
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús
establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184

ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso
establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/

WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set
by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en

Escola d’Enginyeria
Departament d’Arquitectura de

Computadors i Sistemes Operatius

A Grid-Hypergraph Load Balancing
Approach for Agent Based Applications in

HPC Systems

Thesis submitted by Claudio Daniel
Márquez Pérez in fullfillment of the
requeriments for the degree of Doc-
tor per la Universitat Autònoma de
Barcelona, Ph.D. in High Performance
Computing. This work has been devel-
oped in the Computer Architecture and
Operating System Department of the
Autonomous University of Barcelona
under the advise of Dr. Eduardo César
Galobardes and Dr. Joan Sorribes
Gomis.

Bellaterra, June 13, 2017

A Grid-Hypergraph Load Balancing
Approach for Agent Based Applications in
HPC Systems

Thesis submitted by Claudio Daniel Márquez Pérez in fullfillment of the
requeriments for the degree of Doctor per la Universitat Autònoma de
Barcelona, Ph.D. in High Performance Computing. This work has been
developed in the Computer Architecture and Operating System Department of
the Autonomous University of Barcelona under the advise of Dr. Eduardo César
Galobardes and Dr. Joan Sorribes Gomis.

Bellaterra, June 13, 2017

Author

Claudio Daniel Márquez Pérez

Thesis Advisors

Dr. Eduardo César Galobardes Dr. Joan Sorribes Gomis

Acknowledgements
In many more ways this Ph.D. thesis reflects the support and caring of the

countless people who influenced my life and this work.
I would like to express sincere thanks to my advisors Dr. Eduardo César

Galobardes and Dr. Joan Sorribes Gomis for their support during the undertaking
of this research. The completion of this dissertation would not have been
possible without their encouragement, advises, patience, healthy discussions and
committed guidance. Furthermore, I would like to extend my gratitude to Prof.
Dr. Jochen Prehn of Department of Physiology and Medical Physics for his
hospitality, and participation along my research stay at Royal College of Surgeons
in Ireland (RCSI).

I would like to thank all the people and my fellows at the Computer
Applications in Science & Engineering Department (CASE) at the Barcelona
Supercomputing Center-Centro Nacional de Supercomputación (BSC-CNS) for
their encouragement and support, specially to Dr. Mauricio Hanzich, Dr. Josep
de la Puente, Dr. Arnau Folch and Dr. José María Cela.

I also want to thank all the members and staff at the Computer Architectures
and Operating Systems Department (CAOS) at the Universitat Autònoma de
Barcelona (UAB), especially to Anna Sikora, Tomàs Margalef, Anna Cortés,
Remo Suppi, Porfidio Hernández, Dolores Rexachs, Emilio Luque, César Allande,
Claudia Rosas, Hugo Meyer, Arindam Choudhury, Javier Panadero, Albert
Gutierrez, Roberto Solar, Alejandro Chacón, Javier Navarro and Daniel Ruiz.

I want to thank my parents and brothers for their love and support. My
parents, Juan Carlos Márquez Mondaca and Catalina Isabel Pérez Olivares, raised
me to believe that I could achieve anything that I set my mind to and without
their continuous support and encouragement I never would have been able to
achieve my goals.

A special thank you to my fiancée, Laia Parra Reguill. Words cannot describe
how blessed I am to have her in my life. She has selflessly given more to me than
I ever could have asked for. I love you, and look forward to our lifelong journey.

Finally and foremost, thanks goes to Jesus Christ, my God, for the many
blessings undeservedly bestowed upon me.

”The Lord is my strength and my shield; my heart trusted in Him, and I was
helped; therefore my heart rejoices, and with my song I will thank Him.”

Psalm 28:7
”For I know the plans that I have for you, says the Lord, plans for peace and

not for evil, to give you a future and a hope.”
Jeremiah 29:11

Abstract

With the emergence of agent-based modelling and simulation (ABMS) plat-
forms intended for High Performance Computing (HPC) environments, nowadays,
real systems can be more accurately modelled, analysed and simulated through
including larger number of more complex agents. This leads to very complex
models, resulting in a high computational burden with very high computational
requirements. In this sense, simulating a complex agent-based (AB) system for
realistic cases is only feasible in a reasonable time if the simulation is executed
in parallel on a HPC environment. Due to its scalability and simplicity, single
program multiple data (SPMD) is the dominant application structure and consists
of executing the same program in all processing elements (PEs), but on a
different subset of the domain. However, in complex and large AB simulations,
improper data partition policies and dynamic characteristics related to the
creation and elimination of agents introduce uneven computing requirements and
communication overhead that delays the simulation and may propagate across
all PEs. At this point, an efficient dynamic solution to readjust the workload is
incredibly beneficial.

This thesis proposes a methodology that enables dynamic performance
enhancements for SPMD ABMS applications and spatially-explicit AB models.
The methodology introduces a tuning strategy to reduce workload imbalance
problems as the simulation proceeds. This solution dynamically minimises the
gaps of the computing and communication workloads between PEs. As a result,
the HPC ABMS platforms will be able to process a large number of agents with
complex rules as fast and efficiently as possible. The strategy adjusts the global
simulation workload migrating groups of agents among PEs according to their
computational workload and their interconnectivity modelling the system as a
hypergraph. A hypergraph is a graph generalisation that, in this case, allows more
accurately modelling groups of agents’ interactions. This hypergraph is lastly
partitioned using a parallel partitioning algorithm to decide a proper workload
distribution.

We have evaluated our strategy using a real HPC ABMS platform, so-called
Flame, simulating three real AB models Susceptible-Infected-Remove (SIR),
Colorectal Tumour Growth (CTG) and Keratinocyte Colony Formation (KCF).
Evaluating different aspects of our methodology, as well as an integral whole, we
have obtained significant performance gains and hence an important reduction of
the total execution times.

Keywords: Load Balancing, Dynamic Performance Analysis and Tuning,
Agent-based Simulation, Graph & Hypergraph Partitioning.

Resum

Amb l’aparició de plataformes ABMS (Agent-Based Modeling and Simulation)
per entorns HPC (High Performance Computing) els sistemes reals poden ser
modelats, analitzats i simulats de formes precises incloent una gran quantitat
d’agents fins i tot més complexos. Aquests models complexos generen una alta
càrrega computacional i alts requisits de computació. En aquest sentit, si es volen
simular aquests casos en un temps raonable, només serà possible executant-ho
en paral·lel i en entorns HPC. Degut a l’escalabilitat i simplicitat, l’estructura
d’aplicació SPMD (Single Program Multiple Data) és la més utilitzada, la qual
consisteix en executar el mateix programa en diferents PEs (processing elements),
però sobre un diferent subconjunt del domini. No obstant això, en simulacions
de grans dimensions i complexes apareixen requeriments de còmput irregulars i
sobrecàrrega de comunicació, degut a polítiques inapropiades de particionament
de dades i característiques dinàmiques de creació i eliminació d’agents, la qual
cosa es propaga per tots els PEs i endarrereix tota la simulació. Per la qual cosa,
és altament beneficiós tenir una solució dinàmica i eficient per reajustar la càrrega
de treball.

Aquesta tesi proposa una metodologia que permet millores dinàmiques en
el rendiment de les aplicacions ABMS SPMD per models basats en agents
espacialment explícits. La metodologia presenta una estratègia de sintonització
per reduir problemes de desbalanç de càrrega durant l’execució de l’aplicació.
Aquesta solució minimitza dinàmicament les diferències de càrrega de còmput
i comunicació entre PEs. L’estratègia ajusta la càrrega de treball global
de la simulació, migrant grups d’agents entre PEs segons les seves càrregues
computacionals i la seva interconectivitat, modelant el sistema com un hipergraf.
Un hipergraf es una generalització de grafs que, en aquest cas, permet modelar
interaccions de grups d’agents de forma més precisa. Aquest hipergraf es
particiona utilitzant un algoritme paral·lel de particionament per a decidir una
nova distribució de la càrrega de treball més apropiada.

Hem avaluat aquesta estratègia utilitzant una plataforma ABMS HPC real,
anomenada Flame, i simulant tres models reals SIR (Susceptible-Infected-
Remove), CTG (Colorectal Tumour Growth) and KCF (Keratinocyte Colony
Formation). Avaluant diferents aspectes de la nostra metodologia, així com en
el seu conjunt, hem obtingut importants guanys de rendiment i una significativa
reducció del temps total d’execució.

Paraules clau: Balanç de càrrega, Anàlisi i sintonització de rendiment
dinàmic, Simulació basada en agents, particionament de grafs i hipergrafs.

Resumen

Con la aparición de plataformas ABMS (Agent-Based Modelling and Simu-
lation) para entornos HPC (High Performance Computing), los sistemas reales
pueden ser modelados, analizados y simulados de forma más precisa incluyendo
una gran cantidad de agentes aún más complejos. Estos modelos complejos
generan una alta carga computacional y altos requerimientos de cómputo. En este
sentido, si se desea simular estos casos en un tiempo razonable, es sólo posible
ejecutando en paralelo y en entornos HPC. Debido a la escalabilidad y simplicidad,
la estructura de aplicación SPMD (Single Program Multiple Data) es la más usada,
la cual consiste en ejecutar el mismo programa en diferentes PEs (processing
elements), pero sobre un distinto subconjunto del dominio. Sin embargo, en
simulaciones grandes y complejas, aparecen requerimientos de cómputo irregulares
y sobrecarga de comunicación, debido a políticas inapropiadas de particionamiento
de datos y características dinámicas de creación y eliminación de agentes, lo cual se
propaga por todos los PEs y retrasa toda la simulación. Por lo cual, es altamente
beneficioso tener una solución dinámica y eficiente para reajustar la carga de
trabajo.

Esta tesis propone una metodología que permite mejoras dinámicas en el
rendimiento de aplicaciones ABMS SPMD para modelos basados en agentes
espacialmente explícitos. La metodología presenta una estrategia de sintonización
para reducir problemas de desbalance de carga durante la ejecución de la
aplicación. Esta solución minimiza dinámicamente las diferencias de carga de
cómputo y comunicación entre PEs. La estrategia ajusta la carga de trabajo
global de la simulación, migrando grupos de agentes entre PEs según sus cargas
computacionales y su interconectividad, modelando el sistema como un hipergrafo.
Un hipergrafo es una generalización de grafo qué, en este caso, permite modelar
interacciones de grupos de agentes de forma más precisa. Este hipergrafo se
particiona utilizando un algoritmo paralelo de particionamento para decidir una
nueva distribución de la carga de trabajo más apropiada.

Hemos evaluado esta estrategia usando una plataforma ABMS HPC real,
llamada Flame, y simulando tres modelos reales SIR (Susceptible-Infected-
Remove), CTG (Colorectal Tumour Growth) and KCF (Keratinocyte Colony
Formation). Evaluando distintos aspectos de nuestra metodología, así como
en su conjunto, hemos obtenido importantes ganancias de rendimiento y una
significativa reducción del tiempo total de ejecución.

Palabras clave: Balance de carga, Análisis y sintonización de rendimiento
dinámico, Simulación basada en agentes, Particionamiento de grafos e hipergrafos.

Contents

1 Introduction 1
1.1 Agent-based Modelling and Simulations 2

1.1.1 Large-scale ABMS . 4
1.2 High Performance Computing . 4

1.2.1 Architectural Models . 5
1.2.2 Computing Cluster . 6
1.2.3 Programming Models . 7

1.2.3.1 Shared Memory 8
1.2.3.2 Message Passing 9

1.2.4 Programming Paradigms 9
1.2.4.1 Divide and Conquer 10
1.2.4.2 Pipeline . 10
1.2.4.3 Master-Worker . 10
1.2.4.4 SPMD . 11

1.3 Data Partitioning and Load Balancing 11
1.3.0.1 Regular Partitioning 12
1.3.0.2 Irregular Partitioning 13
1.3.0.3 Random Workload 14
1.3.0.4 Dynamic Load Balancing 15

1.4 Related Studies . 16
1.5 Motivation . 18
1.6 Objectives . 19
1.7 Contributions . 20
1.8 Thesis Outline . 21

2 Load Balancing in SPMD ABMS applications 23
2.1 SPMD applications in HPC . 25
2.2 Load Balancing in SPMD ABMS 28
2.3 Load Balancing Components . 29

2.3.1 Agents System Representation (ASR) 29
2.3.2 Agents Migration . 29

xiii

xiv CONTENTS

2.3.3 Tuning Decisions . 30
2.4 Summary . 31

3 Methodology Description 33
3.1 Discussion . 34

3.1.1 Clustering . 36
3.1.2 Domain Trimming . 37
3.1.3 Graphs & Hypergraphs . 37
3.1.4 Graph/Hypergraph Partitioning Algorithms 39

3.2 Methodology Overview . 41
3.2.1 Activation Mechanism . 42

3.2.1.1 Measurement . 43
3.2.1.2 Evaluation . 43

3.2.2 Agent System Representation 44
3.2.2.1 Grid-based Spatial Clustering 45
3.2.2.2 Hypergraph Grid Workload Modelling 47

3.2.3 Hypergraph-based Load Balancing 49
3.2.4 Grid-based Agent Migration 50
3.2.5 Agent Messages Management 51

3.3 Summary . 52

4 Methodology Implementation 55
4.1 Flame . 56

4.1.1 General Overview . 56
4.1.2 Functional Description . 58
4.1.3 Parallel Functioning . 60

4.2 Hypergraph-based Methodology Implementation 62
4.2.1 Activation Mechanism . 64
4.2.2 Agent System Representation 65
4.2.3 Hypergraph-based Tuning Decisions 66
4.2.4 Grid-based Agent Migration 68
4.2.5 Agent Messages Management 71

4.3 Summary . 73

5 Experimental Results 75
5.1 AB Use Case Models . 76

5.1.1 Susceptible-Infected-Removed Model 76
5.1.2 Colorectal Tumour Growth Model 77
5.1.3 Keratinocyte Colony Formation Model 78

5.2 Experimental Evaluation . 79
5.2.1 Experimental Environments 80
5.2.2 Activation Mechanism & Agent Migration 80

CONTENTS xv

5.2.3 Agent System Representation & Message Management . . . 83
5.2.4 Overall Tuning Improvements 86
5.2.5 Methodology Overhead Enhancements 89

5.3 Summary . 91

6 Conclusions 93
6.1 Final Conclusions . 95
6.2 Future Work and Open Lines . 97
6.3 Ph.D. Internship . 99
6.4 List of Publications . 99
6.5 Special Acknowledgements . 101

xvi CONTENTS

List of Figures

1.1 Agent definition according to [69]. 2
1.2 Regular partitioning examples: a) rows, b) columns and c) blocks. 12
1.3 Irregular partitioning examples. 13
1.4 Other partitioning method examples.a)covering radius, b)Voronio

diagram and c)Delaunay triangulation. 14
1.5 Load balancing strategies classification proposed in [26]. 15
1.6 Transfer-based classification proposed in [86]. 15
1.7 DLB taxonomy according to [79]. 16

2.1 Data distribution and communication between neighbouring PEs
in SPMD. 25

2.2 Schematic representation of a SPMD application. 26
2.3 Computing and exchange phases within an iteration. 27

3.1 A set of points that is partitioned into five subsets [52]. 36
3.2 Graph example with three vertices (v1, v2 and v3). 38
3.3 Hypergraph example with three vertices (v1, v2 and v3) and three

hyperedges (h1, h2 and h3). 39
3.4 General description of the methodology. 41
3.5 PE iteration workloads under tolerance analysis. 44
3.6 caption . 46
3.7 2D example of grid interactions. 47
3.8 Hypergraph modelling example of a 2D system with five grids

(vertices grid1, grid2, grid3, grid4 and grid5) and their outgoing
exchanges (hyperedges e1, e2, e3, e4 and e5). 48

3.9 Contribution procedure diagram. 51
3.10 Acquisition procedure diagram. 51

4.1 Flame basic diagram. 57
4.2 X-machine example of a simple SIR model. 59
4.3 Flame geometric partitioning example. 60
4.4 Parallel communication and synchronisation via libmboard. 61

xvii

xviii LIST OF FIGURES

4.5 Base-diagram of the Flame framework with our extensions. 62
4.6 Example of PE iteration workload within the tolerance range. . . 68
4.7 Contribution procedure implementation. 70
4.8 Acquisition procedure implementation. 70

5.1 Spatial agent distribution example of SIR model, green and red
circles represent susceptible and infectious people respectively. . . . 76

5.2 Example of Colorectal Tumour Growth. 77
5.3 Example of Keratinocyte Colony Formation. 79
5.4 Degree of computing imbalance varying the tolerance value. 81
5.5 Colorectal Tumour Growth model. 84
5.6 Flame geometric grids distribution (4 PEs). 84
5.7 Flame round-robin grids distribution (4 PEs). 85
5.8 PHG grids distribution (4 PEs). 85
5.9 Execution times of different PHG options and static approaches. . 87
5.10 Load balancing average overhead. 88
5.11 Execution times for two ASR grid size. 90

List of Algorithms

1 Activation Mechanism . 64
2 Grid-based Spatial Clustering . 65
3 Grid-based Interaction Mapping 67
4 Contributing Agents . 69
5 Acquiring Agents . 69

xix

xx LIST OF ALGORITHMS

Chapter 1

Introduction

Nowadays, there are a large amount of scientific and engineering problems that
can be studied and solved thanks to the computational resources existing today.
Also, the reduction of the cost of computational resources leads to accessibility
not previously had thereof. For instance, solutions for problems such as: weather
forecasting, fluid dynamics, materials and structures simulation, and human
genome analysis, can be achieved today.

The computational systems capable to support the areas mentioned above
are known as High Performance Computing (HPC). The HPC environments solve
computing problems when these become more complex and the amount of required
computing power increases. Such problems demand extensive computation,
memory, disk accesses and communications. In such circumstances, decomposing
the problem (data and/or code) into a parallel program may be the only way to
achieve a solution in a reasonable time [24].

In many cases, HPC applications dynamically change their behaviour during
the execution. Here, the initial decomposition may not offer an efficient solution
and the computing/communication workloads could have to be dynamically
rearranged at runtime in order to avoid an excessive execution time. Within these
kind of HPC applications, there is a particular case called Agent-Based Modelling
and Simulation (ABMS) which frequently shows dynamic workload variability
that negatively affects the performance of the application.

Agent-based (AB) models, also known as Individual-based, allow to analyse the
emergent properties of a system from the interaction amongst autonomous entities
called agents (or individuals)[90, 104]. Agent interactions and behaviour are
defined according to their procedural rules, characteristic parameters, the whole
population characteristics, dynamic characteristics of creation and elimination
of agents and developments in the simulated environment. Therefore, ABMS
computing/communication workload can vary dramatically over simulation time
and space. At this point, an efficient dynamic solution to readjust the workload

1

2 CHAPTER 1. INTRODUCTION

would be very helpful.
Since there are different ways to model and implement AB systems, such as

agents modelled by network links [100, 50], in this thesis we consider spatially-
explicit models, which means that agents are associated with a spatial location in
geometric space. Spatially-explicit models are also known as agents modelled in
”knowledge space” [51] and some models describe interaction between members of
adjacent social groups (with neighbouring communications) [64]. Moreover, some
spatially-explicit models also can show motion patterns, i.e., agents can change
their relative position in geometrical space [103, 104].

In this chapter we present a brief overview of ABMS and HPC environments.
In particular, our thesis is focused on the SPMD application paradigm which is
briefly explained in Section 1.2.4 and with more detail in the next chapter. We
conclude with an overview of the related studies (1.4) and the presentation of the
thesis proposal (1.8).

1.1 Agent-based Modelling and Simulations
Agent-based modelling and simulations (ABMS), in some particular cases named
individual-based modelling (IbM), is a modelling paradigm where an emergent
system behaviour is decomposed in a set of individual entities behaviour [69].

Figure 1.1: Agent definition according to [69].

1.1. AGENT-BASED MODELLING AND SIMULATIONS 3

In this modelling, the entities are known as agents (individuals for IbM) which,
for practical purposes, have properties and attributes such as:

self-directed: agents function independently of other agents and the environment
(autonomous).

self-contained: agents are identifiable individuals with a set of characteristics or
attributes, behaviour, and decision-making capability (modular).

social: agents have protocols to describe how they interact with other agents
(interactive).

In general, the global view of the system can be achieved by replicating
complex social agents’ interactions, collaboration and group behaviours. ABMS
is an alternative to other modelling techniques, such as equation-based modelling
(EBM). The EBM approach identifies system variables and evaluates or integrates
sets of equations relating these variables. One of the main examples of the use
of EBM is the prey-predator model developed independently by mathematicians
Alfred J.Lotka [67] and Vito Volterra [111].

Both, ABMS and EBM, approaches simulate the system by constructing a
model and executing it on a computer. On one side, the ABMS execution consists
of simulating the encapsulated behaviour of the agents and, on the other side, the
EBM execution consists of evaluating a set of equations [83]. However, using
the EBM approach for modelling the behaviour of complex social interactions,
collaboration and group behaviours may be increasingly hard and might be too
complex to adequately model.

On the contrary, ABMS offers better environment representation by reason
of ABMS lets including a multitude of independent variables and interactions
(each entity possesses its own variables and actions). Moreover, agents might
include stochastic variables to implement systems with stochastic dynamics (e.g.
random individual decision rules and non-trivial interactions among agents). This
is useful if modelling highly non-linear systems, such as economic systems, where
a good representation might be compounded by, for instance, non-linearities and
randomness in individual behaviours and interaction networks, and feedbacks
between the micro and macro levels. In the same way, in socio-economic systems
that are inherently non-stationary, agents might introduce persistent novelty (e.g.,
new patterns of behaviour). In such cases, the complicated stochastic governing
operations can hardly be analysed analytically and hence agent-based computer
simulation is best suited for these needs.

4 CHAPTER 1. INTRODUCTION

1.1.1 Large-scale ABMS

Nowadays, thanks to the computing resources available, many complex agent-
based (AB) models can be simulated in a reasonable time. Nevertheless, the
computational size of the models and their resource requirements to satisfy these
new demands have grown. This fact also affects the model designs, now the
modellers and developers can include a large number of agents and complex
interaction rules, in such cases the HPC infrastructures help to satisfy the
computational requirements.

Although the AB modelling for an HPC environment may not change
whatsoever respect of a sequential version, the ABMS programming does so.
For an HPC ABMS application, programmers have to deal with many more
problems that for a sequential ABMS, issues such as considering the architecture,
operating system, or choosing the proper programming language and libraries
to allow suitable problem decomposition and communication strategies. Along
with these, the load balancing strategy to reallocate computing/communication
workload as the simulation proceeds, to make better use of the available resources,
is a key problem commonly present in most HPC application developments.

This work is focused in developing a solution to deal with workload imbalances
occurring during an HPC AB simulation (Section 1.3 introduces the load balancing
problem). Within this context, we studied Single Program Multiple Data
(SPMD) ABMS platforms [55] using Message Passing Interface (MPI) [53] for
communication (SPMD and MPI are explained further). For this reason, we
briefly describe HPC infrastructures and performance issues.

1.2 High Performance Computing
The objective of parallel computing is to improve the productivity (amount of
running applications per time unit) and/or the efficiency (diminish the execution
time of the application). For parallelising an application, it is necessary to exploit
its concurrency in order to distribute the workload among the processing elements
(PEs) and thus reduce the execution time of the application. That means that
parallel computing allows dividing the applications in smaller tasks to execute
them simultaneously. Developing this type of applications is not simple, but the
performance benefits make them essential for certain problems.

In the last decade, parallel computing has reached new areas such as: Fi-
nancial, Aerospace, Energy, Telecommunications, Information Services, Defence,
Geophysics, Research, etc. Developments in hardware and software for these
new areas have created new challenges to be addressed, and also allowed to solve
previously intractable problems.

While high-performance hardware has exhibited an immense scalability since
its inception, following Moore’s law or even surpassing it for a long time as

1.2. HIGH PERFORMANCE COMPUTING 5

a result of the outbreak of systems based on cluster, the software has been
hampered for several reasons, such as the complexity of hardware systems and
the complexity of its development, implementation and maintenance. To make
all possible, scientists are exploring possible improvements to be made in parallel
and/or distributed systems.

Unfortunately, sustain good performance indices is not simple because there
are several issues that difficult reaching the optimal theoretical performance
values. The reasons for such difficulties, both for development and tuning, are
rooted in complex interactions between varied HPC environment components
which connect the applications with the physical system, such as: system software,
libraries, operating system, programming interfaces and implemented algorithms.

If a programmer wants to build a “performance model/load balancing solu-
tion”, for SPMD ABMS applications, he/she could need to understand all these
interactions in order to improve the performance and detect inefficiencies. This is
a costly task, requiring deep study, analyse and evaluation of the application in
order to establish the factors or metrics associated to such inefficiencies.

Today, we can find a lot of studies of factors that influence performance [57].
As shown in [24], we can maximise the benefits focusing on the factors associated
with a particular application paradigm. Therefore, in this work we focus on
recognising that factors that determine inefficiencies at application level and at
the level of programming paradigms, without neglecting the different alternatives
of construction of parallel systems explained below.

1.2.1 Architectural Models

There are many ways to build parallel systems, due to the variety of its
characteristics they can be classified into different taxonomies. Depending on the
sets of instructions and data, where a sequential architecture would be called SISD
(Single Instruction Single Data), we can classify the different parallel architectures
in different groups (this classification is often referred as Flynn’s taxonomy)
[98, 5, 74, 106, 109]: SIMD (Single Instruction Multiple Data), MISD (Multiple
Instruction Single Data), MIMD (Multiple Instruction Multiple Data) and SPMD
(Single Program Multiple Data) which is a variation of MIMD.

SIMD : In a SIMD architecture homogeneous processes (with the same code)
synchronously execute the same instruction on their data, or the same
operation is applied over fixed/variable size vectors.

MISD : The same dataset is treated differently by the processes. It is useful in
cases where many different operations must be performed on the same set
of data.

MIMD : In this approach, data and task are distributed among different
processors. Several execution flows (possibly different) are applied to
different data sets.

6 CHAPTER 1. INTRODUCTION

SPMD : In data parallelism [55], the same code is used on different portions
of data. There are multiple instances of the same task, each running
the code independently as discussed in detail in Chapter 2. Due to its
scalability and simplicity, SPMD is the dominant programming model for
large-scale distributed-memory machines [58] and, furthermore, the most
common application structure for HPC ABMS applications.

This architecture models classification is usually expanded to include various
categories of computers that are not completely conform to each of these models.
An extended classification Flynn is presented in [40].

Another classification of architectural models is based on control mechanisms
and organisation of the memory space addresses [65, 47, 35]. Using this approach,
it is possible to make a classification according to the organisation of memory
(which can be physical and logical). For instance, having a physical organisation
of distributed memory, but logically shared.

In the case of multiprocessors, it is possible to make a subdivision between
loosely or strongly coupled systems. In a strongly coupled system, the system
offers the same access time to memory for each processor. This system can be
implemented through a single large memory module, or a set of memory modules
so that they can be accessed in parallel by different processors (UMA). In a
loosely coupled system, the memory system is distributed among the processors,
providing each of its local memory. Each processor can access its local memory
and to the memory of other processors (NUMA).

The increasing complexity of the applications of scientific computing and the
increasing volume of information have led to the need of building systems with
multiple units which include these architectural models. These systems are known
as computing cluster.

1.2.2 Computing Cluster

SPMD applications mostly operate in clusters, leveraging the scalability and
computing resources provided by the clusters. A computing cluster is a parallel
or distributed processing system, comprised by a number of computing units
(nodes) that run a number of applications simultaneously. It is a set of integrated
computing resources, so-called processing elements (PEs), to run applications in
less time [21].

Due to the increasing utilisation of communication networks in information
systems, it has triggered a wider market and a widespread commercialisation.
Consequently, the hardware used in these systems has reduced its cost so a parallel
machine can be deployed at a reasonable cost. In fact, much of today’s high
performance systems [1] are cluster-type systems, with dedicated interconnection
networks.

1.2. HIGH PERFORMANCE COMPUTING 7

A collection of computers connected by a communications technology, such as
(Gigabit) Ethernet, Fibber Channel, ATM, etc., are defined as cluster [5, 39]. A
cluster is controlled by an administrative entity that has complete control over
each end-system.

If we would classify it as an “Architectural Model”, computing clusters
are MIMD systems with distributed memory, although interconnection can be
non-dedicated, and use simple interconnection mechanisms like a local network.
Basically, a Distributed Memory-MIMD (DM-MIMD) model where communica-
tions between processors are usually slower than multiprocessors.

In a cluster, we can take advantage of idle-times of some computing units to
execute other parallel applications, without any detriment to users. This also
allows us to differentiate between dedicated clusters (or not), depending on the
existence of users (and thus its applications) along with the implementation of
parallel applications. Likewise, we can also distinguish between dedication of the
cluster to run one or more simultaneous parallel applications.

An important advantage found in clusters is that they are quite scalable in
terms of hardware. We could say that it is easy to build systems with hundreds
or thousands of machines, commonly where network technologies are those that
limit the scalability.

For allowing network scalability, the hardware must necessarily be designed
for parallel processing, i.e., minimising latencies and maximising bandwidth.
We often find that the base software mounted on a cluster is usually designed
for specific machines, such as the operating system, which usually does not
offer possibilities to have extensive control of the resources. In these cases,
it is necessary to incorporate a number of layers of middleware services on
the operating system, to make the cluster systems efficient. In larger scale
systems, it is necessary to include a number of additional control mechanisms
and management for scheduling [14] and monitoring systems, as is the case in the
grid [48] and cloud [22] systems. Overall, this significantly increases the system
complexity, and has a significant impact in the performance of the computing
cluster.

There is currently a wide variety of hardware configurations in clusters because
the construction of these has no major design constraints. Therefore, also the way
to program a cluster may vary depending on which resources are going to be used
or interconnected. The solution provided in this thesis is designed, evaluated and
intended for improving HPC ABMS applications executed in these environments.

1.2.3 Programming Models

Parallel applications consist of a set of tasks that can communicate and cooperate
to solve a problem. Because of the high dependency on the architectures
of the machines that are used, and the programming paradigms used in its

8 CHAPTER 1. INTRODUCTION

implementation, there is not a well-established methodology for creating parallel
applications. In [47], the creation of an application is defined by four stages:
Partition, Communication, Agglomeration, and Mapping (Foster’s methodology).

In the Partition stage, the computing and data operations are decomposed into
small tasks. During the Communication stage, the data structures, protocols,
and algorithms to coordinate the implementation of the tasks are defined.
Agglomeration specifies, if necessary, which tasks are combined into larger tasks
with the purpose of reducing communication costs and increase the performance.
In the Mapping, each task is assigned to a processor to attempt maximising
processor utilisation and minimising communication costs.

These stages, can be subdivided into two groups, the first two focus on
concurrency and scalability, and aim to develop algorithms that prioritise these
characteristics. In the last two stages, the focus is shifted to the locality and the
performance gain.

As a result of the above tasks, we must decide the appropriate programming
paradigm (see Section 1.2.4), which is a class of algorithms that have the same
control structure [54, 75], and can be implemented using a generic model of parallel
programming.

Finally, the resulting performance is obtained combining the paradigm with
the programming model over an architecture, that is the configuration of the
parallel hardware, interconnection network and the available software of the
system. Below, we present a classification of parallel programming models [65, 47].

1.2.3.1 Shared Memory

This model consists of a collection of processes accessing to a set of local
variables and shared variables [8, 25]. Each process accesses to the shared data
by reading/writing asynchronously. This model requires mechanisms to solve
problems of mutual exclusion that may arise (mechanisms such as semaphores or
locks) mainly as a result of concurrent access to the shared data.

In this model, tasks are assigned to threads to be asynchronously executed.
These threads have access to shared memory space with the control mechanisms
mentioned above. One of the most used program implementations of this model
is OpenMP (Open Specifications for Multi Processing) [115], commonly used in
SMP systems [56] or SM-MIMD (Shared Memory-MIMD). In OpenMP a model of
parallel execution called fork-join is used, where basically the main thread begins
as a single process, then at some time it performs a fork operation to create a
parallel region of a set of threads. Finally, a synchronisation operation called join
ends the parallel region and resumes the main thread into a sequential execution,
until the next parallel region.

1.2. HIGH PERFORMANCE COMPUTING 9

1.2.3.2 Message Passing

In the message passing model, programs are organised as a set of tasks with private
local variables, which also have the ability to send and receive data between tasks
through message exchanges. In message passing applications, processes have a
distributed address space unlike shared memory applications. This is the most
widely used model in HPC [65, 113].

Message passing allows greater flexibility for parallel algorithms, providing
unusual control because the programmer decides how and when communications
are made, that is to say, the programmer is who directly controls the flow of
operations and data. It also allows the programmer to have an explicit control
of the data locality, and consequently, precautions have to be taken to maintain
good performance through the management of the memory hierarchy.

The programmer has a considerable responsibility in this model, the implemen-
tation should be done taking into account various aspects, such as distribution of
data, communications between tasks, synchronization points and I/O operations,
if any. The programmer goal is to avoid data dependencies, deadlocks and
inefficient communications as well as implementing fault tolerance mechanisms
[13, 2].

The most widely mean used to implement this programming model is via an
API library that implements common primitives in message passing environments.
Today there are several approaches [74] of libraries that support the message
passing model, some of them are BSP [117] and MPI [53]. Additionally, MPI
is a specification to implement message passing where the developers decide the
implementation.

In this sense, there are few well-established ABMS platforms intended to
run simulations in parallel/distributed environments and handle large number of
agents and complex interaction rules, as explained in Section 1.4. In these cases,
ABMS platforms usually provide a native support for MPI implementations in a
manner that providing executions on several physical nodes.

1.2.4 Programming Paradigms

Parallel programming paradigms are classes of algorithms that solve different
problems with the same control structures [54]. Each of these paradigms defines
models of how to parallelise an application using a general description of how to
distribute data and how is the interaction between the processing elements (PEs).

When designing a parallel application, it is important to analyse the existing
paradigms in order to weight their advantages and disadvantages. This is usually
because, depending on the problem type, it may be unnecessary to use a specific
paradigm or, for a given problem, using a particular paradigm the performance
decreases compared to another. There are different classifications of programming

10 CHAPTER 1. INTRODUCTION

paradigms, but a common subset, presented in [21], is:

1.2.4.1 Divide and Conquer

In this paradigm, the problem is divided into a number of subproblems. There are
three operations: divide, compute and join. The program structure is tree type,
being the subproblems leaves that are executed by the processes or threads. Each
of these subproblems are solved independently and their results are combined to
produce the final result. In this paradigm, it is possible to perform a recursive
decomposition until the subproblems cannot be subdivided further, then the
solution of the problem is performed through partition operations (split or fork),
computing, and joining (combine the solutions of subproblems into a solution of
the original problem). It also works with tree algorithm features, such as the width
of the tree, the degree of each node, the tree height and the recursion degree.

1.2.4.2 Pipeline

This paradigm is based on a functional decomposition. The application is divided
into subproblems or processes, and each subproblem must be completed to start
the next process, one after the other. In a pipeline the processes are called steps
and each of these steps resolves a particular task. It is also important to highlight
that this paradigm achieves a concurrent execution if all the steps of the pipeline
are full or constantly streaming data. This is not easy to achieve, because a
step output is the input of the next step. One of the most significant parameter
is the number of steps because a single overloaded step usually delays the entire
execution and, hence, decreases the application performance. In such situations, it
necessary to apply policies for reorganising steps in order to relieve the overloaded
steps and balance the workload along the pipeline.

1.2.4.3 Master-Worker

The master-worker paradigm is also known as task-farming or master-slave. This
paradigm consists of two types of entities: one master and several workers. The
master is responsible for decomposing the problem into smaller jobs (or responsible
to divide the input data into subsets) and distribute the application tasks to
different workers. Afterwards, the collection of partial results is performed in
order to process the final result. The role of the workers is only receiving
the information, processing it and sending the results to the master. Due its
simplicity, master-worked paradigm is widespread and heavily used in traditional
applications. Master-worked usually provides easy management of the workload
and efficiency because the master controls the global workload distribution and,
in this way, manage the workload balance among the workers. However, the

1.3. DATA PARTITIONING AND LOAD BALANCING 11

master-worker paradigm suffers from scalability problems due to the master could
become a bottleneck if there are too many worker outcomes and queries to process.

1.2.4.4 SPMD

In the Single Program Multiple Data (SPMD) paradigm, for a certain number of
processing elements (PEs) (processes) the same code is executed but on a different
subset of the input data. That is, application data are distributed between the
available nodes (or machines) of the system.

The SPMD paradigm describes an iterative behaviour in which a synchronisa-
tion phase is carried out before the end of each iteration (computing phase). At
this phase, the data exchange is preformed between the neighbouring nodes which
depend on the nature of the problem. Due to its scalability features, given by a
decentralised control structure, SPMD is the most used paradigm for large-scale
distributed-memory machines and therefore for programming large-scale ABMS
platforms. In Chapter 2 a more detailed analysis of this paradigm is shown,
exposing its operation and the issues that affects its performance in ABMS
applications.

1.3 Data Partitioning and Load Balancing

For applications where the required workload for each data section is predictable
and constant over the execution time, calculating an appropriate data partition
at the beginning of the execution (static load balancing) is enough to obtain a
good performance.

Otherwise, to avoid imbalances during data processing and communication
phases, some mechanism for adjusting the workload during runtime have to be
provided. These mechanisms must decide when and how to repartition, along
with calculating the new partition and redistribute the data (migrate) for the
new configuration, thus, it is easy to see that achieving better performance is a
very complex task.

We can mention three important aspects that need to be considered when
selecting a data partitioning strategy [77]:

Load imbalance overhead : there are idle processes waiting for processes,
either neighbouring or not, to complete their computing assignments.

Communication overhead : each message requires sending and receiving
among the involved processes, also requires a starting time or connecting
set-up time and a proportional period of time to the message or data length.
In addition, each message is subject to some latency that may increase the
load imbalance.

12 CHAPTER 1. INTRODUCTION

Implementation complexity : algorithm and strategy performance may vary
depending on the required amount of the programmer effort. In general, the
more complex the partitioning algorithm, the better result of load balancing
and communication efficiency.

There are several methods for global partitioning of data among processes. A
suitable choice depends on the nature of the data and performed computing [77].
In general, the simplest strategies apply to particular types of problems, while
more complex strategies can be applied to a wider range of problems.

To select the best strategy for load balancing, it is necessary to know the
application in order to find which partitioning strategies are better suited, and
also decide whether the complexity degree of the application and partitioning
allows for a static or dynamic load balancing.

1.3.0.1 Regular Partitioning

This type of partitioning is particularly applicable to data with simple geometry
such as multidimensional arrays, which can be partitioned on a regular and
repetitive pattern. These data can be divided by rows, columns, or blocks, as
can be seen in Figure 1.2.

Figure 1.2: Regular partitioning examples: a) rows, b) columns and c) blocks.

From these three approaches, the block partitioning is often preferred when
the computing phase requires data from the neighbouring processes to start the
next computing phase. In Figure 1.2, for a and b partitions, each partition has
one or two borders, while the partitions in c have three to four borders.

In the partitions 1.2a and 1.2b, each region has at most only two neighbours.
However, each border has a large area, so this type of partition would have an
aggregated communication overhead.

1.3. DATA PARTITIONING AND LOAD BALANCING 13

1.3.0.2 Irregular Partitioning

This partition type is used when doing a regular partitioning would cause a very
high degree of workload imbalance. This may depend on the problem type, input
data, or heterogeneous computing and communication units.

For example, in an application of air flow simulation over a airplane prototype
the space can be divided as a collection of horizontal planes with different vertical
distances from each other. The data and computing load of each of these resulting
sections are assigned to distinct processes. Thin sections may be used in airplane
sections and thicker sections where there is lower air movement (Figure 1.3 shows
examples of irregular partitioning). In the resulting partitions, due to the large
area of borders, this type of partitions would have a communication overhead.

Figure 1.3: Irregular partitioning examples.

To determine the appropriate partition size, a higher level of expertise is
required. First, estimating the density of the workload in each process is needed.
This cannot be measured in relation to the size of the computing area, but through
computational load of such area.

As mentioned above, the more complex partitioning algorithm, the better the
result of load balancing and efficiency in communication. Achieving this efficiency
may be limited by the complexity of communications and exchange patterns.

In addition, partitioning the data in horizontal and vertical sections generates
different size areas, which could balance the computational load and minimise
communication costs. In Figure 1.3b each section has a right and a left neighbour,
and a variable number of neighbours up and down. In this case, each process
must send a smaller amount of data, however, doing this is not always possible.
Sometimes there are restrictions inherent to the application, as shown in the
application introduced in Chapter 2.

14 CHAPTER 1. INTRODUCTION

Figure 1.4: Other partitioning method examples.a)covering radius, b)Voronio
diagram and c)Delaunay triangulation.

There are other methods of partitioning as shown in Figure 1.4. For instance,
in applications based on metric spaces, the partitions can be made based on a
covering radius, Voronoi diagrams, Delaunay triangulation, etc [81, 46]. In the
Delaunay triangulation, each section has a maximum of 3 neighbouring sections.
While in the others, the number of neighbours depends upon the number of
centres, the covering radius and the scattering of elements in the space.

1.3.0.3 Random Workload

There is a group of applications in which the data location is changing during
the execution, or where the location of the workload is initially unpredictable. In
these cases, each element usually stores spatial information about the position of
the global data using some kind of structure for this (i.e. indexing structures).

The records from a database, sorted by a particular field, are an example of
this case. Here, the value of each record also stores its location with respect to
the global data.

One of the main problems in such applications is the complex structures that
have to be maintained to optimise the data access. Usually, in an indexing
structure as more information is stored to locate data, this becomes less efficient.

In the same way, increasing the stored information the structure also grows,
thus the performance of the search operations is reduced. Also, updating these
kinds of structures at runtime is a big problem to deal with [44].

Certain ABMS applications fall in this classification if agents are defined with
complex procedural rules and interaction patterns, variable internal workload and
dynamic characteristics of creation and elimination of agents along the whole sim-
ulation. This particular behaviour provokes dynamic computing/communication
workload changes that dramatically impacts the simulation performance.

1.3. DATA PARTITIONING AND LOAD BALANCING 15

1.3.0.4 Dynamic Load Balancing

One of the most critical issues when implementing an application efficiently is
to choose an appropriate strategy for dynamic load balancing (DLB). A DLB
is necessary, for example, when the workload cost of each computing section is
unknown, the application performs dynamic creation of tasks, task migration or
hardware resource variations due to external workloads [79].

As mentioned before, it is needed to decide when and how to repartition,
calculate the new partition and redistribute the data for the new repartition.
Additionally, it is needed to know what kind of items are going to be moved
(migrated). There are several taxonomies that classify load balancing strategies,
but each classification focuses on different aspects of the solution.

Figure 1.5: Load balancing strategies classification proposed in [26].

For instance, in [26] a classification based on consecutive local improvements
in order to achieve an overall improvement (see Figure 1.5) is proposed.

Figure 1.6: Transfer-based classification proposed in [86].

In [86] a set of strategies for load balancing in SPMD applications is proposed.
In this classification several criteria are presented in a comprehensive manner.
Figure 1.6 shows only the classification proposed in [86] for algorithms based on
workload transfer when overloads or low loads are detected.

16 CHAPTER 1. INTRODUCTION

Figure 1.7: DLB taxonomy according to [79].

In the taxonomy proposed in [79], a classification based on four substrategies
representing the operation of DLB is presented. In Figure 1.7 the substrategies
initiation, location, exchange and selection can be seen.

It is also important to mention that the same algorithms for calculating a
static partition can be used for developing a DLB strategy. Along with this, the
current distribution of the workload has to be provided to calculate the new data
distribution, then the data must be redistributed among different processes.

All in all, the choice of load balancing algorithm depends largely on the
nature of the input data and the programming paradigm(s) involved in the
application. In our case, a DLB solution is proposed which can be better
categorised according to the last taxonomy (DLB taxonomy) as: (i) imbalance
threshold event-driven initiation, (ii) synchronous distributed load balancer, (iii)
local workload exchanges with randomised transference communications resulting
of global decision making and (iv) load selection based in equally partitioning a
hypergraph that represents the ABMS application workload.

1.4 Related Studies

Since this work involves a group of techniques and a wide range of research lines,
we consider worth mention both the load balancing approaches in a general way,
along with the intended to agent-based modelling and simulation (ABMS) and
the HPC ABMS platforms in order to better understand the environment where
our approach have to be deployed.

First, the load balancing strategies for HPC applications can be developed
using centralised/hierarchical and decentralised approaches [86] according to the
execution of the tuning decisions. The centralised approaches feature higher
computational cost and scalability problems, while decentralised approaches can

1.4. RELATED STUDIES 17

present problems regarding balance quality because after a neighbouring exchange
the processes may possess incomplete information of the global performance. In
general, many load balancing solutions have been developed such as: [119, 118,
110, 105]; but these have rarely been incorporated to a multi-purpose environment.
However, we have been progressively developing a load balancing strategy for
multi-purpose environments of agent-based (AB) simulations as can be seen in
[70, 71, 73].

Having said that, there are some ABMS intended approaches worth to mention
that face the same problem. One of these, Cosenza et al. [34], presents
a distributed load balancing mechanism for ABMS based on modifying the
boundaries of a global space assigned to neighbouring processors. This is a low
overhead mechanism triggered in each simulation step. However, its low overhead
is mainly due to the fact that it is assumed that few agents will be moved between
processors. In addition, it is also assumed that all agents are of the same type,
which makes it easier to decide new boundaries. The load balancing scheme we
are presenting can deal successfully with different kinds of agents and it is not
constrained to neighbouring processors, at the cost of a slightly higher overhead,
which is compensated by the fact that the mechanism is only triggered when the
imbalance threshold is exceeded.

Toh Da-Jun et al. [36] present an ABMS platform for multicellular biological
systems, which incorporates a load balancing mechanism including migration
of cells. However, apart for being a specialised platform, this load balancing
mechanism is centralised and, in consequence, not scalable to nowadays systems.

Xu et al. [116] introduce a dynamic load balancing mechanism for an ABMS
platform for traffic simulation, which presents many similarities with our proposal.
They also use a graph partitioning mechanism triggered when a certain imbalance
threshold is exceeded, producing the redistribution of agents among computation
nodes. However, there are significant differences between both proposals. First,
our approach is completely distributed, while theirs uses a master-worker approach
where the master is responsible for detecting the imbalance and computing the
new partitioning, and the workers are responsible for taking measurements and
doing the redistribution.

Clearly, for large simulations the master may become a bottleneck. Second,
our proposal optimises agent migration by packing agents (see Chapter 2), while
in their system, agents are migrated one at a time. Finally, although it can be
easily generalised, this proposal is specific for ABMS based traffic, while ours has
been implemented in a general framework.

Also, it is worth to mention the variety of HPC ABMS platforms to be aware
of their capabilities and constraints in order to understand the environment where
a general purpose dynamic load balancing needs to be implemented. Having said
that, several ABMS general frameworks for generating parallel simulations on

18 CHAPTER 1. INTRODUCTION

HPC environments can be found.
Repast HPC [31] was released in 2012, and written in C++ using MPI for

parallel simulations. Agent types are implemented as C++ classes that are
associated to contexts, which can be defined as a population of agents, and
projections, which define the structure of the population contained in a context.
When run in parallel, each process is responsible for executing a set of local
agents. Interactions between agents assigned to different processes are managed
by copying and synchronising the interacting agents in the involved processes.

D-Mason [32] is a framework written in Java, based on a master-worker
paradigm. D-Mason uses idle desktop workstations subdividing the workload
among these heterogeneous machines. Communication between agents is accom-
plished by sharing channels between workers that share information. In addition,
recent improvements of D-Mason provide a load balancing schema based on
executing multiple workers on the most powerful nodes.

Pandora [96] is a framework developed in C++, OpenMP and MPI. Agents
are implemented as C++ or Python classes as well as the environment the agents
live in (called world). Parallelisation is achieved by distributing different parts
of the world among the nodes participating in the simulation. Then, each node
distributes the simulation of its assigned portion among the node cores using
OpenMP. The frontiers of each world partition are automatically communicated
to the neighbouring nodes in each simulation step using MPI.

Finally, FLAME [28] allows the production of automatic parallelisable code.
FLAME is written in C, it uses MPI for communication, and agents are specified
using an extension of XML plus C. This is the framework used in this work, so a
detailed description is given in Chapter 4.

1.5 Motivation

In the simulation research area, agent-based modelling and simulation (ABMS)
is one of the most powerful simulation modelling techniques and has the capacity
to provide significant benefits for studying real processes of complex systems.
ABMS relies on an algorithmic description of agents that interact and simulate
the expected behaviour of a system, providing a solution for defining more
realistic models with complex dependencies between the entire system and the
entities behaviours. Such behaviours, utilising other approaches, such differential
equations, for modelling behaviours of complex social interactions, collaboration
and group behaviours may be increasingly hard and might be too complex to
adequately model. In these case, ABMS offers better environment representation
by reason of ABMS lets including a multitude of independent variables and
interactions (each entity possesses its own variables and actions).

With the emergence of ABMS platforms intended for High Performance

1.6. OBJECTIVES 19

Computing (HPC), modellers are able to simulate models with larger number of
agents and more complex rules in such a way as including more detailed models,
internal processes, parameters and interactions; hence, today real systems can be
more accurately modelled, analysed and simulated.

This leads to very complex agent-based (AB) models, resulting in a high
computational. In this sense, simulating a complex AB system for realistic cases
is only feasible in a reasonable time if the simulation is executed in parallel on
a HPC environment. However, in HPC AB simulations, a weak distribution
of the agents’ workload may introduce uneven CPU computing and network
communication overhead that delays the simulation and may propagate across
all processing elements (PEs). In addition, certain AB models possess dynamic
characteristics of creation and elimination of agents which dramatically intro-
duce computing/communication workload imbalance over simulation execution.
Notwithstanding, any proposal capable of reducing load imbalances and therefore,
overall execution time, will have incredibly beneficial implications for running
such HPC applications. At this point, an efficient dynamic solution to readjust
the workload is really needed.

Considering all aspects described above, the motivation of this thesis is
to propose a methodology that enables dynamic performance enhancements
for ABMS applications in order to minimise the gaps of the computing and
communication workloads between PEs and, as a result, enabling simulation with
a large number of agents with complex rules as fast and efficiently as possible.

1.6 Objectives

The ultimate goal of this work is to design, implement and evaluate a performance
improvement methodology for SPMD ABMS applications with spatially-explicit
agents with neighbouring communications and variable behaviour. We address
this problem by designing a methodology that dynamically monitors, measures,
controls and minimises the agents computing and communication variations
introduced among the PEs. Consequently, the methodology dynamically balances
the workload and improves the application performance.

With this scope, we have developed the following specific objective this work
as follows:
• Conduct a study on the general characteristics of HPC ABMS applications

and SPMD program structure, to identify those factors that dynamically
affect their performance.

• Identify the performance affectations that can be modified dynamically,
taking into account results obtained in the previous point, to identify
possible solutions to performance problems in SPMD ABMS applications.

• Design and implement a dynamic performance analysis, evaluation and

20 CHAPTER 1. INTRODUCTION

tuning methodology capable of improving performance of SPMD ABMS
applications, in terms of execution time.

• Conduct an analysis of the problems caused by intrinsic ABMS performance
affectations such as agent creation/elimination, agent variable comput-
ing/communication workload, and, in addition, the platform associated
performance affectations such local/global PEs workload imbalance, mon-
itoring, agent migration and agent message management; and discuss the
effectiveness of proposed solutions to the aforementioned problems.

• Analyse the proposed methodology to avoid possible performance degrada-
tions and propose solutions (if necessary).

• Evaluate the behaviour of solutions proposed through the methodology by
simulation-based experimental study; and execution of real AB models
in real ABMS platform, designed and selected to confirm the proper
functioning of the proposal.

1.7 Contributions

The contributions of this work are focused on achieving the ultimate goal
outlined in the previous section. For this purpose, we have designed and
implemented a methodology for dynamically improving performance of SPMD
ABMS applications. The methodology introduces a strategy to reduce the gaps
of the computing and communication workloads between PEs as the simulation
proceeds. The methodology adjusts the global simulation workload migrating
groups of agents among the PEs according to their computation workload and
their message connectivity map modelled using a hypergraph. The hypergraph
is lastly partitioned to decide a proper workload distribution. As a result, the
methodology reduces the total execution time of HPC ABMS applications, and
increases the efficient use of computational resources.

In the design of the methodology, we have considered:
• ABMS applications with spatially-explicit models with neighbouring com-

munications.
• ABMS applications designed under the Single Program Multiple Data

(SPMD) structure.
• Existing parallel hypergraph partitioning tools to efficiently assist tuning

decisions.
• PEs allocate separate MPI processes in such a way that independents PEs

operate a unique MPI process during the entire simulation.
In this way, it is possible to execute faster AB simulations with large number

of agents with complex rules. Other contributions included in this work that we
consider significant to mention are:
• A description of the components required to define a dynamic Load

1.8. THESIS OUTLINE 21

Balancing (DLB) approach in an ABMS application.
• A monitoring and evaluation schema that measures the parallel application

workload at runtime to identify performance problems in the PEs.
• An efficient agent system representation (ASR) definition through a

grid-based spatial organisation that characterises the agent locations and
workloads in relation to their PE.

• A weighted hypergraph based point of view of the agent workload (vertices)
and interactions (hyperedges) which provides the analysis and identification
of imbalances spots across the simulation space.

• An agent migration schema that minimises its runtime impact through
migrating groups of agents, minimising the number of transferences and
reducing the communication latency by communication/computing over-
lapping.

• A suitable message management definition based on the ASR definition that
enables determining the internal PE messages and the messages that need
to be dispatched to other PEs.

• A detailed implementation of a DLB methodology in a real HPC ABMS
platform (Flame) and tested with three real AB models Susceptible-Infected-
Remove (SIR), Colorectal Tumour Growth (CTG) and Keratinocyte Colony
Formation (KCF).

1.8 Thesis Outline
According to the objectives and research method described above, the outline of
the remaining chapters of the work is as follows.

• Chapter 2: Load Balancing in SPMD ABMS applications. Intro-
duces and discusses concepts related to performance analysis and tuning of
SPMD ABMS applications. In addition, more detailed description of the
SPMD paradigm and ABMS application are also introduced.

• Chapter 3: Methodology Description. In this chapter, we present the
proposed performance improvement methodology, specifically designed for
SPMD ABMS applications for spatially explicit models.

• Chapter 4: Methodology Implementation. This chapter describes a
real HPC ABMS platform as testing scenario and provides description of
integrating our proposal within this real platform.

• Chapter 6: Conclusions. Concludes the work and presents the further
work and open lines for the performance improvement methodology for HPC
ABMS applications.

The bibliography completes the document of this work.

22 CHAPTER 1. INTRODUCTION

Chapter 2

Load Balancing in SPMD
ABMS applications

Agent-based (AB) modelling has already been widely used for the exploration of
varied research areas and in many instances modelling complex systems. However,
in many cases, these simulations show severe performance problems leading to
load imbalances and inefficient use of available resources. Given the nature of
AB simulations, uneven CPU computing and network communication are related
to the dynamic behaviour of the agents, resulting from the agents’ internal state
changes and external interaction rules. Moreover, performance problems can arise
from the way of handling the agent states and interactions by the simulation
platform in itself.

In general, agent-based modelling and simulation (ABMS) applications show
significant variations in the amount of computing and communication time as the
simulation proceeds. The causes of these variations are given by the large amount
of interactions among agents, and the variety of behaviour rules exhibited by
most of these models. Additionally, the evolution of the simulation may produce
dynamic changes in the workload since global agent’s behaviours may introduce
dynamic changes in the agent rules. Therefore, during a parallel execution of the
simulation, load imbalances are likely to appear.

Furthermore, since the large number of agents and complex interaction rules,
ABMS require HPC (High Performance Computing) infrastructures to satisfy
the computational requirements. In these cases, the large number of agents
produces even more computing imbalances and enormous amount of messages.
Consequently, these issues introduce unfit synchronisation phases which degrades
the global performance of the application resulting in an increase in the completion
time of the simulation steps. These issues need to be studied and mitigated as
soon as possible to achieve the desired performance enhancements.

Accordingly, correcting these issues involves dynamically handling computing

23

24 CHAPTER 2. LOAD BALANCING IN SPMD ABMS APPLICATIONS

and communication workloads. For this reason, to manage the computational
size of the models and dynamically adjust computing/communication workload,
a load balancing strategy is needed. The load balancing strategy will be the
responsible for making better use of the available resources through automatic
workload reconfiguration mechanisms. Summarising, the load balancing strategy
will keep controlled and minimised computing and communication imbalances
and, as a result, enabling simulations of complex and large AB models in a
reasonable time.

Within the HPC ABMS world, there are few well-established platforms
intended to run simulations in parallel/distributed environments and handle
large number of agents and complex interaction rules.Some of the most relevant
platforms (described in [95]) are RepastHPC [31], D-Mason [32], Pandora [96] and
Flame [28] which provide a native support to, among other features, collaboration
between executions on several physical nodes and the distribution of agents
between processing elements (PEs).

RepastHPC uses the same concepts as the core of RepastSimphony [78], that
is to say, it uses the concept of projections (grid, network) but this concept is
adapted to parallel environments. The agent models can be implemented using
C++ or ReLogo (a derivative of the NetLogo). The communications are handled
using MPI and Boost library [99].

D-Mason is the distributed version of the Mason platform designed to
overcome its limitations for large number of agents and facilitate parallel
simulations without rewriting Mason model codes. D-Mason uses the Java
language to implement the agent model and ActiveMQ JMS as a base to
implement communications.

Pandora is able to treat thousands of agents with complex actions and run
simulations using geographic information system (GIS) for spatial coordinates.
Pandora uses the C++ language to define and to implement the agent models
and automatically generates MPI code for managing the communications.

Flame simulation is based on the definition of finite state automata with
memory referred to as X-Machines [30], which are able to send and receive
messages at each state. The agent models are defined in a combination of C and
XMML language (extension of the XML language designed to define X-Machines)
and the parallel communication is carried out through the automatic generation
of C/MPI code.

According to [95], these platforms have been designed to target high perfor-
mance computing systems such as clusters, whereas others are more focused on
distribution on less coupled PEs such as a network of workstations. Furthermore,
the most used paradigm is SPMD (distributed using autonomous processing
elements) and only D-MASON uses a master-worker paradigm.

Finally, the most important ABMS platforms intended to HPC architectures

2.1. SPMD APPLICATIONS IN HPC 25

are programmed using the SPMD paradigm. These ABMS platforms have to
deal with imbalance problems inherent to AB simulations nature. In general,
agent based applications show significant variations in the amount of computing
and communication time as the simulation proceeds. Therefore, defining and
finding a proper general solution that improves the SPMD ABMS applications
performance is clearly necessary.

For this reason, this thesis presents a general policy that dynamically
balances the computational load of the simulation considering also the amount of
communication among the PEs.

This section introduces and discusses concepts related to performance analysis
and tuning of SPMD ABMS applications. In addition, a detailed description of
the SPMD paradigm and ABMS application intended to HPC environments are
also introduced.

2.1 SPMD applications in HPC

Most parallel applications are designed under the SPMD paradigm due to its
scalability features given by a decentralised control structure. In the SPMD
paradigm each processing element (PE) executes basically the same code, but each
PE computes a different section of the application input data [101]. Therefore, a
distribution of the input data is performed among the available PEs.

Figure 2.1: Data distribution and communication between neighbouring PEs in
SPMD.

This structure generally allows the data to be distributed even among the PEs
(see figure 2.1a)), where each PE is responsible for a defined portion of all input
data. The communication usually occurs between neighbouring PEs as shown in
Figure 2.1b. The amount of data to be communicated should be proportional to
the size of the boundaries/data-dependencies of the computed section, while the

26 CHAPTER 2. LOAD BALANCING IN SPMD ABMS APPLICATIONS

computing workload should be proportional to the volume of the problem.

Figure 2.2: Schematic representation of a SPMD application.

Commonly, SPMD applications have an initialisation phase where the input
data is read from disk, and an initial distribution of data to each PE or a
self-generating of the input data is performed. Figure 2.2 shows a schematic
representation of this paradigm. Also, depending on the problem, the parallel
application may periodically perform global synchronisations among all PEs for
gathering results or coordinate computing.

Therefore, SPMD applications have phases of computing and information
exchange (communication). These phases are repeated until the end of execution,
being separated by synchronisation logic points which are commonly called
iterations. Generally, the synchronisation phases only apply for data dependencies
and step explicit messages to satisfy these dependencies.

Figure 2.3 shows two iterations, each consisting of a computing and exchange
phase. With regard to the communications, the degree of data dependencies
among the PEs determines the complexity of communications during the execu-
tion.

2.1. SPMD APPLICATIONS IN HPC 27

Figure 2.3: Computing and exchange phases within an iteration.

Usually, when hundreds or thousands of PEs are used, a special emphasis
on programming is required, since the application have to be well-structured to
avoid load imbalance and deadlock problems [16]. In Addition, if the workload in
each phase is very different among the PEs, the cost of each phase is increased,
since this paradigm is very sensitive to any PE workload imbalance. Usually, a
single imbalanced PE is enough to cause a general level blockade that delays the
resolution of the problem (this will depend on the application, it could be global
or local), hence none of the PEs may move beyond the next global synchronisation
point.

In general, SPMD applications are typically very efficient when the en-
vironment is homogeneous and the data are well-distributed over the PEs.
Consequently, the data distribution may significantly impact the application
performance, especially if the application has irregular characteristics, wherein
the amount of workload changes during execution of the application [104, 97, 12]
as on most ABMS applications.

Therefore, when the computing workload or capacity of the different PEs is
heterogeneous, SPMD applications require the support of load balancing strategies
to be able to adapt the workload distribution during the application execution. In
the same way, SPMD ABMS applications require an adequate data partitioning
and load balancing policies to keep homogeneous workload as the simulation
occurs.

28 CHAPTER 2. LOAD BALANCING IN SPMD ABMS APPLICATIONS

According to the literature, most HPC ABMS platforms are designed under
the SPMD paradigm and do not include load balancing mechanisms. On the
contrary, most of load balancing studies take place usually in non-SPMD platforms
(commonly master-worker platforms), or usually the strategies are bound up to
the nature of the agent model. With this in mind, we focus on ABMS platforms
that run on parallel distributed environments under the SPMD paradigm (SPMD
ABMS).

2.2 Load Balancing in SPMD ABMS

Following up on this idea, the performance problems of ABMS applications
have their roots in the emergent behaviour of the agents that are dynamically
changing during the simulation. In accordance with this emergent behaviour, the
agents generate heterogeneous computing workload and large amount of varying
communications. On the one hand, the computing workload varies in accordance
with the agents’ dynamic internal state and the changes in the amount of agents.
While the communication workload, on the other hand, raises when the number
of agents dynamically increases and when the agents communicate to agents
belonging to other processing elements (PEs); thus increasing the number of PEs,
this external communication will also likely increase.

Hence, the dynamic agents’ organisation plays a critical role in the resulting
performance of the application because it impacts directly over the communication
dependencies. Since the changes in the ABMS performance are dynamically
generated by the development of the model execution, the load balancing solution
has to be also addressed dynamically. Taking into account all this, instinctively
when an ABMS application requires computing and communication workload
reconfiguration, the solution should be likely addressed into agent migrations
constrained by reducing the external-PE agents’ dependencies.

This also means that, regardless the load balancing approach, the agents
computing and communication variations introduced among the PEs need to be
monitored, measured, controlled and minimised. Considering all these issues the
approach should manage the PEs with excess of computing and communications
caused by excess of agents and messages among the PEs.

Having said all that, we conclude that a load balancing mechanism may require
to include a proper method to know the agent locations with respect to the PEs,
identifying the agents’ communication dependencies and migrating agents between
PEs. Finally, we need a set of rules to make these elements work together with the
purpose of performing global workload reconfigurations while the communication
is minimised.

2.3. LOAD BALANCING COMPONENTS 29

2.3 Load Balancing Components

The agents are constantly moving and changing along with the simulation
progress. In addition, during the system progress, agents might be able to
disappear or reproduce or simply perform more computing/communication work-
load. These behaviours contribute to generate unexpected workload imbalances.
Furthermore, after executing an agent migration operation the overall status of
the simulation changes as a result of the agent relocations across the processing
elements (PEs).

Therefore, identifying the agents involved in these dynamic workload be-
haviours would help to make better and more accurate reconfiguration decisions.
For this reason, we consider that achieving a proper representation of the agent
simulation system is a fundamental part of the entire load balancing process.
Then, the reconfiguration decisions may command migration of agents based on
the information retrieved from the agent system representation.

2.3.1 Agents System Representation (ASR)

The ASR is the mean by which the load balancing will understand the global
and local behaviour of the agent in the simulation. The ASR has to provide
information to diagnose the workload imbalance spots and help to identify the
relation between such computing and communication volumes with the agents. It
has also to allow retrieving agent spatial locations and their locations across the
PEs.

Additionally, the information has to help to determine the agents’ communi-
cation relations in order to perform proper migration decisions. In the same way,
the design of the ASR has to take into account providing the required information
for partitioning mechanisms.

Furthermore, building the ASR has to be feasible in runtime. This means
that the construction of such ASR should not stop the application execution
and neither have excessive CPU and memory requirements. Likewise, the stored
agents’ performance information should not be too large in such a way that it
cannot be handled. All these points usually become particularly important when
scalability is desired in large and complex simulations.

2.3.2 Agents Migration

By means of migrating agents features, the load balancing must be able of
transferring agents from a PE to another in order to modify the workload of such
PEs and, consequently, affect the global workload distribution of the simulation.

Migrating agents is not an easy task; not only it involves sending and receiving
data over the network, but also stopping the simulation until all the relocated

30 CHAPTER 2. LOAD BALANCING IN SPMD ABMS APPLICATIONS

agents are totally reconnected with the platform components involved in the
simulation. Basically, the agents need to be disassociated from their original
PEs, and subsequently reconnected to their recipient PEs. Eventually, the new
agents distribution has to be communicated to the implicated PEs.

As for the ASR, the migration operation has to keep low overhead to reduce
its impact over the runtime. The performance of a migration operation is directly
affected by issues such as the size and number of agents to be migrated, the number
of involved PEs, and in second instance by the performance of the algorithms
involved in handling the entire migration.

As efficiently managing agent migration can be complex, nowadays there are
a few parallel simulation environments that include some features intended to
migrate agents, but they normally are not truly focused on supporting agent
migrations or some sort of workload reconfiguration strategy.

In general, an agent migration mechanism is necessary to implement policies
for workload redistribution. In addition, it should be noted that a workload
reconfiguration criterion must be established to decide which agents should be
sent and when the migration should be performed.

2.3.3 Tuning Decisions

Nowadays, load balancing has been studied extensively in distributed systems,
but the intelligence used for reconfiguring the workload and improving the
performance varies according to the problem nature. This is rooted in the wide
range of parallel applications and problems. Additionally, the different methods
used for correcting the imbalance problems can also vary according to the trade-off
between various issues such as performance goals/targets, the expected gain, the
overhead for executing the load balancing, etc. For these reasons, it is very
difficult to generalise the tuning decisions and solutions applied to a wide range
of applications.

Apart from that, in the ABMS case, it is very important to recognise/iden-
tify/study the nature and implementation way of the AB model, because these
may establish a different set of computing and communication patterns among
the PEs.

Notwithstanding these difficulties, we can define some key aspects to establish
appropriate rules to deal with the imbalance problem. In conjunction with
defining these rules, the measure points and the information required for executing
such decision will appear.

In the tuning decisions, the way of monitoring the agents may directly affect
the application performance. In these sense, the way of measuring workload has to
be defined including if we capture and store measures, for example, by individual
agents, groups of agents, agent’ types, spatial blocks, PEs, etc. Moreover, we
must also define which computing/communication metrics are of interest.

2.4. SUMMARY 31

Additionally, choosing a centralised or decentralised load balancing approach
may severely restrict the measure points, comparison procedures and decision
criteria. Along with this, it must be determined if the decisions are taken and
executed by all the PEs or groups of them. Summarising, we must decide the level
of global performance knowledge required, under what performance conditions the
load balancing is executed and based on what criteria.

Considering such aspects, a set of reconfiguration decisions can be established
to enhance the application performance. However, as it was mentioned in the
previous section, it is very important to take into account the overhead introduced
by such decisions in order to build an efficient load balancing strategy.

2.4 Summary
Throughout this chapter, we have shown the SPMD paradigm operation because
most parallel applications are implemented with this structure due to its
scalability features. In the same way, large scale ABMS platforms are designed
under this paradigm (SPMD ABMS). Therefore, to implement a load balancing
solution for SPMD ABMS, understanding the advantages and inefficiencies of
SPMD paradigm is essential.

Additionally, to achieve good performance, it is required to consider many
aspects, such as: communications, problem nature, data dependences, the internal
structure of storage, programming paradigm, HPC architecture, etc. For this
reason, there is not a single solution to fit all the imbalance problems. Because
of this, the load balancing strategies can be developed varying the problem point
of view and solution scope.

In general, we have concluded that all the tuning decisions included in a
load balancing strategy for SPMD ABMS applications have to be performed
dynamically because the agents behaviour variability. Likewise, we have separated
the components into three categories: Agents System Representation (ASR),
Agents Migration and Tuning Decisions.

The ASR provides the related agent information with their associated
performance features/metrics and location across the processing elements (PEs).
The Agent migration consists of everything related to transferring agents between
PEs. Lastly, the Tuning Decisions comprise all the rules required for deciding a
global workload reconfiguration of the application.

32 CHAPTER 2. LOAD BALANCING IN SPMD ABMS APPLICATIONS

Chapter 3

Methodology Description

Efficient simulation of large number of agents with complex interaction rules in
High Performance Computing (HPC) systems represents an important challenge.
Nowadays, thanks to the computing resources available, many complex agent-
based (AB) models can be simulated in a reasonable time. Nevertheless, these
applications show severe performance problems mainly due to load imbalances,
inefficient use of available resources, and improper data partition policies.
Moreover, the variable workload, produced by the emergent behaviour of the
agents, usually introduces performance inefficiencies across the parallel system at
runtime.

Most performance problems in agent-based modelling and simulation (ABMS)
parallel platforms are related to the intrinsic dynamic workload variability
throughout the simulation execution. In these cases, these platforms require load
balancing (LB) strategies to reconfigure the workload. Usually, these strategies
try to detect the application imbalance, calculate a distribution of agents that
would correct the problem, and perform the corresponding migrations of agents.

For calculating a balanced distribution of agents, a dynamic load balancing
(DLB) strategy must be able to predict the performance of the simulation for
different agent distributions. This prediction could be a very difficult task in
simulations with large number of agents with complex interaction rules.

The main goal of this thesis is to propose a novel strategy that enables dynamic
performance enhancements for HPC agent-based applications with agents defined
with a relative spatial position in geometric space, namely spatially-explicit
models [51, 103, 104]. The proposed methodology tunes dynamically the execution
of agent-based applications redistributing the agents for minimising computation
imbalances, but taking also into consideration the communication among agents
in order to reduce the communication overhead. As a result, a HPC agent-based
platform will be able to simulate a large number of agents with complex rules as
fast and efficiently as possible.

33

34 CHAPTER 3. METHODOLOGY DESCRIPTION

The methodology introduces a strategy to reduce imbalance problems as the
simulation proceeds. The methodology adjusts the global simulation workload
migrating groups of agents among the processing elements (PEs) according to
their computation workload and their message connectivity map modelled using
a hypergraph. A hypergraph is a graph generalisation that, in this case, allows
more accurately modelling agent system interactions. This hypergraph is lastly
partitioned using a parallel partitioning algorithm to decide a proper workload
distribution.

In this thesis, we present the methodology defined to dynamically improve the
performance of ABMS applications developed with the SPMD paradigm, but we
do not disregard that such methodology can be extended to others paradigms.

The rest of the chapter is organized as follows. The following section (3.1)
discusses relevant issues involved in LB strategies for ABMS applications and
introduces important concepts associated to our strategy. In Section 3.2, the main
characteristics of the performance improvement methodology for HPC ABMS
applications are described. Finally, the performance improvement methodology
is summarised and discussed in Section 3.3.

Before proceeding with the methodology explanation, it is necessary to
discuss the initial assumptions about developing LB strategies for HPC ABMS
applications.

3.1 Discussion

Generally, to facilitate the parallel execution of ABMS applications, the input
agent population is divided into smaller groups that can be processed separately.
However, in many cases, these applications/platforms show severe performance
problems mainly due to load imbalances, inefficient use of available resources, and
improper data partition policies. At the same time, the roots of these performance
problems can be grounded on the dynamic behaviour of the agents; thus, this
makes even harder to effectively tackle the simulation performance problems.

In HPC agent-based applications, the load imbalances are commonly remedied
by redistributing the agents to obtain a similar computational workload and
reduce the communication overhead for all processing elements (PEs). In these
cases, to achieve a better workload adjustment, the agents migration should keep
together the agents that work and communicate more frequently for the purpose
of reducing the external-PE agents’ communications and dependencies. In this
way, the reconfiguration will impact the computing as well as the communication
workload. However, to develop an efficient strategy to reconfigure the workload
according to this principle, the agents’ communication relations and computing
workloads need, in first place, to be traced, analysed and understood.

In order to understand these agent dependencies, the way of representing

3.1. DISCUSSION 35

the agent interactions, called Agent System Representation (ASR) in previous
chapter, plays a significant role in the LB approach. In fact, depending on the
accuracy and complexity of the ASR, the tuning decisions might be more or
less sophisticated and effective. Intuitively, it should be evident that having more
detailed information about the agents’ behaviour, platform and PEs performance,
will enable the strategy to better diagnose the root causes of the imbalance
problems and, therefore, to apply better tuning decisions.

However, a dynamic strategy should be able to take decisions efficiently, i.e.,
in a short time, and minimising the intrusion and number of required resources,
building and utilising an accurate and complex ASR may significantly increase
the strategy execution time and its resources requirements.

For instance, [70] proposes a schema that dynamically adjusts the computa-
tional workload and migrates agents, notwithstanding, the communication among
PEs is not considered. In this case, a minimalist ASR is built considering the joint
agents workload and the quantity of agents for each PE. Due to the lack of detailed
information about the agents communication and imbalance spots, the dynamic
load balancing (DLB) has low overhead when balances the computing workload
but totally forgets the agents communication dependencies and, therefore, in many
cases, it substantially increases the amount of messages among PEs.

On the other hand, building an ASR representing each particular agent and
message would be extremely accurate and would allow to determine the optimal
distribution of agents in terms of computational and communication workload.
However, the amount of memory and time needed to build this ASR would
unaffordable for any simulation involving thousands or millions of agents. In
such a case, in term of resources, the CPU/memory requirements for storing this
information may also become unmanageable when a large number of agents with
complex interaction rules are simulated.

Additionally, in some cases, the AB simulation may perform massive creation
of new agents leading to an indefinite domain expansion, while, in other cases,
the elimination of agents may shrink the domain. Therefore, the ASR must be
flexible, so it can be efficiently adapted to these changes in the agents’ domain.

According to these ideas/notions, we introduce a dynamic load balancing
methodology that tunes the global simulation workload by migrating groups of
agents, simplifies the ASR construction requirements using a mixed clustering-
rastering strategy, understands the simulation through a hypergraph-view that
brings a more suitable agent system representation than graphs, and, finally,
makes tuning decisions based on a hypergraph partitioning algorithm. In order
to clarify the methodology overview, before fully describing the approach, we
have considered convenient to briefly introduce certain concepts associated to our
solution.

36 CHAPTER 3. METHODOLOGY DESCRIPTION

3.1.1 Clustering

Clustering is a technique for exploratory data analysis, widely used in applications
ranging from statistics, computer science, biology or social sciences or psychology
[112]. Informally, clustering is a division of data into groups of similar objects[10],
where similarity is determined by some provided function or sort criterion [52].

Formally, given a set of n objects, the process of clustering partitions the
set into unique subsets such that the objects in each subset share specific
common characteristics between themselves and dissimilar to characteristics of
other groups. These common characteristics can usually be specified as some
mathematical relation and the objects can be viewed as points in a n-dimensional
space. In terms of geometry, clustering divides the points into groups according
to their spatial location [52]. Figure 3.1 shows five clusters of a set of points in a
two-dimensional space (each rectangle represents a cluster). In accordance with
the geometric point of view, points in the same cluster are somewhat closer in
terms of their Euclidean distance to one another than to points in other clusters.

Figure 3.1: A set of points that is partitioned into five subsets [52].

Thanks to clustering, applications and algorithms can work with a small
amount of data, manageable set of groups and, to a lesser degree, easier data
processing [52]. Nevertheless, clustering data necessarily implies losing certain fine
details, but achieves a simpler representation [10]. There are several clustering
algorithms in the literature, but they can be broadly categorised into Partitioning-
based, Hierarchical-based, Density-based, Grid-based and Model-based [41]. In
this work, the ASR uses a Grid-based algorithm which divides the space into cubic
regions (grids). In general, Grid-based clustering algorithms have fast processing
time and its performance directly depends on the size of the grid, which determines
the resulting number of groups from the spatial division. However, the cluster
construction and utilisation would collapse the CPU/memory resources when

3.1. DISCUSSION 37

processing a large simulation space and very small grid divisions.
In this sense, some AB models perform constantly random creation/elimina-

tion of agent resulting in dynamic expansion/shrink the simulation space (space
occupied by agents). This behaviour requires techniques intended to simulate
an ever expanding/shrinking space and variable amount of agents. In these
cases, the ABMS platforms must be assisted by techniques for minimising the
simulation domain covered by grids and allowing the dynamic spatial expansion of
the simulation domain. In this manner, the simulations can avoid early workload
volume limitations and lack of CPU/memory resources.

3.1.2 Domain Trimming

For the purposes of this work, we call Domain Trimming (DT) the method for
determining the areas of the whole simulation domain that are occupied by
agents. In this way, the ASR only includes these areas and, consequently, the
performance analysis and tuning will only consider the portion of the domain
occupied by agents. In addition, this method allows for the adaptation of the
ASR to constantly/randomly growing and shrinking domain. This idea is taken
from rasterisation techniques which, for a given geometric primitive shape, figure
out which pixels the primitive covers for a perspective projection. The primitive
is converted to a two-dimensional image where each point of this image contains
such information as colour and depth. This technique, in part, determines which
pixels/squares/zones of an integer grid are occupied by the primitive. Thus, the
resulting shape determines the visible areas to be processed and the hidden areas
outside to the projection [85].

On the basis of this idea, the spatial domain can be explored to determines
which is the actual domain or areas covered by agents, create the ASR and divide
the spatial space in accordance with these areas and, on the other, discard the
empty areas and the spatial limits of the simulation. Similar approaches have been
designed in 2D particle simulations [11]. Proceeding in this manner, it is possible
to focus the available computational resources on processing these occupied areas
and model an indefinitely large domain which randomly grows and shrinks.

3.1.3 Graphs & Hypergraphs

Graphs theory is a major and very popular branch of mathematics concerned
with combinatorics [17]. It is highly utilised to model many types of relations and
abstract complex systems into a simplified representation [91]. In general, the
graphs theory is an important mathematical tool in a wide range of subjects in
diverse fields, such as computer science, physics, biology, or social systems [114].

Formally, a graph G=(V,E) is a finite and non-empty set of vertices (or nodes)
V and a set of edges (or links) E. If the edges are ordered pairs (u, v) of vertices,

38 CHAPTER 3. METHODOLOGY DESCRIPTION

Figure 3.2: Graph example with three vertices (v1, v2 and v3).

then the graph is said to be a directed graph, and u is called the tail and v is called
the head of the edge (u, v). If the edges are unordered pairs (sets) of distinct
vertices, also denoted by (u, v), then the graph is said to be undirected graph.
Hereunder, we introduce some terminology that is relevant to understanding this
thesis.

(1) The number of vertices in a graph G=(V,E) is denoted by |V |, which also
defined the order of the graph, that is say, |V | measures the size of V by its
number of vertices.

(2) If there are weights associated with the edges then the graph is a weighted
graph [3].

(3) Two vertices u and v are adjacent if they are connected by an edge, in other
words, (u,v) belongs to E.

(4) From this, when the graph is undirected the adjacency relation is symmetric,
but when the graph is directed the relation is not necessarily symmetric [33].

(5) The degree of a vertex, also written as d(v), is defined as the number of
vertices adjacent to it.

(6) A subgraph of a graph G is a graph, each of whose vertices belongs to V(G)
and each of whose edges belongs to E(G) [114].

A hypergraph H on a set of vertices V is a pair (V,E) where E is a set
of non-empty subsets of V called hyperedges such that

∪
E=V. This implies in

particular that every vertex is included in at least one hyperedge. In doing so, a
graph is a particular case of simple hypergraph where every hyperedge is of size
2 [19]. Unlike graphs, the number of vertices and hyperedges may differ, making
the model suitable for complex combinatorial problems.

In a hypergraph more than two vertices may be linked, so the edges (named
hyperedges) of a hypergraph are (arbitrary) subsets of the vertex set. A standard
reference of this theory is due to [9]. The hypergraphs generalise standard graphs
by defining edges between multiple vertices instead of only two vertices. Hence

3.1. DISCUSSION 39

Figure 3.3: Hypergraph example with three vertices (v1, v2 and v3) and three
hyperedges (h1, h2 and h3).

some properties must be a generalisation of graph properties and many of the
definitions of graphs carry verbatim to hypergraphs [18].

Especially in computer science, graph theory is widely applied in research
areas such as data mining, image segmentation, clustering, image capturing,
networking, etc. [102]. Due to their simplicity and generality, graphs are
powerful tools for modelling complex problems, even becoming one of the pillars of
theoretical computer science [62]. In this context, graphs help in solving domain
dependent optimisation problems modelled in terms of weighted or unweighted
graphs [84].

Hypergraph has become increasingly popular over the last decade because it
provides a better representation for certain problems, for instance modelling data
exchange, but the algorithms for processing hypergraphs are usually slower than
the corresponding ones for graphs [89].

For complex problems, graphs may not fit in the memory or cost too much
to partition. In these cases, graphs algorithms could be parallelised to obtain
results in a reasonable time. Several graph processing libraries has been developed
with the objective of assisting applications. Some of these libraries offer parallel
versions of the graph processing algorithms, such as ParMetis [60], PT-Scotch [27],
and Zoltan [38]. However, even with these libraries, parallel graph algorithms (and
in particular, hypergraph partitioning) are notoriously difficult to implement [62].

3.1.4 Graph/Hypergraph Partitioning Algorithms

Graph partitioning, also known as k-way partitioning, is one of the most relevant
problems in graph theory, also a well-studied problem in combinatorial scientific
computing, and extremely important in parallel computing. Since a hypergraph
is a generalisation of a graph wherein edges can connect more than two vertices
and are called hyperedges [80], the following concepts are only explained in term
of graph but we consider they can be also extrapolated to hypergraph.

40 CHAPTER 3. METHODOLOGY DESCRIPTION

The partitioning problem can be applied to weighted or unweighted graphs,
and can be stated as finding a given number of vertices subsets, which meet the
following requirements: (i) the cardinality of all subsets is the same and (ii) for
each vertex in a subset, the number of adjacent vertices belonging to other subsets
is minimal [6]. Graph partitioning is an NP-hard (non-deterministic polynomial-
time hard) problem and solutions are generally derived using approximation and
heuristic algorithms [87, 80].

The problem of splitting a large irregular graphs into k parts is a universally
employed technique on unstructured grids for finite element, finite difference
and finite volume techniques as well as in parallelisation of neural networks
simulations, particle calculation and VLSI circuit design. Specifically, in parallel
computing, an important application is the mapping of data and/or tasks to
processing elements (PEs), with the goals of balancing the load and minimising
communication through evenly balancing the weights of the graph parts.

There are several variations of graph partitioning heuristics, naturally, there
is a trade-off between runtime and solution quality [88] and, in such cases, the
runtime of hypergraph partitioning algorithms is much higher than the one of
graph partitioning [84].

The graph partition problem is defined on a graph, G=(V,E), with a set of
nodes V and a set of edges E, where, for a weighted graph, each edge e ∈ E has
a weight we associated with it. The problem is to find, among all partitions of V
into equally sized sets V1 and V2, the partition that minimises the total weight of
the edges in the cut separating V1 from V2.

More generally, the goal is to divide V into equal sized k parts (V1,...,Vk)
while minimising the edges cuts. The graph partitioning problem is already NP-
complete for the case k=2, which is also called the Minimum Bisection problem. If
k is not constant the problem is much harder [6]. This partition decision problem
is also known as uniform graph partitioning or balanced graph partitioning and it
was proved NP-complete in [49].

The graph partitioning techniques can be mainly categorised as local and
global algorithms. The algorithms based on local improvement operate over sub-
graphs from an initial partition and try to decrease the cut size (sum of weights
of edges crossing between subsets) by some local search method. Thus to solve
the partitioning problem such algorithms must be combined with some method
that creates a good initial partition [45]. Within this category we can mention
Kerninghan-Lin [63] and Fiduccia-Mattheyses [42] algorithms.

On the other hand, the global algorithms directly partition a graph into k
partitions based on properties of the entire graph. Within this category we can
mention spectral partitioning algorithms [43], which the resulting partitions are
derived from the spectrum of the adjacency matrix. In this way, the multilevel
paradigm is a particular partitioning schema for reducing the computational

3.2. METHODOLOGY OVERVIEW 41

complexity, and produces high quality partitions in small amount of time [61].
A multilevel partitioning algorithm has one or more stages, basically coarsening,
initial partitioning and uncoarsening. In these algorithms, a graph G is first
coarsened down to a few vertices, reducing its size, then k partitions of this much
smaller graph are computed, and then these partitions are refined to the original
graph (finer graph). In such refinements the edge-cut is decreased [61].

3.2 Methodology Overview

In this section, the main characteristics of the proposed load balancing method-
ology for HPC ABMS applications are described. The objective of the proposed
methodology is to provide dynamic workload adjustments in order to effectively
enhance the performance of the HPC agent-based application at runtime.

Since there are different ways to model and implement agent-based systems, in
our solution we consider spatially-explicit models, which are commonly utilised to
model real-world spatial data for studying complex spatial systems [20, 92, 64, 104,
103]. In the literature, spatially-explicit models are also known as agents modelled
in ”knowledge space” [51], whereby the environment could be a space and the
agents have coordinates to indicate their spatial location and define neighbouring
communications.

Figure 3.4: General description of the methodology.

42 CHAPTER 3. METHODOLOGY DESCRIPTION

Figure 3.4 shows an schematical representation of this methodology, which
consists of two main phases: monitoring and tuning. In the monitoring phase, the
activation mechanism measures the parallel application workload at runtime to
identify performance problems and evaluates its impact according to a predefined
threshold value, and, when necessary, it fires the load balancing strategy. The
load balancing strategy is defined in the tuning phase, which contains three main
stages: the agent system representation (ASR), the tuning decisions and the agent
migration. The ASR is carried out through a clustering algorithm based on a
grid spatial division (representing groups of agents as annotated grids), then, the
global workload is modelled by representing the grids’ workload as a hypergraph.
Thereafter, the tuning decisions are determined through a hypergraph partitioning
algorithm which calculates a new grid configuration. From there, the agent
migration is undertaken in order to fulfil the grids reconfiguration decisions (the
hypergraph resulting new partitions), and therefore adjusting the global workload.

It is noteworthy that other options to implement ABMS exist, there could
be non-spatial representation at all, but agents linked together into a network in
which the only indication of an agent relationship to other agents is the list of the
agents to which it is connected by network links [100, 50]. In such cases, we do not
rule out the possibility of utilising our solution, but the way of building the ASR
has to be suited for applying a different clustering algorithm and agents’ relations
interpreting procedure. For the clustering algorithm, a different relation function
or sort criterion has to be defined in order to understand the agents connection
characteristics for grouping agents. Once this is done, it is possible to achieve an
ASR and, from this, build a hypergraph representation thereafter.

3.2.1 Activation Mechanism

In order to do the appropriate performance tuning, it is necessary to have a
thorough knowledge of the application and its agent’s development. However,
estimation of performance of SPMD ABMS applications is a difficult task. In
many instances, the performance varies at runtime by issues such as: amount of
computation, interaction pattern between agents, and environmental influences.
All these issues may be difficult to analyse and very costly to track in each
iteration. Moreover, the resulting performance monitoring and evaluation may
frequently activate the tuning phase which is even more costly.

In order to minimise its overhead, the measurement stage performs a coarse
grain performance tracking, that is to say, only capturing the iteration execution
time for all PEs. In the same manner, the evaluation stage decides the
global workload performance grounded in a permissive imbalance threshold value,
ensuring the tuning phase is only triggered if really necessary.

The measurement and evaluation stages are detailed hereunder, assuming
that the simulation is implemented as a parallel iterative application. In all the

3.2. METHODOLOGY OVERVIEW 43

expressions, the index j refers to the jth-iteration of the simulation and the index
i to the ith-processing element.

3.2.1.1 Measurement

In order to be able to calculate the performance expressions, some application pa-
rameters must be measured. These measurements are collected for understanding
the runtime workload and, provide a global view of the application performance.
In performance model related studies, these parameters have been called the
measure points [23, 94, 76, 4] and are the following:

iteration time (titer(ij)) have to be measured in order to calculate the mean
processing time µj , and the total iteration time.This parameter could be
obtained by measuring the wall time of the ith processing element (PE) for
the jth iteration.

number of agents (nagents(ij)) have to be measured in order to estimate the
actual workload(Ewij) including agent creation and elimination in the ith
PE during the jth simulation step. This parameter is obtained by measuring
the number of agents at the end of the jth iteration in the ith PE.

Our approach considers these measurements enough to analyse the jth total
workload and minimise the overhead of the activation mechanism phase. Logically,
other measurements (explained later) will be needed for the tuning phase, but they
are only going to be taken if the activation mechanism triggers the tuning phase.

3.2.1.2 Evaluation

We have explained that agent-based applications workload is highly variable
and, consequently, achieving an ideal load balancing is nearly impossible. In
addition, we have also mentioned that heuristic algorithms should be used for
balancing the application workload because getting the optimal load balancing
is a NP-hard problem. These algorithms find sub-optimal solutions [66], i.e. the
workload balance is improved but it is not perfect, in a reasonable time. For these
reasons, we have defined an evaluation expression grounded in a permissive and
configurable imbalance threshold value.

The imbalance threshold, called just threshold, is a value between 0 and 1 that
represents a percentage (between 0 and 100) of acceptable imbalance degree in
respect to the mean time of all PEs (µj for jth iteration), µj is calculated with
equation 3.1.

µj =

NP E∑
i=1

titer(ij)

NP E
(3.1)

44 CHAPTER 3. METHODOLOGY DESCRIPTION

With the purpose of detecting imbalances, the permitted tolerance time is
calculated using the threshold value. With equation 3.2, it is possible to calculate
the tolerance time which the permitted time deviation from the mean time and
subsequently the tolerance range is calculated with equation 3.4 which determines
the permitted imbalance bounds in terms of times.

tolerancej = µj × threshold (3.2)

tolerance rangej = [µj − tolerancej , µj + tolerancej] (3.3)

Figure 3.5 depicts an example of the iteration runtime tolerance range for 16
PEs, green bars are inside the tolerance range, while orange and blue bars have
runtimes out of permitted range.

Figure 3.5: PE iteration workloads under tolerance analysis.

The evaluation stage activates the tuning phase when an PE iteration runtime
is detected outside the tolerance range, expressed mathematically in 3.4.

tuning =⇒ ∀titer(ij) ∈ titer(j), ∃titer(ij) : titer(ij) ̸∈ tolerance rangej (3.4)

3.2.2 Agent System Representation

The tuning phase starts with the Agent System Representation (ASR) creation
stage. The ASR provide information to diagnose the workload imbalances and
help to identify the relation between computing and communication volumes with
the agents’ behaviours and distribution.

The proposed ASR is comprised of the Grid-based Spatial Clustering and the
Hypergraph Grid Workload Modelling stages. In the Grid-based Spatial Clustering
stage, the agents’ locations and workload is mapped/traced through a grid-based
clustering algorithm. During the Hypergraph Grid Workload Modelling stage, the
resulting grids are interpreted and modelled as a hypergraph.

3.2. METHODOLOGY OVERVIEW 45

By means of this ASR composition, we are able to provide detailed information
of the agent behaviours and PEs performance for dynamic ABMS in such a way to
minimise the CPU/memory resource requirements and allow to model indefinitely
large domains. The ASR creation proposed stages are detailed below.

3.2.2.1 Grid-based Spatial Clustering

This stage organises the agent locations in relation to the PEs with the application
workload. Since agents are continuously changing in terms of quantity, location
and workload, the method to associate agent locations, workloads and PEs has to
be efficient. In term of resources, the CPU/memory requirements for processing
and storing such information may also become unmanageable when a large number
of agents with complex interaction rules are simulated.

Our ASR is based on clustering the spatial regions during the simulation into
grids. First of all, we define a grid as a virtual rectangular/cubic region in the
2D/3D space domain. Additionally, each grid covers a unique region in the space.
The grid covering extension is established according to a constant named grid size.
This grid size is used for defining the grid dimensions which are calculated as
grid sizeNdim (Ndim is number of dimensions).

The value of grid size should be estimated in accordance with the influence -
range of the agents. This influence range is usually called halo in the literature
[82] and it can be roughly defined as the maximum distance an agent message can
reach (it is explained in next subsection). Consequently, grid size should be also
estimated finding a compromise between minimising the number of neighbours of
each grid (grid size=halo), which minimises communication, and minimising the
number of grids in order to obtain a manageable the set of grids and reduce the
strategy overhead. Basically, if the halo is large then grid size should be a fraction
of the halo, while if the halo is small then grid size should be a multiple of the
halo.

In the same manner, we propose creating grids only in the space occupied by
agents in order to reduce CPU/memory requirements, our approach idea is taken
from the known technique named rasterisation. The defined clustering algorithm
is rooted on this principle, so the grids are only created according to the space
occupied by agents [85]. Similar approaches have been designed in 2D particle
simulations [11]. It is worth mentioning that, thanks to this approach, it is possible
to model an indefinitely large domain through only keeping in memory the grid
occupied and not storing and analyse the whole space domain.

46 CHAPTER 3. METHODOLOGY DESCRIPTION

gidxyz···Ndim
=



gidx ←
⌈
agentcoordinate-x/grid size

⌉
gidy ←

⌈
agentcoordinate-y/grid size

⌉
gidz ←

⌈
agentcoordinate-z/grid size

⌉
· · ·

gidNdim
←

⌈
agentcoordinate-Ndim

/grid size
⌉

(3.5)

Under our approach, the grids are identified by a unique compound id
(grid identifier). The grid identifier (gid) contains one integer value for each
dimension of the agents’ coordinates, for instance in a 3D model the grid identifier
will be a ternary grid identifier (a combination of x,y,z or gidx,y,z). Through
equation 3.5 every agent is associated to a unique grid. This equation divides each
component of the agent coordinates by grid size and calculate its least succeeding
integer, also known as ceiling function (ceiling(x) = ⌈x⌉ is the least integer greater
than or equal to x). Figure 3.6(a) shows a 2D example of our grid definition.

(a) (b)

Figure 3.6: (a) Agents contained in the 2D grid with identifier (1,1).
(b) Example of known space in a 2D space.

Using this grid definition, an agent can be associated to a unique virtual
grid identifier with independence of the PEs where it is placed. The virtual space
covered by grids is named known space, so in case a new agent is located outside
of the known space a new grid identifier appears in our ASR, hence the known

3.2. METHODOLOGY OVERVIEW 47

space will consist of a set of grids covering only the agents’ occupied regions of
the space (Figure 3.6(b) depicts this principle in a 2D space).

3.2.2.2 Hypergraph Grid Workload Modelling

As a result of clustering an ABMS domain with the previous grid method, sets of
agents are associated to a unique virtual grid. In this stage, we propose to group
the exchanges and workload measurements of the agents belonging to each grid in
order to analyse and solve the load balancing problem in terms of groups of agents
(grids). In this way, it is possible to reduce the computational complexity and the
CPU/memory requirements. Additionally, the joint measurements and exchanges
of the agents contained in a grid can be modelled using graph representation,
more precisely in a hypergraph which allows more accurately modelling the agents
system interactions.

As has been mentioned above, the agent influence range is also known as halo.
We consider the halo as the spatial region wherein an agent interacts with others
outside their own local grid (called grid influence zone). In accordance with the
aforementioned, the grid influence zone is calculated as the union of its contained
agents’ halos (agents’ influence range), but, depending on the AB model, this may
be difficult and costly to calculate and model.

Figure 3.7: 2D example of grid interactions.

In order to simplify the identification of the agents’ influence range operations,
we assume a single influence zone for all the agents of a grid. Figure 3.7 shows
this approach. The grid influence zone is compound by all grids in a distance less
than or equal to the distance of its maximum agent halo from its grid bounding
box.

48 CHAPTER 3. METHODOLOGY DESCRIPTION

Ngrid ←
⌈max(agent range ∈ gidxyz···Ndim

)
grid size

⌉
(3.6)

In this approach, it is possible to determine in advance the grids included in
the influence zone using the agent related grid identifier. First, the number of
grids corresponding to an agent influence range (Ngrid) has to be estimated with
expression 3.6. Then, using 3.7, the grid identifiers involved in the exchanges can
be determined for each grid and, with it, the method is abstracting and simplifying
the communication pattern between agents.

influence zone =⇒ gidxyz···Ndim
,



x ∈ [x±Ngrid]
y ∈ [y ±Ngrid]
z ∈ [z ±Ngrid]
· · ·

Ndim ∈ [Ndim ±Ngrid]

(3.7)

At this point, sets of agent interactions can be represented as grid interactions
wherein each grid has, at least, one outgoing exchange with many receiving grids.
In this regard, the communication representation may be modelled as a graph
but graph edges do not accurately represent the actual interaction of the agents
because agent messages may have more than one recipient. For this reason, the
hypergraph partitioning approach represents agent interactions better than the
graph approach.

Figure 3.8: Hypergraph modelling example of a 2D system with five grids (vertices
grid1, grid2, grid3, grid4 and grid5) and their outgoing exchanges (hyperedges
e1, e2, e3, e4 and e5).

3.2. METHODOLOGY OVERVIEW 49

For this reason, we propose modelling the grids and their exchanges as a
hypergraph that represents spatial grids and their interactions as vertices and
hyperedges, respectively (see Figure 3.8).

Modelling the simulated system through this hypergraph approach, describes
agents’ relationships in terms of groups of agents. In the same way, it is possible to
determine the groups of agents that communicate more than others by analysing
their hyperedge structure and characteristics (communication volume).

Up to now, we have described the generation of an unweighted hypergraph due
to a lack of measurement introduction to our ASR so far. However, it is possible to
build a weighted hypergraph including computing and communication workload
measurements associated to the set of agents of each grid. In this manner, the
ASR can also depict more meaningful information for solving imbalance problems.

For these reason, we include as computing measure points the computing
time of the agents associated to each grid would provide a more accurately
description of the computing volume of the application. Moreover, we include as
communication measures the amount of outgoing messages of the agents related
to the grids in order to provide a better representation of communication volume
of agent subsystems. Including these weights, a more accurate vision of the
simulation workload can be modelled by combining computing and communi-
cation measurements and, therefore, be more consistent with the objective of
diagnosing the workload imbalances and helping to identify the relation between
such computing and communication volumes with the agents’ behaviours and
distribution.

3.2.3 Hypergraph-based Load Balancing

In general, a potential load balancing (LB) solution should rearrange the
workloads of PEs with excess (or insufficiency) of computing/communications
caused by excess (or insufficiency) of agents and messages among the PEs. In
addition, instinctively when an ABMS application requires computing/communi-
cation workload tuning, a solution should be implemented with agent migrations
constrained by reducing the external-PE agents dependencies.

In terms of workload, we introduce that this particular tuning problem can
be essentially expressed as a problem of splitting large irregular components and
their interconnections into k parts, wherein each resulting k-part represents a
processing element (PEi) belonging to the set of all available PEs (NP E) in
the simulation. Therefore, this proposal perfectly fits the definition of graph
partitioning which evenly splits these large irregular components (vertices), while
reducing the interconnection cuts (edges).

Following the same grid-based approach defined in the previous subsection,
we propose making tuning decisions in terms of groups of agents, this enhances
the local and global application performance.

50 CHAPTER 3. METHODOLOGY DESCRIPTION

Our tuning decisions are grounded in a hypergraph partition. The problem
is defined on a hypergraph, H=(V,E), with a set of grids V and a set of grid
outgoing messages E, where each vertex v ∈ V has a weight wv associated with
it, such that wv is its joint agent computing time, and each hyperedge e ∈ E has
a weight we associated with it, such that we is the sum of its outgoing messages.
The proper tuning decisions are made according to divide V into equal weighted
NP E parts (PE1,...,PENP E

) while minimising the hyperedges cuts.
In accordance with this principle, we partition the hypergraph modelled by our

ASR approach into NP E parts, such partitions provide a more appropriate global
grid configuration that distributes the workload taking into account computing
and communication volumes of the agents. However, partitioning a hypergraph
with such balance constraints is complicated, costly, and indeed known to be
NP-hard.

Fortunately, there are hypergraph partitioning algorithms capable to operate
in parallel platforms. In this regard, there are several approaches of hypergraph
partitioning and, of course, there is a trade-off between runtime and solution
quality. This indicates that, depending on the expected quality solution, finding
a proper grid reconfiguration may take longer than expected. Therefore, to
determine an adequate solution quality should be consider, among other things,
the problem size, hypergraph complexity, number of PEs and partitioning
algorithm efficiency.

Hereinafter, we propose partitioning the hypergraph utilising an existing
hypergraph partitioning library in order to efficiently assist a proper workload
distribution. In this manner, it is possible to adjust the overhead introduced by
such decisions in order to build an efficient LB strategy.

3.2.4 Grid-based Agent Migration

The agent migration is basically the stage that implements the decisions taken
in the previous stage by transferring agents from a processing element (PE)
to another for modifying the global workload of the parallel simulation. This
transference must remove agents from the contributor PE (sender) and append
them to the recipient PE (receiver).

The migration operation can be classified into two procedures: contribution
and acquisition. On one hand, contribution procedure consists of disassociating
the agents from their source and sending then to the destination. On the other
hand, the acquisition procedure consists of reconnecting the received agents to
their respective recipient.

Since the hypergraph-based tuning decisions identify the workload reconfigu-
rations in terms of grids and not in terms of agents, our approach also commands
to migrate grids. However, transferring grid by grid to their respective recipient
PE is very expensive and inefficient in the current HPC systems.

3.2. METHODOLOGY OVERVIEW 51

Figure 3.9: Contribution procedure diagram.

For this reason, we have designed a mechanism for migrating agents in a such
a way to minimise the number of the required transferences. One approach would
be, during the contribution procedure, that each sender emits just one transference
for each recipient by collecting all the involved agents before transferring them
(Figures 4.7 and 4.8 show this schema). In this way, it is possible to minimise the
overhead and, hence, reduce the migration operation impacts over the runtime.

Figure 3.10: Acquisition procedure diagram.

Moreover, the migration operation may also benefit from asynchronous com-
munication and overlapping techniques during the contribution and acquisition
procedures. In this manner, overlapping communication and computation, the
communication latency can be hidden [68], the migration performance is improved
and, consequently, the method overhead reduced.

3.2.5 Agent Messages Management

This point is not a part of the tuning phase in itself, but discusses the significant
implication of the message management mechanism in the platform performance
and its potential benefit by using our grid-based ASR composition.

First of all, HPC AB simulations involve a large number of agents which
are continually communicating with other agents, probably in different PEs,
in each simulation step. The large number of agents produces an enormous

52 CHAPTER 3. METHODOLOGY DESCRIPTION

amount of messages and introduces unfit synchronisation phases which degrades
the global performance of the application. In this regard, along with computing
workload imbalance, communication bottleneck is the main problem affecting
the efficiency of AB simulations. Therefore, it is very important to provide
a proper communication management in order to efficiently handle the agent
communications.

The efficiency of the platform communication management can be clearly
enhanced by sending messages only to the PEs that contain the recipient agents
of those messages, avoiding unnecessary collective communications (as opposed to
PE-to-PE) which imply a synchronisation point among PEs, that is, all involved
PEs must reach a point before they can all begin computing again. These issues
are also a difficult task because they require a global view of the distribution of
the agents among the PEs.

In spite of that, we propose that our grid-based ASR approach can assist
to determine the recipient PEs related to the agents’ outgoing messages across
all PEs. Through the combination of the grid identifier and influence zone
expressions, 3.5 and 3.6-3.7 respectively, it is possible to classify the reach of
the outgoing messages in each communication phase in order to send messages
only to the location of the recipient agents.

Indeed, taking the benefit of our grid-based spatial organisation, different
agent message management schemas could decide which messages need to be
keep as internal messages and which need to be dispatched to external. This
suitable management concept was proved useful in [72]. In this manner, the
comprehension of the agent location with regard to the PEs is facilitated, and,
eventually, favourably impacts the platform communication performance.

3.3 Summary

In this chapter, we have discussed the importance of having detailed information
of the agent behaviours across the PEs in order to better diagnose the imbalance
problems and, therefore, apply tuning decision according to the specific/actual
imbalance spots. However, to develop an efficient strategy to reconfigure the
workload, the agents communication relations and computing workloads need to
be traced, analysed and understood.

In order to comprehend our solution, we considered convenient to briefly
introduce some underlying concepts associated to our solution, such as: clustering,
domain trimming, graphs & hypergraphs and graph/hypergraph partitioning.
According to these ideas/notions, we introduce a load balancing solution that
tunes the global simulation workload by migrating groups of agents, simplifies
the agent system representation (ASR) construction requirements using a mixed
clustering-rastering strategy, understands the simulation through a hypergraph-

3.3. SUMMARY 53

view that brings a more suitable agent system representation than graphs, and,
finally, makes tuning decisions based on a hypergraph partitioning algorithm.

Finally, we wish to add some consideration to develop an efficient agent
migration mechanism and, additionally, mentioning that using this methodology
it is possible to build an efficient message management mechanism which directly
take benefit from the ASR definition.

The chapter that follows describes the implementation of our methodology in
a real SPMD ABMS platform as a use case.

54 CHAPTER 3. METHODOLOGY DESCRIPTION

Chapter 4

Methodology Implementation

Agent-Based Modelling and Simulations (ABMS) platforms benefit from High
Performance Computing (HPC) systems when realistic scenarios with many
agents and complex interaction rules need to be simulated. Additionally, in
some cases the ABMS platforms require computational scalability features, in
such scenarios Single Program Multiple Data (SPMD) paradigm is commonly
used. SPMD applications execute the same program in all processing elements
(PEs), but on a different set of the domain. Due to its scalability and
simplicity advantages, SPMD is the dominant programming model for large-scale
distributed-memory machines [58].

Agent-based (AB) simulations show significant variations in amount of
computing and communication workload, which are likely to appear during the
whole simulation. This causes load imbalances that negatively affect simulation
performance. In the meantime, the imbalance problems in ABMS platforms
constructed under SPMD paradigm also may experience global (or local) problems
related to blockades when some PEs may not move beyond the next global (or
local) synchronisation point. For this reason, it is very important to keep the
workload well-distributed over the PEs in order to reduce the impact on the
application performance [97, 12].

In this regard, these applications need to be assisted by dynamic load balancing
(DLB) mechanisms for keeping homogeneous parallel workloads as the simulation
occurs. Whilst many load balancing (LB) solutions can be found such as:
[119, 118, 110, 105]; these have rarely been incorporated to a multi-purpose
environment and, usually, the strategies are highly associated to the nature of
the agent model. For this reason, we have described, in previous the chapter,
a generalised approach that enables dynamic performance enhancements for
HPC agent-based applications wherein agents are spatially-explicit defined and
communication dependencies can be determined according to a spatial distance
function.

55

56 CHAPTER 4. METHODOLOGY IMPLEMENTATION

In general, few ABMS general frameworks intended to run parallel simulations
on HPC environments can be currently found, as described in [95], RepastHPC
[31], D-Mason [32], Pandora [96] and Flame [28] provide a native support of,
among other features, parallel executions (see 1.4, Related Studies). However,
most ABMS platforms do not provide LB mechanisms. In Addition, commonly
LB studies in literature take place in non-SPMD platforms, and most of them
use applications created with integrated strategies. Our methodology is tested in
the framework Flexible Large-scale Agent Modelling Environment (Flame) which
generates SPMD simulation codes for a variety of AB models and, at the time of
this research begins, seemed more stable and mature, and was tested in large-scale
simulations [29].

Flame allows the automatic production of parallel SPMD code written in C,
and MPI for communications. Flame is a template-driven framework intended for
large scale AB simulations that does not include any mechanism to balance the
workload or routines capable to assist this operation.

Additionally, Flame configures the generated SPMD simulation code for a
variety of models utilising rules contained in template files, which can be modified
by overriding their rules or adding new template extensions. This fact makes it
particularly functional to prove that is feasible to implement our methodology
and analyse its performance impact on a real SPMD ABMS platform.

This chapter provides a detailed description of Flame and robustly discusses
the modifications and optimisations done to Flame in order to implement and
integrate our dynamic load balancing methodology.

4.1 Flame

Flame [28] was developed at the University of Sheffield in collaboration with
the Science and Technology Facilities Council (STFC). Flame has been used to
solve problems involving multiple domains such as economical, medical, biological
and social sciences. This framework facilitates the writing of several agent
models using a common simulation environment, and then perform simulations
on different parallel architectures, including GPUs [93].

4.1.1 General Overview

Flame is not a simulator in itself, but a tool able to generate the necessary source
code for the simulation. It automatically generates the simulation code in C
through a template engine using a set of provided template files and the user-
provided specification.

The parallel simulation code operates a SPMD paradigm, thereby it implies
a unique code replicated among all the computing units and it is composed of

4.1. FLAME 57

Figure 4.1: Flame basic diagram.

a set of computing and communication phases. The interaction between agents
is handled by the message board library libmboard, which is implemented in C
plus MPI. Figure 4.1 schematically shows the inputs provided to Flame and the
output produced by this framework.

The Flame engine uses its template files to get information from the user model
specification and generates the simulation code. The template files currently
provided by Flame are shown in Table 4.1.

Table 4.1: Flame templates description.
Template Description

low primes.tmpl prime numbers storage.
main.tmpl main file of the simulator code.
memory.tmpl agent’s routines and structures.
messageboards.tmpl structures and routines for message boards.
Makefile.tmpl simulation code Makefile.
partitioning.tmpl partition methods (R.Robin and Geometric).
rules.tmpl input filtering rules
timing.tmpl timing functions.
xml.tmpl xml reading and writing functions.

The model specification is described by two types of files, XMML (X-Machine
Markup Language) files, which is a dialect of XML, and the implementation of
the agent functions contained in C files. Codes 4.1 and 4.2 show examples of
the XMML definition and C function, respectively, of a simple SIR (susceptible-
infected-removed) model.

58 CHAPTER 4. METHODOLOGY IMPLEMENTATION

Code 4.1: XMML definition example of a simple SIR model.
</agents>

<xagent>
<name>Person </name>
<d e s c r i p t i o n ></d e s c r i p t i o n >
<memory>

<v a r i a b l e ><type>int </type><name>id </name><d e s c r i p t i o n ></d e s c r i p t i o n ></v a r i a b l e >
<v a r i a b l e ><type>double </type><name>x</name><d e s c r i p t i o n ></d e s c r i p t i o n ></v a r i a b l e >
<v a r i a b l e ><type>double </type><name>y</name><d e s c r i p t i o n ></d e s c r i p t i o n ></v a r i a b l e >
. . .

</memory>
<f u n c t i o n s >

<f u n c t i o n ><name>move</name><d e s c r i p t i o n ></d e s c r i p t i o n >
<c u r r e n t S t a t e >1</c u r r e n t S t a t e ><nextState >2</nextState >

</f u n c t i o n >
<f u n c t i o n ><name>i n f e c t </name><d e s c r i p t i o n ></d e s c r i p t i o n >

<c u r r e n t S t a t e >2</c u r r e n t S t a t e ><nextState >3</nextState >
<inputs ><input><messageName>i n f e c t e d </messageName></input ></inputs >

</f u n c t i o n >
</f u n c t i o n s >

</xagent>
</agents>
<messages>

<message>
<name>i n f e c t e d </name><d e s c r i p t i o n >P o s i t i o n and i d o f s i c k agent </d e s c r i p t i o n >
<v a r i a b l e s >

<v a r i a b l e ><type>int </type><name>id </name><d e s c r i p t i o n ></d e s c r i p t i o n ></v a r i a b l e >
<v a r i a b l e ><type>double </type><name>x</name><d e s c r i p t i o n ></d e s c r i p t i o n ></v a r i a b l e >
<v a r i a b l e ><type>double </type><name>y</name><d e s c r i p t i o n ></d e s c r i p t i o n ></v a r i a b l e >

</ v a r i a b l e s >
</message>

</messages>

Code 4.2: C struct agent attributes example of a simple SIR model.
/∗ Once agent has been s i c k long enough

i t e i t h e r r e c o v e r s and becomes immune or d i e s . ∗/
i n t r e c o v e r () {

i f (rand () / (RAND MAX+1.0)∗ g e t s i c k c o u n t () > LIFESPAN ∗ DURATION / 1 0 0 . 0) {
i f (rand () / (RAND MAX+1.0) ∗ 1 0 0 . 0 < CHANCE RECOVERY) {

become immune () ; /∗ I s u r v i v e d . Yay ! ! ∗/
} e l s e {

GLOBAL num agents−−;
r e t u r n 1 ; /∗ Oh no ! ! ∗/

}
}
r e t u r n 0 ;

}

This approach is similar to the one followed by Repast and Pandora, but in
this case, instead of using an object oriented language, agents state and data are
specified using XMML.

4.1.2 Functional Description

The functionality of Flame is based on finite state machines called X-machines,
which consists of a finite set of states, transitions between states, messages
between agents, and actions (see Figure 4.2). The agent attributes are store
in C structures which are defined in the XMML definition files (Code 4.3 shows
an example of one these structures).

4.1. FLAME 59

Code 4.3: C struct agent attributes example of a simple SIR model.
/∗∗ \ s t r u c t xmachine memory Person

∗ \ b r i e f Holds memory o f xmachine Person .
∗/

s t r u c t xmachine memory Person {
i n t i d ; /∗∗< X−machine memory v a r i a b l e i d o f type i n t . ∗/
double x ; /∗∗< X−machine memory v a r i a b l e x o f type double . ∗/
double y ; /∗∗< X−machine memory v a r i a b l e y o f type double . ∗/
double heading ; /∗∗< X−machine memory v a r i a b l e heading o f type double . ∗/
i n t i s s i c k ; /∗∗< X−machine memory v a r i a b l e i s s i c k o f type i n t . ∗/
i n t is immune ; /∗∗< X−machine memory v a r i a b l e is immune o f type i n t . ∗/
i n t s i c k c o u n t ; /∗∗< X−machine memory v a r i a b l e s i c k c o u n t o f type i n t . ∗/
i n t age ; /∗∗< X−machine memory v a r i a b l e age o f type i n t . ∗/

} ;

To perform the simulation, Flame holds each agent as an X-machine data
structure, whose state is changed via a set of transition functions. Furthermore,
transition functions may perform message exchanges between agents.

Figure 4.2: X-machine example of a simple SIR model.

The transitions between the states of the agents are accomplished by keeping
the X-machines in linked lists. The simulation environment has one linked list
for each state of a specific kind of agent. During the simulation, all agents’
X-machines are inserted into the list associated to their initial state. Next, the
corresponding transition function is applied to each X-machine, and they are
moved to the list associated to the agents’ next state. This process is repeated
until all agents reach the last state, which determines the end of the iteration.

60 CHAPTER 4. METHODOLOGY IMPLEMENTATION

4.1.3 Parallel Functioning

When Flame generates parallel code, this structure is replicated in all the
processing elements (PEs) participating in the simulation and the agents are
distributed among these PEs. Flame provides two methods of static partitioning
for initially distributing agents: geometric and round-robin partitioning.

Figure 4.3: Flame geometric partitioning example.

On one hand, the geometric partitioning divides the space into non-overlapping
orthogonal regions based on the agent coordinates (as shown in Figure 4.1.3). On
the other hand, the round-robin partitioning cyclically assigns agents across all
PEs in a manner that each partition contains approximately the same number of
agents. In this regard, Flame geometric respects the spatial locality of the agents
but usually generates uneven partitions (in term of number of agents). On the
other hand, Flame round-robin partitioning generates even partitions without any
consideration of spatial locality.

Currently, Flame does not include mechanisms to redistribute agents as the
simulation proceeds. Thus, the workload in each PE will rely on the evolution
of the model from its initial population of agents. Consequently, the dynamic
appearance of imbalance problems cannot be managed.

In addition, a communication library called libmboard, which is built on MPI,
is used for managing communication between agents assigned to different PEs.
When the Flame engine parses the XMML agent definition generate a set of
routines, contained in a C file (messageboards.(h|c)), for sending and retrieving
messages among agents which are a wrapper to easily access to libmboard
operations (Code 4.4 shows an example of a libmboard-provided message routine
of a simple SIR model, add infected message).

4.1. FLAME 61

Code 4.4: Libmboard-provided routine example of a simple SIR model.
/∗ Post the p o s i t i o n o f the agent . Should only be c a l l e d

f o r i n f e c t e d a g e n t s v i a c o n d i t i o n i n XMML. ∗/
i n t p o s t p o s i t i o n () {

/∗ Read agent memory ∗/
i n t i d = g e t i d () ;
double x = g e t x () , y = g e t y () ;

/∗ Add message to ” i n f e c t e d ” board (id , x , y) ∗/
a d d i n f e c t e d m e s s a g e (id , x , y) ;

r e t u r n 0 ; /∗ remain a l i v e . 1 = death ∗/
}

This library sends all messages to external agents through a coordinated
communication mechanism between different MPI processes as shown in Figure
4.4. In this way, Flame provides a general communication mechanism that allows
any pair of agents to interchange messages without needing any replication of
agents in different PEs.

Figure 4.4: Parallel communication and synchronisation via libmboard.

Flame also has some drawbacks, the main one is that its current version does
not include any mechanism to enable reorganising agents among the PEs. Thus,
the workload in each PE will depend on the evolution of the model from its initial
population of agents and there is no load balancing mechanism to mitigate it.
In addition, the centralised communication scheme based on libmboard limits
the scalability of the generated simulators. These drawbacks do not depend on
the particular model being defined and simulated. For this reason, this thesis
also includes general proposals for improving the performance of any simulator
generated with this framework.

62 CHAPTER 4. METHODOLOGY IMPLEMENTATION

4.2 Hypergraph-based Methodology Implementation
This section describes the implementation of our hypergraph-based methodology
through extending Flame with mechanisms for automatically and dynamically
balancing the simulator load and for decentralising communication between the
PEs participating in the simulation. The implementation suggested below is only
for 3D spatially-explicit AB models, however the algorithm can be translated into
n-dimensional algorithms by adjusting the number of coordinate axes. As parallel
hypergraph partitioner, to provide tuning decisions, we consider integrating the
output of a parallel graph tool such as ParMetis [60], PT-Scotch [27], or Zoltan
[38].

According to our assumptions, for implementing a load balancing mechanism,
it is necessary to be able to monitor, measure, control and minimise the agents
computing and communication variations introduced among the PEs. In this
way, Flame requires several mechanisms to assist the measurements, performance
evaluations, agents migration, tuning decisions, etc. Consequently, Flame has
been enhanced for automatically generating efficient routines for assisting these
needs. Figure 4.5 illustrates the final block diagram of Flame including all the
extensions presented in this thesis. These extensions have been implemented as
the following modules: message filtering, migration, measurements, connectivity
map, load balancing and graph partitioning, which are explained across this
chapter.

Figure 4.5: Base-diagram of the Flame framework with our extensions.

In order to deliver these new features, we have added new templates to the
Flame engine, in such a way, to include in the generated simulation code all the
variables, data structures and algorithms to dynamically adjust the workload.

4.2. HYPERGRAPH-BASED METHODOLOGY IMPLEMENTATION 63

Table 4.2: Flame templates and modifications.
Template Modifications

main.tmpl measure points and activation mechanism.
memory.tmpl libmboard structures initialisation for message filtering.
messageboards.tmpl definition of message filtering routines.
Makefile.tmpl new routines and files compilation.

First of all, the Flame template engine has been extended to import our new
rules in order to obtain extra information about the agents such as types of agents,
the variables (attributes) of the agents, and the size of the agents and their
variables. Moreover, rules for obtaining extra measurements related to issues
such as platform iteration computing times, messages workload and overheads
introduced by Flame and our methodology. Additionally, several routines and
enhancements to assist our methodology have been incorporated in the new
templates. The template files modified and implemented in Flame are shown
in tables 4.2 and 4.3 respectively.

Table 4.3: New templates incorporated.
Template Description

measures.tmpl measurement related routines and definitions.
movement.tmpl agent migration related routines.
mapfiltering.tmpl ASR related routines and message enhancements.
graphmap.tmpl hypergraph related routines.

Internally, the template engine uses the new rules contained in our new
template files for generating the extra features and enhancements alongside the
simulation code. Once the simulation code has been created, the new features and
enhancements can be used for performing the global workload reconfiguration.

According to our methodology, for implementing a load balancing mechanism,
it is necessary to clearly be able to monitor, measure, control and minimise
the agents computing and communication variations introduced among the PEs.
Such capabilities were introduced as a mechanism of two phases, Monitoring and
Tuning, and a set of stages: Activation Mechanism, Agent System Representation,
Hypergraph-based Tuning Decisions and Grid-based Agent Migration. The
following subsections describe the implementation of our methodology in Flame
along the lines of the phases and stages introduced in the previous chapter. We
also consider relevant to provide some control mechanism over the messages sent
by the agents in Flame. For these reason, the Agent Messages Management is
appended before finalising the main stage descriptions.

64 CHAPTER 4. METHODOLOGY IMPLEMENTATION

4.2.1 Activation Mechanism

The performance of SPMD ABMS applications varies during the course of
the simulation. Issues such as amount of computation, interaction pattern
between agents, and environmental influences are constantly changing depending
on the internal state of the agents present in each PEs. For this reason, the
implementation of the activation mechanism is executed in each iteration for all
PEs. In this manner, it is possible to provide a dynamic evaluation of the workload
measurements in every simulation step.

In order to enable measurement operations in Flame, we have added a
new template for generating the measurement related routines. The template
measurement.tmpl incorporates the rules to generate the data structures and
algorithms to develop measure points. The measurement routines are specifically
generated for each type of agent in the model. The measurement routines are also
utilised later for completing the weighted hypergraph.

The following list introduces the main measurement routines and the suffix
NAME indicates the name of a specific type of agent. All routines obtain the
measurements of the PEs wherein they are called and for a given iteration.

• get NAME msg size: gets the size of the messages.
• get NAME num send: gets the number of all messages sent.
• get NAME num send internal: gets the number of internal messages sent.
• get NAME num send external: gets the number of external messages sent.
• get NAME time: gets the computing time.
• get NAME num agent: gets the number of agent.

In our approach, the activation mechanism dynamically evaluates the global
workload using an imbalance threshold and computing time in each PE. The
threshold is a value between 0 and 1 that represents the acceptable imbalance
degree. This approach is executed by all the PEs without a central unit of decision.
Therefore, each PE must know the global workload situation and execute this
stage with the same input. This is done by sharing the iteration computing times
between PEs through a collective MPI communication at the end of each iteration.
The algorithm 1 describes the activation mechanism.

Algorithm 1 Activation Mechanism
collect all computing times for each PE in current iteration
average time←

∑
computing timei/num procs

imbalance factori ← computing timei/average time
tolerance← threshold ∗ average time
if ∀i ∈ procs, ∃ proci/ |imbalance(proci)| ⩾ tolerance then

launch Tuning Phase
end if

4.2. HYPERGRAPH-BASED METHODOLOGY IMPLEMENTATION 65

In this manner, all PEs perform the same workload evaluation and it is possible
to make tuning decisions before starting the next iteration. Furthermore, as every
PE executes this evaluation with the same inputs (times and agents of all PEs),
every PE obtains the same balanced and imbalanced PEs. The mechanism is
triggered when an imbalance factor is detected outside the tolerance range. The
tuning phase is launched if a computing time is detected outside of this tolerance
range.

4.2.2 Agent System Representation

Here, the agent system has to be modelled in order to provide a suitable reduced
representation that interprets the agents’ behaviours and interactions. All PEs
build a sub-hypergraph that contains the representation of the agents assigned
to the PE. These sub-hypergraphs are passed to the parallel partitioning tool in
order to determine the tuning decisions.

The ASR is carried by clustering the agents of a 3D space into groups called
grids which represent a virtual unique cubic region of the simulated space. This
grid size is used for defining cubic regions of dimensions grid size x grid size x
grid size (grid size3). The value of grid size should be estimated in accordance
with the influence range of the agents. The grids are identified by a unique ternary
id which is a combination of the x-, y- and z-axis ids.

Algorithm 2 Grid-based Spatial Clustering
grid size← grid length
grid groupi ← known space in PEi

for all agent ∈ PEi do
x← x-coordinate of agent
y ← y-coordinate of agent
z ← z-coordinate of agent
gidx ← ceil(x / grid size)
gidy ← ceil(y / grid size)
gidz ← ceil(z / grid size)
agent grid id← {gidx, gidy, gidz}
if agent grid id ∈ grid groupi then

increase agent counter in agent grid id
else

add agent grid id to grid groupi

end if
end for

Algorithm 2 shows the Grid-based Spatial Clustering. As a result, every agent
will be assigned to only one grid, and all grids will have a positive agent counter.

66 CHAPTER 4. METHODOLOGY IMPLEMENTATION

These grids are constructed along with the exploration of the existing agents
across the PEs. The space covered by grids is named known space, so new grids
will appear when an agent is located outside of the known space. In case an agent
is located within the known space, the agent counter belonging to its agent’s grid
region is increased.

In our implementation, the estimation of the retrieving message regions is
performed through a Euclidean distance calculation, and not only considers
the agent interaction region. Alternatively, it is determined by calculating the
maximum message range from the grid boundaries. In this way, agent interaction
patterns can be collapsed as representing grid interconnections and subsequently
as hyperedges. The grid range is calculated by dividing the agent interaction range
(agent range in Algorithm 3) by grid size value, and consequently represents the
grid’s halo (interval [gxyz−grid range, gxyz +grid range]). Algorithm 3 shows the
procedure to detect the grid-based interactions in order to assist the Hypergraph
Grid Workload Modelling.

Once the Grid-based Spatial Clustering and Grid-based Interaction Mapping
algorithms are performed in each PE, the simulation environment is capable of
determining the range of the messages between agents, and hence understanding
communications between PEs. From here, each PEs has a certain simplification of
the agents placed in such PE and their interactions in terms of grids. At this point,
each grid represents a vertex and its interactions hyperedges of a sub-hypergraph
stored in a particular PEs.

4.2.3 Hypergraph-based Tuning Decisions

On this point, the implementation requirements to perform tuning decisions are
discussed. The tuning decision implementation are carried out with assistance
from the outcome of the parallel hypergraph partitioner called Zoltan [15] which is,
to the best of our knowledge, the only well-established partition library supporting
the possibility of being used at runtime (Zoltan configuration is explained in the
next chapter). In this regard, it is necessary to adapt all the ASR sub-parts (the
sub-hypergraphs in each PE) to the functional needs of the parallel graph tools.

For instance, one of these requirements is that the vertices of the sub-
hypergraphs must have a unique global identifier represented as an unsigned
integer. This requirement makes that the grid configuration of each PE has to be
globally known in order to generate unique grid identifiers.

Another requirement is that the vertices of the sub-hypergraph have to only
exist in one PE. Since Flame generates parallel ABMS code with dynamic
creation/deletion of agents and the agents are constantly moving in the space,
new agents may appear in any place of the space or existing agent may move
across the grids, or die potentially leaving empty grids.

Therefore, the platform requires implementing the dynamic creation and

4.2. HYPERGRAPH-BASED METHODOLOGY IMPLEMENTATION 67

Algorithm 3 Grid-based Interaction Mapping
grid size← grid length
grid range← ceil(agent range/grid size)
grid groupi ← known space in PEsi

global group← known space across all PEs
for all agent ∈ PEsi do

x← x-coordinate of agent
y ← y-coordinate of agent
z ← z-coordinate of agent
gidx ← ceil(x / grid size)
gidy ← ceil(y / grid size)
gidz ← ceil(z / grid size)
agent grid id← {gidx, gidy, gidz}
for all grid id ∈ global group do

gx ← x-component of grid id
gy ← y-component of grid id
gz ← z-component of grid id
if gidx ∈ [gx ± grid range] ∧

gidy ∈ [gy ± grid range] ∧
gidz ∈ [gz ± grid range]

then
grid id is within the interaction region

else
grid id is without the interaction region

end if
end for

end for

reconfiguration of the hypergraph. If this is not controlled, grids and their
identifiers may be duplicated in different PEs but containing different agents. In
this regard, an agent migration is performed before creating the sub-hypergraph,
in so doing, all the agents associated to a grid are located in only one PE.

For assisting the hypergraph creation and incorporating a parallel hypergraph
partitioner, we have implemented a template. The template graphmap.tmpl , in
conjunction with the Flame engine, enables the automatic generation of the of
the routines described below. The following list introduces the main routines.

• create map3D: builds an adjacency matrix based in our ASR.
• graph partitioning: builds a hypergraph from the resulting adjacency

matrix.
• get exchange map data: returns the adjacency matrix.
• push vertex: creates a vertex.

68 CHAPTER 4. METHODOLOGY IMPLEMENTATION

• find vertex: returns a vertex for a given grid id.
• push edge: creates a hyperedge for a given vertex.
• fill pins: creates hyperedges from the adjacency matrix.

As the tuning decisions are taken from the outcome of parallel graph tools,
the adjacency structure of the sub-hypergraphs are stored using the compressed
storage format (CSR), which is a widely used scheme for storing sparse graphs
[60]. Each sub-hypergraph, stored as a sparse matrix, represents a part of the
global hypergraph that models the entire agents’ system.

Figure 4.6: Example of PE iteration workload within the tolerance range.

Later, each PE calls the parallel hypergraph partitioner. On the one hand, the
parallel hypergraph partitioner, for each PE, returns the vertex ids that should be
exported to other sub-hypergraphs and, on the other, the vertex ids that should
be imported from other sub-hypergraphs. Therefore, since the hypergraph models
the ASR and each sub-hypergraph represents the part of the ASR that belongs
to a particular PE, the import/export outcomes are extrapolated to an operation
of multiple grid transferences between PEs. In this regard, the agent migration
across the simulation PEs is commanded in terms of grids.

Further on, after the agent migration occurs, the simulation is resumed and
continues with a new workload configuration that satisfies the tolerance range.
Figure 4.6 shows an example of workload reconfiguration wherein bars represent
PE workload of an iteration and dashed blocks represent transferred workloads
(from orange bars to blue bars).

4.2.4 Grid-based Agent Migration

In order to accomplish any sort of workload reconfiguration the ABMS platform
needs to enable efficient mechanisms for transferring agents between PEs.

Consequently, Flame has been enhanced for automatically generating efficient
routines for migrating agents. In order to deliver this new feature, we have added
a new template for generating the migration routines. It is migration.tmpl, which
generates variables, data structures and algorithms to carry on the migration

4.2. HYPERGRAPH-BASED METHODOLOGY IMPLEMENTATION 69

process. The template engine has been modified to process this template to
obtain the information about the agent types, the variables (attributes) of the
agents, and the size of each agent variable.

Once the simulation code has been created, the migration routines can be
used for moving agents between simulation PEs. The migration process can
be subdivided into two procedures: contributing agents and acquiring agents.
Algorithms 4 and 5 show the procedures involved during the migration of agents.

Algorithm 4 Contributing Agents
while agents to be sent do

insert in the recipient list
end while
calculate the sizes and create the buffers
pack the agents and send the packages

Algorithm 5 Acquiring Agents
create the memory buffers and receive the agents
while packed agents do

unpack and insert agent in the current PE
end while

The contributing procedure consists of removing, packing (serialising) and
sending the selected agents in the sender PEs. This procedure holds a migration
list for each target PE and type of agent. Then, the agents to be migrated are
extracted from the simulation PE X-machine list associated to its current state
and inserted in the corresponding migration list. Once all migrating agents have
been inserted in the appropriated list, they are serialised in a set of contiguous
memory buffers to be packed, using the corresponding MPI functions, in order
to be sent in a single message to a specific receiving PE. Finally, the message is
asynchronously sent to the receiving PE for overlapping the creation of the next
message with the communication of the previous one.

The acquiring procedure consists of receiving, unpacking (de-serialise) and
adding the agents in the recipient PEs. The messages with packages of
agents arrive to the recipient PE in buffers that must be unpacked using the
corresponding MPI functions. Once the agents X-machines have been unpacked,
they are inserted in the list associated with their state alongside the other agents
in the recipient PE.

The migration routines are specifically generated for each type of agent in the
model, and it is possible to perform migrations after any transition. The following
list introduces the main migration routines. The suffix NAME indicates the name
of a specific type of agent.

70 CHAPTER 4. METHODOLOGY IMPLEMENTATION

• Pop NAME : moves agents X-machines to a specific linked list and removes
them from the current PE.

• Pack NAME : packs (serialises) all agents X-machines kept in the linked lists
in contiguous memory buffers, one buffer for each recipient.

• Send NAME/Recv NAME : prototypes to define how to send and receive
sets of packet agents.

• Unpack NAME : unpacks (de-serialise) agents X-machines from the buffer to
the appropriated object.

• Push NAME : adds an agent to the current PE inserting the received agent
into the adequate X-machine list.

As the tuning decisions responds to a grid-based ASR, its proposed reconfig-
uration outcomes are also returned in terms of grids. Such outcome is composed
of two lists for each PE, a list of grids to be imported from other PEs and the list
of grids to be exported to other PEs.

Figure 4.7: Contribution procedure implementation.

Figure 4.8: Acquisition procedure implementation.

This fact led the agent migration stage to firstly identify all the agents
associated to such grids. Once this has been done, each PE extracts, packs and
sends agents associated to the list of grids to export and receives, unpacks and
inserts agent associated to the list of grids to import. Figures 4.7 and 4.8 depict
the implementation of such procedures.

4.2. HYPERGRAPH-BASED METHODOLOGY IMPLEMENTATION 71

4.2.5 Agent Messages Management

The efficiency of the platform communication management is a very significant
issue in order to enhance the application performance. The parallel applications
may improve the global performance by avoiding unnecessary collective commu-
nications. In this way, providing a decentralised communication mechanism by
enabling PE-to-PE communications may really help.

This issue is also a difficult task in HPC ABMS applications because it requires
a global view of the distribution of the agents among the PEs and, moreover, the
simulations involve a large number of agents which are continually communicating.

The communication mechanism of Flame provides a lower abstraction level
mechanism that allows any pair of agents to interchange messages without needing
any PE reference. Flame uses broadcast for implementing its board approach,
leaving the recipient agents the possibility of using input filters for choosing which
messages to read. This communication management does not efficiently handle
the agent communications because any agent message exchange involves all PEs
by stopping them to complete the all-to-all broadcast.

However, Flame does not publicise routines intended to send messages to
specific PEs, although its communication library libmboard is able to do this task
through the MB Filter*-family functions.

These functions facilitate targeting of a set of specific PEs for sending the data
of local message boards (outgoing messages). For doing so, a filtering function
must be provided by the user. This filter must receive two arguments: a pointer
to the message and the rank of an MPI process, and it must return 1 if the message
has to be sent to the PE with the given rank or 0 otherwise.

Code 4.5: Board and filter initialisation
/∗ Create an MB Board o b j e c t ∗/

MBt Board board msg ;
MB Create(&board msg , s i z e o f (msg)) ;

/∗ Create an MB F i l t e r o b j e c t ∗/
MB Filter f i l t e r G ;

/∗ Link Code−2 to the f i l t e r ∗/
M B Fil ter Crea te (& f i l t e r G , &i s T a r g e t P i d) ;

/∗ Assign that f i l t e r to the board ∗/
M B F i l t e r A s s i g n (board msg , f i l t e r G) ;

Through Code 4.5, the MBt Board and the MB Filter objects are created,
later on, the filtering function (Code 4.6) is assigned to the MB Board. Code 4.6
represents the filtering function, which is written in accordance with the previously
defined Grid-based Interaction Mapping stage (Algorithm 3).

72 CHAPTER 4. METHODOLOGY IMPLEMENTATION

Code 4.6: Filtering function
i n t i s T a r g e t P i d (c o n s t void ∗msg , i n t pid) {

/∗ Extract g r i d i d from a message ∗/
i n t gidx , gidy , gidz , GRID RANGE;
gidx = c e i l (msg−>x/GRID SIZE) ;
gidy = c e i l (msg−>y/GRID SIZE) ;
g i d z = c e i l (msg−>z /GRID SIZE) ;
GRID RANGE = c e i l (agentRange /GRID SIZE) ;
a r r a y G r i d s = &gridsInPE [pid] ;

/∗ Determine g r i d s i n i n f l u e n c e zone ∗/
i n t gx , gy , gz ;
f o r (i = 0 ; i < a r r a y G r i d s . s i z e ; i++) {

gx = a r r a y G r i d s . g r i d [i] . gx ;
gy = a r r a y G r i d s . g r i d [i] . gy ;
gy = a r r a y G r i d s . g r i d [i] . gy ;

i f (gidx <= gx + GRID RANGE &&
gidx >= gx − GRID RANGE &&
gidy <= gy + GRID RANGE &&
gidy >= gy − GRID RANGE &&
g i d z <= gz + GRID RANGE &&
g i d z >= gz − GRID RANGE)

r e t u r n 1 ;
}
r e t u r n 0 ;

}

Using these filters, each simulation PE can create separate buffers for each
remote MPI process, sending only the relevant messages to each PE and avoiding
global communications at the cost of creating more buffers and messages. The
reason why Flame does not publicise these functions is that using them requires
users to know which agents are assigned to each simulation PE, which is clearly
in a lower abstraction level with respect to using input filters.

Nevertheless, we have implemented a new template in order to generate output
messages filtering routines using the MB Filter* functions. The new template is
mapfiltering.tmpl, which generates the message filters according to the agent’s
message phases. The following list introduces the main measurement routines
and the suffix MSG indicates the name of a specific type of agent message.

• add MSG message filtered: adds an outgoing message to a given recipient
PE.

• add MSG message filtered3D: adds an outgoing message for automatically
filter its recipient PEs.

• isTargetProc MSG: automatically calculates the recipient PEs of a message.

This agent message management implementation directly takes benefit of our
grid-based ASR and decentralise the communication schema of Flame. In this
way, it is possible to decide which messages need to be kept as an internal PE
message and which need to be dispatched to an external PE [72].

4.3. SUMMARY 73

4.3 Summary
Throughout this chapter, we have shown how certain modifications and mecha-
nisms need to be integrated in SPMD ABMS applications in order to be benefited
by the proposed performance tuning methodology. The methodology is proposed
in the previous chapter and considers spatially explicit models with neighbouring
communications. The methodology builds an ASR from clustering the application
domain in grids which, in conjunction with the agents representative interactions,
is modelled as a weighted hypergraph. Then a hypergraph partitioning tool
determines a better grids configuration which, finally, implies agent migration.

Moreover, this chapter describes a set of algorithms and mechanisms to
integrate our methodology in a real HPC ABMS platform and, in this manner,
be able to test the methodology. For achieving this, several modifications and
extensions have been implemented in the framework Flame to evaluate the
proposed tuning methodology described in Chapter 3.

The framework Flame is extensively described in Section 4.1 which is a tool
to generate SPMD code for simulating AB model. Through the user-provided AB
model specification and a set of Flame-provided template files, the Flame engine
generates such SPMD codes. Additionally, modifying the Flame templates or
adding new ones, it is possible to provide enhancements to all generated parallel
codes. In this regard, implementing our methodology in this framework provides
tuning features to a wide range of SPMD AB simulations. Therefore, attaching our
methodology to this tool facilitates the performance observation and analysis of an
extensive range of use case models. Lastly, we also described the implementation
of an efficient message management mechanism which directly take benefit from
the ASR definition and improves the original Flame communication mechanism.

The next chapter presents the evaluation of our methodology using the
implementation introduced in this chapter.

74 CHAPTER 4. METHODOLOGY IMPLEMENTATION

Chapter 5

Experimental Results

In this chapter, we present the evaluation of the hypergraph-based methodology
to reconfigure the workload of SPMD ABMS applications through migrating
agents. Up until this point, we have defined the methodology and described
its implementation in a real platform called Flame.

In Chapter 3, we proposed a generalised approach that enables dynamic
performance enhancements for SPMD ABMS applications wherein agents are
spatially-explicit defined and communication dependencies can be determined
according to a spatial distance function. Given the intrinsic dynamic workload
variability throughout the simulation execution, the strategy that balances
the workload is addressed dynamically. The proposed solution tunes the
global simulation workload by migrating groups of agents, simplifies the ASR
construction requirements using a mixed clustering-rastering strategy, models the
simulation through a hypergraph-view and, finally, makes tuning decisions based
on a hypergraph partitioning algorithm.

Chapter 4 describes how the methodology was implemented in the Flame
framework, which is capable to generate SPMD code from a user-defined agent-
based (AB) model definition. We implemented modifications and mechanisms in
Flame in order to include our tuning features in the Flame outcomes, the SPMD
ABMS generated codes. In this way, we are able to incorporate the methodology
to different use case models.

For these reason, in section 5.1, we firstly introduce three AB models used
in the experimental evaluation. These models are implemented in our extended
version of Flame and, consequently, their generated codes include our tuning
features. In this manner, the performance observation and analysis of SPMD
ABMS applications is facilitated.

Later, in section 5.2, we present the experimental validation of the proposed
methodology. This section shows the configuration of the experimental environ-
ments and the evaluation of the implementation of different enhancements and

75

76 CHAPTER 5. EXPERIMENTAL RESULTS

mechanisms proposed in this thesis.

5.1 AB Use Case Models

This section focuses on introducing the selected AB models for the evaluation
of the methodology. These models are Susceptible-Infected-Remove, Colorectal
Tumour Growth and Keratinocyte Colony Formation, which develop dynamic
changes in terms of workloads grounded in random rates of creation and
elimination of agents. These models are briefly described in following subsections
5.1.1, 5.1.2 and 5.1.3.

5.1.1 Susceptible-Infected-Removed Model

The Susceptible-Infected-Removed (SIR) model describes the spread of an
epidemic within a population on a 2D toroidal space [37]. The population is
divided into three groups: Susceptible (S), Infectious (I), and Recovered (R).
For this reason, this model is called SIR. In summary, the susceptible are those
individuals who are not infected and not immune, the infectious are those who are
infected and can transmit the disease, and the recovered are those who have been
infected and are immune. Figure 5.1 shows an graphical example of the agent
distribution of this model.

Figure 5.1: Spatial agent distribution example of SIR model, green and red circles
represent susceptible and infectious people respectively.

Additionally, natural births and deaths during the epidemic are included in
this SIR model, so individuals could die from the disease or by natural death
due to ageing. Consequently, births and deaths represent a dynamic creation and
elimination of agents. The main states of this model are: get older, move, infect,
recover and reproduce. Due to the random distribution of death and birth rates,
the simulation workload changes dynamically and, hence, load imbalances are
likely to appear.

5.1. AB USE CASE MODELS 77

5.1.2 Colorectal Tumour Growth Model

The Colorectal Tumour Growth (CTG) model represents an expansive in-vivo
tumour development behaviour [7, 59]. The model used in this thesis includes the
basic biological properties of tumour cells (TC) such as cell growth, proliferation,
and death, located within a vascular network and further considers dependence
on nutrients (oxygen). Two tumour growth stages may be considered; the first is
defined as a vascular growth when tumours depend on simple diffusion of nutrient
supply. The second stage involves vascular growth; angiogenesis is a multi-step
physiological process which is initiated when tumour cells become increasingly
hypoxic and, in response, secrete angiogenic factors such as vascular endothelial
growth factor (VEGF). These diffuse and stimulate the existing vessels to form
new sprouts, which migrate and connect to other sprouts or to the existing
vascular network, forming new blood vessels. This results in an abnormal tumour
vasculature which is leaky and tortuous.

The model computes, among other things, oxygen concentration which affects
the cell cycle. VEGF concentration is calculated after checking for cell division,
death and movement. This induces tumour angiogenesis which initiates vessel
growth. Lastly, vessels are checked for collapse. The entire process is repeated for
a fixed duration of time.

Figure 5.2: Example of Colorectal Tumour Growth.

In terms of implementation, this model is composed of tumour cells (TC),
tumour-associated endothelial cells (TEC) and helper agents. Cell agent repre-
sents both TCs and TECs. The TC agent consists of a group of TCs, while
the TEC agent indicates one TEC. The Helper agent is used to compute the
last cell Id and is run only once for each iteration. Figure 5.2 shows a graphical
representation of this model. In this figure, TCs which have a smaller oxygen level

78 CHAPTER 5. EXPERIMENTAL RESULTS

than the threshold are displayed in cyan, and TCs in proliferation with an oxygen
level greater than the threshold in purple. TECs are displayed in red. TECs
which have VEGF levels over the threshold, and hence can divide, are shown in
yellow.

The predefined rules on memory variables of the agents are defined for
updating the position of the agents, cell cycle, oxygen concentration, VEGF
concentration and variables related to angiogenesis. The number of functions
the agents have is also introduced to perform tumour growth coupled with angio-
genesis, such as output location, resolve forces, update rel c oxy, update rel c gf,
cycle, collapse TECs and update last cell id helperagent.

In each iteration, the agents interact computing the expansion coordinates of
new cells, forces among the cells, amount of nutrients that comes from the vessels,
amount of oxygen permeated through the cells as well as new coordinates using
the resulting forces.

Later, these procedures will determine either the growth or the death of
each TC or TEC. Consequently, this model presents computing/communication
workload imbalances as the simulation proceeds.

5.1.3 Keratinocyte Colony Formation Model

The Keratinocyte Colony Formation (KCF) model was developed, based on rules
derived from literature, for predicting the dynamic multicellular morphogenesis of
normal human keratinocytes (NHK) and of a keratinocyte cell line (HaCat cells)
under varying extracellular Calcium (Ca++) concentrations. The model enables
in virtuo exploration of the relative importance of biological rules and was used
to test hypotheses in virtuo which were subsequently examined in vitro [107, 108].
The superficial epidermis is largely composed of keratinocytes that are formed by
division of cells in the basal layer, and give rise to several distinguishable layers
as they move outwards and progressively differentiate (change their types).

The implementation of this model is a simplification of the KCF model
published in [107, 108]. This AB model is composed of two parts: the agents, in
this case representing cells; and the environment, here being the user-defined flat
square surface with ’walls’ in which the cells reside, along with global factors such
as extracellular calcium. Each cell was modelled as a non-deformable sphere which
was capable of migration (slow movement of cells), proliferation and differentiation
(changes from one cell type to another).

The KCF model is composed of five kind of agents: stem, transit-amplifying,
committer, cornified and HaCaT cells. Initially, agents (cells) output their
location and type (stem cell, transit amplifying (TA) cell, committed cell,
corneocyte) to the message lists for other cells to read. Each cell then performs
rules specific to its own position in the cell cycle. Following this, cells decide
whether to change to another cell type, based on the differentiation rules in

5.2. EXPERIMENTAL EVALUATION 79

the model. Cells then execute their migration and physical rules. All rules
are executed in the context of the agent’s own internal state and its immediate
environment as discovered through interrogation of the message lists.

Figure 5.3: Example of Keratinocyte Colony Formation.

Figure 5.3 shows an example of this model. The modelled cells are stem
cells (blue), TA cells (light green), committed cells (dark green) and corneocytes
(brown). Each of these agents also performs distinguished cell cycles, thus
their implementations are composed different states with different computing and
communication workload. The cell differentiation along with the cellular prolifer-
ation generate serious imbalance problems which also require a dynamically load
balancing strategy to readjust the workload during the simulation.

5.2 Experimental Evaluation
This section focuses on introducing the HPC environment, configurations and
the evaluation of different aspects of the methodology presented in this thesis.
Additionally, this section demonstrates that SPMD ABMS applications require
dynamic load balancing mechanisms to improve their performance and make more
efficient utilisation of the HPC resources.

Moreover, all experiments show significant gains and improvements in real AB
models versus their executions without the methodology proposed in this thesis.

80 CHAPTER 5. EXPERIMENTAL RESULTS

In subsection 5.2.1, the test environments and the clusters configuration, where
experiment were executed, are described. Next, the agent migration is analysed
and advantages of using the ASR defined in this the thesis in conjunction with
message management mechanism is discussed. Later, the methodology including
all the performance enhancements working together is shown. The last experiment
analyses the overhead associated to the hypergraph partitioning.

5.2.1 Experimental Environments

The main objective of this section is to summarise the environments wherein the
experiments were carried out. The experiments were executed on homogeneous
linux computing clusters, either on Cluster IBM or Marenostrum III.

Cluster IBM environment is configured with the following features: 32 IBM
x3550 Nodes, 2xDual-Core Intel(R) Xeon(R) CPU 5160 @ 3.00GHz 4MB L2
(2x2), 12 GB Fully Buffered DIMM 667 MHz, Hot-swap SAS Controller 160GB
SATA Disk and Integrated dual Gigabit Ethernet. The operating system is
SUSE Enterprise 10 SP1 with software setup: Flame 0.16.2/0.17.0, libmboard
0.2.1/libmboard 0.3.1 and OpenMPI 1.4.1.

Marenostrum III contains heterogeneous nodes; our experimental environ-
ment is configured with the following IBM dx360 M4 node features: 2x Intel
SandyBridge-EP E5-2670/1600 20Mă8-core at 2.6 GHz, 8x4 GB DDR3-1600
DIMMS (2GB/core), Gigabit 10Gbit Ethernet network used by the GPFS
Filesystem and Infiniband Mellanox FDR10 for High bandwidth network used
by parallel applications communications (MPI). The operating system is SuSe
Distribution 11 SP3 with software setup: Flame 0.17.0, libmboard 0.3.1 and
OpenMPI 1.6.4.

The experiments explained in following sections were carried out running in
independent/separate MPI processes per core.

5.2.2 Activation Mechanism & Agent Migration

In this subsection we present the experimental results of the activation mechanism
and agent migration overhead of the proposed performance methodology. The
main objective of this set of experiments is to demonstrate the impact of migrating
agents. Also, the results show that, despite the inherent high imbalance degree
associated to these simulations, it is possible to reduce the degree of imbalance in
SPMD ABMS applications.

The following experiments correspond to simulate the SIR model in two
scenarios of space dimensions 650x650 and 1000x1000 with initial populations
of 30000 and 50000 agents respectively (A and B scenarios) and, in both, cases
10 agents initially infected. The rest of the ABMS environment parameters can
be found in [70].

5.2. EXPERIMENTAL EVALUATION 81

The experiments were performed during 200 simulation steps and, the agents
were distributed via Flame round-robin distribution (FlameRR). Thus, regardless
of the number of processing elements (PEs) and initial population, the initial
number of agents per PE is similar. The Cluster IBM with 128 PEs in 128 cores
was used in these experiments with Flame 0.16.2 and libmboard 0.2.1.

For testing purposes, tuning decisions have been performed through a simple
LB schema that does not consider communications [70], which is the earliest
version of the methodology proposed in this thesis. These experiments utilise
the same activation mechanism introduced in this thesis during the monitoring
phase. The mechanism is enabled after the fifth simulation step in order to let the
workload imbalance get higher before enabling the schema. Additionally, agent
migration is launched after the tuning phase but, since the computing measure-
ments immediately vary after the agent migration, the activation mechanism is
disabled in the subsequent iteration and enabled again after this. Additionally, the
activation mechanism is tested using three imbalance tolerance values: 0.3(30%),
0.15(15%) and 0.05(5%).

-1

mean

+1

 0 50 100 150 200

Simulation Step

Degree of imbalance, Initial agents : 50.000

least loaded process
most loaded process

-1

-0.3

mean

+0.3

+1

 0 50 100 150 200

maximum tolerance

minimum tolerance

Simulation Step

Degree of imbalance, Initial agents : 50.000

least loaded process
most loaded process

-1

-0.15
mean
+0.15

+1

 0 50 100 150 200

maximum tolerance

minimum tolerance

Simulation Step

Degree of imbalance, Initial agents : 50.000

least loaded process
most loaded process

-1

-0.05
+0.05

+1

 0 50 100 150 200

maximum tolerance

minimum tolerance

Simulation Step

Degree of imbalance, Initial agents : 50.000

least loaded process
most loaded process

Figure 5.4: Degree of computing imbalance varying the tolerance value.

82 CHAPTER 5. EXPERIMENTAL RESULTS

The first experiment contributes to understand the workload variability of
these kinds of applications and the impact of the frequency of launching the
simple LB schema. The experiment shows the FlameRR degree of imbalance
(without tolerance range) per iteration compared to the degree of imbalance after
balancing using different tolerance values. In Figure 5.4, bars closer to 0 (or
shorter bars) means lower imbalance degree, the imbalance degree in green colour
depicts the most loaded PE in a determined iteration and purple colour depicts
the least loaded PE. Through these figures, is shown that the degree of imbalance
decreases when the tolerance is increased, but the LB schema is triggered more
frequently as a result of the workload variability of these ABMS applications.

The second experiment contributes to understand the agent migration
overhead composition and the impact of applying LB schemas in order to
improve the performance of this kind of applications. The experiment shows
the FlameRR degree of imbalance per iteration compared to the degree of
imbalance after balancing using different tolerance values. Table 5.1 summarises
the agent migration overhead and the amount of kilobytes transferred (KiB) for
different tolerance values. Packing (pack), communication (comm) and unpacking
(unpack) correspond to the sum of the maximum times (in seconds) for each
iteration. KiB consists of the sum of all agents exchanged during all agent
migrations. Consequently, these values expose that the agent migration overhead
is greater when reducing the tolerance values because less agent reconfigurations
are required. For this reason, better results in terms of execution time are related
to find a tolerance value which does not imply an excessive overhead, that to say,
a trade-off between the permitted degree of imbalance and the amount of agents
migrated.

scenario 30000 agents 50000 agents
tolerance pack comm unpack KiB pack comm unpack KiB

0.05 0.0028 0.280 0.0017 571 0.0064 0.324 0.0047 1252
0.15 0.0035 0.233 0.0021 456 0.0073 0.153 0.0059 689
0.30 0.0039 0.205 0.0027 387 0.0054 0.125 0.0043 544

FlameRR - - - - - - - -

Table 5.1: Agent migration overhead.

Tables 5.2 summarises the execution time, the LB overhead and the gain
percentage for different values of tolerances. Here, the LB times were calculated
by summing the maximum times (in seconds) for each iteration. Concluding
from Table 5.1, the agent migration is mainly affected by the amount of bytes
transferred (exchanging agents). Here, both scenarios have better results using the
LB schema than the FlameRR version. Moreover, in most cases if the imbalance

5.2. EXPERIMENTAL EVALUATION 83

tolerance is reduced the improvement is better but this inversely introduces an
aggregate cost for exchanging bytes during the agent migration.

scenario 30000 agents 50000 agents
tolerance computing gain(%) LB time computing gain(%) LB time

0.05 69.47 40,89 0.29 340.97 36,24 0.35
0.15 74.23 36,84 0.24 369.33 30,94 0.16
0.30 81.96 30,26 0.21 405.16 24,24 0.13

FlameRR 117.53 - - 534.81 - -

Table 5.2: Application performance overview including LB schema from [70].

From these experiments, the computational and communicational imbalances
that appear during the entire simulation are shown. For both scenarios, the
LB schema improves simulation performance reducing the execution time. And,
thanks to the constantly workload evaluation of the activation mechanism, the
LB schema keeps quite stable the application imbalance degree. Additionally, the
overhead is mainly caused by the amount of bytes exchanged during the agent
migrations.

5.2.3 Agent System Representation & Message Management

This subsection shows the advantages of utilising our Agent System Repre-
sentation (ASR) approach and the associated message management in a real
SPMD platform. The executions include an improved version of the CTG model
presented in [59], which optimises the creation of new agents by decentralising the
new agent creation operation resulting in more even workloads and a substantial
reduction of the amount of data communicated during this operation.

There is not tuning phase in these experiments, but different initial grid
reorganisations in order to re-accommodate the agents according to their spatial
location. The reorganisation is performed after the Flame partitioning and before
starting the simulations steps, i.e., the AB simulation starts with agent locally
grouped. Additionally, we also include grouping agents in accordance with the
ASR construction and the hypergraph modelling.

In this case, the Zoltan graph partition library [15] is used for partitioning the
hypergraph and deciding a more suitable initial partition. The ASR hypergraph
is provided to Zoltan functions for determining an appropriated partition. The
grids reallocation, modelled as vertices, is performed according to Zoltan Parallel
Hypergraph and Graph partitioner (PHG) [38].

PHG performs the parallel hypergraph partitioning and returns the vertex
(grids) ids that should be moved to other PEs in order to balance the load. With

84 CHAPTER 5. EXPERIMENTAL RESULTS

the PHG output, some grids will be migrated through migrating all the agents
related to them.

PHG can be configured as Partition, Repartition, or Refine. The Partition
mode (PhgPA) does not take into account the current vertices distribution (a
partition from scratch). The Repartition mode (PhgRP) considers the current
vertices distribution for repartitioning the hypergraph. Finally, the Refine mode
(PhgRE) refines the given distribution minimising the number of changes.

Figure 5.5: Colorectal Tumour Growth model.

Figure 5.6: Flame geometric grids distribution (4 PEs).

Figure 5.5 shows a graphical representation of the CTG model for 3232 agents
wherein green and red spheres represent TC and TEC agents respectively. Figures
5.6, 5.7 and 5.8 show examples of the resulting 3D grids from an initial Flame
round-robin (FlameRR), Flame geometric (FlameGeo) and PhgPA partition for
four PEs.

The partitioning methods were executed statically from 32 up to 128 proces-
sors in Cluster IBM having one process per core. Moreover, the experiments were

5.2. EXPERIMENTAL EVALUATION 85

Figure 5.7: Flame round-robin grids distribution (4 PEs).

Figure 5.8: PHG grids distribution (4 PEs).

also executed utilising Flame 0.17.0 and libmboard 0.3.1. In these experiments,
15888 agents are simulated within a limitless simulation space for 10 iterations.
PHG has been configured with a 3% of imbalance deemed acceptable and partition
mode PhgPA. The PHG is executed from the resulting FlameRR and FlameGeo
grids.

The ASR grid size is defined as 50 units (microns) which corresponds to the
double of the reach value of the cells messages (25 microns) and also results in a
manageable amount of vertices and hyperedges when the hypergraph is generated.

Table 5.2.3 shows the percentage of messages that are held in the sender PE
and those that are dispatched to external PEs. It shows that the amount of
messages retained in the sender PE impacts the performance when the agents are
organised according to their interaction regions. Due to the FlameRR experiments
do not organise the agents according to their interaction, this agent distribution
shows the worst results. The FlameGeo experiments have more percentage of
messages held than the PHG cases because the geometric method does not

86 CHAPTER 5. EXPERIMENTAL RESULTS

FlameGeo FlameRR PHG-FlameGeo PHG-FlameRR
intern extern intern extern intern extern intern extern

32 p. 92.89 7.11 7.77 92.23 78.75 21.25 78.58 21.42
64 p. 94.47 5.53 14.09 85.91 82.71 17.29 82.74 17.26
128 p. 95.74 4.26 24.57 75.43 85.89 14.11 85.92 14.08

Table 5.3: Percentage of messages held (intern) and messages dispatched (extern).

generate even partitions in terms of grids. Moreover, this method produces
many empty PEs, and hence the grid receptors have more possibilities to be
into the sender PE. Finally, we note that a small amount of messages dispatched
directly impacts the performance of the neighbouring PEs because the external
PEs have to examine a greater amount of information and, later on, determine
its significance.

5.2.4 Overall Tuning Improvements

This subsection focuses on simulating a real AB model, in this case CTG and KCF
models, and also analysing the methodology performance improvements, denoted
as Dynamic Load Balancing (DLB) method in figures, in a real SPMD platform.

The first experiment includes all the Flame enhancements working together as
well as the improved version of the CTG model used in the previous subsection.
The ASR grid size is also defined as 50 units (microns).

The tuning decisions rely on Zoltan [15] which is, to the best of our knowledge,
the only well-established partition library supporting the possibility of being used
at runtime. Zoltan parts the hypergraph utilising the Parallel Hypergraph and
Graph partitioner (PHG), this was also explained in previous subsection. PHG
returns the vertex (grid) ids that need to be migrated.

In order to reduce the time to find an appropriate graph partition, the
PHG accuracy has been set up to 0.2 (20%) of imbalance deemed acceptable.
The experiments performed 20 simulation steps and the agents were initially
distributed with PhgPA mode, except for Flame round-robin (FlameRR) and
geometric (FlameGeo) distributions.

The experiments correspond to simulate the CTG model within a limitless
simulation space and an initial population of 63505 agents, 49 initial TECs. The
Cluster IBM with 128 PEs in 128 cores was used in these experiments with the
Flame 0.17.0 and libmboard 0.3.1. Additionally, the activation mechanism is
configured with 0.3 tolerance value (30% imbalance acceptable) and enabled after
the first simulation step. Since the workload immediately varies after performing
an agent migration, the activation mechanism is kept disabled until the iteration
subsequent to the tuning succeeding iteration.

5.2. EXPERIMENTAL EVALUATION 87

Approach Tuning calls Vertices(avg) Overhead(sec) Exec time(sec)
FlameGeo - - - 26218.9
FlameRR - - - 1038.1
Static PhgPA - - - 881.3
DLB PhgRP 10 3746 83.3 741.3
DLB PhgPA 10 3743 63.4 710.7
DLB PhgRE 9 3745 56.9 699.7

Table 5.4: Methodology execution time overview.

Table 5.4 shows the execution times of our methodology by comparing
different PHG options with three static approaches (FlameRR, FlameGeo and
initial PhgPA). Our approach obtains much better results than the static
approaches. FlameGeo leads to the highest time because it divides the space
into orthogonal rectangles, creating uneven or empty partitions according to
the agents’ spatial locations, while FlameRR randomly distributes the agents
generating a similar number of agents per PE. The PHG versions gain more
than 30% over the FlameRR case in terms of execution time, even an initial
Static PhgPA partitioning improves the Flame times. In addition, the hypergraph
options show similar results and the main difference relies on the overhead time.
For all versions, the number of tuning calls and average number of vertices are
similar. Nevertheless, repartitioning the current partition (PhgRP) is expensive
compared to partitioning from scratch (PhgPA), and refining the hypergraph
(PhgRE) is the best approach for these experiments.

Figure 5.9: Execution times of different PHG options and static approaches.

88 CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.9 depicts the execution time and overhead shown in Table 5.4. For
all versions, our approach significantly reduces the execution time. FlameGeo has
been excluded because of its excessive execution time.

% Message Grids PHG Agent Total
Management Construction Partitioning Migration Time

intern extern
PhgRP 95.95 4.05 10.3 70.1 2.9 83.3
PhgPA 96.57 3.43 7.3 54.0 2.1 63.4
PhgRE 96.53 3.47 8.8 45.1 3.0 56.9

Table 5.5: Methodology overhead overview.

Table 5.5 shows the composition of the methodology overhead and the message
management percentages. The main affectation is rooted in the time required by
PHG for partitioning the hypergraph. Furthermore, repartitioning the current
partition (PhgRP) is more expensive compared than partitioning from scratch
(PhgPA), and refining the hypergraph (PhgRE) is the best approach for these
experiments. Even so, the percentage of messages sent to external PEs are kept
low, that is to say, through our ASR the major part of the agent messages is
retained in source PEs (sender). In fact, dispatching a small amount of messages
impacts directly the performance of the recipient PEs because these have to
examine a smaller amount of messages and, later on, determine its significance.

Figure 5.10: Load balancing average overhead.

Figure 5.10 shows that most of the overhead out the methodology comes from
partitioning the hypergraph using PHG. These results suggest that reducing the
number of vertices by increasing the grid size could reduce the PHG overhead.

5.2. EXPERIMENTAL EVALUATION 89

5.2.5 Methodology Overhead Enhancements

In the second experiment, the KCF model is executed including our Flame
enhancements too. In this cases 3000 agents are simulated for 500 simulation
steps in Marenostrum III using 128 PEs in 8 computing nodes. The experiment
demonstrates that increasing the grid size the PHG overhead is reduced, and
consequently, our methodology intrusion.

The experiment corresponds to simulate the KCF model within a limitless
simulation space and two grid size values, 10 (messages reach) and 100 units
(nanometres). The PHG accuracy has been set up to 0.25 (25%) of acceptable
imbalance and the partitioning mode to Refine (PhgRE).

The activation mechanism is configured with 0.15 tolerance value (15%
imbalance acceptable) and enabled after the first simulation step. The activation
mechanism is kept disabled until the iteration subsequent to the tuning succeeding
iteration.

Table 5.6 shows the execution times of our methodology using PHG in
Refine mode (PhgRE) with two grid size values 10 (DLB PhgRE) and 100 (DLB
PhgRE+) nanometres. Also, the original Flame static partitioning methods are
compared (FlameRR and FlameGeo). As was proven in previous subsection,
the methodology presented in this thesis obtains much better results than the
static approaches. Flame approaches obtain high execution times because, in
the FlameGeo case, generates uneven or empty partitions and, in FlameRR case,
cyclically distributes the agents without any locality consideration.

Approach Tuning calls Vertices Overhead(sec) Exec time(sec)
max avg max total

FlameGeo - - - - - 9529
FlameRR - - - - - 4795
DLB PhgRE 166 61931 12290 18.60 500.95 1916
DLB PhgRE+ 250 2951 546 8.88 387.40 1696

Table 5.6: Methodology execution time detail.

In this case, our approach significantly reduces the execution time. The DLB
PhgRE and DLB PhgRE+ versions gain 60% and 65% (respectively) with respect
of the static FlameRR time. The overhead times of both PHG cases are similar
but the DLB PhgRE+ version, with larger grid size, presents fewer number of
tuning calls, maximum and average number of vertices. Having a larger grid size
reduces the hypergraph partitioning associated overhead, but unfortunately the
ASR and the hypergraph modelling lose quality which results in an increment of
the frequency of tuning phase calls. Therefore, a larger grid size also generates
loosing quality of the agent system representation but the hypergraph partitioning
overhead is reduced. On the contrary, reducing the grid size the hypergraph grows

90 CHAPTER 5. EXPERIMENTAL RESULTS

because the ASR generates more grids with more interconnections. This provides
a finer analysis of the workload but results in a heavier partitioning operation.
In spite of this, the methodology always substantial improves the performance of
this application.

FlameRR
DLB PhgRE

DLB PhgRE+
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Execu�on �me (128 processes)

DLB overhead �me

Simula�on �me

se
co

n
d

s

Figure 5.11: Execution times for two ASR grid size.

Figure 5.11 shows the execution time and overhead from Table 5.6. FlameGeo
has been excluded from this figure because of its excessive execution time.

For this reason, better results in terms of execution time are related to find a
tolerance value which does not imply an excessive overhead, that to say, a trade-off
between the permitted degree of imbalance and the amount of agents migrated.

There are several variations of graph partitioning, naturally, there is a trade-off
between runtime and solution quality [88] and, in such cases, the runtime of
the hypergraph partitioning algorithms is much higher than the one of graph
partitioning [84].

In conclusion, there is a trade-off between PHG runtime and solution quality.
This indicates that depending on the expected quality solution, finding a proper
grid reconfiguration may take longer than expected. This trade-off between
runtime and solution quality is also an intrinsic feature of graph and hypergraph
partitioning algorithms which are usually affected by, among other things,
the problem size, hypergraph complexity, number of PEs and the partitioning
algorithm efficiency.

5.3. SUMMARY 91

5.3 Summary
In this chapter, we have presented the evaluation of the hypergraph-based
methodology to reconfigure the workload of SPMD ABMS applications through
migrating agents. The evaluation is carried out through a set of experiments using
real AB models in a real platform. The experiments include all the implementation
enhancements described in the previous chapter.

This chapter also demonstrates that this kind of applications require dynamic
load balancing mechanisms to improve their performance and make more efficient
utilisation of the HPC resources. Consequently, we obtain significant performance
gains using our approach.

To do so, three real AB models have been considered: Susceptible-Infected-
Remove, Colorectal Tumour Growth and Keratinocyte Colony Formation. Such
models develop dynamic changes in terms of workloads grounded in random
rates of creation and elimination of agents. Additionally, the environments
wherein the experiments were carried out (Cluster IBM and Marenostrum III)
are summarised.

Moreover, the agent migration is analysed and later the advantages of using our
ASR approach to improve the message management mechanism. Subsequently,
the overall methodology is analysed, showing that the associated overhead is
rooted in trade-off between hypergraph partitioning runtime and solution quality.

Finally, evaluating different aspects of the methodology presented in this
thesis, as well as an integral whole, the significant performance gains and
advantages utilising our approach are demonstrated.

The last chapter of this thesis describes the conclusions obtained throughout
this research.

92 CHAPTER 5. EXPERIMENTAL RESULTS

Chapter 6

Conclusions

In this thesis, we have introduced the Agent based Modelling and Simulation
(ABMS) applications in High Performance Computing (HPC) environments.
Within this scope, ABMS applications usually show a dynamic workload variabil-
ity that negatively affects the performance of the application and experiencing
imbalanced computing/communications among the processing elements (PE).

In this sense, we presented the motivation, design, implementation and
evaluation of the contribution of this work: methodology that enables dynamic
performance enhancements for HPC ABMS applications. The goal of the
methodology is to reduce the total execution time of HPC ABMS applications, as
well as augmenting the efficient use of computational resources. As a result, the
application will be able to process a large number of agents with complex rules
as fast and efficiently as possible.

In the design of the methodology, we have considered:
• ABMS applications with spatially-explicit models with neighbouring com-

munications, which are commonly utilised to model real-world spatial data
for studying complex spatial systems. In these models, agents are associated
with a spatial location and communication dependencies can be determined
according to a spatial distance function.

• ABMS applications designed under the Single Program Multiple Data
(SPMD) structure which is the dominant programming model for large-scale
applications and the most common application structure for HPC ABMS
platforms.

• Existing parallel hypergraph partitioning tools to efficiently assist tuning
decisions in order to decide a proper workload distribution. Such tools,
provide hypergraph partitioning methods that enable partitioning complex
and large problems which usually cannot fit in the memory, cost too much
to partition and are also difficult to implement.

• PEs allocate separate MPI processes in such a way that independents PEs

93

94 CHAPTER 6. CONCLUSIONS

execute a unique MPI process during the entire simulation.
The methodology introduces a strategy to reduce the gaps of the computing

and communication workloads between PEs as the simulation proceeds. The
methodology adjusts the global simulation workload migrating groups of agents
among the PEs according to their computation workload and their message
connectivity map modelled using a hypergraph. The hypergraph is lastly parti-
tioned to decide a proper workload distribution. Consequently, the methodology
tunes dynamically the execution of ABMS applications in order to minimise the
computing and communication workloads imbalances.

In this way, it is possible to execute faster agent-based (AB) simulations of
a large number of agents with complex interaction rules. Other contributions
included in this work that we consider significant to mention are:
• A description of the components required to define a dynamic load balancing

(DLB) approach in ABMS applications. The main components described
are: agent system representation (ASR) to model the agents’ workload and
interactions, tuning decisions to determine proper performance adjustments
and agent migration to transfer agents between PEs. These components,
along with workload monitoring and measurement, contribute to control and
minimise the unexpected workload imbalances introduced by the agents.

• A monitoring schema that measures the parallel application workload at
runtime to identify performance problems in the PEs and an activation
mechanism that evaluates the imbalance impact according to a tolerance
value and decides, when necessary, applying the load balancing strategy.

• An ASR through a grid-based spatial organisation that characterises the
agent locations and workloads in relation to their PE which also helps
to minimise the CPU/memory resource requirements and allows modelling
indefinitely large domains.

• A weighted hypergraph based point of view of the agent workload (vertices)
and interactions (hyperedges) which provides the analysis and identification
of imbalances spots within the groups of agents composition (grids). In this
manner a hypergraph partitioning algorithm is utilised to calculate a more
balanced grid distribution.

• An agent migration schema that mitigates its runtime impact through
migrating groups of agents, minimising the number of transferences and
reducing the communication latency by communication/computing over-
lapping.

• A suitable message management definition based on the grid-based spatial
organisation that enables determining the internal PE messages and the
messages that need to be dispatched to other PE.

• A detailed implementation of our DLB methodology in a real HPC ABMS
platform (Flame) and tested with three real AB models Susceptible-Infected-

6.1. FINAL CONCLUSIONS 95

Remove (SIR), Colorectal Tumour Growth (CTG) and Keratinocyte Colony
Formation (KCF).

Next, the chapter presents conclusions derived from this thesis. We also
describe the open lines that can be considered in the future in order to provide
further performance strategies and improvements in the area of dynamic tuning
of SPMD ABMS applications.

6.1 Final Conclusions

Nowadays, thanks to the accessibility to computational resources, the HPC
environments solve computing problems when these become more complex
and the amount of required computing power increases. In such problems,
decomposing the problem into parallel program may be the only way to achieve
solutions in reasonable time. There is a group of problems wherein the HPC
applications dynamically change their behaviour during the execution and hence
its performance index changes too.

Here, the initial decomposition would likely remain as an efficient data
distribution for a limited time. In addition, these applications need to be
dynamically assisted by specialised strategies at runtime in order to avoid
an excessive computing/communication workloads imbalance as the simulation
proceeds. HPC ABMS applications belong to this category because they usually
show a dynamic workload variability that negatively affects the performance of
the application and thus increases the runtime. Therefore, the HPC ABMS
applications also need a dynamic load balancing (DLB) strategy, so that emerging
imbalanced problems can be solved during execution.

In this regard, the overall contribution of this thesis enables reconfiguring
the computing and communication workload of SPMD ABMS applications for
spatially-explicit models with neighbouring agent communications.

Our approach is based on building three main components: the agent system
representation (ASR), the tuning decisions and the agent migration. The ASR
has to provide useful information to diagnose the workload imbalance spots and
help to identify the relation between such computing and communication volumes
with the agents and the grid structure. It has also to provide information relating
to agent/grid spatial locations and their containing PE with respect to rest PE
resources. The tuning decision correspond to appropriate tuning rules based
on hypergraph partitioning, to deal with the imbalance problem. The agent
migration is the mean whereby the ABMS platform is capable of transferring
agents/grids from a PE to another in order to modify the workload of such PEs
and consequently, affecting the global workload status of the simulation.

In simulations with large number of agents with complex interaction rules and
agent creation/elimination behaviours, in term of resources, the CPU/memory

96 CHAPTER 6. CONCLUSIONS

requirements for storing such information may also become unmanageable.
Additionally, in some cases, the agent simulation performs massive creation of new
agents leading to an indefinitely domain expansion, otherwise, the elimination of
agents shrinks the domain.

In the same manner, we propose creating grids only for the space occupied
by agents in order to reduce these excessive CPU/memory requirements, our
approach idea is taken from the known technique named rasterisation. The defined
clustering algorithm is rooted on this principle, so the grids are only created
according to the space occupied by agents.

Consequently, we propose an ASR based on clustering the spatial regions
during the simulation into grids. As a result of clustering the ABMS domain with
our grid method, sets of agents are associated to a unique virtual grid and their
interactions and workload measurements are also analysed in terms of groups
of agents (grids). In this manner, it is possible to reduce the computational
complexity and the CPU/memory requirements.

Additionally, we introduce that the joint measurements and exchanges between
agents contained in a grid can be modelled as a weighted hypergraph represen-
tation which allows more accurately modelling the agents system interactions.
Hereinafter, we propose making tuning decisions grounded in partitioning the
weighted hypergraph into equally balanced partitions through integrating a
hypergraph partitioning tool. Thereafter, the agent migration is undertaken
in order to fulfil the grids reconfiguration decisions (the hypergraph resulting
new partitions) and adjust the global workload. Unfortunately, the runtime
of hypergraph partitioning algorithms is intrinsically conditioned by, among
other things, the problem size, hypergraph complexity, number of PEs and the
partitioning algorithm efficiency. As was mentioned along with this thesis, there
is a trade-off between the hypergraph partitioning runtime and solution quality.
This indicates that, depending on the expected quality solution, finding a proper
grid reconfiguration may take longer than expected.

In the same way, the amount of agents migrated has also an associated
overhead mainly caused by the amount of bytes exchanged during the agent
migrations. In this regard, there is also a trade-off between the frequency of
tuning phase calls and the amount of agents migrated.

The message management mechanism defined in this thesis operates directly
over the ASR definition and assists the platform to determine the recipient PEs
related to the agents’ outgoing messages across all PEs. In this sense, the
percentage of messages sent to external PEs (receivers) are kept low, that is to
say, through our ASR the major part of the agent messages is retained in source
PEs (senders). We note that the amount of messages dispatched directly impacts
the performance of the neighbouring PEs because receiver PEs have to examine
a smaller amount of received messages.

6.2. FUTURE WORK AND OPEN LINES 97

Finally, we evaluate our hypergraph-based methodology through a set of
experiments using real AB models in a real HPC platform. In conclusion,
evaluating different aspects of the methodology presented in this thesis, as well
as an integral whole, the significant performance gains and advantages utilising
our approach have been demonstrated. For the Colorectal Tumour Growth and
Keratinocyte Colony Formation models, our tuning methodology gains more
than 30% and 60% (respectively) in terms of execution time with respect of the
round-robin distribution (the best Flame approach in the experiments).

6.2 Future Work and Open Lines

The work presented in this thesis gives rise to a wide range of affordable open
lines and further work. We have classified some relevant topics that need to be
considered in order to extend the scope of this research:
• Determine the best number of PEs. The number of PEs being used is

previously decided, but this can be adjusted to reduce possible inefficiencies
(PEs with longer periods of idleness). In an ideal scenario, where
there is no communication overhead or time constraints given by agent
operation/states, adding more resources will scale well. However, this
situation is not common for these applications. These performance issues
can be mitigated by developing a solution for adapting the number of PEs
used to provide an efficient execution in order to obtain the lowest execution
time possible using the available resources.

• Define a strategy to dynamically determine the best grid size. The
choice of a proper ASR grid size significantly affects the performance
of CPU/memory requirements, hypergraph partitioner overhead, message
management performance and the ASR workload modelling quality. For
this reason, finding the best grid (hence, expected solution quality) in each
specific workload case is a difficult task and very relevant to significantly
reduce the overall overhead.

• Tune the tolerance range. Within the monitoring phase, the tolerance range
determines the permitted imbalance bounds in terms of iteration time and
consequently indicates the frequency of launching the tuning phase. As in
the previous case, finding the best tolerance value for each specific case, for
a specific ABMS problem with a particular workload variability, will reduce
the application runtime and minimise the DLB overhead.

• Extend to master-worker paradigm. There are several HPC applications
which are designed utilising the master-worker program structure, where
several load balancing studies take place. The methodology presented in
this thesis can be extended to this paradigm by placing the DLB approach
in the master PE which should be responsible for collecting the global ASR

98 CHAPTER 6. CONCLUSIONS

and giving instructions for migrating agents.
• Include ASR support for non spatially-explicit AB models. It is noteworthy

that other options to implement ABMS exist. There are agent definitions
without spatial representation at all, but the agents are linked together into
a network in which the only indication of an agents relationship to other
agents is the list of the agents to which it is connected by network links.
In such cases, the ASR has to be suited for applying a different clustering
algorithm and agents’ relations interpreting procedure. For the clustering
algorithm, a different relation function or sort criterion has to be defined
in order to understand the agents connection characteristics for grouping
agents.

• Test with other AB models and platforms. There is a wide variety of
AB models and other ABMS platforms intended to HPC environment to
extend the test of our approach. Since AB models defined with different
behavioural patterns and other ABMS platforms manage agent computing
and interaction with different functioning concepts, these extended tests will
provide significant key aspect to a wider range of models and porting our
implementation to other platforms.

• Explore other graph/hypergraph partitioning methods. Following the previ-
ous idea, there are varied graphs/hypergraph partitioning algorithms usually
utilised for solving domain dependent optimisation problems modelled in
terms of weighted or unweighted hypergraph/graphs. We consider relevant
to explore other approaches in order to analyse and propose a solution for
reducing the partitioning overhead associated.

• Perform scalability tests. Since applications express well balanced data
decomposition and full parallelism on their codes, the performance is not
always linear to the number of resources, as expected. For evaluating this
aspect, it is necessary to study the different factors limiting the application
scalability, either testing our methodology with a wider number of PEs or
redefining certain components and the implementation of our DLB.

• Include large scale simulations. The large amount of biologic, statistics,
scientific and engineering problems - just to mention a few - that can be
studied and solved thanks to the computational resources existing today,
led to the design of more complex AB models and computing power. In
this sense, another research line is evaluating, adapting and applying our
methodology on systems architectures with high scalability, which can be
designed with a different memory hierarchy and a huge amount of PEs.

6.3. PH.D. INTERNSHIP 99

6.3 Ph.D. Internship
During the course of this thesis a Ph.D. internship was done at Royal Col-
lege of Surgeons in Ireland (RCSI). The objective was analysing the per-
formance of a Colorectal tumour model and exploring large simulation ca-
pabilities. The internship leads to a journal publication associated to the
European project ANGIOPREDICT (Predictive Genomic Biomarkers Methods
for Combination Bevacizumab ’Avastin’ Therapy in Metastatic Colorectal Cancer,
http://www.angiopredict.com/).

6.4 List of Publications
The work presented in this thesis has reported the following publications:
• C. Márquez, E. César, J. Sorribes, “Generación Automática de

Funciones de Migración de Agentes en FLAME”, XXIII Jornadas
de paralelismo (JP), Elche, Spain, September 2012.
This work focuses on the automatic generation of migration routines in
Flame using the SIR model. We showed that it is possible to make workload
modifications through migrating agents between PEs.

• C. Márquez, E. César, J. Sorribes, “A Load Balancing Schema
for Agent-based SPMD Applications”, Proceedings of the In-
ternational Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA), Las Vegas, USA, July
2013.
This work proposes a schema that dynamically adjusts the workload and
migrates agents that only consider computing workload among PEs. In this
case, a minimalist ASR is built considering the joint agent workload and
the quantity of agents for each PE.

• C. Márquez, E. César, J. Sorribes, “Agent Migration in HPC
Systems using FLAME”, 1st Workshop on Parallel and Dis-
tributed Agent-Based Simulation (PADABS), satellite Workshop
of Euro-Par, Aachen, Germany, August 2013.
In this paper, we published an efficient migration mechanism for migrating
agent between PEs and analyse the performance factors that affect the
overhead when migrating agents. We also presented a Flame template to
generate migration routines.

• C. Márquez, E. César, “Tutorial: Agent-based Simulations using
Flame”, Social Simulation Conference (SSC), Barcelona, Spain,
September 2014.

100 CHAPTER 6. CONCLUSIONS

This is not a publication in itself, but a hands-on tutorial given in SSC’14 for
AB modellers concerned with scalability issues, whose requirements could
be fulfilled by the power of HPC.

• C. Márquez, E. César, J. Sorribes, “Impact of Message Filtering
on HPC Agent-Based Simulations”, pp. 65-72, Proceedings of
28th European Simulation and Modelling Conference ESM’2014,
28th European Simulation and Modelling Conference (ESM),
Porto, Portugal, October 2014.

In this work, we published a message filtering mechanism based on the ASR
presented in this thesis and we present a Flame template for automatically
generating message filtering routines. This paper shows the performance
gains of such message mechanism with the CTG model. This work is aiming
to overcome the reduction of the excessive agents’ messages applied to AB
simulations.

• C. Márquez, E. César, J. Sorribes, “Graph-Based Automatic
Dynamic Load Balancing for HPC Agent-Based Simulations”, 3rd
Workshop on Parallel and Distributed Agent-Based Simulation
(PADABS), satellite Workshop of Euro-Par, Vienna, Austria,
August 2015.

This paper introduces a DLB strategy that tunes the global simulation
workload migrating groups of agents among the PEs according to their
computation workload and their message connectivity map modelled using
a hypergraph. This structure is build based on clustering agents into
grids. This Hypergraph is partitioned using the Zoltan Parallel Hypergraph
partitioner method (PHG).

• Guiyeom Kang, Claudio Márquez, Ana Barat, Annette T. Byrn,
Jochen H.M. Prehn, Joan Sorribes, Eduardo César. “Colorec-
tal tumour simulation using agent based modelling and high
performance computing”, Future Generation Computer System
(FGCS), April 2016.

This journal publication shows the design and implementation of the DLB
mechanism including required tuning features, such as agent migration, mes-
sage filtering, agent connectivity mapping and performance measurement
monitoring, in order to improve the performance of parallel AB simulations.
The mechanism is implemented in Flame with the CTG simulation model
presented in this thesis.

6.5. SPECIAL ACKNOWLEDGEMENTS 101

6.5 Special Acknowledgements
This work has been partially supported by MICINN-Spain under contract
TIN2011-28689-C02-01 and TIN2014-53234-C2-1-R and GenCat-DIUiE(GRR)
2014-SGR-576.

This research was also funded by the European Community’s Framework
Programme Seven (FP7) Programme under contract No. 278981 AngioPredict
and supported by the DJEI/DES/SFI/HEA Irish Centre for High-End Computing
(ICHEC) and the Barcelona Supercomputing Center-Centro Nacional de Super-
computación (BSC-CNS).

In addition, the authors thankfully acknowledge the resources and technical
assistance provided by:
• Computer Architecture and Operating Systems Department, Universitat

Autònoma de Barcelona, Barcelona, Spain.
• Centre for Systems Medicine and Physiology & Medical Physics Depart-

ment, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland.
• Computer Applications in Science & Engineering Department, Barcelona

Supercomputing Center-Centro Nacional de Supercomputación (BSC-CNS),
Barcelona, Spain.

102 CHAPTER 6. CONCLUSIONS

Bibliography

[1] Top500 supercomputer site [online]. http://www.top500.org.

[2] Shahnaz Afroz, Hee Yong Youn, and Dongman Lee. Performance of message
logging protocols for nows with mpi. In Proceedings of the 1999 Pacific Rim
International Symposium on Dependable Computing, PRDC ’99, pages 252–,
Washington, DC, USA, 1999. IEEE Computer Society.

[3] Alfred V. Aho and John E. Hopcroft. The Design and Analysis of Computer
Algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1st edition, 1974.

[4] César Allande, Josep Jorba, Anna Sikora, and Eduardo César. A
performance model for openmp memory bound applications in multisocket
systems. Procedia Computer Science, 29:2208 – 2218, 2014.

[5] George S. Almasi and Allan Gottlieb. Highly parallel computing (2. ed.).
Addison-Wesley, 1994.

[6] Konstantin Andreev and Harald Räcke. Balanced graph partitioning. In
Proceedings of the Sixteenth Annual ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA ’04, pages 120–124, New York, NY,
USA, 2004. ACM.

[7] Angiopredict. Predictive genomic biomarkers methods for combination
bevacizumab (avastin) therapy in metastatic colorectal cancer ANGIOPRE-
DICT,. EU’s Framework Programme Seven (FP7) under contract 306021,
2014.

[8] M. Ben-Ari. Principles of Concurrent Programming. Prentice Hall
Professional Technical Reference, 1982.

[9] C. Berge. Hypergraphs: Combinatorics of Finite Sets. North-Holland, 1989.

[10] Pavel Berkhin. Survey of clustering data mining techniques. Technical
report, 2002.

103

104 BIBLIOGRAPHY

[11] M. Bithell and W.D. Macmillan. Escape from the cell: Spatially explicit
modelling with and without grids. Ecological Modelling, 200(12):59 – 78,
2007.

[12] Vicente Blanco. Análisis, predicción y visualización del rendimiento de
métodos iterativos en HPF y MPI. PhD thesis, Universidad de Santiago
de Compostela, 2002.

[13] Douglas M. Blough and Peng Liu. Fimd-mpi: A tool for injecting faults
into mpi applications. Parallel and Distributed Processing Symposium,
International, 0:241, 2000.

[14] Cristina Boeres, Vinod E. F. Rebello, Cristina Boeres, and Vinod E. F.
Rebello. Towards optimal static task scheduling for realistic machine
models: theory and practice, 2003.

[15] E. G. Boman, U. V. Catalyurek, C. Chevalier, and K. D. Devine. The
Zoltan and Isorropia parallel toolkits for combinatorial scientific computing:
Partitioning, ordering, and coloring. Scientific Programming, 20(2):129–150,
2012.

[16] Jurgen Brehm, Patrick H. Worley, and Manish Madhukar. Performance
modeling for spmd message-passing programs, 1996.

[17] Alain Bretto. Introduction to hypergraph theory and its use in engineering
and image processing. volume 131 of Advances in Imaging and Electron
Physics, pages 1 – 64. Elsevier, 2004.

[18] Alain Bretto. Hypergraph Theory: An Introduction. Springer Publishing
Company, Incorporated, 2013.

[19] Alain Bretto, Yannick Silvestre, and Thierry Vallée. Cartesian product
of hypergraphs: properties and algorithms. In Proceedings Fourth Athens
Colloquium on Algorithms and Complexity, ACAC 2009, Athens, Greece,
August 20-21, 2009., pages 22–28, 2009.

[20] Daniel G. Brown, Rick Riolo, Derek T. Robinson, Michael North, and
William Rand. Spatial process and data models: Toward integration of
agent-based models and gis. Journal of Geographical Systems, 7(1):25–47,
2005.

[21] Rajkumar Buyya. High Performance Cluster Computing: Architectures and
Systems. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1999.

[22] Rajkumar Buyya, James Broberg, and Andrzej M. Goscinski. Cloud
Computing Principles and Paradigms. Wiley Publishing, 2011.

BIBLIOGRAPHY 105

[23] E. Cesar, A. Moreno, J. Sorribes, and E. Luque. Modeling master/worker
applications for automatic performance tuning. Parallel Comput., 32:568–
589, September 2006.

[24] Eduardo Cesar. Definition of Framework-based Performance Models for
Dynamic Performance Tuning. PhD thesis, Universitat Autonoma de
Barcelona. Departament d’Arquitectura de Computadors i Sistemes Op-
eratius, 2006.

[25] Satish Chandra, James R. Larus, and Anne Rogers. Where is time spent in
message-passing and shared-memory programs? SIGOPS Oper. Syst. Rev.,
28:61–73, November 1994.

[26] Xu Chengzhong and Francis C. M. Lau. A survey of nearest-neighbor load
balancing algorithms. In Load Balancing in Parallel Computers, volume 381
of The Kluwer International Series in Engineering and Computer Science,
pages 21–35. Springer US, 1997.

[27] C. Chevalier and F. Pellegrini. Pt-scotch: A tool for efficient parallel graph
ordering. Parallel Comput., 34(6-8):318–331, July 2008.

[28] S. Coakley, M. Gheorghe, M. Holcombe, S. Chin, D. Worth, and
C. Greenough. Exploitation of high performance computing in the flame
agent-based simulation framework. In High Performance Computing and
Communication 2012 IEEE 9th International Conference on Embedded
Software and Systems (HPCC-ICESS), 2012 IEEE 14th International
Conference on, pages 538–545, June 2012.

[29] Simon Coakley, Paul Richmond, Marian Gheorghe, Shawn Chin, David
Worth, Mike Holcombe, and Chris Greenough. Large-Scale Simulations with
FLAME, pages 123–142. Springer International Publishing, Cham, 2016.

[30] Simon Coakley, Rod Smallwood, and Mike Holcombe. Using X-machines as
a formal basis for describing agents in agent-based modelling. In Proceedings
of 2006 Spring Simulation Multiconference, pages 33–40, April 2006.

[31] Nicholson Collier and Michael North. Parallel agent-based simulation with
repast for high performance computing. Simulation, 89(10):1215–1235,
2013.

[32] Gennaro Cordasco, Rosario De Chiara, Ada Mancuso, Dario Mazzeo,
Vittorio Scarano, and Carmine Spagnuolo. Bringing together efficiency
and effectiveness in distributed simulations: the experience with d-mason.
Simulation, 89(10):1236–1253, 2013.

106 BIBLIOGRAPHY

[33] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E.
Leiserson. Introduction to Algorithms. McGraw-Hill Higher Education, 2nd
edition, 2001.

[34] Biagio Cosenza, Gennaro Cordasco, Rosario De Chiara, and Vittorio
Scarano. Distributed load balancing for parallel agent-based simulations.
In Proceedings of the 2011 19th International Euromicro Conference on
Parallel, Distributed and Network-Based Processing, PDP ’11, pages 62–69,
Washington, DC, USA, 2011. IEEE Computer Society.

[35] David Culler, J.P. Singh, and Anoop Gupta. Parallel Computer Architec-
ture: A Hardware/Software Approach. Morgan Kaufmann, 1st edition, 1998.
The Morgan Kaufmann Series in Computer Architecture and Design.

[36] Toh Da-Jun, Francis Tang, Travis Lee, Deepak Sarda, Arun Krishnan,
and Andrew Goryachev. Parallel computing platform for the agent-based
modeling of multicellular biological systems. In Parallel and Distributed
Computing: Applications and Technologies, pages 5–8. Springer, 2005.

[37] Chris Greenough David Worth, Shawn Chin. FLAME tutorial examples
: a simple SIR infection model. Technical Report RAL-TR-2012-017,
Rutherford Appleton Laboratory, November 2012.

[38] K.D. Devine, E.G. Boman, R.T. Heaphy, R.H. Bisseling, and U.V.
Catalyurek. Parallel hypergraph partitioning for scientific computing. In
Parallel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th
International, pages 10 pp.–, April 2006.

[39] Hank Dietz. Linux parallel processing howto, 1998.

[40] Ralph Duncan. A survey of parallel computer architectures. Computer,
23:5–16, February 1990.

[41] A. Fahad, N. Alshatri, Z. Tari, A. Alamri, I. Khalil, A. Y. Zomaya,
S. Foufou, and A. Bouras. A survey of clustering algorithms for big data:
Taxonomy and empirical analysis. IEEE Transactions on Emerging Topics
in Computing, 2(3):267–279, Sept 2014.

[42] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for
improving network partitions. In Proceedings of the 19th Design Automation
Conference, DAC ’82, pages 175–181, Piscataway, NJ, USA, 1982. IEEE
Press.

[43] Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathe-
matical Journal, 23(2):298–305, 1973.

BIBLIOGRAPHY 107

[44] Jan Finis, Robert Brunel, Alfons Kemper, Thomas Neumann, Norman May,
and Franz Faerber. Indexing highly dynamic hierarchical data. Proc. VLDB
Endow., 8(10):986–997, June 2015.

[45] P. Fjallstrom. Algorithms for graph partitioning: A survey, 1998.

[46] Steven Fortune. Voronoi diagrams and delaunay triangulations. Discrete &
Computational Geometry, 1995.

[47] Ian Foster. Designing and Building Parallel Programs: Concepts and Tools
for Parallel Software Engineering. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1995.

[48] Ian Foster and Carl Kesselman, editors. The grid: blueprint for a new
computing infrastructure. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1999.

[49] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified
np-complete problems. In Proceedings of the Sixth Annual ACM Symposium
on Theory of Computing, STOC ’74, pages 47–63, New York, NY, USA,
1974. ACM.

[50] G. Nigel Gilbert. Agent-based models. Quantitative applications in the social
sciences. Sage, Los Angeles, CA, 2008.

[51] Nigel Gilbert, Andreas Pyka, and Petra Ahrweiler. Innovation networks -
A simulation approach. J. Artificial Societies and Social Simulation, 4(3),
2001.

[52] Raymond Greenlaw and Sanpawat Kantabutra. Survey of clustering:
Algorithms and applications. Int. J. Inf. Retr. Res., 3(2):1–29, April 2013.

[53] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-
performance, portable implementation of the mpi message passing interface
standard. Parallel Comput., 22:789–828, September 1996.

[54] Per Brinch Hansen. Model programs for computational science: A
programming methodology for multicomputers. Concurrency - Practice and
Experience, 5(5):407–423, 1993.

[55] W. Daniel Hillis and Guy L. Steele, Jr. Data parallel algorithms. Commun.
ACM, 29:1170–1183, December 1986.

[56] Jay P. Hoeflinger. Extending openmp to clusters, 2006.

108 BIBLIOGRAPHY

[57] Josep Jorba. Análisis automático de prestaciones de aplicaciones par-
alelas basadas en paso de mensajes. PhD thesis, Universitat Autònoma
de Barcelona. Departament d’Arquitectura de Computadors i Sistemes
Operatius, 2006.

[58] Amir Kamil and Katherine Yelick. Hierarchical Computation in the SPMD
Programming Model, pages 3–19. Springer International Publishing, Cham,
2014.

[59] Guiyeom Kang, Claudio Márquez, Ana Barat, Annette T. Byrne,
Jochen H.M. Prehn, Joan Sorribes, and Eduardo César. Colorectal tumour
simulation using agent based modelling and high performance computing.
Future Generation Computer Systems, 67:397 – 408, 2017.

[60] George Karypis and V. Kumar. ParMETIS: Parallel graph parti-
tioning and sparse matrix ordering library. Technical Report 97-
060, Department of Computer Science, University of Minnesota, 1997.
http://www.cs.umn.edu/ metis.

[61] George Karypis and Vipin Kumar. Analysis of multilevel graph partitioning.
In Proceedings of the 1995 ACM/IEEE Conference on Supercomputing,
Supercomputing ’95, New York, NY, USA, 1995. ACM.

[62] Jeremy Kepner and John Gilbert. Graph Algorithms in the Language
of Linear Algebra. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2011.

[63] B. W. Kernighan and Shunjiang Lin. An efficient heuristic procedure for
partitioning graphs. Bell System Technical Journal, The, 49(2):291–307,
February 1970.

[64] Tanya Kostova, Tina Carlsen, and Jim Kercher. Individual-based spatially-
explicit model of an herbivore and its resource: the effect of habitat
reduction and fragmentation. Comptes Rendus Biologies, 327(3):261–276,
March 2004.

[65] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis.
Introduction to parallel computing: design and analysis of algorithms.
Benjamin-Cummings Publishing Co., Inc., Redwood City, CA, USA, 1994.

[66] Anany V. Levitin. Introduction to the Design and Analysis of Algorithms.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[67] A. J. Lotka. Elements of Physical Biology. Williams and Wilkins, Baltimore,
1920.

BIBLIOGRAPHY 109

[68] Huiwei Lu, S. Seo, and Pavan Balaji. Mpi+ult: Overlapping communication
and computation with user-level threads. In HPCC’15, New York, 08/2015
2015. IEEE, IEEE.

[69] Charles M. Macal and Michael J. North. Tutorial on agent-based modeling
and simulation. In Proceedings of the 37th Conference on Winter Simula-
tion, WSC ’05, pages 2–15. Winter Simulation Conference, 2005.

[70] Claudio Márquez, Eduardo César, and Joan Sorribes. A load balancing
schema for agent-based spmd applications. In International Conf. on
Parallel and Distributed Processing Techniques and Applications, PDPTA,
pages 62–69, 2013.

[71] Claudio Márquez, Eduardo César, and Joan Sorribes. Agent migration in
hpc systems using flame. In Euro-Par 2013: Parallel Processing Workshops,
volume 8374 of Lecture Notes in Computer Science, pages 523–532. Springer
Berlin Heidelberg, 2014.

[72] Claudio Márquez, Eduardo César, and Joan Sorribes. Impact of message
filtering on hpc agent based simulations. In European Simulation and
Modelling Conference 2014, pages 62–72, 2014.

[73] Claudio Márquez, Eduardo César, and Joan Sorribes. Graph-Based
Automatic Dynamic Load Balancing for HPC Agent-Based Simulations,
pages 405–416. Springer International Publishing, Cham, 2015.

[74] Oliver A. McBryan. An overview of message passing environments. Parallel
Computing, 20:417–444, 1994.

[75] Dan I. Moldovan. Parallel Processing: From Applications to Systems.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition,
1992.

[76] A. Moreno, E. Cesar, A. Guevara, J. Sorribes, and T. Margalef. Load
balancing in homogeneous pipeline based applications. Parallel Comput.,
38(3):125–139, March 2012.

[77] nCUBE company. ncube 2 supercomputers parallel programming principles.
Technical report, Foster City, CA., 1993.

[78] Michael J. North, Nicholson T. Collier, Jonathan Ozik, Eric R. Tatara,
Charles M. Macal, Mark Bragen, and Pam Sydelko. Complex adaptive
systems modeling with repast simphony. Complex Adaptive Systems
Modeling, 1(1):3, 2013.

110 BIBLIOGRAPHY

[79] A. Osman and H. Ammar. A scalable dynamic load-balancing algorithm
for spmd applications on a non-dedicated heterogeneous network of work-
stations (hnow), 2003.

[80] David A. Papa and Igor L. Markov. Hypergraph partitioning and clustering.
In In Approximation Algorithms and Metaheuristics, 2007.

[81] Roberto Uribe Paredes, Claudio Márquez, and Roberto Solar. Construction
strategies on metric structures for similarity search. CLEI Electron. J.,
12(3), 2009.

[82] HazelR. Parry and Mike Bithell. Large scale agent-based modelling:
A review and guidelines for model scaling. In Agent-Based Models of
Geographical Systems, pages 271–308. Springer Netherlands, 2012.

[83] H. Van Dyke Parunak, Robert Savit, and Rick L. Riolo. Agent-based
modeling vs. equation-based modeling: A case study and users’ guide. In
Proceedings of the First International Workshop on Multi-Agent Systems
and Agent-Based Simulation, pages 10–25, London, UK, UK, 1998. Springer-
Verlag.

[84] François Pellegrini. Current challenges for parallel graph partitioning and
static mapping. In Parallel Matrix Algorithms and Applications, Bâle,
Switzerland, June 2010.

[85] Tatjana Petkovic and Sven Loncaric. Supercover plane rasterization - a
rasterization algorithm for generating supercover plane inside a cube. In
GRAPP (GM/R)’07, pages 327–332, 2007.

[86] A. Plastino, C. C. Ribeiro, and N. Rodŕıguez. Developing spmd applications
with load balancing. Parallel Comput., 29:743–766, June 2003.

[87] Saumyadipta Pyne, B.L.S. Prakasa Rao, and S.B. Rao. Big Data Analytics:
Methods and Applications. Springer Publishing Company, Incorporated, 1st
edition, 2016.

[88] Sivasankaran Rajamanickam and Erik G. Boman. An Evaluation of the
Zoltan Parallel Graph and Hypergraph Partitioners. Feb 2012.

[89] Sivasankaran Rajamanickam and Erik G. Boman. Parallel Partitioning with
Zoltan: Is Hypergraph Partitioning Worth It?. Sep 2012.

[90] Craig W. Reynolds. Flocks, herds and schools: A distributed behavioral
model. In Proceedings of the 14th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH ’87, pages 25–34, New York, NY,
USA, 1987. ACM.

BIBLIOGRAPHY 111

[91] Ferozuddin Riaz and Khidir M. Ali. Applications of graph theory in
computer science. In Proceedings of the 2011 Third International Conference
on Computational Intelligence, Communication Systems and Networks,
CICSYN ’11, pages 142–145, Washington, DC, USA, 2011. IEEE Computer
Society.

[92] Pedro Ribeiro de Andrade. Game theory and agent-based modelling for the
simulation of spatial phenomena. Instituto Nacional de Pesquisas Espaciais,
2010.

[93] Paul Richmond, Dawn Walker, Simon Coakley, and Daniela Romano. High
performance cellular level agent-based simulation with flame for the gpu.
Briefings in Bioinformatics, 11(3):334, 2010.

[94] Claudia Rosas, Anna Sikora, Josep Jorba, Andreu Moreno, and Eduardo
César. Improving performance on data-intensive applications using a load
balancing methodology based on divisible load theory. Int. J. Parallel
Program., 42(1):94–118, February 2014.

[95] Alban Rousset, Bénédicte Herrmann, Christophe Lang, and Laurent
Philippe. A Survey on Parallel and Distributed Multi-Agent Systems, pages
371–382. Springer International Publishing, Cham, 2014.

[96] Xavier Rubio-Campillo. Pandora: A versatile agent-based modelling
platform for social simulation. In Proceedings of SIMUL 2014, The Sixth
International Conference on Advances in System Simulation, pages 29–34.
IARIA Publishing, 2014.

[97] Gudula Runger. Parallel programming models for irregular algorithms. In
Karl Heinz Hoffmann and Arnd Meyer, editors, Parallel Algorithms and
Cluster Computing, volume 52 of Lecture Notes in Computational Science
and Engineering, pages 3–23. Springer Berlin Heidelberg, 2006.

[98] Youcef Saad. Sparskit: a basic tool kit for sparse matrix computations -
version 2, 1994.

[99] Boris Schling. The Boost C++ Libraries. XML Press, 2011.

[100] John Scott. Social network analysis : a handbook. Sage, London, 2nd ed
edition, 2000. Lisäpainokset: Repr. 2005.

[101] Luis Moura E Silva and Rajkumar Buyya. Parallel programming models
and paradigms. 1998.

112 BIBLIOGRAPHY

[102] Rishi Pal Singh and Vandana. Article: Application of graph theory in
computer science and engineering. International Journal of Computer
Applications, 104(1):10–13, October 2014. Full text available.

[103] Roberto Solar, Remo Suppi, and Emilio Luque. High performance
individual-oriented simulation using complex models. Procedia Computer
Science, 1(1):447 – 456, 2010.

[104] Roberto Solar, Remo Suppi, and Emilio Luque. High performance
distributed cluster-based individual-oriented fish school simulation. Procedia
CS, 4:76–85, 2011.

[105] Roberto Solar, Remo Suppi, and Emilio Luque. Proximity load balancing
for distributed cluster-based individual-oriented fish school simulations.
Procedia Computer Science, 9(0):328 – 337, 2012. Proceedings of the
International Conference on Computational Science, ICCS 2012.

[106] Aad J. Van Der Steen and Jack J. Dongarra. Overview of recent
supercomputers, 1996.

[107] Tao Sun, Phil McMinn, Simon Coakley, Mike Holcombe, Rod Smallwood,
and Sheila MacNeil. An integrated systems biology approach to understand-
ing the rules of keratinocyte colony formation. Journal of the Royal Society
Interface, 4(17):1077–1092, 2007.

[108] Tao Sun, Phil McMinn, Mike Holcombe, Rod Smallwood, and Sheila
MacNeil. Agent based modelling helps in understanding the rules by which
fibroblasts support keratinocyte colony formation. PLOS ONE, 3(5):1–17,
05 2008.

[109] Aad J. van der Steen and Jack Dongarra. Handbook of massive data sets.
chapter Overview of high performance computers, pages 791–852. Kluwer
Academic Publishers, Norwell, MA, USA, 2002.

[110] Guillermo Vigueras, Miguel Lozano, and Juan M. Orduña. Workload
balancing in distributed crowd simulations: the partitioning method. J.
Supercomput., 58(2):261–269, November 2011.

[111] V. Volterra. Variation and fluctuations of the number of individuals of
animal species living together. In Animal Ecology. McGraw-Hill, 1926.

[112] Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and
Computing, 17(4):395–416, 2007.

[113] Barry Wilkinson and Michael Allen. Parallel Programming. Prentice Hall,
1999.

BIBLIOGRAPHY 113

[114] Robin J Wilson. Introduction to Graph Theory. John Wiley & Sons, Inc.,
New York, NY, USA, 1986.

[115] Felix Wolf and Bernd Mohr. Automatic performance analysis of hybrid
mpi/openmp applications. J. Syst. Archit., 49:421–439, November 2003.

[116] Yadong Xu, Wentong Cai, Heiko Aydt, and Michael Lees. Efficient
graph-based dynamic load-balancing for parallel large-scale agent-based
traffic simulation. In Proceedings of the 2014 Winter Simulation Conference,
WSC ’14, pages 3483–3494, Piscataway, NJ, USA, 2014. IEEE Press.

[117] Andrea Zavanella and Alessandro Milazzo. Predictability of bulk syn-
chronous programs using mpi. In Proceedings of the 8th Euromicro
conference on Parallel and distributed processing, EURO-PDP’00, pages
118–123, Washington, DC, USA, 1999. IEEE Computer Society.

[118] Dongliang Zhang, Changjun Jiang, and Shu Li. A fast adaptive load
balancing method for parallel particle-based simulations. Simulation
Modelling Practice and Theory, 17(6):1032–1042, 2009.

[119] Gengbin Zheng, Esteban Meneses, Abhinav Bhatele, and Laxmikant V.
Kale. Hierarchical load balancing for Charm++ applications on large
supercomputers. In Proceedings of the 2010 39th International Conference
on Parallel Processing Workshops, ICPPW ’10, pages 436–444, Washington,
DC, USA, 2010. IEEE Computer Society.

	Títol de la tesi: A Grid-Hypergraph Load Balancing
Approach for Agent Based Applications in
HPC Systems
	Nom autor/a: Claudio Daniel Márquez Pérez

