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Abstract 

 

It is well established that D-cycloserine (DCS), a partial agonist of the NMDA receptor glycine 

site, enhances learning and memory processes. Although the effects of DCS have been 

especially elucidated in the extinction and reconsolidation of aversive behavioral paradigms or 

drug-related behaviors, they have not been clearly determined in appetitive tasks using natural 

reinforcers. The current study examined the effects of pre-retrieval intra-basolateral amygdala 

(BLA) infusions of DCS on the extinction and reconsolidation of an appetitive odor 

discrimination task. Rats were trained to discriminate between three odors, one of which was 

associated with a palatable food reward and, twenty minutes prior to extinction learning 

(experiment 1) or reactivation (experiment 2), they received bilateral intra-BLA infusions of 

DCS or vehicle. In experiment 1, DCS infusion reduced the rate of extinction learning 

acquisition, weakened extinction retention in a post-extinction test and enhanced reacquisition 

of the ODT task. In experiment 2, DCS improved subsequent memory expression in the 

reconsolidation test performed one day after the reactivation session. Such results indicate the 

involvement of BLA NMDA receptors in odor-food reward associative memory and suggest 

that DCS may potentiate the persistence or strength of the original memory trace. 

 

Keywords: D-cycloserine, NMDA receptor, olfactory discrimination, extinction, reacquisition, 

reconsolidation. 



1. Introduction 

 

NMDA-receptor transmission is well implicated in learning processes through its role in the 

modulation of glutamatergic activity. More specifically, NMDA receptors (NMDARs) agonists 

have been regarded as pharmacological treatments that enhance learning, and as such, have been 

considered potential cognitive enhancers (see Villarejo-Rodríguez, Vale-Martínez, Guillazo- 

Blanch, & Martí-Nicolovius, 2010). D-cycloserine (DCS) is a partial agonist at the glycine 

recognition site of the NMDARs and has been shown to enhance acquisition, consolidation, 

relearning, extinction and reconsolidation in several associative learning paradigms (Bustos, 

Giachero, Maldonado & Molina, 2010; Curlik & Shors, 2011; Davis, 2002; Ledgerwood, 

Richardson & Cranney, 2005; Lee, Milton & Everitt, 2006; Rodgers, Harvest, Hassall & 

Kaddour, 2011; Villarejo-Rodriguez et al., 2010). The majority of studies have focused on the 

role of DCS in extinction and reconsolidation, as the modulation of such processes may be 

useful as a treatment strategy for maladaptive memory or anxiety disorders (Davis, Ressler, 

Rothbaum & Richardson, 2006; Hofmann, 2007). Although extinction and reconsolidation are 

both triggered by memory retrieval, reconsolidation is thought to reinforce or update the 

expression of the original memory while extinction weakens it, possibly through the formation 

of a new memory trace involving an inhibitory learning process (de la Fuente, Freudenthal & 

Romano, 2011; Duvarci, Mamou & Nader, 2006; Kindt, Soeter & Vervliet, 2009). An important 

determinant of subsequent memory expression following reactivation is the length of the 

reminder experience with brief cues initiating reconsolidation but longer cues resulting in 

memory extinction (Pedreira & Maldonado, 2003; Suzuki et al., 2004; Tronson & Taylor, 2007). 

 

Recent research has reported the role of DCS in the extinction of learned behavior 

involving appetitive stimuli, such as drug-seeking behavior, suggesting that systemic 

administration of DCS facilitates the extinction consolidation of self-administration and 

conditioned place preference (CPP) associated to different drugs (Botreau, Paolone & Stewart, 

2006; Kelley, Anderson & Itzhak, 2007; Nic Dhonnchadha et al., 2010; Paolone, Botreau & 

Stewart, 2009; Thanos, Bermeo, Wang & Volkow, 2009; Thanos, Bermeo, Wang & Volkow, 

2011) and enhances the persistence of extinction (Groblewski, Lattal & Cunningham, 2009). In 



contrast to such reports, a recent study showed that pretreatment with systemic DCS prior to 

extinction training had no effect on the extinction and subsequent reinstatement of morphine- 

induced CPP (Lu, Wu, Zhang, Ai & Li, 2011). Food-motivated tasks have been studied to a 

lesser degree and also indicate inconsistent results. Although systemic injections of DCS 

enhanced memory consolidation of latent extinction in a food-reward maze (Gabriele & 

Packard, 2007), it slowed down the extinction learning of an appetitive instrumental food- 

rewarded response (Port & Seybold, 1998). Also, more recent studies have reported the same 

treatment to have no effect on the extinction learning of an appetitive operant response 

reinforced with food (Vurbic, Gold & Bouton, 2011) or on extinction and spontaneous recovery 

of conditioned taste aversion when a chronic treatment was involved (Mickley et al., 2012). 

Such discrepancies may depend on the timing of DCS administration, as the studies using pre- 

training injections were predominant in showing impairments or no effects on extinction (Lu et 

al., 2011; Port & Seybold, 1998; Vurbic et al., 2011). Similarly, there are several reports from 

human studies suggesting that administration of DCS prior to extinction has no effect on fear 

conditioning (Klumpers et al., 2012) or alcohol dependence (Watson et al., 2011) and that it 

enhances craving in the case of cocaine-dependence (Price et al., 2012). 

The basolateral amygdala (BLA) is a brain region that has received a great deal of 

attention in terms of memory extinction and reconsolidation, and especially so in aversive 

paradigms (Lee et al., 2006; Nader, Schafe & Le Doux, 2000; Rehberg, Bergado-Acosta, Koch 

& Stork, 2010). Previous literature has mainly examined the effects of DCS on contextual or 

auditory conditioned fear, indicating that systemic and intra-BLA administrations of DCS may 

potentiate both extinction and reconsolidation (Ledgerwood, Richardson & Cranney, 2003; 

Ledgerwood et al., 2005; Lee et al., 2006; Toth et al., 2012; Walker, Ressler, Lu & Davis, 2002; 

Yamada, Zushida, Wada & Sekiguchi, 2009; Yamamoto et al., 2008). Also, DCS in the BLA 

facilitated the extinction of contextual fear with no effect on the extinction of conditioned taste 

aversion (Akirav, Segev, Motanis, & Maroun, 2009). However, there has been very little 

systematic investigation as to the intra-BLA effects of DCS in the extinction and reconsolidation 

of appetitive paradigms, particularly those using natural incentives. Although there are no 



reports on the effects of pre-training DCS infusions into the BLA on extinction, there are some 

studies using post-training infusions that show divergent results. While Torregrossa, Sanchez, & 

Taylor, (2010) found no effect in the extinction of cocaine-associated cues, Botreau et al. (2006) 

reported the facilitation of cocaine-induced CPP extinction formation. As for reconsolidation 

studies, intra-BLA infusions prior to reactivation facilitated memory reconsolidation of 

stimulus-cocaine association in a self-administration paradigm (Lee, Gardner, Butler & Everitt, 

2009). 

To determine whether extinction and reconsolidation of an appetitive model is 

modulated by pre-retrieval intra-BLA DCS, we based our experiments on a simple and non- 

invasive food reward-based olfactory paradigm. This odor discrimination task (ODT) involves a 

rapidly acquired association between odor and palatable food reward and allows for consistent 

memory. It entails neither fear nor acute stress and is sensitive to NMDARs manipulation. 

(Tronel & Sara, 2003). Thus, infusions of NMDARs antagonists in the prelimbic cortex have 

been shown to prevent initial ODT consolidation (Tronel & Sara, 2003) and disrupt 

reconsolidation when infused into the cerebral ventricles (Torras-Garcia, Lelong, Tronel & Sara, 

2005). However, additional results suggest that pretraining DCS infusions in the prelimbic 

cortex enhance ODT relearning without affecting initial acquisition or consolidation (Villarejo- 

Rodriguez et al., 2010). In addition to the prefrontal cortex, the BLA has also been related to 

ODT as it is markedly activated following the acquisition of the odor-reward association (Tronel 

& Sara, 2002). Nevertheless, its specific role in ODT extinction or reconsolidation processes 

has yet to be determined. 

 

In the present study, DCS was injected directly into the BLA (10μg/site) 20 minutes 

prior to extinction learning (experiment 1) or memory reactivation (experiment 2) of the odor- 

reward association. In experiment 1, a reacquisition session was carried out after extinction 

training to obtain an indirect measure of the animals’ extinction level. While the first 

experiment involved re-exposing rats to the conditioned stimulus (CS, rewarded odor) in the 

absence of the unconditioned stimulus (US, chocolate cereal) during 5 consecutive trials, in the 



second experiment, the rats were presented with a brief 90-sec reminder (rewarded odor), also 

in the absence of US. Dose and time point were based on previous results suggesting extinction, 

reconsolidation and relearning facilitation (see 2.3). 

2. Material and Methods 

 

2.1. Subjects 

 

Seventy-two male Wistar rats belonging to our laboratory’s breeding stock were used: 22 rats in 

experiment 1 (mean age = 91d, SD = 5.02; mean weight=393.1 g, SD = 27.4 at the beginning of 

the experiment) and 50 in experiment 2 (mean age= 92.8d, SD=8.9; mean weight= 380.20 g, 

SD=41.0). All the rats were single-housed in 50x22x14cm plastic-bottomed cages with sawdust 

bedding, in a room controlled for temperature (20-22 ºC) and humidity (40%-70%). The rats 

were maintained on a 12h light-dark cycle (lights on at 8:00 a.m.), with experiments performed 

during the light phase of the cycle. Rat-chow pellets (Scientific Animal Food & Engineering, 

Augy, France) and water were provided ad libitum with the exception of habituation, 

acquisition, extinction, reacquisition and reconsolidation test sessions, in which the rats were 

submitted to a food restriction schedule (12g/day) to maintain their body weight at 85% of their 

free-feeding weight. The animals were handled on a daily basis for 5 minutes and restrained for 

2 minutes to accustom them to the injection procedure. All procedures were carried out in 

compliance with the European Community Council Directive for care and use of laboratory 

animals (86/609/ECC) and with the Generalitat de Catalunya’s authorization (DOGC 2450 

7/8/1997, DARP protocol number 5959). 

 

2.2. Surgery 

 

Animals were anesthetized with isoflurane and underwent stereotaxic implantation of bilateral 

chronic guide cannulae in the BLA following procedures explained elsewhere (Carballo- 

Marquez, Vale-Martinez, Guillazo-Blanch & Marti-Nicolovius, 2009). Each guide cannula 

comprised one 26-gauge metal tube projecting 7.5mm from the pedestal (Plastics One®, 

Bilaney Consultants GMBH, Germany). The stereotaxic coordinates used for implantation into 



the BLA were: AP: -2.6 mm from bregma; ML: ±4.9 mm from midline, and DV: -7.5 mm from 

cranium surface (Paxinos & Watson, 1997). Sterile dummy stylets (Plastics One®) were placed 

into the cannulae to prevent occlusion. After surgery, the rats were replaced in their home cages 

for seven days prior to behavioral training (3 days for recovery, 3 days for food restriction, and 

1 day for habituation). During the 7-day recovery period, the rats were handled and weighed on 

a daily basis and the dummy stylets were changed every other day. 

2.3. Microinfusion Procedure 

 

Twenty minutes prior to the ODT extinction learning (experiment 1) or reactivation (experiment 
 

2) sessions, the rats were gently restrained while the dummy stylets were removed and replaced 

with a 33-gauge stainless-steel injector (Plastics One®) extending 1mm below the cannula tips. 

The injection-to-extinction learning/reactivation interval was the same as in previous research 

showing a positive effect of DCS on ODT performance (Villarejo-Rodriguez et al., 2010) and 

similar to that used in other experiments (15 to 30 min) reporting facilitation of intra-BLA DCS 

on extinction (Lee et al., 2006; Mao, Hsiao, & Gean, 2006; Walker et al., 2002) and 

reconsolidation (Lee et al., 2009; Yamada et al., 2009). The injectors were connected by 

polyethylene tubing (Plastics One®) to two 10-μl syringes (SGE Analytical Science, Cromlab 

S.L. Barcelona, Spain) mounted in an infusion pump (11 Plus Syringe Pump, Harvard 

Apparatus Inc., USA). DCS (Sigma-Aldrich, Madrid, Spain) was dissolved in PBS (phosphate- 

buffered saline 0.1M pH 7.4) and a dose of 10μg / hemisphere was infused in the DCS group 

rats. The solution was infused bilaterally in a volume of 0.5μl / hemisphere for 2 minutes. The 

dose was also determined both on the basis of our previous research with ODT (Villarejo- 

Rodriguez et al., 2010) and previous literature relating to intra BLA infusions (Ledgerwood et 

al., 2003; Mao et al., 2006). The inner cannulae were left in place for 1 minute after the infusion 

was complete to allow for diffusion. The rats in the VEH groups received PBS injections under 

the same conditions. 

2.4. Apparatus 



The training apparatus and behavioral procedures are explained elsewhere (Carballo-Marquez et 

al., 2007). The training apparatus was a 60 x 60 x 40cm square box containing three sponges 

(8.5 x 6.5 x 5.5cm) with a 3-cm diameter hole cut into the center to a depth of 2.5cm, placed in 

glass slide-holders of the same size. The food reinforcement used was a crispy chocolate rice 

breakfast cereal (Kellogg’s, Spain) that was placed at the bottom of the opening in the sponge. 

Each sponge was infused with an odor that was injected into each of its corners. The odors, 

vanilla (0.3ml), orange (0.6ml) and anise (0.2ml) (Vahiné, Ducros S.A., Sabadell, Spain), were 

previously tested in a pilot study in which the rats showed no particular preference. All 

behavioral sessions were recorded by a video camera (JVC, Everio Model GZ-X900) connected 

to a monitor. 

2.5. Behavioral Procedures in Experiment 1: ODT Extinction 

 

2.5.1. Habituation sessions 

 

The rats were food-deprived for five days prior to three habituation sessions in which they were 

given free access to the reinforcement in a plastic bottomed cage (50 x 22 x 14 cm). After 

consuming ten pieces of cereal, they were placed in the training box, without the reinforcement, 

and allowed to explore it for 15 minutes. Once the rats had recovered from surgery, they were 

once again food-deprived and submitted to an identical habituation session. On the same day, 

the rats were also adapted to a mock infusion protocol (no solutions injected) in order to 

minimize any stress associated with the procedure. 

2.5.2. Acquisition session 

 

One day after the post-surgery habituation, ODT acquisition was carried out in a 4-trial session 

(see Fig. 2A), in accordance with previously described procedures (Quiroz-Padilla, Guillazo- 

Blanch, Vale-Martinez, Torras-Garcia & Marti-Nicolovius, 2007). The reinforcement (US, 

chocolate rice cereal placed at the bottom of the opening in the target sponge) was associated 

with the same odor across trials (CS
+

), and the rewarded odor was randomly assigned to each 

rat in a counterbalanced manner. The sponges with the non-rewarded odors did not contain any 



food. Sponges were placed in any three of the four corners of the box, and the position of each 

odor within the box was changed for each trial according to a previously determined protocol. 

The rats were placed in the training box, facing the corner without a sponge. After the rats had 

found and eaten the cereal, they remained in the box for a few seconds before being removed 

and placed in the intertrial cage for one minute before the following trial. There was a 3-minute 

maximum period for the rat to find and consume the reinforcement. Failure to find and eat the 

cereal within this period resulted in the rat’s being removed from the training box and placed in 

the intertrial cage for one minute before the following trial. The rats with latencies longer than 

three min in each acquisition trial were excluded from the analyses on the grounds that they had 

not correctly learned the task (n=2). Latency before a correct response (nose-poking into the 

rewarded sponge) and number of errors were scored as dependent variables. Two different 

errors were combined: errors of commission (nose-poking into a non-rewarded sponge) and 

omissions (sniffing the rewarded sponge with no subsequent nose-poking) (Tronel & Sara, 

2003). 

2.5.3. Extinction learning 

 

Twenty-four hours after the acquisition session, the rats received a bilateral intracerebral 

infusion of DCS (DCS group) or PBS (VEH group) in the BLA 20 min prior to ODT extinction 

learning. Extinction learning was carried out in a single 5-trial session (a pilot study showed a 

good extinction performance after 5 trials), using the same procedure as in the preceding 

session, but no food reward was placed in any of the sponges for any of the trials (5 trials, CS
+ 

/ 

no US). The trials were considered to be complete when the subjects had made the conditioned 

response, nose-poking into the previously rewarded sponge (CS
+

), or after three min. The 

measures considered were the same as in the previous session, but a large number of errors and 

long latencies to nose-poke into the formerly rewarded sponge were an index of good extinction 

learning. An extinction criterion was also established: latency, during 2 consecutive trials, to 

make the formerly correct response ≥ 44 sec, which was the mean latency observed in the whole 



first-trial sample (acquisition session) when the animals had not yet learned the task. 

 

2.5.4. Extinction retention 

 

Twenty-four hours after the extinction learning session, a free-drug test (extinction retention) 

similar to the previous session was carried out. The rats were once again placed in the training 

box and underwent five further extinction trials with no reward in any of the sponges (5 trials, 

CS
+ 

/ no US). 

 
2.5.5. Reacquisition session 

 

Twenty-four hours after extinction retention, a final session, in which the rats were returned to 

the original learning conditions, was performed. In this session, the rewarded odor was again 

associated with the cereal, as in the acquisition session (4 trials, CS
+ 

/ US). 

 
2.6. Behavioral Procedures in Experiment 2: ODT Reconsolidation 

 

Behavioral procedures of habituation and acquisition were similar to those described for 

experiment 1. 

2.6.1. Reactivation session 

 

Twenty-four hours after acquisition, the rats received a reactivation session (see Fig. 4A) 

consisting of a brief exposure (90 sec) to a small sponge (different from the one used in the 

ODT training) infused with the reinforced odor, within the inter-trial cage, in the same room the 

acquisition had taken place. No food reward was present during this session. During the session, 

motor activity and contacts with the sponge were directly observed by the experimenter. Four 

experimental groups were studied, but only two received the memory reactivation (REACT 

groups) while the other two remained in a quiet room adjacent to the experimental room 

(nonREACT group). Twenty minutes prior to the reactivation protocol, the rats from both 

groups received a bilateral intraBLA infusion of DCS (DCS REACT and DCS nonREACT) or 

PBS (VEH REACT and VEH nonREACT). 



2.6.2. Test session 

 

Twenty-four hours after the reactivation session, the rats were tested in a 4-trial retention/ 

reconsolidation session using the same procedure as in acquisition (see also Torras-Garcia et al., 

2005). 

2.7. Olfactory perception test 

 

To rule out olfactory impairments due to the infusion of DCS, an additional olfactory perception 

test was conducted at the end of each experiment (Carballo-Marquez et al., 2007; Quiroz- 

Padilla, Guillazo-Blanch, Vale-Martinez & Marti-Nicolovius, 2006; Wrenn, Harris, Saavedra & 

Crawley, 2003). Twenty-four hours prior to the olfactory test, the rats were habituated to butter- 

flavored cookies (Brambly Hedge, Denmark). They were then food-restricted for 24 hours prior 

to the infusion and the test. Twenty minutes (experiment 1) or 24 hours (experiment 2) before 

the test, they were infused with DCS (10μg) or PBS. The test was conducted in clean rat cages 

(50 x 22 x 14cm) and a piece of cookie was buried in one corner of the cage. The rats were then 

placed in the cage, and the latency to find the buried cookie and commence eating was timed. 

2.8. Histology 

 

Upon completion of the behavioral study, the rats were deeply anesthetized with an overdose of 

sodium pentobarbital (Dolethal, 200 mg/kg; Vetoquinol S.A., Madrid, Spain) and perfused 

transcardially with PBS (pH: 7.4) followed by 4% paraformaldheyde in 0.1 M PBS at a flow 

rate of 40 ml/min. Subsequently, the cannulae were carefully removed and brains were postfixed 

in paraformaldehyde for two hours and then submerged in a 20% sucrose solution prior to 

sectioning. Coronal 40-µm sections were cut on a cryostat (Shandom Cryotome FSE, Thermo 

Electron Corporation, Massachusetts, USA), mounted and processed for acetylcholinesterase 

histochemistry, essentially as described elsewhere (Paxinos & Watson, 1997). The sections were 

examined to verify cannula placement by two independent observers under a light microscope 

(Olympus BX 41; Olympus Optical CO, LTD, Japan). Microphotographs of the cannula 

placements were obtained using a digital camera (Olympus DP70). 



2.9. Data analysis 

 

In experiment 1, data were submitted to a mixed analysis of variance using repeated measures 

(ANOVA; PASW v19) in which the between-factor was group (DCS and VEH) and the within- 

factor was session. The session factor consisted of 4 measures: acquisition (the average scores 

for the 4 trials), extinction learning (the average scores for the 5 trials), extinction retention (the 

average scores for the 5 trials) and reacquisition (the average scores for the 4 trials). The 

dependent variables were latencies and number of errors. Any deviations from sphericity were 

corrected using the Greenhouse-Geisser correction if p<0.05, and corresponding contrasts were 

performed when necessary. Trial-by trial analyses of the learning evolution (latencies and 

errors) during the extinction learning, extinction retention and reacquisition sessions were 

performed by means of ANOVA. An additional survival analysis (procedure Kaplan-Meier and 

Breslow contrasts) was also carried out to analyse and compare the mean number of extinction 

trials, during learning and retention sessions, required by each experimental group in order to 

reach the pre-established extinction criterion (see 2.5.3). 

In experiment 2, analyses of variance were carried out, with session as a within-subject 

factor that consisted of 2 measures: acquisition (the average scores for the 4 trials) and test (the 

average scores for the 4 trials), and drug (DCS and VEH) and reactivation (reactivated vs non- 

reactivated) as the between-subject factors following a 2x2 design. The dependent variables 

measured were latencies and errors. Additionally, a trial-by trial analysis of the learning 

evolution (latencies and errors) during the test session was performed by means of ANOVA with 

the group factor made up of 4 categories (DCS-REACT, DCS-nonREACT, VEH-REACT, 

VEH-nonREACT). When between-group differences were analyzed, the Bonferroni correction 

was used to counteract the problem of multiple comparisons. 

Regarding the olfactory perception test, two additional ANOVA analyses (injection-test 

delay 20 minutes and 24 hours) were applied considering group (DCS and VEH) as the 

independent variable and latency in finding the buried cookie as the dependent variable. 



3. Results 

 

3.1. Histology (Experiments 1 and 2) 

 

Only rats with patent microinjector tips within the boundaries of the BLA were included in the 

analyses. Subjects were only included if their injector tips were located bilaterally within the 

BLA (in the area delimited by the basomedial amygdala, the lateral amygdala, the basolateral 

posterior amygdala and the bed nucleus of the stria terminalis) and no tissue damage, caused by 

the rate or volume of infusions, was detected (Fig. 1A). Specifically, the cannulae were located 

along different brain coordinates from 2.30 mm to 3.14 mm posterior to bregma (Paxinos and 

Watson 1997) (Fig. 1B-C). Subjects with incorrectly implanted cannulae (located in other 

amygdalar nuclei) were excluded from the analyses (rats in experiment 1: DCS, n=2; rats in 

experiment 2: DCS-REACT, n=2; DCS-nonREACT, n=1; VEH-REACT, n=1). 

 

3.2. Behavior 

 

3.2.1 Experiment 1: ODT Extinction 

 

The DCS group (n=9) showed significant disruption of ODT extinction learning and memory 

when compared to the VEH group (n=9), demonstrated by marked differences in latencies and 

errors in both extinction sessions, and facilitation of ODT reacquisition (shorter latencies and 

less number of errors), suggesting persistence to nose-poking into the sponge previously 

reinforced in the acquisition session. The analysis of the latencies (Fig. 2B) showed statistically 

significant differences between both groups (F(1,16) =11.424, p=0.004). There was also a 

 
significant effect of session (F(3,48)=18.764, p<0.001) and group × session interaction (F(3,48) 

=6.512, p=0.004), indicating that the progress of the behavior across the four sessions was 

different between both groups. Specifically, DCS rats showed shorter latencies to nose-poke the 

sponge originally associated with reward in extinction learning (p=0.001), extinction retention 

test (p=0.003) and reacquisition (p=0.042). The within-group analysis showed differences in the 

VEH group between acquisition and extinction learning (p<0.001), extinction retention 



(p<0.001) and reacquisition (p=0.024), but not in DCS group, indicating that only VEH rats 

exhibited clear signs of extinction. 

The trial-by-trial analysis of the latencies confirmed the previous analyses as it showed 

a divergent evolution of DCS and VEH groups (Fig. 2C), indicating that both groups started 

from a similar level (extinction learning session, trial 1: F(1,16) =3.116, p=0.097) and 

progressively differed through extinction learning (trial 2: F(1,16) =7.022, p=0.017; trial 4: 

F(1,16) =11.572, p=0.004), extinction retention (trial 1: F(1,16) =4.723, p=0.045; trial 3: 

F(1,16) =5.355, p=0.034; trial 4: F(1,16) =15.056, p=0.001 and trial 5: F(1,16) =9.137, 

 
p=0.008) and reacquisition (trial 1: F(1,16) =6.051, p=0.026). 

 
Such results were completed by a survival analysis of the latencies within both 

extinction sessions (Fig. 3), which indicated that the DCS rats were slower to extinguish their 

behavior as they needed a higher number of trials to reach the extinction criterion (see 2.5.3.), 

and also the percentage of DCS subjects achieving the criterion was significantly lower than 

VEH subjects in extinction learning (X
2

=8.837, df=1, p=0.003) and in extinction retention 

 

(X
2

=4.537, df=1, p=0.033). Thus, after 3 extinction learning trials, 55.5% of the VEH rats 

overcame the extinction criterion but none of their DCS counterparts and, by the end of the 

session, 90% in the VEH group vs 55.5% in the DCS group. By the final retention extinction 

trial, 100% of the VEH rats had acquired the criterion but only 66.6% of the rats injected with 

DCS prior to extinction learning. 

The analysis of the number of errors (Fig. 2D) displayed a similar pattern of results to 

the latency analyses with significant between-group differences (F(1, 16) =14.613, p=0.001). 

The session factor was not statistically significant (F(3, 48) =0.499, p=0.685) but the session x 

group interaction showed a tendency toward significance (F(3, 48) =2.028, p=0.122). The DCS 



group committed fewer errors than the VEH group in extinction learning (F(1,16) =9.132, 

 
p=0.008), extinction retention (F(1,16) =5.689, p=0.030), and reacquisition (F(1,16) =9.692, 

p=0.007), indicating a possible resistance to extinction. The within-group analysis indicated that 

the VEH group increased the number of errors from the acquisition session to the extinction 

learning (p=0.05) while the DCS group did not. There were statistically significant differences 

in the DCS group (p=0.05) between acquisition and reacquisition but not so in the VEH group. 

The trial-by-trial analysis of the total number of errors (Fig. 2E) showed statistically significant 

differences between groups in the third extinction retention trial (F(1, 16) =6.050, p=0.026). 

Poorer performance in ODT extinction did not seem to be related to changes in 

olfactory sensitivity since no statistically significant between-group differences were observed 

when the latency to find a buried sweet-smelling cookie (20 minutes after injection) was 

analyzed a day after the completion of experimental manipulations (DCS: mean= 34.70, 

SE=4.78; VEH: mean= 33.40, SE=2.90; F(1,18)=0.054, p=0.819). 

 
3.2.2. Experiment 2: ODT Reconsolidation 

 

The four treatment groups based on the two factors analyzed (drug and memory reactivation) 

were DCS-REACT (n=12), VEH-REACT (n=12), DCS-nonREACT (n=12), VEH-nonREACT 

(n=10). As depicted in Fig. 4B-D, the DCS group exposed to a memory reactivation protocol 

(DCS-REACT) performed shorter latencies and fewer errors in the test session, suggesting an 

enhanced ODT reconsolidation. The analyses revealed that the session factor was statistically 

significant for both latencies (F(1, 42) =21.383, p<0.001) and number of errors (F(1, 42) 

=9.510, p<0.01). As expected, the differences between groups were found in the test; therefore, 

an additional analysis was carried out for the retention session. The main effects in this session 

showed that the drug factor was statistically significant for latencies and number of errors (F(1, 

 

42) =6.604, p=0.014 and F(1, 42) =10.229, p=0.003, respectively), and the reactivation factor 



showed a tendency toward significance for the latencies (F(1, 42) =2.698, p=0.108) and number 

of errors (F(1, 42) =3.788, p=0.06). The interaction between drug and reactivation was 

statistically significant for number of errors (F(1, 42) =4.546, p=0.039) but not for latencies 

(F(1, 42) =1.150, p=0.290). Specifically, statistically significant differences were found between 

DCS-REACT and VEH-REACT in latencies (p=0.012) and number of errors (p<0.001), 

between DCS-REACT and DCS-nonREACT in latencies (p=0.05) and number of errors 

(p=0.005), and between DCS-REACT and VEH-nonREACT in latencies (p=0.006) and number 

of errors (p=0.001). The trial-by-trial analysis of the latencies in the test session showed a 

different evolution of the DCS-REACT group with respect to the other three groups (Fig. 4C). 

There were statistically significant effects of the between-group factor (F(3,42)=3.508, 

 
p=0.023), and the within factor trial (F(3,126)= 7.180, p<0.001) and the interaction showed a 

tendency toward statistical significance (F(9,126)= 1.750, p=0.084). The analyses of the errors 

(Fig. 4E) showed a similar pattern with a statistically significant between-subject effect 

(F(3,42)=6.338, p=0.001) and within-subject effect (F(3,126)=4.965, p=0.003) and a tendency 

 
toward significance of the interaction factor (F(9,126)=1.718, p=0.09). Specifically, DCS- 

REACT showed shorter latencies in the test session when compared to the other groups (Trial 1: 

vs DCS-nonREACT, p=0.012; and vs VEH-nonREACT, p=0.001; Trial 2: vs VEH-REACT, 

p=0.05; Trial 3: vs VEH-REACT, p=0.008; and vs VEH-nonREACT, p=0.045; Trial 4: vs VEH- 

REACT p=0.047; and vs VEH-nonREACT, p=0.043). Also, DCS-REACT showed fewer 

number of errors (Trial 1: vs DCS-nonREACT p=0.04; Trial 2: vs VEH-REACT, p=0.009; and 

and vsVEH-nonREACT, p=0.017; Trial 3: vsVEH-REACT, p=0.003; and vs VEH-nonREACT, 

p=0.003). 

Finally, no statistically significant between-group differences were observed when the 

latency to find a buried cookie (24 hours after injection) was analyzed two days after 

completing behavioral testing (DCS: mean=45.48, SE=2.240; VEH: mean=43.96,SE=2.534; 



F(1,42)=0.202, p=0.655). 

 
4. Discussion 

 

The results of our study indicate that the administration of DCS directly into the BLA hindered 

extinction and potentiated reconsolidation of odor-food reward associative memory. In the first 

experiment, the group receiving pre-extinction DCS showed an impaired performance, both in 

latencies and errors, in extinction learning and 24-h retention. Thus, DCS and VEH rats started 

extinction learning from a similar level of performance but they diverged across subsequent 

trials. Furthermore, the number of trials needed to reach the extinction criterion was higher in 

the DCS group than in the VEH group, and in the drug-free extinction test (24h-retention) 

66.5% of DCS rats acquired the criterion in the last trial vs 100% of VEH rats. Such resistance 

to extinction observed in the DCS group was also revealed by its rapid reacquisition of the 

original learning after extinction training. Also, the DCS rats displayed shorter latencies and 

fewer errors to make the correct response in the reacquisition than in the initial acquisition, in 

contrast to VEH rats. As there was no substantial effect of DCS on odor sensitivity, the results 

would seem to indicate that, in control rats, several exposures to the reinforced odor in the 

absence of the reward triggered the formation of a new extinction trace encoding the stimuli 

dissociation. Such new learning was attenuated in rats pretreated with a single injection of DCS 

into the BLA, as indicated by poorer extinction and enhanced reacquisition, which may be 

interpreted as a potentiated persistence of the original memory trace. 

The findings in experiment 1 agree with other studies in animals failing to show 

facilitation in the extinction of appetitive tasks, specifically those reinforced with food, when 

systemic pre-extinction DCS injections were administered (Port & Seybold, 1998; Vurbic et al., 

2011). Similarly, one study demonstrated no positive effect of systemic pre-extinction DCS on 

ethanol-CPP extinction acquisition, although it did report an enhanced persistence of extinction 

during reconditioning (Groblewski et al., 2009). Moreover, recent studies in humans have also 

revealed that DCS administered before extinction had no effects on the extinction of drug 

dependence (Price et al., 2012; Watson et al., 2011) and on a variety of behavioral disorders 



(Guastella, Lovibond, Dadds, Mitchell, & Richardson, 2007; Storch et al., 2010). It has also 

been shown that pre-extinction DCS administration facilitated fear extinction, although 

extinguished fear was normally renewed, suggesting that the drug may modestly facilitate 

extinction learning, but does not destroy the potential for relapse (Woods & Bouton, 2006). 

Moreover, the current results contrast with previous research assessing the impact of DCS 

administered after extinction learning, which indicated enhanced extinction consolidation of 

different drug-seeking behaviors after intra-BLA or systemic DCS injections (Botreau et al., 

2006; Kelley et al., 2007; Nic Dhonnchadha et al., 2009; Paolone et al., 2009; Thanos et al., 

2009). Nevertheless, additional reports have also shown other inconsistencies in the capacity of 

DCS to enhance extinction consolidation. Such inconsistencies may be attributed to previous 

studies indicating that the effects of DCS may be limited to animals exposed to non-intensive 

training in CPP (Paolone et al., 2009), or showing low anxiety levels (Tomilenko & Dubrovina, 

2007) or a previously high extinction level (Bouton, Vurbic & Woods, 2008; Weber, Hart & 

Richardson, 2007). The discrepancies between findings suggest that there may be fundamental 

methodological differences influencing the memory processes activated during retrieval of such 

different tasks. The fact that DCS shows a complexity of actions, on the grounds of its 

sensitivity to different procedures, supports the notion that it may not have a pervasive role as 

an extinction enhancer. 

 

Further factors need to be considered in the interpretation of results regarding 

vulnerability to extinction, such as memory strength and age, and duration of the reactivation 

period (i.e. extinction training length). It has been suggested that strong memories are more 

resistant to extinction (Suzuki et al., 2004). In the present task, odor-reward memory may be 

considered as a strong memory in that it is based on a survival-based behavior of finding food 

under food-deprived conditions. Be that as it may, ODT does not involve strong aversive 

stimuli, such as foot shocks, which may well induce stronger memories. It is also likely that 

older memories are less susceptible to extinction (Suzuki et al., 2004). However, in the 

experiment that concerns us here, the memory was relatively recent as the acquisition session 

took place just one day prior to extinction learning. It has also been suggested that short CS re- 



exposures in the absence of US lead preferentially to reconsolidation rather than to extinction 

(Lee et al., 2006; Suzuki et al., 2004). Although the extinction session in the present study may 

be deemed short, the protocol would appear to be sufficient as it included 5-trial sessions lasting 

approximately 15 min each. However, as the above three features apply to both DCS and VEH 

groups, with the latter showing marked signs of extinction, intra-BLA DCS may have 

obstructed the ability to learn behavior extinction, i.e. potentially to form a new CS-no US 

memory, or may have preserved the original memory. 

Experiment 2 involved a brief 90-sec reactivation period in which the rats were 

presented with the odor previously associated with a reward. The results indicated that a pre- 

reactivation infusion of DCS into the BLA enhanced memory expression in a subsequent 1-day 

test. The DCS effect seems to be mainly produced on memory expression/reconsolidation as 

opposed to additional learning or reacquisition during the reconsolidation test session, as the 

DCS-REACT group showed a better performance in the first trial of the test. Additionally, DCS 

does not seem to have affected the reinforcer intake during the test as all the rats retrieved and 

consumed the chocolate cereal in each trial. The experiment also demonstrated that the mere re- 

exposure to the odorous stimulus (VEH-REACT) or the DCS injection (DCS-nonREACT) is 

not sufficient to notably enhance the odor- reward memory. Our findings, together with other 

reports, identify memory reactivation as an opportunity to strengthen the memory trace by 

means of DCS. Thus, intra-BLA DCS has been shown to enhance the reconsolidation of 

stimulus-cocaine memories as it increased cue-induced relapse in rats with an extensive drug 

self-administration history (Lee et al., 2009). Moreover, studies carried out in single-trial 

paradigms have shown that DCS, injected intraperitoneally or into the BLA, potentiates fear 

memory reconsolidation by increasing the animals’ freezing responses during the test (Lee et al., 

2006; Yamada et al., 2009). Consistent with our interpretation that a positive modulation of 

NMDA transmission may help to stabilize the original odor-reward memory trace when 

reactivated, a previous study showed that intracerebroventricular blockade of NMDARs 

immediately after reactivation induced amnesia for the stimuli association (Torras-Garcia et al., 

2005). Similarly, the administration of the NMDARs antagonist APV within the BLA prior to 



(but not after) a reactivation session, prevented reconsolidation of drug-associated memory, 

indicating that NMDARs have a temporally limited role in the reconsolidation process (Milton, 

Lee, Butler, Gardner & Everitt, 2008). 

Although these data suggest that DCS is able to potentiate memory consolidation after 

reactivation, namely reconsolidation, such an interpretation may be complicated by the fact that 

the injections were administered pre-reactivation (as in other reconsolidation studies, see Bustos 

et al., 2010; Lee et al., 2009; Lee et al., 2006; Yamada et al., 2009). Thus, it is possible that the 

effects found in the reconsolidation test may be due to performance effects on the actual 

reactivation trial. However, the observation of the animals’ behavior during reactivation by the 

experimenters showed comparable olfactory bouts or motor activity between DCS- and VEH- 

treated animals. Such observations agree with findings from other studies showing that DCS 

injected before reactivation did not influence freezing behavior during the reactivation session 

of fear conditioning (Bustos et al., 2010; Lee et al., 2006). Nevertheless, post-session injections 

would have better isolated retrieval-induced memory processes, and the possibility that post- 

reactivation DCS affect ODT reconsolidation should be addressed in future studies. In the 

interpretation of results from experiment 2, we should also consider the importance of the 

relation between the glutamatergic transmission in the BLA and reward-related processes (Mead 

& Stephens, 2003; Wassum et al., 2012). Thus, our findings may also support the notion that 

DCS, by increasing glutamate transmission in the BLA, could strengthen the conditioned 

reinforcing properties of the odor in the conditioned approach response occurring during 

reactivation. 

 

Although DCS is a commonly studied cognitive enhancer, its mechanisms of action are 

not completely understood (Davis et al., 2006). Nevertheless, as plasticity in the BLA has been 

shown as an important factor for reconsolidation and extinction of emotional memories 

(Duvarci et al., 2006), the effects of DCS have been widely interpreted in terms of modulation 

of neuroplasticity (Myers & Davis, 2002). Thus, DCS-induced NMDARs efficacy enhancement, 

by stimulating high affinity glycine binding, may possibly modify NMDARs-mediated 



intracellular events (Norberg, Krystal & Tolin, 2008). NMDA agonists and other cognitive 

enhancers may trigger a signaling cascade resulting in AMPA receptor subunit internalization in 

the amygdala and enduring alterations in synaptic transmission resulting in changes in the 

number and morphology of dendritic spines at cortical inputs to amygdalar neurons (S. C. Mao, 

Lin, & Gean, 2008; Yang, Chao, Ro, Wo & Lu, 2007). Particularly noteworthy in such a context 

is the report that activation of amygdalar protein kinase A, a key component of the synaptic 

plasticity machinery, enhanced fear memory when the memory was briefly reactivated but not 

extinguished (Tronson, Wiseman, Olausson, & Taylor, 2006). 

A final issue to be considered is that although the BLA has been extensively related to 

extinction and reconsolidation of different tasks, other brain regions may also participate in such 

processes. In this context, several studies have implicated the hippocampus in reconsolidation 

(Nader & Hardt, 2009; Tronson & Taylor, 2007) and the medial prefrontal cortex, which 

modulates amygdalar activity, in reconsolidation and extinction (Akirav & Maroun, 2006; 

Myers & Davis, 2007; Quirk & Mueller, 2008; Milton & Everitt, 2010). As for ODT, a study 

using c-fos immunocytochemical marking showed that a circuit linking BLA and the prefrontal 

cortex is involved in the post-acquisition consolidation period of the odor-reward association 

(Tronel & Sara, 2002). Also, NMDARs in prelimbic cortex are necessary in the early stage of 

ODT consolidation as blockade of such receptors immediately after training induced long- 

lasting amnesia (Tronel & Sara, 2003). This agrees with a recent study demonstrating that 

bilateral DCS administration in the prelimbic cortex enhanced subsequent ODT memory 

expression in a relearning test (Villarejo-Rodriguez et al., 2010). Considering this evidence, it is 

likely that DCS infused in regions anatomically related to BLA and also involved in this task, 

such as the prefrontal cortex, affect ODT extinction and/or reconsolidation. Hence, additional 

studies would need to investigate the effects of DCS infusions into different brain regions in 

order to further explore the neural mechanisms involved in ODT extinction and reconsolidation. 

Additionally, other circumstances (e.g. re-exposure protocol, dose and timing of injection) 

would need to be examined to elucidate the potential use of DCS. 



4.1. Conclusions 

 

The results presented corroborate the involvement of the NMDARs in an appetitive 

odor-food reward task (Tronel & Sara, 2003), and particularly its strychnine-insensitive glycine- 

binding site (Villarejo-Rodriguez et al., 2010). Specifically, the results show that intra-BLA 

DCS may exert opposite effects in ODT extinction and reconsolidation, namely, impairment of 

extinction and enhancement of reconsolidation. Such results suggest that DCS into the BLA 

may potentiate the persistence or strength of the original odor-reward memory trace 

(demonstrated by resistance to extinction and facilitation of reacquisition and reconsolidation), 

which is compatible with the idea that memory retrieval is a dynamic process that either 

reinforces or alters memory (Suzuki et al., 2004). Therefore, studies of DCS or other agents that 

may act specifically on extinction or reconsolidation are particularly interesting in order to 

avoid problematic potential side effects in the therapies used to treat neurologic or psychiatric 

disorders. 
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7. Figure Captions 

 
Figure 1. (A) Photomicrograph (2× magnification) of acetylcholinesterase staining at the level 

of BLA (AP, 3.14 mm posterior to bregma) showing the cannula track and the microinjector tip 

of a representative subject [BLA, basolateral amygdala, CPu, caudate-putamen; La, lateral 

amygdala; Me, medial amygdala]. (B, C) Location of injectors within the BLA. Schematic 

representation of the brain at four rostro-caudal levels (˗2.30, ˗2.56, ˗2.80 and ˗3.14 mm from 

bregma). PBS-infused rats are represented by empty circles and DCS-infused rats by filled 

circles, for experiment 1(B) and experiment 2 (C). 

Figure 2. Effects of pre-extinction intra-BLA DCS on the odor-reward task (experiment 1). (A) 

The behavioral procedure used for experiment 1, (B) Latency to make the original correct 

response (±SEM) in each session (C) Trial-by-trial analysis of the latency to make the original 

correct response. (D) Number of total errors prior to making the original correct response 

(±SEM) in each session (E) Trial-by-trial analysis of the number of total errors. DCS 

significantly decreased both measures in the extinction learning and extinction retention and 

improved the reacquisition of the task (* p < 0.05, ** p < 0.05, *** p< 0.001), suggesting a 

weakened extinction learning. 

Figure 3. Survival analysis of extinction learning and retention (experiment 1). The percentage 

of subjects reaching the extinction criterion (latency to make the original correct response ≥ 

total mean latency of the first acquisition trial, 44 secs, for two consecutive trials) is shown in 

the Y-axis (1 indicates that 100% of subjects acquired the criterion) for each of the 5 trials (X- 

axis) in each session. A significantly higher percentage of VEH subjects achieved the criterion 

during extinction. . 

Figure 4. Effects of pre-reactivation intra-BLA DCS on the odor-reward task (experiment 2). 
 

(A) The behavioral procedure used for experiment 2, (B) Latency to make the correct response 

in each session (±SEM) and (C) Trial-by-trial analysis of the latency to make the correct 

response in the test session. (D) Number of total errors prior to making the correct response 

(±SEM). (E) Trial-by-trial analysis of the number of total errors in the test session. DCS in the 



reactivated rats significantly decreased both measures throughout the test session, in contrast to 

the remaining groups (* p < 0.05, ** p < 0.05, *** p<0.001), which indicated an enhanced 

reconsolidation. 


