		Ĺ																									Í