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PARAMETRIZATION OF SPECTRAL SURFACES OF A CLASS
OF PERIODIC 5-DIAGONAL MATRICES

IONELA MOALE AND PETER YUDITSKII

Abstract. The main result of this work is a parametric description of the
spectral surfaces of a class of periodic 5-diagonal matrices, related to the strong
moment problem. This class is a self-adjoint twin of the class of CMV matrices.
Jointly they form the simplest possible classes of 5-diagonal matrices.

1. Introduction

The main result of this work is a parametric description of the spectral surfaces
of a class of periodic 5-diagonal matrices. This class is a self-adjoint twin of the
quite popular now class of CMV matrices [5, 6]. Jointly they form the simplest
possible classes of 5-diagonal matrices, we explain this claim in details in Section
2. We take a risk to introduce an abbreviation and call them SMP (Strong
Moment Problem) matrices, see e.g. [3] and the remark below.

In a generic case SMP matrix is defined as a ratio of two 3-diagonal matrices
A = A2A

−1
1 , where

A1 =



. . .

. . . π̄−1

. . . σ−1 0
π0 1 π̄1

0 σ1 0

π2 1
. . .

0
. . .
. . .


, A2 =



. . .

. . . 0

. . . 1 p̄0

0 q0 0
p1 1 p̄2

0 q2
. . .

p3
. . .
. . .


,

A1 and A2 are invertible, equivalently σ2n−1 6= 0 and q2n 6= 0 for all n. Due to
the symmetry A = A∗, the generating coefficient sequences are subject to the
restrictions

p2n−1

q2n−2

= −π2n−1

σ2n−1

,
p2n

q2n
= − π2n

σ2n−1

.

2010 Mathematics Subject Classification. 30E05, 30F15, 47B39, 46E22.
Key words and phrases. Strong Moment Problem, periodic CMV matrices, Hardy spaces on

Riemann surfaces, conformal mappings, comb domains, reproducing kernels.
This work was supported by Austrian Science Fund FWF, project no: P22025-N18.

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Diposit Digital de Documents de la UAB

https://core.ac.uk/display/154764426?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


C
R

M
P

re
p
ri

nt
S
er

ie
s

nu
m

b
er

10
65

2 IONELA MOALE AND PETER YUDITSKII

Note that A−1
1 and A−1

2 are also 3-diagonal, thus A and A−1 are 5-diagonal
matrices represented as products of 3-diagonal matrices. Note also that degener-
ations are possible, see Remark 4.3.

Let {en} be the standard basis in the two-sided `2. According to the above
definition

Ae2n = A2e2n = p̄2ne2n−1+q2ne2n + p2n+1e2n+1

A−1e2n−1 = A1e2n−1 = π̄2n−1e2n−2+σ2n−1e2n−1 + π2ne2n

Thus, constructing A we follow the procedure, which is similar to the CMV
matrices case: having e−1 and e0 as the generators of the cyclic subspace we form
the whole space applying A on the even step and A−1 on the odd step, however,
as it was mentioned, the operator is not unitary, but self-adjoint, that is, the
spectrum is not on the unit circle but on the real axis. From this point of view
the situation is similar to the orthogonalization procedure in the strong moment
problem construction [3], however because of periodicity we are interested in
two-sided matrices; it is very essential: we do not assume that the operator A is
positive!
A can be represented as a two dimensional perturbation of a block orthogonal

matrix

A =

[
A− 0
0 A+

]
+ e−1〈·, ẽ0〉p̃0 + ẽ0〈·, e−1〉p̃0,

where

p̃0 = ‖P+Ae−1‖, ẽ0 =
1

p̃0

P+Ae−1,

A± = P±AP± are restrictions of A to the positive and negative half-axis according
to the orthogonal decomposition `2 = `2− ⊕ `2+. For this reason certain general
facts from its spectral theory can be reduced to the spectral theory of Jacobi
matrices. However it is quite different as soon as we pose the problem:

Problem 1.1. Describe the spectral sets of periodic SMP matrices.

Recall that for periodic Jacobi matrices the spectrum is a system of inter-
vals, which possesses the following parametric description, see [1] and references
therein. For a system of nonnegative parameters {hk}n−1

k=1 , let D = D(h1, . . . hn−1)
be the region obtained from the half-strip

{w : −πn < Rew < 0, Imw > 0}
by removing vertical intervals

{w : Rew = −πk, 0 < Imw ≤ hk}, k = 1, . . . , n− 1.

Let θ be the conformal map of the upper half-plane H to D normalized by the
conditions θ(a0) = 0, θ(b0) = −πn, θ(∞) = ∞. Denote by E(h1, . . . , hn−1) the
full preimage of the interval [−πn, 0] ⊂ ∂D, i.e.:

E(h1, . . . , hn−1) := θ−1([−πn, 0]).
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PARAMETRIZATION OF SPECTRAL SURFACES 3

Figure 1. Π region for ω0 6= π`

Figure 2. Π region for ω0 = π`0.

A system of intervals E = [b0, a0] \ ∪j≥1(aj, bj) is the spectrum of a periodic
Jacobi matrix if and only if E = E(h1, ..., hn−1) for a certain system of parameters
{hk}n−1

k=1 .
The spectral sets for periodic CMV matrices are given by conformal mappings

onto similar periodic comb-like domains. To formulate our main result we define
comb regions of a new kind.

For integers k and m ∈ [0, k] and parameters h0 > 0 and ω0, 0 ≤ ω0 ≤ πm
consider the region Πm

k (h0, ω0) bounded by the hyperbolic curves

(1.1) (Imu)2 < (Reu)2 + h2
0,

and the orthogonal systems of hyperbolas

Imu <
πm− ω0

2Reu
, Imu >

π(m− k)− ω0

2Reu
, for Reu > 0,

Imu <
−ω0

2Reu
, Imu >

π(k)− ω0

2Reu
, for Reu < 0.

(1.2)
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4 IONELA MOALE AND PETER YUDITSKII

If ω0 6= π`, 0 ≤ ` ≤ m, by Π we denote the region which is obtained from
Πm
k (h0, ω0) by removing pieces of hyperbolic curves

(1.3) Imu =
π`− ω0

2Reu
, for Imu > 0, 1 ≤ ` ≤ m− 1

and

(1.4) Imu =
π(`− k)− ω0

2Reu
, for Imu < 0, m+ 1 ≤ ` ≤ 2k − 1

of length h`, h` ≥ 0, see Fig. 1. If ω0 = π`0 then the hyperbolic curves related to
` = `0 in (1.3) and ` = k + `0 in (1.4) degenerate. In this case the corresponding
cuts are pieces of the imaginary axis, as soon as

(1.5) h`0 < h0 and hk+`0 < h0.

Otherwise one of them still satisfies (1.5), and another one has T-shape, see Fig.
2, consisting of the piece of the imaginary axis

(1.6) 0 ≤ Imu ≤ h0 or − h0 ≤ Imu ≤ 0,

respectively, and of the real interval

(1.7) −h(`0)
− ≤ Reu ≤ h

(`0)
+ , h

(`0)
± ≥ 0.

Theorem 1.2. For a region Π described by the conditions (1.1)–(1.7), let θ :
H → Π be a conformal map such that 0 and ∞ correspond to the infinite points
in Π. A system of intervals E, 0,∞ 6∈ E, is the spectral set of a periodic matrix of
SMP class if and only if it corresponds to the preimage of the part of the boundary
given by the condition (1.1) for a certain Π.

The structure of the work is as follows: the simplest possible spectral surfaces
of periodic 5-diagonal matrices are discussed in Section 2. In Section 3 we prove
our main theorem. The functional model for periodic SMP matrices is given in
Section 4.

The second author is thankful to the organizers of the program Hilbert spaces of
entire functions and spectral theory of self-adjoint differential operators, at CRM,
Barcelona, 2011, and to Alex Eremenko for stimulating discussions. In a sense
this paper is an addition to their joint work [1].

2. Spectral surfaces with the maximal number of boundary ovals

Let J be a 5-diagonal self-adjoint matrix of period d

(2.1) J = rS2 + pS + q + S−1p̄+ S−2r,

where S is the shift operator and p, r, q are diagonal matrices of period d, such
that rm > 0. We recall certain fundamental facts from the spectral theory of
multi-diagonal periodic matrices [2], adopting to the 5-diagonal case.
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PARAMETRIZATION OF SPECTRAL SURFACES 5

For

(2.2) j(w) =



q0 p̄1 r2 . . . 0 r0/w p0/w
p1 q1 p̄2 r3 . . . 0 r1/w
r2 p2 q2 p̄3 r4 . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 . . . rd−3 pd−3 qd−3 p̄d−2 rd−1

r0w 0 . . . rd−2 pd−2 qd−2 p̄d−1

p̄0w r1w 0 . . . rd−1 pd−1 qd−1


let

F (z, w) =
det{j(w)− z · I}∏d−1

j=0 rj
= w2 + 1/w2 + A(z)w + A∗(z)1/w +B(z)

where A and B are polynomials, in particular, for even d = 2k

B(z) =
z2k∏2k−1
j=0 rj

+ . . . ,

A∗(z) := A(z̄) =

(
−1∏k−1
j=0 r2j

+
−1∏k−1

j=0 r2j+1

)
zk + . . .

(2.3)

Then the spectral curve corresponding to J is of the form

(2.4) R = {P = (z, w) : F (z, w) = 0}.

R is endowed with an antiholomorphic involution τP := (z̄, 1/w̄) for which

R \ ∂R+ = R+ ∪R−, R+ = {P = (z, w) ∈ R : |w| < 1},

see Fig. 3. Note that the spectrum of J (as the operator acting in `2) corresponds
to the fixed line of the involution τ , τP = P ,

z ∈ σ(J)⇔ ∃w : P = (z, w) ∈ ∂R+.

In other words it is described by the condition |w| = 1.
Recall that the spectral surfaces related to Jacobi matrices are of the form

R̃ =

{
(w, z) : w +

1

w
= Ã(z)

}
,

where Ã is a real polynomial. In the similar decomposition R̃\∂R̃ = R̃+∪R̃− it
possesses the following property: the number of boundary ovals, i.e., the number
of intervals

∂R̃ = {z ∈ R : |Ã(z)| ≤ 2}
is maximal for the given genus of the surface.

We say that the spectral curve R, related to a 5-diagonal matrix, is of the sim-
plest structure if it has maximal possible number of components of the boundary
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6 IONELA MOALE AND PETER YUDITSKII

Figure 3. Topology of the spectral curve

Figure 4. R+ as the two sheeted covering of z-plane

∂R+ for the given genus. For example, in Fig. 3 the number of boundary com-
ponents is 3, but its genus is 4 and the maximal possible number of components
is 5. That is, the curve of this structure does not belong to the class.

In other words, let us represent R+ as two a sheeted covering of the z-plane,
see Fig. 4. It is a hyperelliptic curve with a system of cuts ∂R+. We say that the
spectral curve is of the simplest structure if this hyperelliptic curve has genus 0,
i.e.:

R+ ' C̄ \ E.
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PARAMETRIZATION OF SPECTRAL SURFACES 7

The corresponding equivalence can be written explicitly

(2.5) z = λ+
c2

λ− λ0

, λ ∈ C, c1 = λ0 − 2c, c2 = λ0 + 2c,

where c1, c2 denote the only two possible critical values of z, in the case that
both numbers are finite and if, say, c2 =∞ then

z = λ2 − 2c, c1 = c2 − 2c.

The set E, which corresponds to ∂R+, is a system of cuts in the complex plane
C with the property

(2.6) z(λ) ∈ R for λ ∈ E.

It is essential to note that E is far from being an arbitrary system of cuts for
which (2.6) holds. Recall that up to now the second function w was not involved
into considerations. Meanwhile w = w(λ) is a function in C̄\E with the following
properties [2]:

(i) w is single-valued and holomorphic,
(ii) |w| < 1 in C̄ \ E and |w| = 1 on E,

(iii) zeros of w are {λ0,∞} = z−1(∞) 6⊂ E (of equal multiplicity).

For definiteness, here and below, we consider the case (2.5) (with two finite critical
values). The properties (i)-(iii) imply that

(2.7)
1

k
log

1

|w(λ)|
= Gλ0(λ) +G∞(λ),

where Gλ0(λ) is the Green function in the domain C̄ \E with a logarithmic pole
at λ0 and k is the multiplicity of w in λ0 and ∞ respectively.

Let us recall the concept of the complex Green function bλ0(λ). It is an analytic
multivalued function in C̄ \ E such that

(2.8) log
1

|bλ0(λ)|
= Gλ0(λ).

Note that (2.8) determines bλ0 up to a unimodular constant. In what follows we
assume the normalizations bλ0(∞) > 0 and b∞(λ0) > 0.

Let π1(C̄ \ E) be the fundamental group of this domain. Then bλ0 generates
the character µλ0 ∈ π1(C̄ \ E)∗ on this group by

bλ0 ◦ γ = µλ0(γ)bλ0 , γ ∈ π1(C̄ \ E),

which indicates the multivalued structure of the complex Green function. More-
over, let us split E into connected components, E = ∪κj=0Ej, and let γj’s be simple

contours around Ej’s. Note that they form generators of the group π1(C̄ \ E)
subject to the condition

γ0 ◦ · · · ◦ γm = trivial.
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8 IONELA MOALE AND PETER YUDITSKII

Then, for a suitable choice of the direction of γj,

(2.9) µλ0(γj) = e2πiωλ0
(Ej),

where ωλ0(Ej) is the harmonic measure of Ej at λ0.
The factor bλ0b∞ removes the singularities of z in C̄ \ E. Let

t∞ =
(b∞bλ0z)(∞)

|(b∞bλ0z)(∞)|
, tλ0 =

(b∞bλ0z)(λ0)

|(b∞bλ0z)(λ0)|
,

Define ξ ∈ [0, 1) by the condition t∞ = e2πiξtλ0 . Let µ = µλ0µ∞. Thus µ(γj) =
e2πiωj , where ωj = ωλ0(Ej) + ω∞(Ej).

Theorem 2.1. Let z be given by (2.5). Let E = ∪κj=0Ej ⊂ z−1(R) be a system

of cuts (2.6). Then R = R+ ∪ ∂R+ ∪R−, where R+ ' C̄ \E, is a spectral curve
of a 5-diagonal periodic matrix if and only if the numbers ξ and ωj (for all j) are
rational. Moreover w = t−k∞ (bλ0b∞)k, where k is a common denominator of these
rational numbers.

A proof is based on a fact of the general theory [2], that a given periodic J
with the spectral curveR possesses functional representation as the multiplication
operator by z. We give such a representation following basically [4, 7].

For a fixed character α the multivalued analytic functions F , F ◦ γ = α(γ)F ,
such that |F (λ)|2 has a harmonic majorant in C̄ \ E, form the Hardy space
H2(α) ⊂ L2

ω∞ with the norm given by the integral of the boundary values:

‖F‖2 =

∫
E

|F (λ)|2ω∞(dλ).

Note that the point-evaluation functional is bounded in this space and therefore
in H2(α) there is the reproducing kernel kαλ :

F (λ) = 〈F, kαλ 〉, λ ∈ C̄ \ E,

for all F ∈ H2(α).

Lemma 2.2. For a character α ∈ π1(C̄ \ E)∗ let

Kα
λ =

kαλ
‖kαλ‖

denote the normalized reproducing kernel at λ. Then, for an arbitrary system of
unimodular constants tm, the family

(2.10) e2n = t2nb
n
λ0
bn∞K

αµ−nλ0
µ−n∞

λ0
, e2n+1 = t2n+1b

n+1
λ0

bn∞K
αµ−n−1

λ0
µ−n∞

∞

forms an orthonormal basis in H2(α), n ≥ 0. Moreover, extended to negative
indexes it forms an orthonormal basis in L2

ω∞.
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PARAMETRIZATION OF SPECTRAL SURFACES 9

Proof. The system is orthonormal. Every function from H2(α) orthogonal to it
has a zero of infinite multiplicity in λ0 (and ∞) and therefore vanishes identi-
cally. To prove the second claim one has to use the description of the orthogonal
complement L2

ω∞ 	H
2(α) by means of the Hardy space [7] and once again apply

the same argument related to the corresponding H2-space and orthonormal basis
of reproducing kernels in it.

�

Lemma 2.3. The multiplication by z with respect to the basis (2.10) is a 5-
diagonal self-adjoint matrix,

(2.11) zem+2 = r̄m+2em + p̄m+2em+1 + qm+2em+2 + pm+3em+3 + rm+4em+4.

Moreover rm > 0 if and only if

(2.12) t2n−1 = t−n∞ t(−1), t2n = t−nλ0
t(0).

Proof. Since the factor bλ0b∞ removes the singularities of z in C̄ \E the function
zbλ0b∞F belongs to H2(αµ) for every F ∈ H2(α) and an arbitrary α ∈ π1(C̄\E)∗.
Thus the decomposition of zem+2 starts with em,

zem+2 = r̄m+2em + . . .

Since z(λ) is real on E the multiplication operator is self-adjoint; its matrix
possesses the symmetry property and therefore it is 5-diagonal (2.11). Finally we
put λ = λ0 in (2.11) for even m

(zbλ0b∞)(λ0)K
αµ−(n+2)

λ0
(λ0)t2n+2 = r̄2n+2K

αµ−n

λ0
(λ0)t2n

and λ =∞ for odd m

(zbλ0b∞)(∞)Kαµ∞µ−(n+2)

∞ (∞)t2n+1 = r̄2n+1K
αµ∞µ−n

∞ (∞)t2n−1.

Since Kα
λ (λ) > 0 we get (2.12). �

Proof of Theorem 2.1. Let J be a periodic self-adjoint 5-diagonal matrix and R
be its spectral surface such that R+ ' C̄ \ E. Since w(λ) is single-valued in the
domain, (2.7) and (2.9) imply that ωj = ωλ0(Ej) + ω∞(Ej) are rational. Futher,
due to (2.3) the function wzk is regular in the domain, moreover 1/(wzk)(λ0) and
1/(wzk)(∞) are roots of the quadratic equation

C2 +

(
−1∏k−1
j=0 r2j

+
−1∏k−1

j=0 r2j+1

)
C+

1∏2k−1
j=0 rj

=

(
C − 1∏k−1

j=0 r2j

)(
C − 1∏k−1

j=0 r2j

)
= 0.

Thus (wzk)(λ0) > 0 and (wzk)(∞) > 0. Since w = t(bλ0b∞)k, t ∈ T, the ratio
(zbλ0b∞)k(∞)/(zbλ0b∞)k(λ0) is also positive. That is e2πikξ = 1. And this finishes
the necessity part of the theorem.
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10 IONELA MOALE AND PETER YUDITSKII

In the opposite direction, for the given system of cuts we define J according to
Lemma 2.3. It remains to check that J is periodic. Let w = t−k∞ (bλ0b∞)k. Since
µk(γ) = 1, for all γ ∈ π1(C̄ \ E), it is single-valued. Note that w is normalized
by the condition (wzk)(∞) = |(bλ0b∞z)k(∞)| > 0. We claim that

(2.13) wen = en+2k.

For odd n (2.13) holds automatically. For even n we should take into account
that in addition t−k∞ tkλ0

= e−2πikξ = 1. Thus (2.13) defines the shift operator.

Since the multiplication operators by z and w commute, we have JS2k = S2kJ .
Therefore J is periodic. �

Now, let us restrict ourselves to the real case, i.e., c2 = c̄1 or both critical
values are real. Without lost of generality c2 = c̄1 = 2i or c2 = −c1 = 2. Thus,
according to (2.5),

(2.14) z = λ− 1

λ

in the first case, and

(2.15) z = λ+
1

λ

in the second one.
In the case (2.14), z−1(R) = R, thus E is a system of intervals on the real axis.

Since z−1(∞) = {0,∞}, E is subject to the restriction {0,∞} 6⊂ E.
If z is of the form (2.15), then z−1(R) = R ∪ T, that is, E is a union of real

intervals and arcs of the unit circle, and again {0,∞} 6⊂ E. This case under the
additional assumption E ⊂ T leads to periodic CMV matrices [6]. Indeed, in the
current case the multiplication by λ is also well defined and represents a unitary
matrix A such that

(2.16) J = A+ A−1 = A+ A∗.

As it was mentioned this functional model is the same as that related to periodic
and almost periodic CMV matrices, see e.g. [4]. Conversely, having a periodic
CMV matrix A we obtain the periodic self-adjoint J of the class by (2.16).

Similarly, in the case (2.14) the multiplication by λ leads to the self-adjoint
operator A such that

(2.17) J = A− A−1,

where A−1 exists and corresponds to the multiplication by 1/λ, i.e., to a periodic
SMP matrix. Further details of the corresponding functional model are discussed
in Section 4. Note that the case (2.15) under the additional assumption E ⊂ R
leads to essentially the same class of self-adjoint operators.
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3. Proof of the Main Theorem

Let E = [b0, a0]\∪κj=1(aj, bj) be a system of intervals on R, recall {0,∞} ∈ C̄\E,
z = λ− 1/λ. We apply Theorem 2.1 in the current case. As it is well known the
Green function (say with respect to infinity) is represented by the hyperelliptic
integral, see e.g. [8, 7],

G(λ,∞) = Re

∫ λ

a0

λκ + . . .√∏κ
j=0(λ− aj)(λ− bj)

dλ.

Therefore for the sum of the Green functions we have

(3.1) G(λ,∞) +G(λ, 0) = Re

∫ λ

a0

Mκ+1(λ)√∏κ
j=0(λ− aj)(λ− bj)

dλ

λ
,

where Mκ+1 is a monic polynomial of degree κ+ 1. Note that the residue of the
corresponding differential at the origin is −1.

3.1. Spectrum of SMP matrices for the Stieltjes class. Let us consider the
simplest case E ⊂ R+ or E ⊂ R− (we can say that the spectrum is on the upper
(lower) sheet of R+). The strong Stieltjes moment problem is related to measures
supported on the positive half-axis [3]. The shape of the sum G(λ,∞) +G(λ, 0)
on R \ E is shown in Fig. 5. It implies immediately that all the zeros of the
polynomial Mκ+1 in (3.1) are real in this case. Indeed, each gap (aj, bj), j ≥ 1,
contains at least one critical point; there is a critical point between −∞ and 0;
the total number of critical points is κ+ 1. Therefore

(3.2) θ̃(λ) = i

∫ λ

a0

Mκ+1(λ)√∏κ
j=0(λ− aj)(λ− bj)

dλ

λ

is the Schwarz-Christoffel integral, which maps conformally the upper half-plane
H onto the (generalized) polygon in Fig. 6.

According to (2.7) w(λ) = teikθ̃(λ), t ∈ T. Let ω̃j be the coordinates of the
base of the slits. Then w(λ) is single valued in C̄ \ E if and only if ω̃jk ∈ πZ
for all j. It remains to mention that due to the chosen normalization for bλ0 and
b∞ the product bλ0(λ)b∞(λ)(λ − 1/λ) is positive at infinity and negative at the
origin, that is ξ = 1/2. Thus we can parametrize the spectral sets of periodic
SMP matrices in this case by sufficiently simple domains shown in Fig. 6 with
rational ω̃j’s (quite similar to the Jacobi and CMV matrices cases).

3.2. Complex critical points and three real critical points in the same
gap. The situation changes dramatically as soon as 0 ∈ (aj, bj), j ≥ 1, that is,
E = E−∪E+, E± ⊂ R±. Still all gaps, except for (aj, bj), should contain a critical
point, thus Mκ+1 has at least κ− 1 real critical points. However, the positions of
two remaining critical points are not a priory fixed.
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12 IONELA MOALE AND PETER YUDITSKII

Figure 5. G0 +G∞ on R: the spectrum is on the upper sheet

Figure 6. Image of the Abelian integral θ̃

First, we consider the case when two remaining critical points are complex
µ0 and µ0, Imµ0 > 0. Let us consider θ̃(λ) in the upper half-plane H. Since

locally θ̃(λ) = θ̃(µ0) + C(λ − µ0)
2 + . . . , there exist two orthogonal directions

where Re dθ̃ = 0. Moreover for one of them Im θ̃ has a local minimum at µ0 and
a local maximum for another one. We define the curve γ, µ0 ∈ γ, by the condition
Re dθ̃ = 0, such that Im θ̃ increases. Since there is no other critical point in H
this curve should terminate on the real axis. Note that Im θ̃(λ) decreases as λ
approaches E. If so, in the gaps γ may approach either a critical point or 0 and
∞. The first case is also not possible since the critical point is a local minimum
for Im θ̃ = Gλ0 +G∞ along the real axis, thus it should be local maximum in the
orthogonal direction γ. But along γ it increases. Thus, γ terminates at 0 and∞,
see Fig. 7.

As the result we get H \ γ = H− ∪H+ such that E± ⊂ ∂H±. Let θ(λ) = kθ̃(λ).
Inspecting the boundary behavior of the given analytic function we obtain that
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Figure 7. A complex critical point

Figure 8. D± = θ(H±) regions for a complex critical point

it maps conformally H± onto D± shown in Fig. 8, where the point −ω0 + ih2
0

corresponds to the critical point µ0.
Now we define

(3.3) u(λ) =
√
−iθ(λ)− iω0 − h2

0 for λ ∈ H+

Here we assume that Imu(λ) > 0. Similarly we define

(3.4) u(λ) = −
√
−iθ(λ)− iω0 − h2

0 for λ ∈ H−

and in this case Imu(λ) < 0. In this way we get the regions Π±. Since

θ = −(2Reu Imu+ ω0) + i((Reu)2 − (Imu)2 + h2
0),

these regions are bounded by hyperbolic curves (1.1)–(1.4), see Fig. 1. Gluing
the images along the curve γ we obtain the conformal mapping of the upper
half-plane H onto the special comb domain Π = Π+ ∪ Π− ∪ R.

Conversely, for the region Π described by these equations we define a conformal
map u : H→ Π , u(0) = +∞, u(∞) = −∞, and set

(3.5) w(λ) = e−(u2(λ)+h2
0+iω0), z = λ− 1

λ

Then, the set E corresponds to |w| = 1. Since the base of the slits for D± are of
the form π`, w extended in the lower half-plane is single-valued in C̄\E. Finally,
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Figure 9. Three real critical points in the same gap, H+ = H0+ ∪H∞+

Figure 10. D± = θ(H±) three real critical points in the same gap

w is real for λ ∈ R \E, that is, ξ is rational. Based on Theorem 2.1 we conclude
that this domain can be associated to a periodic SMP matrix.

Let us turn to the case of three real critical points in the same gap. In
this case H can be decomposed into three pieces. Let µ1 < µ0 < µ2 be critical
points in the gap (ai, bi). Note that with necessity µ1 and µ2 are points of local
maximum and Im θ assumes a local minimum at µ0 in this interval. Therefore
there are directions γ1, γ2 orthogonal to the real axis at µ1 and µ2 respectively
such that Im θ increases. Arguments like the above show that these curves,
Re dθ = 0, terminate at 0 and ∞, see Fig. 9

In each of them, θ(λ) represents a conformal mapping, see Fig. 10. In this
picture −ω0 + ih2

0, −ω0 + ih2
1, and −ω0 + ih2

2 are images of the critical points
µ0, µ1, and µ2 respectively and ω0 = π`0. We make the change of variable (3.3),
(3.4), having in mind that now H+ or H− consists of two components. We arrive
at the parametrization of the spectral curve by the domains of the form Fig. 2
such that

h
(`0)
− =

√
h2

2 − h2
0, h

(`0)
+ =

√
h2

1 − h2
0

in (1.7).
As before, starting from a region Π, by (3.5) we arrive at the set E and the

domain C̄ \ E ' R+ which corresponds to a periodic SMP matrix.
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3.3. Other cases. In the previous subsection we considered critical values in
two main generic positions. Now let us list the remaining special cases.

1. For two complex critical values, if ω0 = π`0 then one of the cuts in (1.3)
and one in (1.4) degenerates to the intervals on the imaginary axis. The length
of such a cut can not be arbitrary long, thus h`0 and hk+`0 are subject for the
conditions (1.5). As soon as one of these values approaches h0 two complex
critical values, from the upper and lower half-planes, approach the critical value
in the corresponding gap. In the limit we have the critical value of multiplicity 3.
The same special case can be obtained when two critical values µ1 and µ2 tend

to µ0, correspondingly h
(`0)
± → 0, see Fig. 2.

2. The case of a critical point of multiplicity two and a simple critical point in

a gap corresponds to h
(`0)
+ = 0, h

(`0)
− > 0 or h

(`0)
− = 0, h

(`0)
+ > 0.

3. Two critical points (or one critical point of multiplicity two) may appear in
the interval which contains zero or infinity. The domain Π looks similar to that
one shown in Fig. 2, but the degenerated hyperbola corresponds to the most left
(or right) position, i.e., `0 = 0 or `0 = m.

4. It was assumed that m ≤ k. If m > k the domain Π in Fig. 1 remains the
same, but we switch the normalization conditions to u(0) = −∞ and u(∞) =
+∞.

5. In the Stieltjes case, subsection 3.1, the spectral curve was described by a
simpler domain, Fig. 6. By (3.3) it can be transformed to a Π region bounded
from below by the real axis.

4. Functional model for periodic SMP matrices

Let C̄ \ E correspond to a periodic SMP matrix. We define

(4.1) A(α) =
Kα

0 (∞)

Kα
∞(∞)

, B(α) =
Kα

0 (0)

Kα
∞(∞)

, α ∈ π1(C̄ \ E)∗.

For the reader’s convenience we prove here a known lemma, see e.g. [4].

Lemma 4.1. The following identities hold true

(4.2) C(α) :=
√

1− |A(α)|2 = b∞(0)
Kαµ−1

∞
0 (0)

Kα
0 (0)

and

(4.3) A(α) =
Kα
∞(0)

Kα
0 (0)

, C(α) = b0(∞)
K
αµ−1

0∞ (∞)

Kα
∞(∞)

.

Proof. A(α) is defined by the following orthogonal decompositions

Kα
0 = A(α)Kα

∞ +
√

1− |A(α)|2b∞Kαµ−1
∞

0

b0K
αµ−1

0∞ =
√

1− |A(α)|2Kα
∞ − A(α)b∞K

αµ−1
∞

0
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Indeed, A(α) =
Kα

0 (∞)

Kα
∞(∞)

and we get (4.2).

Since, in addition,

Kα
∞ = A(α)Kα

0 +
√

1− |A(α)|2b0K
αµ−1

0∞

b∞K
αµ−1
∞

0 =
√

1− |A(α)|2Kα
0 − A(α)b0K

αµ−1
0∞

we have (4.3).
�

In what follows without loss of generality we assume that t(−1) = 1 in (2.12).
In the given case λ0 = 0, so t0 is the new notation for tλ0 , and this is not the
same as the initial t(0). Since

(b∞b0z)(∞) = (b∞λ)(∞)b0(∞), (b∞b0z)(0) = −(b0/λ)(0)b∞(0),

we have t∞ = φ∞/|φ∞| and t0 = −φ0/|φ0|, where

φ∞ =

(
b∞λ

b0

)
(∞), φ0 =

(
b0
b∞λ

)
(0).

Also, recall that t∞/t0 = e2πiξ.

Theorem 4.2. The multiplication operator by λ with respect to the basis (2.10)
is a periodic SMP matrix A = A(α, t(0)) with the following coefficients

p̄2n =φ∞t(0)e
2πiξnA(αµ−n)B−1(αµ−n)C(αµ∞µ−n)B(αµ∞µ

−n)

p2n+1 =− φ̄∞t(0)t∞e
2πiξnC(αµ−n)B(αµ−n)A(αµ∞µ

−n)B−1(αµ∞µ
−n)

q2n =− φ∞A(αµ−n)B−1(αµ−n)A(αµ∞µ−n)B(αµ∞µ
−n)

(4.4)

and

π2n+1 =t(0)t∞e
2πiξnφ̄0C(αµ−n)B(αµ−n)A(αµ∞µ

−(n+1))B−1(αµ∞µ
−(n+1))

π̄2n+2 =− t(0)e
2πiξ(n+1)φ0A(αµ−n)B−1(αµ−n)C(αµ∞µ−(n+1))B(αµ∞µ

−(n+1))

σ2n+1 =− φ0A(αµ−n)B−1(αµ−n)A(αµ∞µ−(n+1))B(αµ∞µ
−(n+1))

(4.5)

Proof. Note that b∞λk
α
0 ∈ H2(αµ∞) and it is orthogonal to the subspace

b0b
2
∞H

2(αµ−1
0 µ−2

∞ ). Therefore, in fact, we have the three-terms recurrence re-
lation,

λe2n = p̄2ne2n−1 + q2ne2n + p2n+1e2n+1.

Moreover

p̄2n = t(0)e
2πiξn(λb∞)(∞)

Kαµ−n

0 (∞)

Kαµ∞µ−n
∞ (∞)

,
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q2n =〈λKαµ−n

0 , Kαµ−n

0 〉

=

〈
λKαµ−n

0 − (λb∞)(∞)Kαµ∞µ−n
∞

b∞K
αµ∞µ−n
∞ (∞)

Kαµ−n

0 (∞), Kαµ−n

0

〉
=− (λb∞)(∞)

b∞(0)

Kαµ∞µ−n
∞ (0)

Kαµ∞µ−n
∞ (∞)

Kαµ−n

0 (∞)

Kαµ−n

0 (0)
,

and

p2n+1 =

〈
λt(0)t

−n
0 Kαµ−n

0 , t−n−1
∞ b0K

αµ−1
0 µ−n

∞

〉
= t(0)e

2πiξnt∞

〈
Kαµ−n

0 , λb0K
αµ−1

0 µ−n

∞ − (λb0b∞)(∞)K
αµ−1

0 µ−n

∞ (∞)Kαµ∞µ−n
∞

b∞K
αµ∞µ−n
∞ (∞)

〉

= −t(0)e
2πiξnt∞

(λb∞)(∞)

b∞(0)

Kαµ∞µ−n
∞ (0)

Kαµ∞µ−n
∞ (∞)

b0(∞)K
αµ−1

0 µ−n
∞ (∞)

Kαµ−n

0 (0)
.

In its turn,

1

λ
e2n+1 = π̄2n+1e2n + σ2n+1e2n+1 + π2n+2e2n+2,

where

π̄2n+1 = t̄(0)t̄∞e
−2πiξn

(
b0
λ

)
(0)

K
αµ−1

0 µ−n

∞ (0)

Kαµ−n

0 (0)
,

σ2n+1 =

〈
1

λ
Kαµ−1

0 µ−n

∞ , Kαµ−1
0 µ−n

∞

〉
=

〈
1

λ
Kαµ−1

0 µ−n

∞ −
(
b0
λ

)
(0)

Kαµ−n

0

b0K
αµ−n

0 (0)
Kαµ−1

0 µ−n

∞ (0), Kαµ−1
0 µ−n

∞

〉

=−
(
b0
λ

)
(0)

1

b0(∞)

Kαµ−n

0 (∞)

Kαµ−n

0 (0)

K
αµ−1

0 µ−n

∞ (0)

K
αµ−1

0 µ−n
∞ (∞)

,

and

π2n+2 =

〈
1

λ
t−n−1
∞ Kαµ−1

0 µ−n

∞ , t(0)t
−n−1
0 b∞K

αµ−1µ−n

0

〉

= t̄(0)e
−2πiξ(n+1)

〈
Kαµ−1

0 µ−n

∞ ,
b∞
λ
Kαµ−n−1

0 −
Kαµ−n

0

(
b0b∞
λ
Kαµ−n−1

0

)
(0)

b0K
αµ−n

0 (0)

〉

= −t̄(0)e
−2πiξ(n+1)

(
b0b∞
λ

)
(0)

1

b0(∞)

Kαµ−n

0 (∞)

Kαµ−n

0 (0)

Kαµ−n−1

0 (0)

K
αµ−1

0 µ−n
∞ (∞)

.
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Now by making use of (4.1), (4.3), (4.2), we obtain (4.4)

q2n =− φ∞A(αµ∞µ−n)B(αµ∞µ
−n)A(αµ−n)B−1(αµ−n),

p̄2n =φ∞t(0)e
2πiξnb∞(0)

Kαµ−n

0 (∞)

Kαµ∞µ−n
∞ (∞)

=φ∞t(0)e
2πiξnK

αµ−n

0 (∞)

Kαµ−n
∞ (∞)

Kαµ−n
∞ (∞)

Kαµ∞µ−n
∞ (∞)

b∞(0)

=φ∞t(0)e
2πiξnA(αµ−n)B−1(αµ−n)C(αµ∞µ−n)B(αµ∞µ

−n),

p̄2n+1 =− φ∞t̄(0)t̄∞e
−2πiξnA(αµ∞µ−n)B(αµ∞µ

−n)

× b0(∞)K
αµ−1

0 µ−n

∞ (∞)

Kαµ−n
∞ (∞)

Kαµ−n
∞ (∞)

Kαµ−n

0 (0)

=− φ∞t̄(0)t̄∞e
−2πiξnA(αµ∞µ−n)B(αµ∞µ

−n)C(αµ−n)B−1(αµ−n),

as well as (4.5)

π̄2n+1 = t̄(0)t̄∞e
−2πiξnφ0

K
αµ−1

0 µ−n

∞ (0)

K
αµ−1

0 µ−n
∞ (∞)

b0(∞)
K
αµ−1

0 µ−n

∞ (∞)

Kαµ−n
∞ (∞)

Kαµ−n
∞ (∞)

Kαµ−n

0 (0)

= t̄(0)t̄∞e
−2πiξnφ0A(αµ∞µ−(1+n))B(αµ∞µ

−(1+n))C(αµ−n)B−1(αµ−n),

σ2n+1 = −φ0A(αµ−n)B−1(αµ−n)A(αµ∞µ−(n+1))B(αµ∞µ
−(n+1))

π̄2n+2 = −t(0)e
2πiξ(n+1)φ0A(αµ−n)B−1(αµ−n)× b0(∞)

Kαµ−(n+1)

0 (0)

K
αµ
−(n+1)
0

0 (0)

K
αµ−1

0 µ−n

0 (0)

K
αµ−1

0 µ−n
∞ (∞)

= −t(0)e
2πiξ(n+1)φ0A(αµ−n)B−1(αµ−n)C(αµ∞µ−(n+1))B(αµ∞µ

−(n+1)). �

Remark 4.3. The structure of the reproducing kernels on the hyperelliptic Rie-
mann surfaces is well known, see e.g. [7]. In particular, indeed Kα

∞(0) = 0, i.e.,
A(α) = 0, for some α. According to (4.4) and (4.5) it means that the corre-
sponding A = A(α, t(0)) may degenerate, that is, q2n or σ2n−1 vanishes for some
n. Nevertheless all entries of A and A−1 have perfect sense. For example,

r2n+1 =
p̄2np̄2n+1

q2n

=|φ∞|C(αµ−n)B(αµ−n)C(αµ∞µ−n)B−1(αµ∞µ
−n),

−ρ2n =
π̄2n−1π̄2n

−σ2n−1

=|φ0|C(αµ−(n−1))B(αµ−(n−1))C(αµ∞µ−n)B−1(αµ∞µ
−n),
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where
Ae2n−1 =r2n−1e2n−3 + p̄2n−1e2n−2 + q2n−1e2n−1 + p2ne2n + r2n+1e2n+1,

A−1e2n =ρ2ne2n−2 + π̄2ne2n−1 + σ2ne2n + π2n+1e2n+1 + ρ2n+2e2n+2.
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