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ON SEPARATION OF A DEGENERATE DIFFERENTIAL
OPERATOR IN HILBERT SPACE

K. N. OSPANOV AND R. D. AKHMETKALIYEVA

ABSTRACT. A coercive estimate for a solution of a degenerate second order
differential equation is installed, and its applications to spectral problems for
the corresponding differential operator is demonstrated. The sufficient condi-
tions for existence of the solutions of one class of the nonlinear second order
differential equations on the real axis are obtained.

1. INTRODUCTION AND MAIN RESULTS

The concept of a separability was introduced in the fundamental paper [1].
The Sturm-Liouville’s operator

Jy=—y"+q(x)y, =€ (a,+0),

is called separable [1] in space Ls(a,+00), if y,—y” + qy € Ls(a,+00) imply
—y",qy € Ls(a,+00). The separability of the operator J is equivalent to the
following inequality

19"l a0 198 ooy < € (19 o) + 1 agaioy) + ¥ € D) (11)

In [1] (see also [2, 3]) for J some criteria of the separability depended on the
behavior ¢ and its derivatives are received, and an examples of not separable
J with non-smooth potential ¢ is shown. When ¢ isn’t necessarily differentiable
function the sufficient separabilities conditions of J is obtained in [4, 5. In [6,7] it
was developed so-called “the localization principle” of proof of the separability of
higher order binomial elliptic operators in Hilbert space. In [8,9] it was shown that
the local integrability and the semi-boundedness from below of ¢ are sufficient
for separability of J in space L;(—00,+00). The valuation method of Green’s
functions [1-3,8,9] (see also [10]), a parametrix method [4,5], as well as a method
of local estimates of the resolvents of some regular operators [6, 7] have been used
in these works.

The sufficient conditions of the separability for the Sturm-Liouville’s operator

y' + Qx)y
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are obtained in [11-15] where @) is an operator. There are a number of works
where a separation of the general elliptic, hyperbolic, and mixed-type operators
is discussed.

The separability estimate (1.1) is used in the spectral theory of J [15-18], and
it allows us to prove an existence and a smoothness of solutions of one class of
nonlinear differential equations in unbounded domains [11, 17-20]. Brown [21]
has shown that certain properties of positive solutions of disconjugate second
order differential expressions imply the separation. The connection of separation
with the concrete physical problems is noted in [22].

The main aim of this paper is to study the separation and approximate prop-
erties for the differential operator

ly:=—y" +r(x)y +q(z)y
in Hilbert space Ly := Lo(R), R = (—00,+00), as well as the existence problem

for certain nonlinear differential equation in L,. The operator [ is said to be
separable in space Lo, if the following estimate holds:

191l + 1Ir'll + llaylly < ¢ (tylly + ylly) v € D), (1.2)

where ||-||, is the norm in L.

We assume that the function r is positive and increases at infinity faster than
lg|. The operator [ occurs in the oscillatory processes in a medium with a resis-
tance that depends on velocity [23] (page 111-116). The operator J same as the
operator [ when r = 0. Nevertheless, note that the sufficient conditions for the
invertibility, respectively, of [ and of J, are principally different from each other.
The separability estimate for [ can not be obtained by applying of results of the
works [1-15].

We denote

agn(t)= HgHLg(O,t) Hh_lHLg(t,—i-oo) (t>0), Bgu(r)= ||9||L2(T,0) Hh_IHLQ(—OOJ) (1 <0)

Vgh = MAT (Sup ayn(t), sup ﬁg,h(r)) ,
t>0 7<0

where g and h are given functions. By Cl(olg (R) we denote the set of functions f

such that v f € CW(R) for all v € C°(R).

Theorem 1. Let the function r satisfy the conditions

reCLl(R), 1>8>0, 7, < oo, (1.3)
c_lgﬂgc at |lr—n| <1, c¢>1, (1.4)
r(n)

and the function q such that
Var < +00. (1.5)
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Then fory € D(l) the estimate
191l + 1Ir'lly + llaylly < c Tyl (1.6)

holds, in particular, the operator | is separable in Lo.
The following Theorems 2-4 are applications of Theorem 1.

Theorem 2. Let functions q,r satisfy the conditions (1.3)-(1.5) and the equal-
ities tliin agr(t) =0, lim B,,.(7) =0 hold. Then an inverse operator [* is

completely continuous in Lo.
We assume that the conditions of Theorem 2 hold, and consider a set

M ={y€ L: |lyl, < 1}.

Let

dp = inf sup inf w =0,1,2, ..

80 S0 S I =l = 0120

be the Kolmogorov’s widths of the set M in Ly. Here {34} is a set of all subspaces
Y of Ly whose dimensions are not more than k. Through N5(\) denote the num-
ber of widths d;, which are not smaller than a given positive number \. Estimates
of the width’s distribution function Ny(\) are important in the approximating
problem of solutions of the equation ly = f. The following statement holds.

Theorem 3. Let the conditions of Theorem 2 be fulfilled. Then the following
estimates hold:

AP u{z @) < AT S No(N) S esd P {x g(z)] < ed '}

Example. Let ¢ = —2% (a >0), r = (1+2?)? (8> 0). Then the conditions of
Theorem 1 are satisfied if g > 1+0‘ If g > 1+°‘ , then the conditions of Theorem
3 are satisfied and for some € > 0 the followmg estimates hold:

AT TS NN < ea T
Consider the following nonlinear equation
Ly =—y" +[r(z,9)ly’ = f(), (1.7)

where z € R, r is real-valued function and f € Ls.

Definition 1. A functiony € Ly is called a solution of (1.7), if there is a sequence
of twice continuously differentiable functions {y,}. -, such that ||6(y, — y)||, — O,
10(Lyn, — f)|l; = 0 as n — oo for any 6 € Cg°(R).

Theorem 4. Let the function r be continuously differentiable with respect to both
arguments and satisfies the following conditions

($ Cl)
r>60(14+2%) (6 >0), sup sup
of ) (%>0) lo—y|<1  |C1|<A,[Col<A,|Cy—Cal<a T(1, C2)
3

<oo. (1.8)
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Then there is a solution y of the equation (1.7), and

"l + 1r (- »)ly'll, < oo (1.9)

2. AUXILIARY STATEMENTS

The next statement is a corollary of the well known Muckenhoupt’s inequality
[25].

Lemma 2.1. Let the functions g, h such that v, < co. Then for y € C3°(R)
the following inequality holds:

/|g 2)| dx<0/ Ih(2)y (2)2da. (2.1)

Moreover, if C is a smallest constant for which the estimate (2.1) holds, then
Yo < C < 29 .

The following lemma is a special case of Theorem 2.2 [26].
Lemma 2.2. Let the given function r satisfies conditions

[SIE

i Vo oy =l V| [0 ) =0,
T 2
llm \/EHT 1HL2( o) = lim Vx| /r_2(t)dt = 0. (2.2)
Then the set
Fr=<y:yeC(R /|?" ®)|*dt <K p, K >0,

is a relatively compact in Lo(R).
Denote by .Z a closure in Ly-norm of the differential expression

Loz=—2"+rz (2.3)
defined on the set C§°(R).

Lemma 2.3. Let the function r satisfies conditions (1.3) and (1.4). Then the
operator £ is boundedly invertible and separable in Ly. Moreover, for z € D(Z)
the following estimate holds:

12'll, + lIrzlly < e [|Z=]), - (2.4)
4
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Proof. Let £\, = Z+\E, X\ > 0. Note that the operators . and .4, = Z+\FE
are separated to one and the same time. If z is a continuously differentiable
function with the compact support, then

(Lnz,2) = —/Z/de + /[T(m) + A|z)*da. (2.5)

R R
But
T = —/z’de = /zz’da: =-T.
R R
Therefore ReT = 0 and it follows from (2.5)
Re(L\z,z) = /[r(:zc) + A|z)*da. (2.6)
R

We estimate the left-hand side of the equality (2.6) by using the Holder’s inequal-
ity. Then we have

1

H\/r(-)—i-)\z m

It is easy to show that (2.7) holds for any solution of (2.3).
Let Ay =(G—1,54+1) (€2, {goj}j:ioo be a sequence of such functions
from C§°(A;), that

g,\Z

< (2.7)

+o0
0<p; <1, ) ¢ia) =1
j=—00
We continue r(x) from A; to R so that its continuation r;(z) was a bounded
and periodic function with period 2. Denote by .2 ; the closure in Ly(R) of the
differential operator —z’ + [r;(x) 4+ A]z defined on the set C§°(R). Similarly to
the derivation of (2.7) one can proof the inequality

< ||+ N Lyz| 2 € DAy (2.8)

(r; —i—)\)%z
2

It follows from the estimates (2.7), (2.8) and from general theory of linear differ-
ential equations that the operators 2\, Z\; (j € Z), are invertible, and their
inverses %, ' and .,%:jl are defined in all L. From the estimate (2.8) by (1.4)
follows

[Zh5zlly = ¢ SEUAP_[T;'(I) + A [Izlly, 2 € D(&). (2.9)
Let us introduce the operators By, Mj:
+oo +oo
Bif = Y @)L jeif. M= ei(0) el
Jj=—00 j=—00

5
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At any point x € R the sums of the right-hand side in these terms contain no
more than two summands, so B, and M, is defined on all Ly. It is easy to
show that

LM, = E + By, (2.10)
Using (2.9) and properties of the functions ¢; (j € Z) we find that /\lim | BAll=0,
——400

hence there exists a number Ao, such that || By| < 3 for all A > X. Then it follows
from (2.10)

L= M(E+ By, A> Ao (2.11)
By (2.11) and properties of the functions ¢, (j € Z) again, we have
o+ 0L, < cosup [+ B I @212
J
From (2.9) by conditions (1.4) follows
sup [r(z) + A
TEA;
NLF <™ F <
sp ||+ NLGF sy < o iy o 1 e <
$EAJ'
r(z) + A
< sup ————||F V< e ||F N -
= |x7ng2 r(2) -\ | ||L2(AJ) 2 |l ||L2(AJ)

From the last inequalities and (2.12) we obtain ||(r 4+ A)z|, < ¢3 || Lz, 2z €
D(%)), therefore

121l + 1+ A)2lly < (14 2¢5) [[L32], -

From this taking into account (2.7) we have the estimate (2.4). The lemma is
proved. O
Denote by L a closure in the Ly -norm of the differential expression

Loy = —y" +r(x)y’
defined on the set C§°(R).

Lemma 2.4. Assume that the function r satisfies the condition (1.3). Then for
y € D(L) the estimate

VY ||, + llylly < ellLyll, (2.13)
holds.

Proof. Let y € C§°(R). Integrating by parts, we have

@%wz—/ywm+/mwwmw (2.14)

R

R
Since _
A= —/y"y'dx = /y'y"dx = —A,
R R
6



'RM Preprint Series number 1080

we see ReA = 0.
Therefore, it follows from (2.14)

Re (Ly. ) = / r(@)ly Pda.
R

Hence, applying the Holder’s inequality and using the condition (1.3) we obtain
the following estimate

COH\/”_”Z/HQ < Lyl - (2.15)

The inequality (2.15) and Lemma 2.1 imply the estimate (2.13) for y € C§°(R). If
y is an arbitrary element of D(L), then there is a sequence of functions {y, } -, C
Ci°(R) such that ||y, —yll, — 0, | Ly, —Ly|, — 0 as n — oo. For y, the
estimate (2.13) holds. From (2.13) taking the limit as n — oo we obtain the
same estimate for y. The lemma is proved. O

Remark 2.1. The statement of Lemma 2.1 is valid, if r(z) is a complex-valued
function, and instead of (1.3) the conditions

Rer>90>0, vpger <00, (2.16)

hold. It follows from Lemma 2.1 that the conditions related to the function r in
Lemma 2.4 are natural.
We consider the equation

Ly=—y" +r(x)y =f, f€ L. (2.17)

By a solution of (2.17) we mean a function y € Lo for which there exists a
sequence {y, } —, C C§°(R) such that |y, —yll, = 0, ||Lyn — f|l, — 0, n — oc.

Lemma 2.5. If the function r satisfies the condition (1.3), then the equation
(2.17) has a unique solution. If, in addition, the function r satisfies the condition
(1.4), then for a solution y of the equation (2.17) the following estimate

1"l + llry/lly < ew || Lylly
holds i.e. the operator L is separated in the space Ls.

Proof. It follows from the estimate (2.13) that a solution y of the equation (2.17)
is unique and belongs to W, (R). Let us prove that the equation (2.17) is solved.
Assume the contrary. Then R(L) # Lo, and there exists a non-zero element
2o € Lo such that zy L R(L). According to operator’s theory zy is a generalized
solution of the equation

Ly=—y +[r(x)y] =0,
where L* is an adjoint operator. Then

—2p+r(x)z0 = C.
7
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Without loss of generality, we set C' = 1. Then

x T t

20 = Coexp —/r(t)dt +/exp —/T(T)dT dt := 21 + 2. (2.18)

a a a

In (2.18) if ¢y > 0, then zg > ¢o when z > a. Ifin (2.18) ¢y < 0, then z; — 0 when
x — —o0, and |ze(z)| > creaxp[—dox] (0 < by < §) when x << a. So zy ¢ Ly. We
obtained a contradiction, which shows that the solution of the equation (2.17)
exists.

Further, it follows from Lemma 2.3 that the operator . is separated in L.
Then by construction the operator L is also separated in Ly. The proof is com-
plete. O

Lemma 2.6. Let the function r satisfies conditions (1.3), (1.4), y1, < oo and

fim V[ =0 Jim V=0 (219)

t——+o00
Then the inverse operator L= is completely continuous in L.

Proof. From Lemma 2.5 follows that the operator L~! exists and translates Lo
into space W3, (R) with the norm ||y" ||, 4 [|ry/||l,+||y|l,- By Lemma 2.2 and (2.19)
space Wir(R) is compactly embedded into Ly. The proof is complete. O

3. PROOFS OF THEOREMS 1-4

Proof of Theorem 1. It follows from Lemma 2.5 that the operator Ly =
—y" 4+ r(x)y is separated in Ly. From (1.5) and (2.1) we get the estimates

9
laylly < 294 I7y/'|l, < 75 |Lyll,, y € D(L).

This means that the operator [ = L + qF is also separated in L,. The theorem
is proved. O
Theorem 2 is a consequence of Lemma 2.2, Lemma 2.5 and Theorem 1.
Statement of Theorem 3 follows from Theorem 2 and Theorem 1 [27].

Proof of Theorem 4. Let € and A be positive numbers. We denote
Sa={z € WH(R) : |2llyyn) < A}

Let v be an arbitrary element of S4. Consider the following linear “perturbed”
equation

lowey = —y" + [r(w,v(@)) + (1 +2°)°] ¥ = f(a). (3.1)
Denote by [, the minimal closed in Ly operator generated by expression [y, ¢y.
Since

re(x) :==r(z,v(zr)) + e(lS—l— 23?2 > 14 ¢(1 +2°)?,
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the function r(z) satisfies the condition (1.3). Further, when |z — n| < 1 for
v € 5S4 we have

v(z) — v < |z =l V], < |z =l vy, <A (3.2)
It is easy to verify that

—_

(14 2?)?
sup
\mfn\gl( +772)2
Then, assuming v(z) = Cy, v(n) = Cy, by (1.8) and the inequality (3.2) we
obtain

<3.

—_

()

C
sup < sup sup ri, ¢) + 3 < 0.

o—n<1 Te()  jomyl<1  |C1|<A,[Col<A|Cr—Cal<a T(1, C2)

Thus the coefficient r.(z) in (3.1) satisfies the conditions of Lemma 2.5. Therefore,
the equation (3.1) has unique solution y and for y the estimate

1yl + [|[r (- v() + €L+ 222/ ||, < Cs [l (3.3)
holds (an operator 1, . is separated). By (1.8) and (2.1)
lylly < Collry/lly, |1+ 2?)yl], < Cal|(1+ %)y, (3.4)

Taking them into account from (3. 3) we have

1971l + 5 11+ 2, + 56 ol + & 0L+ ), < ol
Then for some 05 > 0 the followmg estlmate
Iyl = 1y lly + |1+ 2y ||, + |1+ e(1 +2)]yl|, < Cs £l (3.5)

holds. We choose A = C5 || f||,, and denote P(v,€) := L; ! f. From the estimate
(3.5) follows that the operator P(v,€) translates the ball Sy C Wi (R) to itself.
Moreover, the operator P(v,¢€) translates the ball S, into a set

Qa={y: I'lly +[[X+2)y/|[, + |1+ e +2)]y'|], < Cs1Ifll,}-

The set Q4 is the compact in Sobolev’s space W4 (R). Indeed, if y € Q4, h #0
and N > 0, then the following relations (3.6), (3.7) hold:

+oo
Hy('+h)—y(')l|3v21(3): / [/ (t+h) =y (O + [yt + h) — y(t)]*] dt =
too [ | t4+h 2 t+h 27
=/ /y”(n)dn + /y’(n)dn dt <
—00 t t
“+o00 t+h t+h
< |h|/ / n)dn| + /?/(n)dn dt =
t
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“+o00

= |h|2/ [y () + 1y ()I*] dn < Cs [ £, L[, (3.6)

— 00

2
sy = | 0@+ ly@P) dn <

In|>N
< [ AP @R+ QPP + 1+ )] dn <
[n|>N
< GHIfIE 0+ W) 3.7

The expressions in the right-hand side of (3.6) and (3.7), respectively, tend to
zero as h — 0 and as N — +400. Then by Kolmogorov-Frechet’s criterion the set
Q4 is compact in space Wy (R). Hence P(v,€) is a compact operator.

Let us show that the operator P(v,€) is continuous with respect to v in S4.
Let {v,} C Sa be a sequence such that [[v,, — vy — 0asn — oo, and y, and y
such that Lty = f, L, 'y, = f. Then it is sufficient to show that the sequence
{yn} converges to y in W4 (R) - norm as n — oo. We have

P<Vn7 6) - P(Vv 6) =Yn — Y= L;:’E[T(I, Vn<x)) - T(%, V(l‘))]y;

The functions v(x) and v,(z) (n = 1,2, ...) are continuous, then by conditions of
the theorem the difference r(z, v,(z)) — r(z, v(z)) is also continuous with respect
to x, so that for each finite interval [—a,a], a > 0, we have

Hy” - y|’W21(—a,a) S ng[ljl;{a} ’T(I‘, I/n(l')) - T(I‘, V)’ ’ ||y:1||L2(—a,a) —0 (38)

as n — 0o0. On the other hand, it follows from Lemma 2.4 that {y,} € Qu,
lynllyy < A, y € Qa, |yl < A. Since the set Q4 is compact in Wy (R), then
{y,} converges in the norm of W3 (R). Let z be a limit. By properties of Wy (R)

|l‘im y(x) =0, ‘llim z(xz) = 0. (3.9)
Since L,! is a closed operator, from (3.8) and (3.9) we obtain y = 2. So

[1P(vn,€) = P(v, ) lwppy = 0, 1 — o0
Hence P(v, ) is the completely continuous operator in space W.}(R) and trans-
lates the ball S4 to itself. Then, by Schauder’s theorem the operator P(v, €) has
in Sy a fixed point y (P(y,€) =y), and y is a solution of the equation
Ly = —y" + [r(z,y) + (1 +2*)*] o/ = f(x).
By (3.3) for y the estimate

1yl + ([ [rCy) + (L + 2] /||, < CslI£l,

holds.
10
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Now, suppose that {e; }]O‘;l is a sequence of the positive numbers converged to
zero. The fixed point y; € S, of the operator P(v, €;) is a solution of the equation

Loy o= —yj + [r(z,y;) + (1 +2°)°] o = f(2).
For y; the estimate

971l + 1| TG () + e+ 2] 5], < Cs 11l (3.10)
holds.
Suppose (a,b) is an arbitrary finite interval. By (3.10) from the sequence

{yi}5e, C W3 (a,b) one can select a subsequence {yej }511 such that Hyej — y||L2[a’b]

— 0 as 7 — oo. A direct verification shows that y is a solution of the equation
(1.7). In (3.10) passing to the limit as j — oo we obtain (1.9). The theorem is
proved. O

This work was done as a part of the research program Approximation Theory
and Fourier Analysis at the Centre de Recerca Matematica (CRM), Bellaterra in
the Fall semester of 2011.
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