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ABSTRACT

In southern Europe, climate trends are expected to be characterized by an increase in temperatures and less
water availability. Analyzing the role of structural factors and the influence of a changing climate provides
insights into the evolution of forest ecosystems in regions with similar environmental conditions. The
Mediterranean fringe of the Iberian Peninsula is of particular interest due to its diverse topo climatic conditions
and the increase in drought episodes during the last decades. This work studies forest dynamics in large areas of
this geographical region by analyzing nine forest transitions. Vegetation covers were classified from three
Landsat scenes for the period 1987-2012, and sub-periods 1987-2002 and 2002-2012. Conditions were de-
scribed by topography derived variables, human factors and drought-occurrence variables. Boosted regression
trees were used to identify the most important variables and describe the relationships between the forest dy-
namics and key factors. Variables such as solar radiation, topographic wetness index and tolerance to drought
have been shown to be key factors in forest succession and when comparisons are made between vegetation
groups. Main findings: The transition rate to Mediterranean and sub-Mediterranean broadleaf forests has in-
creased during the analyzed period, while the transition rate to coniferous forests has decreased; Transitions to
Mediterranean and sub-Mediterranean broadleaf forests are positively associated with drought occurrence while
transitions to conifers are negatively affected by drought; Transitions from shrublands to forest stages are more
vulnerable to factors controlling water availability; Important interactions between topography derived vari-
ables and drought have been found. The study provides robust evidence that drought occurrence plays an im-
portant role in the decline of conifers and the expansion of broadleaves, which could become the dominant
species in many areas of the Mediterranean if climate model forecasts are met.

1. Introduction

Jong, 2007; Alados et al., 2004). However, human-aided mapping is a
time consuming task when large areas are under study, which is es-

Vegetation disturbances affecting all biome types have been ob-
served in recent decades at global and continental scales (Hansen et al.,
2013). Therefore, precise knowledge of the factors controlling vegeta-
tion dynamics is essential for improving ecosystem monitoring. For this
purpose, analyzing vegetation transitions can provide significant in-
sights, both from a methodological perspective and due to the findings.

The use of aerial photographs is an approach that is used widely in
these studies, especially when a large coverage of historical aerial
imagery is available. This approach has made it possible to obtain de-
tailed information about vegetation types and changes in their spatial
pattern over periods of 40-50 years (Allen et al., 1998; Sluiter and de
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sential for defining regional or global trends. This is especially im-
portant for analyzing climate-induced vegetation shifts because it is
necessary to cover a spatially representative area (Martinez-Vilalta and
Lloret, 2016). In this sense, the broad scale of national forest in-
ventories has made it possible to identify transitions between species at
a regional scale (Coll et al., 2013; Vayreda et al., 2016; Monleon and
Lintz, 2015), although the density of plots and the period covered be-
tween surveys (~10 years) mean that definitive conclusions about
climate-driven vegetation shifts cannot be made (Martinez-Vilalta and
Lloret, 2016). Finally, the use of remote-sensing techniques is con-
sidered the most appropriate approach for identifying robust trends in
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vegetation dynamics both spatially and temporarily (McDowell et al.,
2015). Land-cover mapping based on satellite imagery can provide
massive datasets (Wulder et al., 2008; Hermosilla et al., 2016; Vidal-
Macua et al., 2017), although special attention should be paid to the
possible uncertainty of these products (Pons et al., 2003, 2014; Pontius
et al., 2004; Alvarez-Martinez et al., 2010) in order to obtain reliable
land-cover change products and to avoid, as far as possible, the inclu-
sion of noisy observations in the statistical analysis. The NASA-USGS
Global Land Survey dataset (Gutman et al., 2013), primarily comprised
of Landsat images (30 m resolution), is a very important resource for
ecosystem monitoring from 1972 to present. Nevertheless, com-
plementary methods are required to determine the proximate causes of
large vegetation changes (McDowell et al., 2015).

In the Mediterranean mountains of Spain, ecological succession of
vegetation has advanced after a general abandonment of traditional
activities (Garcia-Ruiz, 1990; Lasanta-Martinez et al., 2005; Jimenez-
Olivencia et al., 2006; Cohen et al., 2011). Land-use management and,
in general, human activities have been, and continue to be, the main
driving force in the vegetation dynamics (Pino et al., 2000; Lasanta-
Martinez et al., 2005; Gehrig-Fasel et al., 2007; Améztegui et al., 2010).
However, other factors have to be taken into account to understand the
vegetation colonization processes more fully as well as the shifts be-
tween species and between entire plant communities. The spatial pat-
tern derived from the topography is a structural factor that explains
much of the vegetation distribution. Interactions between topo-
graphy—derived variables, such as altitude, slope, solar radiation or
topographic effect on hydrological processes, are some of the factors
most widely used in differentiating vegetation patterns (Pons and Solé-
Sugranes, 1994; Florinsky and Kuryakova, 1996; Burrough et al., 2001;
Allen et al., 2004; Bennie et al., 2006; Serra-Diaz et al., 2011; Moeslund
et al., 2013). The role of fire occurrence is another important issue for
analyzing vegetation spatial-patterns and stability of certain plant
communities (Diaz-Delgado and Pons, 2001; Salvador et al., 2005;
Pausas and Keely, 2009). Climatic factors are also known to be main
determinants in vegetation distribution, and climate dynamics are
considered to drive vegetation shifts in many areas of the world
(Walther et al., 2002; Schuur, 2003; Kelly and Goulden, 2008). In the
Iberian Peninsula there has been a marked increase in temperatures and
a decrease in precipitations over the last decades (Lopez-Moreno et al.,
2010; del Rio et al., 2011, 2012; El Kenawy et al., 2012), which has led
to an increase in the severity of droughts, especially in the Mediterra-
nean area (IPCC, 2007, 2013; Gonzalez-Hidalgo et al., 2009; Vicente-
Serrano, 2014; GECCC, 2016). The response of vegetation to droughts
has become a matter of growing interest (Breshears et al., 2005; Allen
et al., 2010; Vicente-Serrano et al., 2013; Martinez-Vilalta and Lloret,
2016; Norman et al., 2016) and recent works have shown the effects of
drought on several Mediterranean and European species (Bigler et al.,
2006; Weber et al., 2007; Pasho et al., 2011; Camarero et al., 2011;
Carnicer et al., 2011; Vila-Cabrera et al., 2013; Galiano et al., 2013;
Lévesque et al., 2013; Vicente-Serrano et al.,, 2015). Some of these
species represent southernmost populations in the Mediterranean
ambit, which explains their vulnerability to the warmer conditions
(Andreu et al., 2007; Sanchez-Salguero et al., 2016). Declines of these
species in forests could lead to long-term shifts (Peniuelas and Boada,
2003; Rigling et al., 2013; Galiano et al., 2010) and drought-tolerant
species could become dominant in community compositions. The
carbon stock of forests can be affected by these vegetation shifts
(Vayreda et al., 2012), and the changes in flammability of vegetation
can influence the fire regime, which is a very important issue in
southern Europe (Pausas and Fernandez-Munoz, 2012; Moreira et al.,
2012; Ganteaume and Jappiot, 2013).

Here, we analyze the influence of a series of physical, climatic and
human factors on the forest dynamics in the Iberian Peninsula from
1987 to 2012. Two sub-periods have been included in the analysis,
1987-2002 and 2002-2012, in order to take into account the variability
in human and climatic factors. The study focuses on progressive
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succession (Glenn-Lewin et al., 1992) and forest transitions, analyzing
the response to factors in nine different forest cover changes, from
shrublands to shifts in mature developing stages between conifer,
broadleaf evergreen and broadleaf deciduous forests. For this purpose
we have selected three large representative ambits, taking into account
their particular climatic context and topographic characteristics. These
ambits correspond to refined land-cover classifications of three entire
Landsat scenes ( ~ 32,400 km?). A set of variables derived from the SPEI
(Standardized Precipitation-Evapotranspiration Index) was determined
for spatially quantifying the occurrence of droughts. As far as we know,
this is the first time that drought-occurrence variables have been used
as explanatory factors of vegetation transitions.

Usually, the relationship between the explanatory variables and a
given land cover transition is determined by linear regression analysis,
such as logistic or multiple logistic regression (Serneels and Lambin,
2001; Serra et al., 2008), or by less commonly used approaches like
Markov chains (Balzter, 1999). In our case, the importance of variables
and how they influence each of the nine forest cover changes was
analyzed using boosted regression trees (BRT), also known as stochastic
gradient boosting (Friedman, 2001, 2002; Hastie et al., 2009). This
relatively new machine-learning technique (Breiman, 2001), in which
hundreds or thousands of decision trees (Breiman et al., 1984) are se-
quentially and progressively fitted, has been demonstrated to be par-
ticularly suited to predicting species distributions (Kawakita et al.,
2005; Elith et al., 2006, 2008, 2009; De'ath, 2007; Leathwick et al.,
2006; Crase et al., 2012) for the following main reasons: this approach
does not assume any data distributions or data models, rather it tries to
determine dominant patterns by combining many classification trees; it
identifies relevant variables and complex interactions; it is much less
influenced by correlated information or irrelevant variables than other
statistical approaches; it produces stable predictions (variance reduc-
tion); and it provides graphical depictions of the relationship between
the response variable and predictors. A separate BRT model was de-
veloped by forest cover change, period and study ambit, meaning that
81 models were evaluated.

The use of BRT is relatively new in ecology (Leathwick et al., 2006,
2008; Moisen et al., 2006; Sankaran et al., 2008; Levers et al., 2014;
Verkerk et al., 2015), but we believe that they have not yet been ap-
plied to analyze vegetation transitions. Finally, we would like to
highlight the particular relevance of the three study areas in the Iberian
Peninsula: the three ambits are located on the Mediterranean fringe of
the Peninsula, where a drying trend has been observed over the last
decades, especially in the northeast (De Luis et al., 2010). Our intention
was to provide insights into the conditions that lead to forest succession
and transitions between vegetation groups, focusing on topographic
variables, human-derived factors and drought occurrence. Thus, the
main objectives of this study were to determine the following: (1) the
most important factors in each of the forest cover transitions; (2) the
role of the key factors for comparisons of the main forest species; (3)
whether drought occurrence influences succession stages and forest
transitions; and 4) whether drought occurrence has a clear influence, to
determine the main interactions with other key factors.

2. Material and methods
2.1. Study areas

Three areas of Spain were included in this study as different sce-
narios for model development. Ambits correspond to land-cover clas-
sifications of three entire Landsat scenes, identified by their path-row:
198-031, 199-031 and 200-034 (Fig. 1). These large study areas were
chosen because of their heterogeneity of biogeographical regions, in-
cluding Alpine, Eurosiberian and Mediterranean areas, and, as pre-
viously explained, due to their climatic context. Representative moun-
tainous regions of northeast and southeast Spain are included in these
areas.
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Fig. 1. Study areas. * Grassland category includes semi-arid and mountain ecotypes, and may include scattered shrubs or trees.

Scenes 198-031 and 199-031 are located in the northeast of the
Iberian Peninsula and referred to hereafter as ambits NE1 and NE2
respectively. These two areas are spatially contiguous but have different
environmental features, mainly because NE2 is more continental and
arid. In addition, there is abundant reference information for these
areas and some studies that can be related to ours.

The eastern ambit NEI1 is influenced by a Mediterranean climate on
the coast as well as the Catalan coastal mountain range, and by a
continental climate in the Lleida Plain (Ebro basin) and Pyrenees (al-
though the eastern Pyrenees also have a Mediterranean influence).
Vegetation land-covers occupy a broad altitudinal range (from 0 to
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3300 m), from sites near the coast to sites in the alpine and subalpine
zones of the Pyrenees. Ambit NE2 has a greater continental influence in
the Pyrenees and northern slopes of the Iberian System, with a semi-
arid influence in the Middle Ebro Basin. In this ambit, which has less
altitudinal range (from 50 to 2500 m), vegetation extends up to the
upper montane zone and a very narrow area of the subalpine zone.
Scene 200-034 is located in southeastern Spain, and is hereafter
referred to as ambit SE3. The coastal mountains in this ambit have a
Mediterranean climate with pronounced aridity: less precipitations and
higher temperatures than the northeastern ambits. Mountainous mas-
sifs of the eastern Baetic System, like the Sierra Nevada and Cazorla
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mountain range, have a continental climate also with higher tempera-
tures than the northern ambits. The Sierra Nevada has a complete al-
titudinal zonation, while there are environments from foothills to upper
montane areas in most of these mountains.

2.2. Vegetation types

The study analyzes transitions between four vegetation classes de-
rived from the land cover classification: shrublands, coniferous forests,
broadleaf evergreen forests and broadleaf deciduous forests. The land
cover class shrublands includes several formations ranging from tem-
perate-xerophytic and temperate to alpine climate regions. Evergreen
broadleaf sclerophyllous and evergreen needleleaf species are generally
dominant in these areas (either as early transitional or permanent
stages such as maquis). On the other hand, broadleaf deciduous shrubs
are only dominant as permanent stages in cold-limited alpine en-
vironments. Coniferous forests are mainly composed by Pinus halepensis,
Pinus nigra and Pinus sylvestris. In northern areas, P. halepensis is the
dominant Mediterranean coniferous species below the upper montane
zone, and in the southern area it is mixed with P. nigra, which, together
with P. sylvestris, reaches the upper forest limit. Above the lower
montane zone, Eurosiberian coniferous forests are composed mostly of
P. sylvestris, with P. nigra at the lower limit and Abies alba and P. un-
cinata in the middle and upper areas (subalpine zone) respectively in
the northern ambits. Broadleaf evergreen forests are dominated by
Quercus ilex in the three ambits, although Quercus coccifera is wide-
spread in NE2. Q. ilex extends from sites near the coast to the upper
montane limit, and Q. coccifera spreads as continentality increases.
Broadleaf deciduous forests are mainly composed by Quercus pubescens,
Quercus faginea and Fagus sylvatica. Q. pubescens and Q. faginea are the
dominant species below the upper montane zone in northern ambits,
although in ambit NE2 they have a more patchy distribution. In the
southern ambit, these species together with Quercus pyrenaica are re-
stricted to sheltered locations. In the northern ambits, F. sylvatica is the
most important Eurosiberian broadleaf deciduous species, although it is
not present in subalpine zones.

2.3. Obtaining and refining land-cover maps

Vegetation cover maps were obtained by classifying Landsat ima-
gery at 30-m resolution following the methodology described in Vidal-
Macua et al. (2017). In our case, the k-nearest neighbor (kNN) classifier
was used to obtain both multi-temporal training and test areas and to
use them in final classifications. Each land-cover map refers to a five-
year period, so classifications are composed of a set of dates in which
the central years are 1987, 2002 and 2012. Training and test areas were
extracted from the Land Occupation Information System of Spain 2005
(SIOSE, Sistema de Informacién sobre Ocupacién del Suelo en Espana),
a spatial database developed at a 1:25,000 scale (http://www.siose.es/
). The disaggregation level of vegetation categories in the SIOSE data-
base was used to determine the four vegetation classes defined in Sec-
tion 2.2, except the grassland cover which is not included in the present
work. Once a first set of SIOSE polygons were selected, we implemented
a filtering process based on NDVI (Normalized Difference Vegetation
Index) thresholds to reduce confusion between categories within
polygons (Vidal-Macua et al., 2017). In a second stage, the kNN algo-
rithm was applied to identify training and test pixels with an invariant
statistical pattern for the 1987-2012 period (Vidal-Macua et al., 2017).
Once these pixels had been identified for three dates, we used them as
the final set to train the classifier and validate the results. The overall
accuracy was greater than 90% for all three dates and ambits. The
producer accuracy and user accuracy of vegetation land cover classes
are shown in Table S1 of the Supplementary Material.

In order to avoid, as far as possible, including misclassified pixels in
the statistical analysis, classifications were filtered using a confusion
index (Burrough et al., 1997, 2000; Lewis et al., 2000; Gorsevski, 2005;
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Tapia et al., 2005; Alvarez-Martinez et al., 2010). This index was cal-
culated with the kNN algorithm in which the nearest training pixels (k-
nearest neighbors) to each target pixel (to be classified) are identified
by means of the Euclidean distance. Class membership values (M,) are
assigned to each target pixel according to the number of times a cate-
gory C appears within the nearest training pixels (N.) weighted by the
squared inverse distance, following the expression:

£[iDM
3

We;

i
i=1

where C is a land-cover category within the nearest training pixels and
W is the inverse of the squared distance between the target pixel (x) and
a training pixel (x’) labeled with the class C: W = 1/d(x, x’)%; and Ny is
the number of k nearest training pixels. Thus, a target pixel has a
membership value for each land-cover category within the k nearest
training pixels. Vidal-Macua et al., (2017) describes the procedure for
determining the optimum value of k.

Finally, the uncertainty associated with a target pixel was calculated
with the confusion index (CI) equation:

CI = 1-(M.max—M_.max,)

where M¢ max is the maximum membership value of land-cover cate-
gories within the k nearest training pixels, and M max; is the second
maximum membership value.

Values of this index range from 0 to 1, so that values close to 1
indicate high confusion between at least two classes, and values close to
0 represent high certainty for a classified pixel. We used a threshold of
0.5 so that pixels classified with a CI over this value where masked to
exclude them from the land-cover maps.

A second mask was created to remove misregistration in land-cover
polygon boundaries. These situations are related to the location in-
accuracy of border pixels after the geometric correction, and therefore,
to false positive or negative changes between land-cover classifications
(Pons et al., 2003). To solve this, classification polygon boundaries
were eroded with a 20-m buffer mask according to the average RMS
error of the imagery geometric correction. More details about this
methodology can be found in Pons et al. (2003).

As our work is focused on natural ecological succession, we also
used a mask to remove forest plantation areas, extracted from the SIOSE
(Land Occupation Information System of Spain) database. Burned areas
(REDIAM, 2016; Gobierno de Aragén, 2016; Generalitat de Catalunya,
2016) in each period were also masked. Like wildfires, insect outbreaks
and windstorms are other important disturbances; however, in our
analysis we focus on isolating, as much as possible, the influence of
topography, drought and other variables described in later chapters on
forest dynamics.

Finally, classifications were overlaid to obtain 9 forest-cover
changes (Table 1) for the periods 1987-2012, 1987-2002 and

Table 1
Forest cover transitions.

Initial land-cover Land-cover change Code
Shrublands to Coniferous forests 1. SRB-CNF
Broadleaf evergreen forests 2. SRB-BEF
Broadleaf deciduous forests 3. SRB-BDF
Coniferous forests to Broadleaf evergreen forests 4. CNF-BEF
Broadleaf deciduous forests 5. CNF-BDF
Broadleaf evergreen forests to Coniferous forests 6. BEF-CNF
Broadleaf deciduous forests 7. BEF-BDF
Broadleaf deciduous forests to Coniferous forests 8. BDF-CNF
Broadleaf evergreen forests 9. BDF-BEF
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2002-2012. These transitions define the 9 models for each ambit and
period; however, as explained below, some models were removed due
to their low number of observations. In the present work, transitions
from shrublands to forest stages are related to early development
stages, so in later sections this term will be used to refer to these
transitions (SRB-CNF, SRB-BEF and SRB-BDF in Table 1).

2.4. Sampling

We considered land-cover changes as absence/presence events.
Areas where the initial land—cover remained stable between two dates
were treated as absences, and those where there were changes in land-
cover were treated as presences. For instance, absence areas (no—-
change events) in shrubland to coniferous forest cover are those where
shrubland polygons in 1987 and 2002 match; and presence areas
(change events) are those where shrubland polygons in 1987 and
coniferous forest polygons in 2002 match, and so on for each land—
cover change and period.

Once the change and no-change areas were established, stratified
random sampling was carried out, attempting to maintain the pre-
valence (the same number of points) between the two types of events.
As a general rule, 3000 points were randomly selected for each event
class with a minimum distance of 250 m between each point.
Prevalence was not achieved in all cases, especially in the southern
ambit, where certain vegetation formations, like broadleaf deciduous
forest, lack dynamism (compared with other formations) due to cli-
matic conditions and the rear-edge location. In these cases we kept the
resulting proportions between presences and absences since it has been
shown that BRT models perform well with unbalanced samples (Edith
et al., 2008; Sankaran et al., 2008; Edith and Graham, 2009; Crase
et al., 2012). Nevertheless, extremely unbalanced models were rejected
(see Section 3). Each dataset (composed by 6000 points when there is
prevalence) was randomly split into two subsets, one made up of 75%
of the samples for fitting the model, and a validation subset with the
remaining 25% of samples.

2.5. Explanatory variables

In order to interpret the forest transitions, a set of variables was
chosen (Table 2) to be included as explanatory factors in the models.

Table 2
Explanatory variables.

Variable code Description Units

Altitude Altitude Meters

Slope Slope Degrees

Curv Overall terrain curvature Dimensionless

Pf Curv Profile curvature Dimensionless

Pl Curv Plan curvature Dimensionless

VRM Terrain roughness Dimensionless

TWI Topographic Wetness Index Dimensionless

Win_SRad Winter solar radiation 10kJm~2day !

Sum_SRad Summer solar radiation 10kJm ™~ %day !

Wind Wind Meters/second

Lithology Acidity or basicity of the geologic Categorical

substrate

Dist_UrbA Euclidean distance to urban areas Meters

Dist_SecRo Euclidean distance to secondary roads Meters

Dist_MajRo Euclidean distance to major roads Meters

PopDen Population density Inhabitants/km>

Pop_Dyn Population gain or loss Categorical

Liv_Units Livestock units Livestock units

$6_80_02_5 Every drought variable is coded as Number of drought
(example) follows: “S6” — First two digits indicate episodes

the SPEI time-scale (6 or 24) “80_02” —
Span of years used to calculate drought
occurrence “5” — Last digit indicates
drought episode duration
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The intention was to identify the most important variables and use
statistical inference to describe the likelihood of a forest-cover change
according to the value range of the variables. The MiraMon 8.2, ArcGis
10.1 and SAGA 2.1.2 software were used to calculate these variables.

2.5.1. Topography-derived variables

These variables are related to physical and environmental factors
that could influence vegetation succession and competition within
forest stages. The intention was to determine how the different vege-
tation types adapt to the environmental variability derived from the
topography and to identify what vegetation types are more dynamic or
vulnerable in the different topo-climatic contexts.

A 10 m DEM was created from 1:5000 map sheets of the Aerial
Orthophotography National Plan 2010 (PNOA) and the following
variables were derived from it:

— Altitude in meters above sea level.

— Slope in degrees.

— Terrain curvature (dimensionless), which includes overall curva-
ture, profile curvature (in the slope direction) and plane curvature
(perpendicular to the slope direction). The 0 value means no cur-
vature in a typical range from —5 to 5, where negative values re-
present concave curves and positive values indicate convex curves.
Terrain roughness (dimensionless), using the Vector Ruggedness
Measure (Sappington et al., 2007), for which values close to 0 re-
present flat areas in an approximate range from 0 to 0.20 in our
ambits.

Topographic Wetness Index (dimensionless), which is a DEM-based
soil moisture index (Beven and Kirkby, 1979; Sgrensen et al., 2006;
Kopecky and Cizkova, 2010), and generally ranges from 3 to 30,
where higher values indicate higher moisture availability.

Winter and summer solar radiation (units in 10 kJ m‘zday_l),
which computes the total amount of incident solar radiation for each
pixel at winter and summer solstice dates, following the metho-
dology of Pons and Ninyerola (2008).

2.5.2. Wind

Wind data came from the Webservice-Energy platform (http://
www.webservice-energy.org/) and CENER (National Renewable
Energy Centre), and refer to mean wind speed in meters per second in a
4-km resolution raster. Wind can be a restrictive factor to plant growth
and can influence seed dispersal.

2.5.3. Lithology

Lithology data may refer to the acidity or basicity of the geologic
substrate. After obtaining geological information layers from several
institutions (Spain, Catalonia, Aragon and Andalusia Governments) we
reclassified the lithological groups into the following classes: acidic,
basic and mixed. This is related to the tolerance of vegetation to low pH
(silicates, more abundant in acidic rocks) or high pH (carbonates, more
common in basic rocks).

2.5.4. Distance variables

Three variables were obtained as a measure of landscape accessi-
bility: Euclidean distance to urban areas (cities, towns and villages),
Euclidean distance to major roads, and Euclidean distance to secondary
roads. We used the same road network and urban areas layers (obtained
from the same governmental institutions) to create these variables for
all periods, firstly because we did not find information about building
dates or any other older layers, and secondly because we assumed that
there has been few changes in the entirety of these infrastructures. We
relate this variable both to the influence of isolation from infra-
structures on forest management abandonment, and to the possible
disturbance in natural dynamics due to higher accessibility.
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2.5.5. Municipality-level information

Three variables were elaborated from INE (Spanish Statistical
Office) data at a municipality level as factors that can disturb the nat-
ural succession:

— Population density (inhabitants per square kilometer). The central
year of each analysis period was chosen as the reference year.
Changes in this variable and in population dynamics could influence
vegetation re-growth (Parcerisas et al., 2012).

Population dynamics. The population gain or loss was calculated
between each pair of dates of an analysis period. Four classes were
defined as follows: =50% (and less than 100%) population increase,
=100% population increase, =33% population decrease and no
relevant changes.

Livestock units, which account for cattle, sheep, goats and horses.
Extensive and stabled livestock are placed in a single category in the
INE data. Extensive livestock is more widespread in mountain areas
where vegetation cover changes are taking place. This activity can
affect vegetation succession, especially in shrubland covers, but also
in evergreen forests because goats and sheep eat the acorns of
Quercus ilex. In general terms, during 1987-2012, livestock units
have increased by approximately 40% in the southern ambit and
have not varied significantly in the northern ambits, although dif-
ferent trends can be found depending on the municipality.

2.5.6. Variables representing recurrent drought episodes based on the
standardized precipitation evapotranspiration index

A set of variables indicating recurrent drought episodes was gen-
erated based on the Digital Topo-climatic Drought Atlas of the Spanish
Iberian Peninsula (Domingo-Marimon, 2016). The Atlas includes a set
of SPEI (Standardized Precipitation-Evapotranspiration Index) maps at
100-m spatial resolution for the entire Iberian Peninsula from 1950 to
2012. The SPEI (Vicente-Serrano et al., 2010a), based on precipitation
and mean temperature (to estimate potential evapotranspiration), is an
index that quantifies water deficits for multiple timescales. The values
are standard deviations for which negative values indicate less than
average precipitation, i.e. drought events, while positive values indicate
greater than average precipitation, i.e. wet events. A threshold of
SPEI = < —1 is selected to identify drought conditions, which end as
soon as SPEI > —1 again.

The index was computed at several timescales corresponding to
drought specific conditions. A first set of variables was generated using
SPEI at a 6-month timescale from 1980 to 2012 as indicative of the
medium-term moisture condition, which first identifies anomalies in
the water streamflow. A second set of variables was generated using
SPEI at a 24-month timescale from 1980 to 2012 as indicative of the
long-term moisture condition, which identifies reservoir level and
ground water level anomalies. For both sets, the number of drought
episodes (SPEI = < —1) with durations of a minimum of 4, 5, 7 or 8
consecutive months, as representative lengths that may cause harmful
effects, were counted for the period 1980-2012. The number of drought
episodes was also counted by year spans of 15, 10 and 5 years for the
1987-2012 period. Therefore, the year spans used were: 1980-2012,
1997-2012, 2002-2012 and 2007-2012. In addition, the analysis was
performed using two shorter sub-periods, 1987-2002 and 2002-2012,
and their corresponding year spans: 1980-2002, 1987-2002,
1992-2002, 1997-2002, and 1980-2012, 1997-2012, 2002-2012 and
2007-2012 respectively. Including several year spans allows us to
analyze how a greater or lesser drought frequency influences forest
dynamics and whether recent droughts (during the last 5-10 years)
have had an effect on transitions. The final dataset consisted of 32
drought variables in each model.

2.6. Variable subset selection

A collinearity analysis was carried out before the models were run
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to avoid the presence of correlated quantitative variables and to reduce
processing times. The initial set of 49 variables was resized for each
model using an alternative way to correlate coefficient estimates. We
used Variance Inflation Factors (VIF) and a VIF threshold of 5 as other
authors recommend (Zuur et al., 2009; O'brien, 2007; James et al.,
2013). The analysis begins by making a regression of each variable on
the other variables, and then calculating the VIF value: VIF = 1/
(1-R%); where R? is the R? of the regression of a variable onto all other
variables. High values of R? (close to 1) mean that a variable is corre-
lated with one or more variables, which in turn will lead to a high VIF
value. After that, the variable with the highest VIF is removed. The
analysis continues iteratively, recalculating VIF with the regressions of
the remaining variables, until all variables have a VIF < 5.

2.7. Data analysis

To identify the most important variables and to quantify their in-
fluence on forest transitions we used boosted regression trees (BRT),
also known as stochastic gradient boosting (Friedman, 2001; Friedman,
2002; Hastie et al., 2009). BRT is a tree-based method combined with
the strength of boosting (Breiman et al., 1984; Hastie et al., 2009;
James et al., 2013). Classification trees segment the value range of an
explanatory variable in order to determine regions that maximize the
occurrence probability of a class inside them. Several variables can be
combined to construct a tree depending on the interactions between
them; for instance, from a tree of a single variable with a cutpoint and
two regions, to a more complex tree where one of these regions can be
split into two subregions based on a cutpoint in a second variable. The
algorithm finds the best candidate variables in order to minimize the
error rate while looking for a tree complexity that reduces the variance
and the risk of overfit (James et al., 2013). The random forest algorithm
(Breiman, 2001) is a substantial improvement over decision trees be-
cause it introduces bagging (Breiman, 1996) as a procedure for redu-
cing variance and the error rate. By bagging, many bootstrapped sam-
ples (in the order of hundreds or thousands without replacement) are
selected randomly from the training set to fit the same number of trees
using a different random subset of variables in each of them (Hastie
et al., 2009; James et al., 2013). The prediction for each observation is
the average over all models.

Boosting (Freund and Schapire, 1996; Ridgeway, 1999; Friedman,
2002) is the optimization method in BRT. Like bagging, in the boosting
algorithm hundreds or thousands of trees are built using a random
fraction of the observations (without replacement) in each new tree.
The main difference is that trees are not fitted individually but addi-
tively because each new tree is fitted to the residuals of the previous
tree. The procedure to sequentially build trees is based on a series of
rules that weigh observations depending on their error rate after fitting
the previous tree (Friedman, 2002; Hastie et al., 2009). Each new tree is
focused then on observations that have been poorly predicted.

2.7.1. Model fitting and evaluation

The procedure followed for fitting the BRT models is described in
Section S1 of the Supplementary Material.

The initial results showed that altitude is the variable that con-
tributed most notably in most models, so we fitted an additional model
that did not include this predictor. The altitude variable can be inter-
preted as a climatic variable because it introduces a temperature and
precipitation gradient. We assumed that variables interacting with al-
titude are more likely to be selected as important contributors, so re-
moving it would allow other interacting schemes to fit the models.

2.7.2. Model inference

To interpret the results in each forest transition model, we de-
termined the importance of the predictors in the BRT models by con-
sidering their contributions in the additive model. The relative im-
portance was measured based on the number of times a predictor was
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selected for splitting, weighted by the squared improvement to the
model as a result of each split, and averaged by the number of trees
(Friedman and Meulman, 2003; Hastie et al., 2009). Then, results were
scaled between 1 and 100.

The response of a forest transition in the predictor values was in-
terpreted using partial dependence plots. This graphic output shows the
relationship between the response and an explanatory variable after the
average effects of all other variables are accounted for, using the
weighted tree traversal method described in Friedman (2001)
(Ridgeway, 2004). Thus, these plots depict where the suitable condi-
tions are for a transition to take place. Some interactions between
variables are shown using three-dimensional partial dependence plots
(Elith et al., 2008), which are based on predictions for each variable
pair.

3. Results
3.1. Model validation

Information about the model validation is provided in Section S2 of
the Supplementary Material.

3.2. Estimate of the transition rate between vegetation types (summary)

Although most of the area corresponded to zones that remained
stable, there are some trends which are worth highlighting. In the
northern ambits (Tables S5 and S6), while the percentage of change
towards coniferous forest has decreased from one period to the next in
all transitions, transition rates towards broadleaf evergreen forest have
increased (except in the BDF-BEF transition), especially in ambit NE2.
In these ambits, the transition rates towards broadleaf deciduous forest
have also increased, although to a lesser degree. On the other hand, in
the southern ambit (Table S7) all transition rates have decreased from
one period to the next, especially in CNF-BEF shifts.

3.3. Explanatory factors in forest cover changes

The collinearity analysis (VIF) allowed reducing models size. The
variables removed were mainly drought indices (from an initial set of
32 to 12-14 drought variables). In most cases, summer solar radiation
was removed in the VIF analysis. The relative importance of ex-
planatory variables for each forest cover change, period and ambit is
shown in Tables S8-S10 of the supplementary material. In order to
synthesize the results, our analysis mainly focuses on the six most im-
portant variables in each forest cover change and ambit (Table 3). To do
this, we calculated the average importance of each variable, con-
sidering the six most important variables in each period, including and
excluding altitude. However, other variables were taken into account to
improve species comparisons and the reliability of explanations. Partial
dependence plots can be consulted in Figs. S19-S30. In general, topo-
graphy-derived variables and drought indexes showed the clearest
patterns; therefore, we emphasize the role of these variables when types
of transitions are compared.

3.3.1. Transitions from shrubland to forest stages (SRB-CNF, SRB-BEF and
SRB-BDF)

We have selected four topography-derived variables to compare
changes from shrubland covers in the 1987-2012 period (Fig. 2): alti-
tude, slope, solar radiation and soil moisture (TWI). A similar pattern
for altitude can be detected in NE1 and NE2; however, given that the
altitudinal range in NE2 has a lower upper limit, comparing trends from
1600-1700 m upwards could be misinterpreted. This pattern represents
the altitudinal zonation of vegetation. Thermo and meso-Me-
diterranean conifers are more competitive on foothills (below
500-600 m) and Eurosiberian conifers above the lower montane zone
(1400-1500 m). Broadleaf forests are more dynamic from the super-
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Mediterranean zone (600-700m) to the upper montane zone
(1700-1800 m). Ambit SE3 shows similar patterns but with an upward
shift due to a more xeric climatic context. For this reason, succession to
upper-montane conifers (Pinus sylvestris) are less likely events than in
northern ambits, and transitions to broadleaf deciduous are very rare
ones.

In all cases, locations with lower solar radiation are more suitable,
although SRB-CNF dynamics seem to be more tolerant to higher solar
radiation. All transitions are dependent on soil moisture (TWI), espe-
cially in transitions to broadleaf forests in northern ampbits.

There are significant findings with respect to drought indices. In
ambit NE1, long-term drought occurrence negatively affects SRB-CNF
changes, which are more likely at sites where the SPEI at a 24-month
timescale and at least 8-month duration occurs at most once (Figs. S19
and S21). On the other hand, medium-term droughts (SPEI at a
6-month timescale) of 4 and 5-month duration have a positive influ-
ence on transitions to broadleaf evergreen forest (SRB-BEF) in northern
ambits (Figs. S21 and S25). We identified important interactions re-
garding these indices, and some examples are shown in Fig. 3. In ambit
NE1, SRB-BEF transitions are occurring at sites more affected by
drought events, low wind velocity and low solar radiation values
(Fig. 3A). The same interaction regarding solar radiation can be seen at
ambit NE2 together with high TWI values (Fig. 3B).

Drought occurrence also has a positive influence on SRB-BDF
changes in ambit NEI. In this case medium-term drought events oc-
curred during the last five years (2007-2012) (Fig. S21). Looking at the
most important drought variables, SRB-BDF transitions are more likely
at sites affected by, at least, 1-2 occurrences of medium-term droughts
of 8-month duration and at sites affected by 3-4 occurrences of
medium-term droughts of 4-month duration. We used reference in-
formation (Catalonia Land—Cover Map 1:25,000, 2009) to calculate the
average distance between SRB-BDF presence events and vegetation
cover polygons according to the dominant species (Table S11 of sup-
plementary material). We found that the closest species were Pinus
sylvestris and Quercus pubescens, thus, the latter is a more drought-to-
lerant species. The most important interactions with drought occur-
rence are again variables that can influence the water evaporation
(Fig. 4), although medium-term droughts of 4-month duration show
less pronounced interactions.

3.3.2. Transitions between conifer and broadleaf evergreen species (BEF-
CNF and CNF-BEF)

We have selected the following variables to analyze forest transi-
tions: altitude, slope, solar radiation, soil moisture (TWI) and wind. The
response to variables in shifts between conifers and broadleaf evergreen
species are shown in Fig. 5. In general, broadleaves are better adapted
to steep slopes, which is also reflected in the other forest transitions. As
in the previous section, patterns concerning altitude can be easily in-
terpreted by relating them to the altitudinal zonation of vegetation
groups. In ambit NE2, higher probabilities of BEF-CNF shifts are con-
centrated above the lower montane zone, where conifer species are
mainly composed of Pinus sylvestris. In northern ambits, BEF-CNF shifts
are more likely to occur as solar radiation decreases, especially in ambit
NE2. In NEI1, the “u” shape in the dependence on soil moisture plot
(TWID) could reflect the presence of the two types of conifers in
BEF-CNF shifts: P. halepensis, which is more adapted to lower values,
and Pinus sylvestris, which is more dependent on water availability. In
NE2, P. sylvestris is more dynamic than evergreen Quercus spp. as solar
radiation decreases and TWI increases. Unlike in ambit NE1, shifts to
evergreen Quercus spp. (CNF-BEF) in ambit NE2 are more likely as solar
radiation increases and seem to be more tolerant to soil water scarcity.
On the other hand, in ambit SE3, the density of presence events and
probability regarding the altitude indicate that Mediterranean conifers
are predominant in BEF-CNF transitions. This ambit does not show
remarkable differences regarding solar radiation. Instead, response to
soil moisture shows that CNF-BEF transitions are more likely than
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Table 3
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The six most important variables by forest cover change and ambit. M.V = Most important variables; Freq. = frequency (number of times the variable is within the 6 most important
variables); A.R.I = Average relative importance. The following models were not used in the analysis due the scarcity of presence events: BDC-CNF in the 2002-2012 period in NE2, and

CNF-BDF and BDF-CNF in three periods in SE3.

Ambit NE1 Ambit NE2 Ambit SE3
M.LV. Freq. M.R.I. M.LV. Freq. M.R.I. M.LV. Freq. M.R.IL
SRB-CNF S24 07128 4 19.56 +1.27 Wind 6 12.97 +1.78 Altitude 3 20.53 +1.74
Altitude 3 17.39 +1.20 Altitude 3 9.08 +1.41 Slope 6 9.04 + 2.65
Liv_Units 2 7.61 +0.34 Liv_Units 6 8.98 +0.90 Liv_Units 6 7.88 +1.88
PopDen 6 7.51 +0.90 PopDen 6 7.44 + 1.07 Wind 6 7.50 + 1.43
Slope 4 6.56 + 1.64 Dist_MajRo 6 7.26 +0.51 Dist_MajRo 6 7.46 +0.99
Wind 6 6.28 +0.93 Win_SRad 4 7.09 + 0.48 PopDen 3 7.37 +1.26
SRB-BEF Altitude 3 29.01 +11.37 Altitude 3 41.18 +12.51 Altitude 3 26.71 + 3.02
Win_SRad 6 11.54 +1.87 $6.80_02_5 1 17.11 *0 Win_SRad 4 8.97 +1.01
S6_80.02_4 1 8.97 *+0 Win_SRad 4 9.65 + 3.30 Lithology 1 8.74 *+0
Wind 5 6.95 +2.53 S6.80_12.5 1 8.59 +0 Dist_MajRo 6 7.96 +1.31
Liv_Units 2 6.67 + 0.82 PopDen 2 8.50 *+1.22 Dist_UrbA 2 7.72 + 221
VRM 6 6.20 + 1.49 VRM 3 7.33 +0.11 PopDen 6 7.17 + 0.80
SRB-BDF Altitude 3 33.86 +6.29 Altitude 3 20.49 +1.52 Altitude 3 22.53 + 215
S6.07_12.8 2 14.91 + 3.83 Wind 6 11.34 +3.52 TWI 6 13.09 + 4.56
S6_07_12 4 2 10.46 + 6.57 Win_SRad 6 10.78 + 3.09 S6_07_12 5 1 12.43 *0
Liv_Units 5 8.64 +4.20 TWI 5 10.64 +1.77 $6_80_02_5 1 11.77 +0
Win_SRad 6 8.47 +1.77 PopDen 6 9.67 + 251 Dist_MajRo 4 7.62 +1.42
$6_97_02_8 1 8.23 *0 Dist_MajRo 3 6.66 +1.78 S6_07_12 4 2 7.54 +1.32
CNF-BEF Altitude 3 32.02 +1.91 Altitude 3 24.42 +11.95 Altitude 3 15.47 +1.14
Win_SRad 6 9.41 + 213 Wind 6 10.85 +1.48 Dist_MajRo 6 9.56 + 0.47
Wind 5 7.30 +1.30 Dist_MajRo 6 7.11 +1.36 Wind 6 8.81 + 231
Slope 6 7.29 +0.78 PopDen 4 6.95 +1.44 Dist_UrbA 6 8.33 +1.40
5680127 1 6.86 +0 Win_SRad 5 6.51 +0.96 Liv_Units 3 7.28 +1.85
Liv_Units 5 6.43 +1.79 Dist_UrbA 5 6.32 +0.53 PopDen 3 7.04 +0.39
CNF-BDF Altitude 3 17.79 +3.70 Altitude 3 18.04 +10.48
Liv_Units 6 9.66 + 3.11 Slope 6 14.07 + 3.54
S6.07_12_8 4 8.27 +0.86 Win_SRad 6 11.58 +3.70
Slope 6 8.04 +1.24 Lithology 5 11.26 * 4.84
PopDen 2 7.39 +0.50 PopDen 6 8.04 +1.90
Wind 2 7.31 +1.12 Wind 3 6.84 + 3.06
BEF-CNF Slope 6 14.55 +0.37 52497 028 2 14.97 + 0.60 Slope 6 11.14 +1.81
Win_SRad 6 9.30 +0.70 Wind 6 11.23 +0.87 Altitude 3 10.85 +3.20
Altitude 3 8.82 + 0.80 S$6.92 02 4 2 11.19 + 1.32 Liv_Units 6 9.26 + 0.98
Wind 6 7.49 +1.03 Altitude 3 10.14 +4.71 Dist_ MajRo 6 8.83 +0.90
Liv_Units 3 6.87 + 0.96 Slope 6 9.36 + 2.56 Wind 1 7.31 +0
S24 07127 1 6.62 +0 Dist_MajRo 4 8.30 +0.70 Dist_SecRo 2 6.93 + 1.04
BEF-BDF Win_SRad 6 14.34 +4.91 Win_SRad 6 18.45 +6.74 Lithology 6 23.97 +7.25
PopDen 3 9.28 + 3.97 Altitude 3 11.38 * 259 Dist_UrbA 6 11.72 +6.35
S6.07_12.8 1 8.78 +0 Wind 6 9.37 * 4.09 TWI 6 9.42 + 240
Liv_Units 6 8.61 +0.77 Slope 6 9.00 + 4.25 Altitude 3 9.24 + 3.57
Slope 4 7.43 +0.83 Liv_Units 2 5.66 +0.05 Slope 4 7.03 +0.63
Wind 5 6.99 + 1.05 Dist_MajRo 5 5.50 +0.99 Wind 3 6.71 +1.11
BDF-CNF Altitude 3 20.70 + 14.88 Dist_MajRo 4 14.09 +09.18
Slope 6 10.93 +1.12 Altitude 2 11.95 +2.96
Dist_SecRo 1 10.09 *0 Slope 4 11.02 +1.82
Liv_Units 4 9.73 + 2.43 Liv_Units 2 9.29 +0.70
VRM 4 9.61 +2.23 Dist_UrbA 4 7.98 +0.85
Wind 3 8.51 + 2.05 Wind 4 7.64 +2.05
BDF-BEF Altitude 3 24.05 + 216 Win_SRad 4 16.25 +0.93 Altitude 3 32.41 + 4.52
Liv_Units 6 10.70 + 3.53 Altitude 3 10.69 +1.42 Sum_SRad 3 9.34 + 3.63
Win_SRad 5 9.44 +1.36 Slope 6 9.22 +1.08 Liv_Units 1 9.06 *0
Slope 5 9.17 + 2.85 Wind 6 8.68 + 0.96 Dist_UrbA 4 8.85 + 2.79
Wind 6 7.00 +1.21 Dist_UrbA 1 8.16 *0 Dist_ MajRo 6 8.60 +3.37
PopDen 3 6.69 + 0.48 PopDen 1 7.40 *0 Wind 4 8.23 + 0.89

BEF-CNF as TWI values increase. Wind velocity does not show clear
patterns; however, the lower wind velocities seem to be more suitable
for Pinus sylvestris and evergreen Quercus spp. in NE2 and SE3 respec-
tively.

Shifts between conifers and broadleaf evergreen species show sig-
nificant associations with drought variables. BEF-CNF transitions in
ambit NE1 are more likely at sites where long-term droughts of at least
7-month duration occurs at most once (Fig. S20). In ambit NE2, these

shifts are more likely when long-term droughts of at least 8-month
duration do not occur (Figs. S24 and S26). In addition, occurrence of
medium-term droughts of 4-month duration in NE2 (Figs. S24 and 526)
seems to be less suitable for BEF-CNF transitions. Changes from conifers
to evergreen Quercus spp. (CNF-BEF) in ambit NE1 are associated with a
decrease in the number of occurrences of medium-term droughts of
7-month duration (Fig. S21). It is worth noting that, unlike in NE1, this
shift in NE2 is more likely as occurrences of medium-term droughts of
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Fig. 2. Response of SRB-CNF, SRB-BEF and SRB-BDF transitions to altitude, slope, solar radiation and soil moisture (TWI) for the three ambits in the 1987-2012 period. Density of
presence events is represented by vertical lines above the x-axes, and overlaid solid black ticks depict the 0.05, 0.5 and 0.95 percentiles.

5-month duration increase (Fig. S25). We have plotted the response of
CNF-BEF to different drought durations, which can be compared in the
two northern ambits (Fig. 6). A similar pattern between ambits can be
observed in terms of density of observations (vertical bars). In terms of
suitability, patterns match well if we consider that a very low number of
observations in B3 with high probabilities at 5-6 repetitions can be
related to small statistical artifacts (derived from the method used to
interpolate climatic data or classify land—cover) or exceptional topo—-
climatic conditions. This suggests that, the greater importance of slope
in ambit NE1 (Table S8), compared with NE2 (Table S9), could explain
the greater importance of the drought of 7-month duration in NE1 and
its negative effects.

3.3.3. Transitions between conifer and broadleaf deciduous species (BDF-
CNF and CNF-BDF)

For transitions between conifers and broadleaf deciduous species we
can only report the results for the northern ambits (Fig. 8) because these
models were rejected in ambit SE3 (Table S4). We kept the dependence
curve of BDF-CNF shifts in ambit NE2 although it is a less reliable
model for establishing comparisons because it is a more unbalanced
sample (Table S3). CNF-BDF shift patterns differ markedly in response
to altitude. We found out that higher probabilities below 500 m in
ambit NE2 are related to the presence of an important anastomosed
river (Cinca River) with extensive fluvial deposits where vegetation
dynamics depend on stability and the age of deposits (Ojeda, 2007).
Looking at the response to altitude in this ambit, Fagus sylvatica seems
to be the species with most dynamism in CNF-BDF shifts (above
1500 m). Water evaporation is observed as an important factor in the
dynamics between these species. Broadleaf deciduous species tend to
progress as solar radiation decreases and soil moisture increases. In
addition, lower wind velocities are more suitable for these species in
NE1. In mixed landscapes of conifers and broadleaf deciduous species,
the conifers are less vulnerable to solar radiation and more dynamic
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with lower soil moisture values.

In contrast to vulnerability to soil moisture availability, medium-
term droughts of at least 7-8-month duration have a positive associa-
tion with CNF-BDF shifts in NE1 (Figs. S19 and S21). Quercus pubescens
is the predominant broadleaf deciduous species in these transitions and
Pinus sylvestris the coniferous one (Table S11). This is consistent with
the partial dependence on altitude (Fig. 8), where there are higher
probabilities in a range from 1000 to 1200 m. Thus, the results indicate
that in mixed forests of these two species, Quercus pubescens is less
sensitive to drought and this is reflected as a shift.

3.3.4. Transitions between broadleaf evergreen and broadleaf deciduous
species (BDF-BEF and BEF-BDF)

Dynamics between broadleaf evergreen species and broadleaf de-
ciduous species are shown in Fig. 9. Both transitions in SE3 and
BDF-BEF transitions in NE2 correspond to more unbalanced samples,
which it is reflected in lower probabilities. In terms of the response
pattern to variables, the common trend regarding the altitude is that
BEF-BDF shifts are more likely above the lower montane zone and BDF-
BEF shifts are more likely in foothills and Mediterranean zones. Tol-
erance to water evaporation is again a differential factor in these
transitions. Broadleaf evergreen species are more dynamic than
broadleaf deciduous species as solar radiation increases and TWI values
decrease. Instead, broadleaf deciduous species are more dynamic on
north faces and with soil moisture availability. Patterns in dependence
to wind velocity are less clear, although BEF-BDF transitions seem to be
more likely with low wind velocities.

Quercus pubescens is the most abundant broadleaf deciduous species
regarding these transitions in NE1 (Table S11). This species again seems
to show a positive association with drought occurrence in mixed
landscapes with Quercus ilex under medium-term drought conditions
(drought variable that contributed most: SPEI at a 6-month timescale
and 8-month duration) (Table 3 and Figs. S20 and S22). It is worth
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Fig. 3. Variables that interact with drought occurrence in SRB-BEF transitions: wind and solar radiation in NE1, 1987-2002 period (A); solar radiation and soil moisture (TWI) in NE2,
1987-2002 and 1987-2012 periods (B).

keeping in mind that solar radiation is the most important variable;
therefore, looking at the response to this variable it is reasonable to

presume that under medium-term droughts conditions Quercus pub-
escens is more dynamic in mixed forests on north faces.

4. Discussion

In general terms, transition rates derived from classifying the three
Landsat scenes indicate that broadleaf forests have increased their area
in the northern ambits, while coniferous forests have followed a de-
clining trend from one period to the next, which is consistent with
former studies (Vayreda et al., 2016, Carnicer et al., 2014). In contrast,
the magnitude of the transitions in the southern region suggests that
broadleaf evergreen species, like Quercus ilex, are becoming less dy-
namic, in agreement with Vayreda et al. (2016), who found a con-

traction of the latitudinal range of this species at its southernmost limit.
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In addition, and in accordance with these authors, the expansion of
evergreen broadleaves appears to be greater in the more xeric en-
vironments of the northern regions (NE2).

All transitions from shrubland are vulnerable to high solar radiation,
indicating that water evaporation is a controlling factor in early stages of
forest dynamics. Hence, soil water availability also increases recruitment,
although coniferous species are more tolerant to low soil moisture values,
and to higher solar radiation, which can be explained by the heliophilous
character of pines (Blanco et al., 1997; Broncano et al., 1998, Ameztegui
and Coll, 2011). It is reasonable to think that early developing stages are

more dependent on topo—climatic conditions like soil moisture, which is
driven by solar radiation and the TWI, among other factors. These results
are in line with other studies reporting the susceptibility of seedling
growth of the evergreen Quercus spp. (Espelta et al., 1995; Benayas,

1998) and Pinus sylvestris (Castro et al., 2004) to large evapotranspiration
rates in open spaces and canopy gaps.
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Concerning competition within forest stages, broadleaf deciduous
species are the vegetation group that is most dependent on topographic
factors controlling moisture retention (i.e. transitions to these species
are more likely as solar radiation decreases and TWI values increase).
Non-Mediterranean conifers, such as Pinus sylvestris, benefit from soil
moisture retention and low solar radiation in competition with broad-
leaf evergreen species, which is clearly manifested in a drier environ-
ment such as the ambit NE2. On the other hand, Mediterranean conifers
and broadleaf evergreen species do not show a clear preference re-
garding solar radiation. However, our results suggest that broadleaf
evergreen species have a greater plasticity, as they are more competi-
tive in a more xeric ambit with lower water availability (Fig. 5, ambit
NE2) and under drought conditions (Fig. S29), which is in parallel with
other works (Vicente-Serrano et al., 2010b, Pasho et al., 2011). None-
theless, there is another factor that could influence these dynamics:
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0 45

Fig. 4. Variables interacting with drought occurrence in SRB-BDF shifts, ambit NE1: solar radiation and wind in the 2002 2012 period (A); solar radiation and wind in the 1987-2012
period (B).

Quercus cocciefera, which is more extended in NE2 than in NE1, has less
water requirements than Quercus ilex (Blanco et al., 1997). Besides, our
results corroborate that under warmer climate conditions (Fig. 5, ambit
SE3), broadleaf evergreen species tend to be much more competitive
with soil moisture availability (Blanco et al., 1997), also because its
roots are able to penetrate into the deep water table (Lloret et al.,
2004). In general, the more developed root system of broadleaves also
explains their better adaptation to steep slopes.

Response to drought events has been shown to be an important
driving factor in vegetation succession and forest shifts. The results
suggest that under drought conditions, in mixed landscapes composed
of Mediterranean and sub-Mediterranan broadleaves and conifers, shifts
to broadleaves are more likely to occur. These findings are consistent
with previous works showing that evergreen Quercus spp. are more
adapted to drought periods than pines (Martinez-Ferri et al., 2000;
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Vicente-Serrano et al., 2010b; Pasho et al., 2011; Biintgen et al., 2013),
especially in the case of Pinus Sylvestris (Bigler et al., 2006; Sanchez-
Salguero et al., 2012; Vila-Cabrera et al., 2013) which is in the south-
ernmost populations of its distribution. The adaptive strategy of scler-
ophyllia in evergreen Quercus spp. and its larger and deeper roots
suggest a greater resistance to water shortage. In the same line, other
researches show that seedling and recruitment of Quercus pubescens
(sub-Mediterranean broadleaf deciduous tree) benefits from drought
conditions in mixed forests with Pinus sylvestris (Galiano et al., 2010,
2013; Rigling et al., 2013). This does not mean that broadleaves sprout
as a consequence of drought. It is logical to suppose that they have been
in the understory or that they were not the dominant species, and after
canopy defoliation or tree dieback of Pinus sylvestris, the dynamics of
broadleaves remain stable. Our study also points out that Quercus
pubescens could be more dynamic than evergreen Quercus spp. under
drought conditions (especially on north faces), supporting the results
obtained in two works by Galiano et al., (2010, 2013). These authors
reported the association between Quercus spp. seedling abundance and
drought occurrence, and in both works they found that seedling re-
cruitment of Quercus pubescens was significantly greater than Quercus
ilex.

However, the interaction with topo-climatic factors must be taken
into account when drought tolerance is analyzed. For instance, suc-
cessions from shrubland towards Mediterranean broadleaf forests are
driven by drought tolerance, but under favorable topo—climatic condi-
tions of water availability (low solar radiation levels, high soil moisture
values and low wind velocities), indicating that juvenile plants have
narrower niches to withstand a disturbance event (Martinez-Vilalta and
Lloret, 2016, Jackson et al., 2009). This is consistent with other works
that reported the drought tolerance of Quercus ilex recruitment and
seedlings, especially when soil water availability is not a limiting factor
(Blanco et al., 1997; Benayas, 1998; Corcuera et al., 2004). On the other
hand, evergreen broadleaves on very steep slopes are vulnerable to

longer droughts (Fig. 7), suggesting that the combination of abiotic
stress effects reduces the competitive ability of these species.

Drought-induced vegetation decline has been reported as a global
trend (Allen et al., 2010). The Mediterranean basin and particularly the
Iberian Peninsula are geographical regions where defoliation and tree
mortality of the main forest species are associated with the recent in-
crease in drier conditions (Carnicer et al., 2011; Neuman et al., 2017).
However, our results clearly suggest that broadleaves are better able to
withstand drought disturbances; and that the observed decline in shifts
to conifers could be driven by the increase in drought frequency, as is
also reported for other regions (Mueller et al., 2005; Dolanc et al., 2013;
McDowell et al., 2016). These forest dynamics may have effects on the
carbon storage of Mediterranean forests because it has been proven that
the increase in broadleaves in mixed forests with conifers enhances
carbon sequestration (Vayreda et al., 2012). At the same time, and
according to climate models (Giorgi and Lionello, 2008), long-term
drought-induced vegetation shifts could have effects on fires, whose
frequency and severity have increased in southern Europe during the
last decades (Pausas et al., 2009; Moreira et al., 2011; Ganteaume and
Jappiot, 2013). In this sense, some studies have shown that pines are
more highly flammable than evergreen broadleaves (Ganteaume et al.,
2011; Kauf et al., 2014), and there is evidence of lower fire hazard in
mixed forests of broadleaves and pines and mature evergreen broadleaf
forests than in pure pine forests (Fernandes, 2009; Moreira et al., 2009;
Fernandes et al., 2010). On the other hand, Ganteaume et al. (2011)
found a higher ignition frequency and shorter time-to-ignition in leaf
litter of mixed stands composed of Mediterranean pines and broad-
leaves than in litter of pure pine stands.

We are aware that historical land management has had a strong
influence on the vegetation dynamics in the Iberian Peninsula, and that
land abandonment and the replacement of firewood by fossil fuels has
contributed to the expansion of broadleaves (Vayreda et al., 2016).
Nevertheless, the consistency that our approach provides, because it
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Fig. 7. Interaction between slope and the SPEI at a 6 month timescale and 7-month
duration in CNF-BEF transitions, ambit NE1, 1987-2012 period.
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covers a broad and diverse region and the robustness of BRT models,
reinforces the idea that drought occurrence plays a very important role
in vegetation shifts of this geographical region.

5. Conclusions

Forest transitions in three large areas of the Iberian Peninsula have
been analyzed considering the role of several variables in vegetation
groups dynamics, from early developing stages to successions within
forest vegetation stages. Topography-related variables, such as solar
radiation, soil moisture and slope, as well as drought tolerance have
been shown as key factors in determining certain transitions. Drought
occurrence has a negative influence on transitions to coniferous forest
and a positive association with transitions towards Mediterranean and
sub-Mediterranean broadleaf species. However, the study shows that
interaction with topo-climatic factors, as well as drought duration,
plays an important role in withstanding drought events.

Our work is in line with previous studies that indicate the vulner-
ability of species such as Pinus sylvestris (Martinez-Vilalta and Pinol,
2002; Galiano et al., 2013; Vila-Cabrera et al., 2013; Sanchez-Salguero,
2016) to the increase in drier conditions predicted for the future (IPCC,
2013). Populations of this species in the Mediterranean area are si-
tuated at their southernmost limit, which may indicate that this limit is
moving northwards due to recurrent droughts. This could lead to an
expansion of Mediterranean and sub-Mediterranean Quercus spp. and
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an upward shift of their altitudinal range (Peniuelas and Boada, 2003;
Gimmi et al., 2010; Vila-Cabrera et al., 2013; Rigling et al., 2013;
Vayreda et al., 2016). With these considerations, shifts detected in the
present work should be monitored in future works to assess whether
they are eventual shifts, stages of ecological succession, or shifts con-
solidated over time (as mature vegetation).
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