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Abstract
DNA that is transmitted to daughter cells must be accurately duplicated to maintain genetic integrity and to promote genetic 
continuity. A major function of replicative DNA polymerases is to replicate DNA with the very high accuracy. The fidelity of 
DNA replication relies on nucleotide selectivity of replicative DNA polymerase, exonucleolytic proofreading, and postrep-
licative DNA mismatch repair (MMR). Proofreading activity that assists most of the replicative polymerases is responsible 
for removal of incorrectly incorporated nucleotides from the primer terminus before further primer extension. It is estimated 
that proofreading improves the fidelity by a 2–3 orders of magnitude. The primer with the incorrect terminal nucleotide has 
to be moved to exonuclease active site, and after removal of the wrong nucleotide must be transferred back to polymerase 
active site. The mechanism that allows the transfer of the primer between pol and exo site is not well understood. While 
defects in MMR are well known to be linked with increased cancer incidence only recently, the replicative polymerases 
that have alterations in the exonuclease domain have been associated with some sporadic and hereditary human cancers. In 
this review, we would like to emphasize the importance of proofreading (3′-5′ exonuclease activity) in the fidelity of DNA 
replication and to highlight what is known about switching from polymerase to exonuclease active site.
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Introduction

Maintaining a low mutation rate is essential for cell via-
bility and health. It was estimated that both in prokaryotic 
and eukaryotic cells, DNA is replicated with the very high 
fidelity with one wrong nucleotide incorporated once per 
108–1010 nucleotides polymerized. The accuracy of rep-
lication relies heavily on the ability of replicative DNA 
polymerases to efficiently select correct nucleotides for the 
polymerization reaction and excise mistakenly incorporated 
nucleotides using their intrinsic exonucleases. DNA replica-
tion is constantly challenged by endogenous and exogenous 
chemicals, non-canonical DNA structures, and difficult to 
replicate DNA sequences. Both prokaryotic and eukary-
otic cells possess a variety of specialized DNA polymer-
ases that help to overcome replication blocks and that are 

subsequently recruited to DNA by PCNA modifications (Li 
et al. 2017; Zhao and Washington 2017).

Eukaryotic cells are known to contain at least 16 different 
DNA polymerases while prokaryotic cells like an Escheri-
chia coli have five different DNA polymerases (Goodman 
and Tippin 2000; Kunkel 2009). All known polymerases 
are divided into six families, A, B, C, D, X, and Y, on the 
basis of their sequence conservation (Bebenek and Kunkel 
2004; Kunkel 2009). Recently, 17 human DNA polymer-
ases have been purified and biochemically characterized an 
AEP (archaeo-eukaryotic primase) superfamily (Rudd et al. 
2014).

Genomic DNA replication is normally carried out by the 
polymerases from A, B, C, or D families with high fidelity 
and processivity. Others, known as specialized, bypass, or 
translesion polymerases, participate in various DNA trans-
actions related to repair, genome stability, and the genera-
tion of antibody diversity (Kunkel 2009; Shcherbakova et al. 
2003a; Sweasy et al. 2006; Zhao and Washington 2017).

Replicative polymerases are also present in bacterio-
phages. The best characterized are B family polymerases 
from bacteriophages T4 and RB69, and A family polymerase 
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from T7 bacteriophage (Johnson 2010; Karam and Konigs-
berg 2000).

In eukaryotic cells, replication of genomic DNA requires 
minimally three DNA polymerases, polymerase α, δ, ɛ all 
from B family (Burgers and Kunkel 2017; Johansson and 
Macneill 2010; Makarova and Burgers 2015; Pellegrini 
2012; Tahirov 2012), and polymerase γ from A family that 
is responsible for mitochondrial DNA replication (Copeland 
2010). The fourth polymerase that operates at replication 
fork is polymerase ζ also from B family, but this polymerase 
does not carry a bulk of DNA replication. Its role is critical 
at the difficult templates sites or when replicative DNA pols 
are compromised. Four subunits Pol ζ is less accurate than 
other members of B family and does not have a proofread-
ing activity (Makarova and Burgers 2015; Szwajczak et al. 
2017). In the E. coli, genomic DNA replication is carried 
out by polymerase III (C family), Pol II (B family), and Pol 
I (A family) and the archaea genomes are replicated by the 
polymerases from D and B families (Banach-Orlowska et al. 
2005; Cann and Ishino 1999; Edgell and Doolittle 1997; 
Kornberg and Baker 1992).

The replicative polymerase of E. coli, DNA polymerase 
III, is a ten subunit complex that is categorized into three 
major components; the Pol III core, the β-clamp, and the 
γ-complex. The Pol III core is a heterotrimer composed of 
the α polymerase, ɛ 3′-5′ proofreading exonuclease, and θ 
subunit of an unknown function (Johnson and O’Donnell 
2005). The eukaryotic replicative polymerases are also mul-
tiple subunits holoenzymes. Polymerase α is comprised of 
a catalytic subunit p180 and an accessory subunit p70, and 
is a part of a four subunit pol-prim DNA primosome (Muzi-
Falconi et al. 2003). The human DNA pol δ is heterote-
trameric complex, consisting of the catalytic subunit p125 
(POLD1) and three accessory subunits p50 (POLD2), p68 
(POLD3), and p12 (POLD4) (Tahirov 2012). The Saccha-
romyces cerevisiae pol δ is a three-subunit complex consist-
ing of a catalytic Pol3p subunit and two accessory subunits 
Pol31p and Pol32p subunit (Tahirov 2012). DNA pol ɛ is 
composed of the catalytic subunit Pol2 (POLE) and three 
non-catalytic subunits Dpb2 (POLE2), Dpb3 (POLE3), and 
Dpb4 (POLE4) (Hogg and Johansson 2012).

Replication fidelity

Replicative polymerases achieve high fidelity of DNA repli-
cation by employing several mechanisms: (1) sensing proper 
geometry of correct base pair, (2) slowing down catalysis 
in case of a mismatch, and (3) partitioning the mismatched 
primer to exonuclease active site.

Polymerase selectivity is the prime determinant of 
fidelity. It is estimated that polymerases make errors 

approximately once every 104–105 nucleotide polymerized 
(Echols and Goodman 1991; Showalter and Tsai 2002). 
Proofreading enhances the overall fidelity of DNA synthesis 
by a factor 102–103 depending on the specific DNA polymer-
ase and the nature of the primer terminal mispair (Kunkel 
2009; Kunkel and Burgers 2008; McCulloch and Kunkel 
2008; St Charles et al. 2015).

Structural studies of replicative DNA polymerase families 
showed that polymerase (pol) and 3′-5′ exonuclease (exo) 
activities reside on one polypeptide. The exceptions are 
eukaryotic polymerases α and ζ, that do not have functional 
exonuclease activity (Abbotts and Loeb 1985; Makarova 
and Burgers 2015), and polymerase III from E. coli, where 
exonuclease activity is carried out on different subunit (ɛ 
subunit) encoded by a dnaQ gene (Maki and Kornberg 1987; 
Scheuermann and Echols 1984).

B‑ family polymerase structures

T4 DNA polymerase, a product of phage gene gp43, was 
the most intensely studied polymerase from B family and 
for many years served as a key model of replicative poly-
merase (Karam and Konigsberg 2000). The intact T4 DNA 
polymerase has never been crystallized, but fortunately, the 
polymerase of the related bacteriophage RB69 in apo con-
formation was crystallized by Steitz group in 1997 (Wang 
et al. 1997). Subsequently, the structures of ternary com-
plexes of RB69 pol that contained a correct incoming dNTP 
and a dideoxy-terminated primer/ template with a resolution 
of 2.6 Å and later at 1.8 Å were reported (Franklin et al. 
2001; Wang et al. 2011). For many years, RB69 DNA poly-
merase became a prototype DNA polymerase that enabled 
structure fidelity studies for this class of polymerase. As a 
result of these intensive studies, nearly 170 independently 
observed structures of RB69 DNA polymerase have been 
deposited in the Protein Data Bank (PDB) (Ren 2016). RB69 
DNA polymerase like T4 DNA polymerase is a processive 
and high fidelity enzyme responsible for coordinated repli-
cation of both leading and lagging DNA strands. Recently 
crystal structures for catalytic subunits of eukaryotic replica-
tive polymerase δ, ɛ, and α have been obtained (Hogg et al. 
2014; Perera et al. 2013; Swan et al. 2009).

Despite the amino-sequence differences, all replicative 
polymerase structures share a common overall architec-
ture and are composed of five subdomains: N-terminal 
domain (NTD), exonuclease domain (exo), and polymer-
ase domain (pol), the core of the enzyme. The polymer-
ase domain contains a palm domain with several of the 
catalytic residues, a finger domain with most of the side 
chains that bind the incoming dNTP, and a thumb domain 
that binds primer-duplex DNA. The exonuclease domain 
carries a 3′-5′ proofreading activity that removes misin-
corporated nucleotides. The function of the N-terminal 
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domain is not well defined. In RB69 and T4 polymerases, 
the NTD domain binds its messenger RNA and represses 
translation (Petrov et al. 2002). It was also shown that 
NTD could play a role in polymerase stability and fidelity 
through the interaction with the fingers domain (Li et al. 
2010; Prindle et al. 2013). Pol δ NTD domain contains 
three motifs. One of these motifs has the structure and 
topology resembling an OB-fold which may be involved 
in single-stranded DNA binding. Other motifs contain an 
RNA-binding motif (RRM) that may be involved in RNA 
binding (Swan et al. 2009).

A family polymerase structure

The pol A family polymerases, also known as the pol I 
family, have two separate enzymatic activities as well, a 
5′-3′ polymerase activity and a 3′-5′ exonuclease activity 
on the same peptide (Klenow fragment). The polymer-
ase domain of DNA pol I family resembles in overall the 
topology of the B family polymerase domain with fingers 
that bind an incoming nucleotide and interact with ssDNA, 
palm, which harbors catalytic residues, and thumb domain 
which binds ds DNA (Patel et al. 2001; Steitz 1999). The 
structures of the fingers and thumb domains are unique in 
A and B families. The palm domain structure shares the 

same fold in A and B family. The exonuclease domain is 
distal to the palm domain (Fig. 1) a location much different 
compared to B family (Kunkel and Bebenek 2000).

C family polymerase structure

Like all polymerases, E. coli Pol III α contains finger, thumb, 
and palm domains. In contrast to A and B family, the palm 
domain structure of Pol III has the basic fold of Pol β like 
nucleotidyltransferase superfamily (X family). The palm 
domain contains three conserved catalytic aspartates that 
bind the catalytic magnesium ions and utilize the same two-
metal ion catalytic mechanism as other polymerases (Lamers 
et al. 2006). Pol III has an additional domain PHP domain. 
PHP domain of Pol III has been proposed to act as a pyroph-
osphatase that hydrolyzes the pyrophosphate by-product of 
DNA synthesis (Aravind and Koonin 1998; Lamers et al. 
2006). PHP domain from Thermus aquaticus Pol III was 
shown to have a 3′–5′ exonuclease that is Zn2+ dependent 
and may act as a second exonuclease (Stano et al. 2006). 
The proofreading domain is carried on a separate polypep-
tide (dnaQ) but is tightly associated with polymerase dur-
ing DNA replication (Scheuermann and Echols 1984; Toste 
Rêgo et al. 2013).

Polymerase active site

A detailed examination of the binary and ternary complex 
crystal structures of the pol I family of DNA polymerases 
has revealed that template-primer binding is associated with 
translational and rotational changes in the thumb subdomain, 
described as “clamping down” over DNA. Subsequently, 
dNTP binding induces movement in the fingers domain 
(mainly O-helix) by ∼ 41°, which in turn forms the “closed” 
ternary complex (Beese et al. 1993).

The crystal structure of an RB69 gp43 ternary com-
plex showed that binding of dNTP induces conformational 
changes in the polymerase from an open state in the absence 
of nucleotide to the closed state with the nucleotide. After 
binding of dNTP to the template primer, the fingers rotate 
about 60° towards the palm domain, bringing conserved resi-
dues from motif B closer to palm catalytic residues (Fig. 2). 
The palm subdomain harbors the catalytic core responsible 
for pol activity. Two highly conserved acidic residues (D411 
and D623) serve as ligands for metal ions A and B, which 
are crucial for catalyzing the nucleotidyl transfer reaction. 
Two-metal Mg2+ ions are required to coordinate transition 
state in the nucleotide transfer reaction and assist in the 
departure of the PPi product (Xia and Konigsberg 2014). 
This two-metal requirement for catalysis seems to be gen-
eral for all polymerases (Johnson 2010). However, recently, 
the possibility that a third metal ion can be involved in the 
catalysis of pol β and coordinate the PPi departure was pos-
tulated by (Yang et al. 2016).

Fingers’ domain contains a conserved dNTP-binding 
motif KX3NSXTG. Each phosphate group of the incoming 
dNTP is coordinated to a protein side chain. Both fingers and 

Fig. 1   Position of the exonuclease and polymerase active sites in A 
family (Klenow polymerase) and B family (RB69 polymerase). The 
enzymes are in cartoon representation with the polymerase domain in 
grey and exonuclease domain in red and DNA in orange. The images 
were generated using PyMol (DeLano 2002), and are based on the 
crystal structure of Klenow in the complex with DNA (PDB ID code 
1KLN) and the ternary complex structure of RB69 polymerase (PDB 
ID code 3NCI)
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palm domain form a tight-binding pocket around the nas-
cent base pair. The geometry of this pocket accommodates 
only a correct base pair with proper Watson–Crick geom-
etry. The proper alignment of the incoming nucleotide with 
the templating nucleotide promotes catalysis and extension. 
Following the insertion of a correct nucleotide, polymerase 
must translocate to allow binding of the next nucleotide. If 
the mismatched nucleotide is bound, catalysis is slowed, and 
primer terminus is directed to the exonuclease active site 
(Xia and Konigsberg 2014).

Structural analysis of the related B family polymerases 
also revealed conformational changes after nucleotide bind-
ing from an open to closed state. Thus, finger “open” to 
“close” state during polymerization is a universal mecha-
nism for all polymerases.

The exonuclease active site

In all B family of DNA, Pols exonuclease contains three 
conserved motifs, Exo I, Exo II, and Exo III. Exonuclease 
active site, like the polymerase active site, contains essen-
tial aspartate residues that bind the two Mg+ ions that are 
required for the hydrolysis reaction via a two-metal mecha-
nism (Bernad et al. 1989).

The exonuclease (exo) subdomain lies between the N-ter-
minal and thumb subdomains. In RB69 polymerase, the exo-
and-pol active sites are separated by about 30–40 Å. When 

an incorrect dNTP is incorporated onto the 3′ terminus of 
the primer strand, the pol helps to switch the primer ter-
minus from the pol to the exo site, facilitating cleavage of 
the 3′-terminal nucleotide residue. To reach exo active site, 
primer strand has to separate from the template along three 
nucleotides to place the primer 3′-end in the exonuclease 
active site for editing (Shamoo and Steitz 1999). DNA poly-
merases with proofreading ability can sense misincorporated 
nucleotides by contacting the minor groove of base pairs 
beyond the insertion site. The polymerase senses the geome-
try of the base pair through specific hydrogen bond acceptors 
at the pyrimidine O-2 and purine N-3 atoms. This geometry 
is lost when the mismatches are present. RB69 DNA poly-
merase can sense the mismatches up to the two base pairs 
post the insertion site (Wang et al. 2011). These contacts are 
much more extensive in eukaryotic pol δ and extend to five 
base pairs (Doublie and Zahn 2014; Swan et al. 2009). In Pol 
A family, the active sites for the polymerase and exonuclease 
domains are also located in separate structural domains and 
are separated by about 30 Å in Klenow fragment and 35 Å in 
T7 pol (Beese et al. 1993; Ollis et al. 1985). The primer must 
melt the last four base pairs at the 3′ terminus of a duplex 
DNA to reach exonuclease active site (Lam et al. 1998). The 
3′-5′ exonuclease domains are located on opposite sides of 
the pol active sites (Fig. 1) what causes differences in the 
coordination between the two active sites among B- and A 
family enzymes (Kunkel and Bebenek 2000).

In B family, the partitioning of the DNA primer between 
the polymerase and exonuclease active site is accompanied 
by the β-hairpin loop, a part of the exonuclease domain. 
In RB69 DNA polymerase, residues 251–262 form an 
extended hairpin loop (β-hairpin). In the editing mode, both 
DNA strands depart from the polymerase active site and 
β-hairpin loop holds the template strand in place, while the 
primer strand partially separates from the template strand 
and passes behind the β-hairpin to reach the exonuclease 
active site (Hogg et al. 2007; Ren 2016; Shamoo and Steitz 
1999). Mutating residues in the loop of the β hairpin in T4 or 
RB69 DNA polymerases (G255S and G258S respectively) 
or deleting the loop of the β hairpin caused a mutator pheno-
type (Hogg et al. 2007; Trzemecka et al. 2009). Biochemi-
cal analysis showed that the mutant polymerases degraded 
ssDNA with the same efficiency as wild-type enzymes but 
have decreased ability to degrade dsDNA, thus showing that 
β hairpin loop is, indeed, essential in strand separation and 
does not affect exonuclease activity (Fig. 3) (Hogg et al. 
2007; Subuddhi et al. 2008; Trzemecka et al. 2009). Almost 
all B family DNA polymerases whose structures have been 
solved to date show a similarly placed β-hairpin loop in the 
same orientation with respect to the polymerase and exonu-
clease active sites as in RB69 gp43. The β-hairpin is present 
in bacteriophage φ29 (Salas et al. 2008), herpes simplex 
virus (Liu et al. 2006), the archaeal polymerases (Hashimoto 

Fig. 2   Movement of fingers domain from the “closed” to “open” con-
formation in RB69 DNA polymerase. Fingers’ movements brings 
conserved residues from motif B closer to palm catalytic residues 
D411 and D623 creating polymerase active site. The image was cre-
ated using PyMol (DeLano 2002) and the ternary complex structure 
of RB69 polymerase (PDB ID code 3NCI)
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et al. 2001; Hopfner et al. 1999; Savino et al. 2004), pol II 
polymerase from E. coli (Wang and Yang 2009), and replica-
tive eukaryotic polymerases δ and ɛ (Ganai et al. 2015; Swan 

et al. 2009). Although the β-hairpin loop is located in the 
same position within their exonuclease domain, not always 
play the same role as in RB69 gp43 and T4 gp43 (Table 1). 
DNA pol δ has similarly placed β-hairpin loop, but as it was 
demonstrated very recently, DNA pol δ does not need the 
hairpin for proofreading, but β-hairpin loop is required for 
optimum DNA replication efficiency, because its role is to 

stabilize polymerase complexes (Darmawan et al. 2015). The 
β-hairpin loop is truncated in pol ε, is too short to contact the 
DNA, and presumably is not involved in active site switch-

ing (Ganai et al. 2015). Instead, Pol ɛ has an additional large 
domain named the P domain that is built from insertions of 
residues 533–555 and 682–760 not previously observed in B 
family polymerases. The P domain is built of three β-strands, 
two α-helices, and a β-hairpin loop. Together, these struc-
tural motifs form an elongated domain that extends outward 
from the palm domain toward dsDNA. P domain allows 

Fig. 3   Position of the β-hairpin loop in editing (a) and replicating (b) 
modes. Superposition of the two structures showing the movement 
of the β-hairpin loop (c). The images were generated using PyMol 

(DeLano 2002) based on the ternary crystal structure of RB69 DNA 
polymerase (PDB ID code 3NCI) and editing structure (PDB ID 
1CLQ)

Table 1   Function of β-hairpin 
loop in B family polymerases

Polymerase β-hairpin loop Role Function

T4 and RB69 yes Strand separation and positioning 
primer strand in exo site

Pol/exo coupling

E. coli pol II Yes Altered partitioning keeps the primer 
near pol active site

Translesion synthesis

Pol δ Yes Stabilize polymerase complexes Optimum DNA repli-
cation efficiency

Pol ɛ Yes but truncated Not involved in strand separation None
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the interactions between the pol ɛ and the duplex DNA and 
allows for sensing mismatches not only at the primer end but 
also at positions n-4 or n-5 that may destabilize the 3′-termi-
nus of the primer at the polymerase active site and lead to 
a transfer of primer terminus to the exonuclease active site. 
The P domain may be an obvious replacement of β-hairpin 
loop, because it can help to maintain close contact between 
the polymerase and DNA while switching active sites. It can 
compensate the lack of β-hairpin loop (Ganai et al. 2015; 
Hogg et al. 2014).

The E. coli Pol II that also participates in chromosomal 
DNA replication (Banach-Orlowska et al. 2005) has the 
20 residue β barrel insertion in the N domain that shifts 
the position of the β-hairpin loop and alters the partition-
ing between polymerization and proofreading by keeping 
the primer end near the polymerase active site far from the 
exonuclease (Wang and Yang 2009). Because of these differ-
ences in β hairpin position, the Pol II can carry translesion 
synthesis past DNA lesion (Wang and Yang 2009).

Pol‑to‑exo active site switching

Polymerases that have an exonuclease domain in the same 
polypeptide with polymerase domain can proofread errors 
intramolecularly, without enzyme dissociation from the 
mismatch primer terminus (Joyce 1989) or intermolecularly 
with enzyme dissociation and rebinding to the DNA to form 
exonuclease complexes (Johnson 1993; Reha-Krantz 2010).

The joint structural analysis of all known RB69 DNA 
polymerase structures enabled to extract structural changes 
during translocation of the polymerase along a DNA tem-
plate and processive switching between the polymerase and 
exonuclease active sites (Ren 2016). Translocation of the 
polymerase is associated with the fingers motion from the 
closed after dNTP hydrolysis and release of PPi to an open 
conformation. When the correct Watson–Crick base pair is 
formed, the thumb domain is disengaged from the minor 
groove of the duplex DNA which is accompanied by overall 
rotation of the N-terminal and thumb domain around the 
DNA duplex and facilitates the relative sliding between pro-
tein and DNA. When the mismatch is formed, the thumb 
is constantly holding the duplex in the minor groove that 
avoids translocation and allows the primer to shuttle to and 
from the exonuclease active site. The thumb holds the DNA 
duplex in its minor groove with Lys734 and 800 (Ren 2016).

The intermolecular site switching which requires DNA 
polymerase dissociation was proposed for T4 DNA poly-
merase after it was observed that active T4 DNA polymerase 
exchange was taking place during T4 replisome replication 
in vitro (Yang et al. 2004). The T4 and RB69 DNA polymer-
ases are not processive, and the processivity during replica-
tion is enhanced by the processivity factor, the product of 

gene gp45 that forms a homotetrameric structure that encir-
cles the DNA (Karam and Konigsberg 2000). Gp45 protein 
tether more than one T4 or RB69 polymerase and when 
the replicating polymerase dissociates from the mismatch 
primer end the same or another polymerase can rebind the 
mismatched DNA in the exonuclease active site (Yang et al. 
2004). The intermolecular site switching can also operate 
for pol δ (Flood et al. 2015).

The intramolecular and intermolecular transfer of DNA 
between the pol and exo sites was recently also demon-
strated for DNA polymerase I Klenow fragment by moni-
toring the movement of the DNA between these two active 
sites by a single-molecule Fӧrster resonance energy transfer 
(smFRET) method (Lamichhane et al. 2013).

Switching between polymerase and exonuclease 
active sites can be modulated by the interaction 
with the sliding clamp

DNA sliding clamp assists most of the replicative polymer-
ases in ensuring processive and accurate genome replication. 
Clamps despite their low level of sequence identity, from 
prokaryotes and eukaryotes, form a similar ring structure 
with a central hole that encircles duplex DNA. Polymerase 
interacts with PCNA by a small conserved PCNA-interact-
ing protein motif (PIP-box). The PIP motif binds a hydro-
phobic patch on the PCNA surface. For archaeal DNA Pol 
B polymerase from Pyrococcus furiosus (Pfu Pol) based on 
computational analysis of all available structural information 
and molecular dynamics simulations, novel contacts were 
found between DNA polymerase and the PCNA subunits 
adjacent to PIP motif (Nishida et al. 2009; Xu et al. 2016). 
In the pol-mode, these interactions involve polymerase resi-
due R706 (thumb domain) and residue E171 from PCNA1 
subunit. In the exo-mode, interactions are made by a helix 
from palm domain that contains a patch of arginine residues 
(R379, R380, and R382) and a negatively charged loop on 
the PCNA2 subunit surface called the “switch hook” (Xu 
et al. 2016). It was proposed that the transition from the 
polymerase mode to exonuclease mode is executed by the 
rotation of the Pol core (palm, N-terminal, fingers, and exo-
nuclease domain) around thumb domain that is stably bound 
to the clamp surface. It enforces a 56° rotation of a palm 
domain and brings the palm arginine patch helix into contact 
with the negatively charged switch-hook loop of PCNA2 
that locks the complex in the exo-mode conformation. These 
results provided that PCNA can coordinate the transition 
between the pol and exo states during DNA replication (Xu 
et al. 2016).

In E. coli, it was shown that Pol III α interaction with a 
clamp is enhanced by the exonuclease that provides a second 
indirect interaction to the clamp. By doing so, it enhances 
the interaction between Pol III α and a clamp and provides 



Current Genetics	

1 3

the exonuclease with more efficient access to the DNA. 
Exonuclease binds to the clamp by a canonical clamp bind-
ing motif that is positioned immediately after the exonucle-
ase catalytic domain. Exonuclease clamp interactions are 
required for optimal proofreading activity (Fernandez-Leiro 
et al. 2015; Park et al. 2018; Toste Rêgo et al. 2013).

Modulation of pol and exo activity by the subunit 
composition in pol δ holoenzyme

The human pol δ is a heterotetramer consisting of the cata-
lytic subunit p125 (POLD1) and three accessory subunits 
p50 (POLD2), p68 (POLD3), and p12 (POLD4) (Tahirov 
2012). The p12 subunit is degraded in response to DNA 
damage converting Pol δ4 to Pol δ3. It was shown that Pol 
δ3 is less error prone due to greater proofreading ability 
and greater discrimination against mismatched primers and 
small lesions that are readily bypassed in a mutagenic man-
ner by Polδ4 (Lee et al. 2017; Zhang et al. 2016).

Proofreading in trans

The eukaryotic genome is replicated by three replicative 
polymerases, the pol α, pol δ, and pol ɛ. Polymerase α is 
responsible for the synthesis of the 20–30 nucleotides during 
Okazaki fragment initiation, that is further extended by lag-
ging strand polymerase δ (Kunkel 2009; Kunkel et al. 1989). 
The fidelity of DNA pol α is low as this polymerase lacks its 
own proofreading (Kunkel et al. 1989). It is estimated that 
polymerase α contributes to the synthesis of about 1.5% of 
the eukaryotic genome, and with calculated base substitution 
error rate of 10−4, this polymerase would introduce many 
thousands of mismatches during each round of replication. 
It was shown that errors introduced by polymerase α are 
removed by the exonucleolytic proofreading of polymerase 
δ (Pavlov et al. 2006). Later, it was also demonstrated that 
polymerase δ could proofread errors introduced by polymer-
ase ɛ acting in trans on the leading DNA strand, but poly-
merase ɛ was unable to correct Pol δ-dependent replication 
errors as well as errors made by Pol α. In addition, errors 
created by proofreading defective polymerase ɛ cannot be 
corrected by wild-type Pol ε polymerase (Flood et al. 2015; 
Pavlov et al. 2006).

External 3′‑5′ exonucleases

A number of DNA pol-unassociated 3′-5′ exonuclease have 
been identified in eukaryotic cells (Mason and Cox 2012). 
Some of these exonucleases have been observed to have 
the ability to remove 3′ mismatched termini from double-
stranded DNA and thus to correct replication errors. Wer-
ner protein (WRN) belongs to the RecQ family of helicases 
(Gray et al. 1997). WRN encodes a 3′-5′ helicase and also a 

3′-5′ exonuclease (Kamath-Loeb et al. 1998). It was shown 
that polymerase delta proofreading could be enhanced by 
the Werner protein. It was presented that WRN was able 
to proofread for Pol δ by removing 3′-terminal mismatches 
to enable primer extension by Pol δ. Consistent with this 
in vitro observations, it was demonstrated that WRN contrib-
utes to the maintenance of DNA synthesis fidelity in vivo. 
Cells expressing limiting amounts (~ 10% of normal) of 
WRN have elevated mutation frequencies compared with 
wild-type cells (Kamath-Loeb et al. 2012).

The tumor suppressor protein p53 also possess 3′-5′ 
exonuclease activity (Mummenbrauer et al. 1996) and can 
remove mismatches from replicating DNA strand (Huang 
1998). It was shown in vitro that p53 protein enhances 
the replication fidelity of error-prone polymerase α (Holl-
stein et al. 1996). Later, it was demonstrated that poly-
merase α-primase (prim-pol) could form a complex with 
p53 in vivo. The purified prim-pol/p53 complex in vitro 
showed both exonuclease and polymerase activity (Melle 
and Nasheuer 2002) and was able to extend a mismatched 
DNA primer terminus. These data provided evidence that 
p53 can correct DNA replication error introduced by pol α.

Contribution of proofreading to fidelity

The proofreading on average improves replication fidelity 
by about 10–1000-fold. The errors that escape proofread-
ing are repaired later by the mismatch repair (MMR) (Kun-
kel 2009; McCulloch and Kunkel 2008). The contribution 
of the proofreading or the mismatch repair system can be 
directly measured in vivo by comparing spontaneous muta-
tion rates in wild strain or in the strains that are defective 
in one of the correction pathways or both. Different types 
of errors are produced by the polymerase. The most com-
mon mistakes are base substitution errors. There are two 
types of base substitution errors, transitions (purine–purine 
and pyrimidine–pyrimidine mismatches) and transversions 
(purine-pyrimidine mismatches). The base substitution 
errors depend on the selectivity of the polymerase. Poly-
merase active site can bind some forms of these mispairs 
as they can adopt wobble conformation or exist in a rare 
tautomeric form (Goodman et al. 1993; Kunkel and Bebenek 
2000). From the in vivo and in vitro fidelity measurements, 
it became evident that the transition mismatches are less 
efficiently proofread than transversion mismatches and 
are more easily extended by the polymerases. This unbi-
ased preference for transition mismatches is corrected by 
mismatch repair system that discriminates more efficiently 
against transitions that transversions which at the end results 
at the same low level of both types of errors (Schaaper 
1993). Another type of mutations that are introduced by rep-
licative polymerases is frameshift mutations both deletion 
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and addition errors (indels), especially in mononucleotide 
microsatellites. Microsatellites are tandem repeats of 1–6 
base pairs per repeat unit that are found in all organisms, at 
varying abundance (Baptiste et al. 2015; Bebenek and Kun-
kel 2000; Kunkel and Bebenek 2000). The primer-template 
slippage during replication of repetitive sequences produces 
misaligned intermediates that are stabilized by a correct 
base and subsequent polymerization leads to deletion if the 
flipped nucleotide is in the template strand or to addition if 
the flipped nucleotide is in the primer strand (reviewed in 
Bebenek and Kunkel 2000). Frameshift mutations can also 
be generated at noniterated or short repetitive sequences. 
Proofreading can remove indel mutations in a short repeti-
tive sequence and noniterated sequences with almost the 
same efficiency as base substitution mutations but is much 
less efficient in removing frameshift mutations in homopoly-
meric runs. These mutations are removed efficiently by mis-
match repair system (Kunkel and Bebenek 2000; Yamamoto 
and Imai 2015). Instability of the microsatellite sequences is 
associated with many disease states including cancer (Yama-
moto and Imai 2015).

Replicative polymerases in cancer

Studies in the model organisms have confirmed the essential 
role of DNA polymerase proofreading in the maintenance 
of genomic stability. Exonuclease-deficient mutants of Pol 
δ or Pol ɛ containing alanine substitution at catalytic aspar-
tate residue in S. cerevisiae show a 10–100-fold increase 
in mutation rates (Morrison et al. 1993; Pavlov et al. 2001; 
Shcherbakova et al. 2003b). In the mice model, when the 
exonuclease domain of Pol δ (encoded by the POLD1 gene) 
or Pol ɛ (encoded by the POLE gene) was inactivated by 
mutation at exonuclease, catalytic residue elevated base sub-
stitution mutation rates, and increased incidence of cancers 
was observed. The type of cancers was different for each pol-
ymerase mutant. Pol δ exo- mice developed lymphomas and 
carcinomas of the skin and lung, whereas Pol ɛ exo- mice 
developed intestinal tumors (Albertson et al. 2009; Goldsby 
et al. 2002, 2001). Interestingly, cancers only developed in 
mice homozygous for proofreading deficient polD1 and polE 
alleles and in mismatch proficient background (Goldsby 
et al. 2002). That was the first such example showing that 
mutations in genes encoding polymerases could be a source 
for multiple mutations that if accumulated over the lifetime 
can increase the risk of cancer.

In 2012, The Cancer Genome Atlas (TCGA) (Network 
2012) published the results of analysis of exome sequencing 
of 224 sporadic colorectal carcinomas (CRC). These study 
revealed that a subset of ultramutated but microsatellite sta-
ble (MSS) CRC tumors with the highest mutational load 
had alterations in POLE gene. POLE alterations were also 

found in hypermutated sporadic endometrial tumors (Church 
et al. 2013).

The changes were found within and close to the Exo 
motifs required for exonuclease activity, suggesting that 
inactivation of exonuclease activity was responsible for the 
hypermutator phenotype (Rayner et al. 2016). The hyper-
mutator phenotype observed in POLE proofreading domain 
mutant is characterized by an excess of substitution muta-
tions, in particular, a relative excess of G:C→T:A transver-
sions (Alexandrov et al. 2013). The most common POLE 
variant is the replacement of the proline 286 by either the 
arginine or histidine. The functional consequences of P286R 
mutation were studied using a yeast homolog pol2-P301R 
mutant. The corresponding P301R change in yeast Pol ε 
conferred an exceptionally strong mutator phenotype greatly 
exceeding that of any previously characterized Pol ε mutant, 
including proofreading-deficient mutants. It was also shown 
that heterozygosity for the P301R also produced a strong 
mutator effect comparable with that of MMR deficiency, 
the effect not observed for proofreading-deficient pol2 exo-
polymerase (Kane and Shcherbakova 2014).

Only two cases of possibly pathogenic somatic POLD1 
variation have been identified to date (Shlien et al. 2015).

In addition, germline mutations affecting the exonuclease 
domains of POLE and POLD1 were found to cause a high-
penetrance hereditary colorectal cancer and endometrial 
cancer predispositions (Bellido et al. 2016). These discov-
eries strongly suggested that loss of proofreading activity of 
replicative DNA polymerases is the initiating cause of some 
hereditary and sporadic human cancers.

The role of proofreading domain mutations in cancer has 
been recently extensively reviewed (Barbari and Shcherba-
kova 2017; Rayner et al. 2016).

Concluding remarks

Replicative polymerases use several mechanisms to achieve 
high and accurate DNA replication. Proofreading plays an 
essential role in this process. Proofreading activity either 
is associated with the polymerase or carried on a separate 
subunit, but in any case, it is estimated that proofreading 
improves replication fidelity by a factor of 102–103. Recent 
studies with eukaryotic replicative polymerases that have 
been found in some cancers showed that mutations in exo-
nuclease domain close to catalytic residues could cause 
much stronger mutator phenotype exceeding the previously 
observed for exo-deficient polymerases (Kane and Shcherba-
kova 2014). A mechanism that would explain such high level 
of mutagenesis is not known.

The interplay between the pol and exo activity may be 
modulated by the interaction with one of the accessory pro-
teins that accompany polymerase during DNA replication, 
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like interactions with β sliding clamp and ε subunit in E. coli 
replisome (Park et al. 2018; Xu et al. 2016). It was shown 
that mutations in a non-catalytic subunit of Pol ɛ, Dpb2, 
that destabilize interactions with Psf1 and Psf3 subunits in 
GINS complex result in increased spontaneous mutagen-
esis in yeast S. cerevisiae (Dmowski and Fijałkowska 2017; 
Garbacz et al. 2015). One can speculate that mutations in 
the exonuclease domain that does not affect catalytic site 
may affect primer terminus site switching between pol and 
exo site, sending more often uncorrected primer back to 
polymerases active site or not allowing the primer terminus 
to reach the exo active site. Many other scenarios can take 
place, and it is a long way to fully understand the mechanism 
that is responsible for the coordinated action of polymerase 
and exonuclease activity. Finally, it can be assumed that the 
proofreading may participate too much higher extent in rep-
lication fidelity that it was previously anticipated.
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