
A Mathematical Model and a Firefly
Algorithm for an Extended Flexible Job

Shop Problem with Availability
Constraints

Willian Tessaro Lunardi1(B) , Luiz Henrique Cherri2, and Holger Voos1

1 Interdisciplinary Centre for Security, Reliability and Trust (SnT),
University of Luxembourg, 6 rue Coudenhove-Kalergi,

1359 Luxembourg City, Luxembourg
{willian.tessarolunardi,holger.voos}@uni.lu

2 Institute of Mathematics and Computer Sciences (ICMC), University of São Paulo,
400 Avenida Trabalhador São-Carlense, São Paulo 13566-590, Brazil

lhcherri@icmc.usp.br

Abstract. Manufacturing scheduling strategies have historically ignored
the availability of the machines. The more realistic the schedule, more
accurate the calculations and predictions. Availability of machines will
play a crucial role in the Industry 4.0 smart factories. In this paper, a
mixed integer linear programming model (MILP) and a discrete firefly
algorithm (DFA) are proposed for an extended multi-objective FJSP with
availability constraints (FJSP-FCR). Several standard instances of FJSP
have been used to evaluate the performance of the model and the algo-
rithm. New FJSP-FCR instances are provided. Comparisons among the
proposed methods and other state-of-the-art reported algorithms are also
presented. Alongside the proposed MILP model, a Genetic Algorithm is
implemented for the experiments with the DFA. Extensive investigations
are conducted to test the performance of the proposed model and the
DFA. The comparisons between DFA and other recently published algo-
rithms shows that it is a feasible approach for the stated problem.

Keywords: Firefly algorithm · Flexible job-shop scheduling
Metaheuristics · Mixed integer linear programming
Availability constraints

1 Introduction

The flexible job shop problem (FJSP) is an extension of the job shop problem
(JSP) where is assumed that there is often more than one machine that is able to
process a particular manufacturing task. The FJSP can be decomposed into two
sub-problems: the machine selection problem (MS) and the operations sequenc-
ing problem (OS). Most of the FJSP studies have purely focused on assumptions
that machines are continuously available. Nevertheless, in a real-world situation,
c© Springer International Publishing AG, part of Springer Nature 2018
L. Rutkowski et al. (Eds.): ICAISC 2018, LNAI 10841, pp. 548–560, 2018.
https://doi.org/10.1007/978-3-319-91253-0_51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91253-0_51&domain=pdf
http://orcid.org/0000-0003-0718-0019

A Mathematical Model and a Firefly Algorithm for an Extended FJSP 549

continuous availability of machines is not normally feasible. Machine unavail-
able periods might be consequent of pre-scheduling, preventive maintenance,
shift pattern, or the overlap of two consecutive time horizons in the rolling time
horizon planning algorithm.

There are various types of availability constraints in production systems.
They can be categorized as fixed and non-fixed. The unavailable period of a
fixed availability constraint starts at a fixed time point. Unavailable periods can
also be categorized as crossable when it allows an operation to be interrupted
and resumed, and non-crossable when it prevents the interruption of any oper-
ation. Resumable means that an operation can continue the processing when
it is released from an interruption resultant of an unavailable period and non-
resumable means an operation must be reprocessed fully after interrupted by an
unavailable period [9].

Most existing literature focuses on the problem of integrating production
scheduling with unavailable periods in the context of a single machine, parallel
machine and flow shop (especially two-machine problems). The FJSP with non-
resumable operations was addressed in [3]. The periods of unavailability are
non-crossable, non-fixed and flexible within an end-time window and have to be
determined during the scheduling procedure. In [14], a Genetic Algorithm (GA)
was proposed to solve the multi-purpose machine (MPM) scheduling problem
with fixed non-crossable unavailable periods in a job shop environment with
non-resumable operations. A filtered beam search (FBS) [9], was proposed to
solve the FJSP with non-fixed and fixed non-crossable unavailable periods and
non-resumable operations.

In this paper, we put forward a mixed integer linear model (MILP) and a dis-
crete firefly algorithm (DFA) for solving the FJSP with fixed crossable unavail-
able periods and resumable operations. In order to evaluate the performance of
our methods, as well to be close to situations that may happen in industrial real-
ity, we propose a new set of instances with fixed availability data. In addition, as
the FJSP-FCR is an extension of the traditional FJSP. We also used traditional
FJSP instances for the computational experiments. These instances include 35
open problems for FJSP. Through experimental studies, the merits of this work
are clearly demonstrated.

The remainder of this paper is structured as follows. The problem formulation
and the model are presented in Sect. 2. The discrete firefly algorithm and solution
representation are discussed in Sect. 3. Numerical results are reported in Sect. 4.
Finally, conclusions are presented at the end of this work.

2 MILP Model

The formulation of the FJSP-FCR can be given as follows. There is a set of n
jobs and a set of m machines. Each job i consists of a sequence of Ji operations.
M denotes the set of all machines. Each operation Oij(i = 1, . . . , n; j = 1, . . . , Ji)
has to be processed on a machine k out of a set of given compatible machines Mij

(k ∈ Mij ,Mij ⊆ M). In this work, we extend the classical FJSP formulation and

550 W. Tessaro Lunardi et al.

we consider that operations are resumable and machines are not continuously
available. Each machine k has Mk crossable unavailable periods. We denote Ukr

as the rth crossable unavailable period on machine k, with sukr and cukr being
respectively the unavailable period starting and completion time.

The notations used in this paper are summarized below.

Indices
k : index of machines, k = 1, . . . , m;
r : index of unavailabilities, r = 1, . . . ,Mk;

i, h : index of jobs, i, h = 1, . . . , n;
j, g : index of operation sequences, j, g = 1, . . . , Ji;

Parameters
Ji : total number of operation of job i;

Mk : total number of unavailable periods at machine k;
Oij : the jth operation of job i;
Mij : machines able to perform operation Oij ;
pijk : processing time of Oij on machine k;
Ukr : the rth unavailable period of machine k;

sukr : starting time of unavailable period Ukr;
cukr : completion time of unavailable period Ukr;

λ : an weight coefficient;
L : an arbitrary large positive number;

Decision variables
Cmax : maximal completion time of the machines;
Wmax : maximal workload of the machines (max

k
{Wk});

sijk : starting time of operation Oij on machine k;
cijk : completion time of the operation Oij ;

vijk :

{
1 if Oij is performed on machine k

0 otherwise;

uijkr :

{
1 if sijk < sukr < cijk ∀i, j, r ∀k ∈ Mij

0 otherwise;

yijkr :

{
1 if Ukr precedes operation Oij on machine k

0 otherwise;

zijhgk :

{
1 if Oij precedes operation Ohg on machine k

0 otherwise.

A Mathematical Model and a Firefly Algorithm for an Extended FJSP 551

The mixed integer programming model for the FJSP-FCR can be given as
follows:

minimize λ1Cmax + λ2Wmax + λ3

∑m

k=1

∑n

i=1

∑Ji

j=1
pijkvijk (1)

s.t. Cmax �
∑

k∈Mij

cijk, ∀i, j = Ji (2)

Wmax �
∑n

i=1

∑Ji

j=1
pijkvijk, ∀k (3)

cijk � sijk + pijk

+
∑

∀r(curk − surk)uijkr

− (1 − vijk) L, ∀i, j, k ∈ Mij (4)
sijk � chgk − zijhgk L, ∀i < h, j, g, k ∈ Mij ∩ Mhg (5)
shgk � cijk − (1 − zijhgk) L, ∀i < h, j, g, k ∈ Mij ∩ Mhg (6)
cijk � sukr + uijkr L + yijkrL ∀i, j, r, k ∈ Mij (7)
sijk � cukr − (1 − yijkr) L, ∀i, j, r, k ∈ Mij (8)∑

k∈Mij

sijk �
∑

k∈Mij

cij−1k, ∀i, j = 2, . . . , Ji (9)∑
k∈Mij

vijk = 1, ∀i, j (10)

sijk � vijk L, ∀i, j, k ∈ Mij (11)
cijk � vijk L, ∀i, j, k ∈ Mij (12)

Objective function (1) ensures the minimization of maximal completion time,
maximal workload, and total workload of the machines and is supported by
constraints (2) and (3). Constraints (11) and (12) ensures that the start and the
completion time of operation on a specific machine is zero if it is not performed
on this machine. The duration of the operation, considering its processing time
and all the unavailabilities it passes through, is ensured by Constraints (4).
Constraints (5) and (6) guarantee that two operations do not overlap on the
same machine. Constraints (7) and (8) certify that the operations do not overlap
the unavailabilities and, if it occurs, it is accounted to increase the operation
time (performed by Constraints (4)). The precedence of each job operations is
established by Constraints (9). Constraints (10) states that one machine can be
selected from the set of available machines for each operation. The parameter L
is an upper bound to the maximum processing time and unavailable time and is
calculated as

∑n
i

∑Ji

j max∀k∈Mij
pijk + maxk=1,...,m

(∑Mk

r=1 curk − surk

)
.

3 Firefly Algorithm

The firefly algorithm is a nature-inspired meta-heuristic for solving continuous
problems and has been motivated by the simulation of the social behavior of

552 W. Tessaro Lunardi et al.

Algorithm 1. Firefly Algorithm
1: Objective function f(x), x = (x1, . . . , xd)

T

2: Generate initial pop. P of fireflies xi(i = 1, 2, . . . , c)
3: Light intensity Ii = f(xi)
4: Define light absorption coefficient γ

5: while (t < MaxGeneration) do
6: for each xi ∈ P do
7: for each xj ∈ P do
8: if (Ii < Ij) then Move xi towards xj end if
9: Vary β with distance r via exp[−γr]

10: Evaluate solutions and update light intensity
11: end for j
12: end for i
13: Rank fireflies and find the current global best
14: end while

fireflies. The two fundamental functions of its flashing lights are to attract mating
partners (communication), and to attract potential prey.

In essence, FA uses the three following idealized rules: all fireflies are unisex;
attractiveness β is proportional to their brightness, in this way for any two
flashing fireflies, the less bright one will move towards the brighter one; the
brightness of a firefly is affected or determined by the landscape of the objective
function. The pseudo code shown in Algorithm1 summarizes the basic steps of
the FA.

3.1 Variations of Light Intensity and Attractiveness

The variation of light intensity and formulation of the attractiveness are two
important issues. For simplicity, we can always assume the attractiveness of
a firefly is determined by its brightness, which in turn is associated with the
encoded objective function.

The attractiveness function β(r) can be any monotonically decreasing func-
tions such as the following generalized form

β(r) = β0e
−γrm , m � 1, (13)

where β0 is the attractiveness at r = 0, and r is the distance between two fireflies.
The Eq. (13) can be approximated as

β(r) =
β0

1 + γr2
. (14)

The distance between any two fireflies i and j, at position xi and xj , can be
defined as a Cartesian distance:

rij = ‖xi − xj‖=

√∑d

k=1
(xik − xjk)2, (15)

where xik is the kth component of the spatial cordinate xi of ith firefly.

A Mathematical Model and a Firefly Algorithm for an Extended FJSP 553

OS 2 1 3 2 3 1 1 2

O21 O11 O31 O22 O32 O12 O13 O23

MS 2 4 3 1 3 4 2 1

O11 O12 O13 O21 O22 O23 O31 O32

Fig. 1. Example of OS string and MS string of a firefly.

The random movement of a firefly i towards another more brighter firefly j
is determined by

xi = xi + β0e
−γr2ij (xi − xj) + α εi, (16)

where the second term considers a firefly’s attractiveness, the third term is ran-
domization with α being the randomization parameter, and εi is a vector of
random numbers drawn from a Gaussian distribution or uniform distribution.
For most applications we can take β0 = 1, α ∈ [0, 1]. The parameter γ is crucially
important in determining the speed of the convergence and how the FA algo-
rithm behaves. For most applications, it typically varies from 0.001 to 1000. In
this implementation of the algorithm, we used β0 = 1.0, α ∈ [0, 1] and γ = 0.1.

3.2 Firefly Representation for the FJSP

In our proposed algorithm, each firefly represents an FJSP solution, i.e. operation
sequence and machine assignment. The algorithm starts with an initial popu-
lation of fireflies. Each firefly is attracted by other fireflies to varying degrees,
on the basis of the objective value of those solutions and the distance between
them, i.e. how different they are. The population of fireflies evolves by each firefly
randomly (not directly) moving toward the most attractive solution.

The FJSP contains two sub-problems, in this way, our representation contains
two strings. The MS string denotes the selected machine for the corresponding
operations of each job. The hth part of the MS string can assume any value
k ∈ Mv and represents the assigned machine for operation v.

The OS string represents the order in which the operations will be processed
in their respective machines. This representation uses an unpartitioned permu-
tation with Ji repetitions of the job numbers, i.e. each job number appears Ji

times in the OS string. By scanning the OS string from left to right, the fth
appearance of a job number refers to the fth operation of this job. In this way,
any permutation of the OS string can be decoded into a feasible solution and
avoid the use of a repair mechanism. When a firefly is decoded, the OS string is
translated into a sequence of operation at first. Figure 1 presents an example of
OS and the MS strings.

The computation of the makespan can be obtained using graph traversal
algorithms, commonly used in temporal planning. During the computation of the
makespan for the FJSP-FCR, due to the advent of the unavailable periods, before

554 W. Tessaro Lunardi et al.

Table 1. Update of the movement of firefly i towards a brighter firefly j.

MS string OS string

Firefly j 1 4 1 3 2 2 3 4 1 2 3 2 1 1 2 3

Firefly i 2 4 3 1 3 4 2 1 2 1 3 2 3 1 1 2

Hij and Sij {(1, 1), (3, 1), (4, 3), (5,
2), (6, 2), (7, 3), (8, 4)}

{(1, 2), (5, 6), (6, 7), (7, 8)}

|Hij | and |Sij | 7 4

Attractiveness β(r) 0.17 0.38

rand ∈ [0, 1] {0.35, 0.1, 0.09, 0.14,
0.33, 0.49, 0.32}

{0.52, 0.05, 0.12, 0.69}

Movement β-step {(3, 1), (4, 3), (5, 2)} {(5, 6), (6, 7)}
Position after β-step 2 4 1 3 2 4 2 1 2 1 3 2 1 1 3 2

Position after α-step 2 4 1 3 2 2 4 1 2 1 3 2 1 1 2 3

updating the outcome edges and vertices, is necessary to check whether there
is an overlap of the operation with an unavailable period in the machine route.
Thus, if the starting of the operation is overlapping the unavailable interval,
the starting of the operation must be delayed to the end of the unavailable
period; if the starting of the unavailable period is overlapping the operation,
the processing time of the operation must be increased by the extension of the
unavailable period.

3.3 Discrete Firefly Algorithm for the FJSP

The FA has been originally developed for solving continuous optimization prob-
lems and cannot be directly applied to solve discrete optimization problems.
The main challenges for using the FA to solve FJSP are computing the discrete
distance between two fireflies, and how they move in the coordination. In this
work, the discretization is done for the following issues.

3.4 Distance

The discrete distance between two fireflies is defined by the distance between the
permutation of its strings. There are two possible ways to measure the distance
between two permutations: (a) Swapping distance (Sij), i.e. the number of min-
imal required swaps in a permutation i in order to obtain j; and (b) Hamming
distance (Hij), i.e. the number of non-corresponding elements in the sequence
of i compared with sequence j.

The distance between two MS strings can be measured by using Hamming
distance. The minimal number of swaps cannot be used for the MS string
since two different strings can contain different elements. Given two MS strings,
MSi = {2 4 3 1 3 4 2 1} and MSj = {1 4 1 3 2 2 3 4}, every bit is compared and

A Mathematical Model and a Firefly Algorithm for an Extended FJSP 555

Table 2. The experimental results on Fattahi instances.

Instance n o m OOY WLH DFA

Cmax CPU Cmax CPU Cmax CPU

MFJS01 5 3 6 468 0.20 468 0.21 468 0.11

MFJS02 5 3 7 446 0.32 446 0.32 446 0.18

MFJS03 6 3 7 466 0.90 466 0.91 466 0.36

MFJS04 7 3 7 554 2.54 554 2.56 554 1.99

MFJS05 7 3 7 514 1.64 514 1.78 514 1.28

MFJS06 8 3 7 634 3.80 634 3.88 634 4.46

MFJS07 8 4 7 879 43.33 879 44.54 879 9.34

MFJS08 9 4 8 884 977 884 1050.55 884 15.23

MFJS09 11 4 8 [877.9; 1111]
20.98%

3600 [861; 116]
22.85%

3600 1055 31.22

MFJS10 12 4 8 [1012; 1208]
16.23%

3600 [1008.2; 1220]
17.36%

3600 1196 39.32

the number of bits whose are not equal are recorded, the Hamming distance is
Hij = 7. The distance between two OS strings of two fireflies can be mea-
sured with the so-called swapping distance. Given two OS strings, OSi =
{2 1 3 2 3 1 1 2} and OSj = {1 2 3 2 1 1 2 3}, the swapping distance is
Sij = 4.

3.5 Attraction and Movement

In this study we break up the movement given in Eq. (16) into two sub-steps:
β-step and α-step. The attraction steps β and α are not interchangeable, thereby,
β-step must be computed before α-step while finding the new position. Both
steps are illustrated in details on Table 1, where the firefly i updates its position
towards the a best firefly j. The parameters used in this illustration are as follows:
β0 = 1, γ = 0.1, α = 1.

Moving Towards Another Firefly: β-Step. The β-step brings the iterated
firefly closer to another firefly. An insertion mechanism and a pair-wise exchange
mechanism are used to advance the MS string and OS string of a firefly towards
the brighter firefly position. At first, all necessary insertions in the MS string
and all pair-wise exchanges in the OS string, to make the elements of the cur-
rent firefly equal to the best firefly, are computed and store in Hij and Sij .
The Hamming distance and swap distance are respectively defined by |His| and
|Sij |. The β probability is computed using Eq. (14). Secondly, it is defined which
elements of Hij and Sij will be used to change the current solution. A random
number rand ∈ [0, 1] is generated for each element, and if rand � β, then the
corresponding insertion/pair-wise exchange is performed on the elements of the
current firefly.

556 W. Tessaro Lunardi et al.

Table 3. The experimental results (computational time in terms of seconds) on the
proposed instances with fixed available periods.

Instance n o m u WLH GA DFA

Cmax CPU Cmax CPU Cmax CPU

FCR01 5 3 6 6 513 0.20 513 3.57 513 0.13

FCR02 5 3 7 9 548 0.56 552 7.18 548 0.16

FCR03 6 3 7 14 620 2.50 620 5.80 620 0.44

FCR04 7 3 7 17 746 27.46 748 5.86 746 2.33

FCR05 7 3 7 20 693 20.94 709 11.23 693 4.28

FCR06 8 3 7 20 774 4.83 777 11.31 774 6.17

FCR07 8 4 7 12 [1000; 1024] 2.34% 3600 1044 28.46 1024 10.34

FCR08 9 4 8 35 [1414; 1467] 3.61% 3600 1478 35.22 1418 16.78

FCR09 11 4 8 49 [1410.96; 2051] 31.21% 3600 1976 65.65 1944 34.70

FCR10 12 4 8 52 [1815.26; 2631] 31.00% 3600 2337 70.64 2320 43.01

Random Movement: α-Step. The α-step is much simpler than the β-step.
The random movement of firefly α(rand − 1/2) is approximated as α(randint)
given Eq. 17.

xi = xi + α(randint). (17)

It allows us to shift the permutation into one of the neighbouring permutations,
by choosing an element position using α(randint) and swap with another position
in the string which also chosen at random, where randint is a positive integer
generated between the minimum and maximum number of elements in the string.

4 Numerical Results

To solve the MILP models, we used the IBM ILOG CPLEX 12.7 solver with
default parameters and a time limit of 3600 seconds. The DFA proposed in this
work, and the Genetic Algorithm (GA) proposed in a previous work [7], were
coded in C++. The MILP models, the DFA and the GA were run on an Intel
Core i7 2.70 GHz, with 8 GB of RAM memory. The best and average results
from 50 different runs were collected for performance comparison. Observations
among the MILP model, the proposed DFA and GA, and other state-of-the-
art reported algorithms are also provided to determine their performance. To
demonstrate the efficiency of the proposed methods, the computational time is
further compared.

The instances used in the experiments can be characterized by number of jobs
n, number of machines m, number of operations o, and number of unavailable
periods u. The DFA parameters consist of the population size P , a maximum
number of generations G, firefly’s attractiveness β0, light absorption γ, and ran-
domization α. We kept fixed the following parameters: β0 = 1.0, α ∈ [0, 1], and

A Mathematical Model and a Firefly Algorithm for an Extended FJSP 557

Table 4. Comparison of the DFA with other algorithms on Brandimarte instances.

Instance n m o TABC MA DFA

Cmax CPU Cmax CPU Cmax CPU

Mk01 10 6 7 40 3 40 20 40 5

Mk02 10 6 7 26 3 26 28 26 16

Mk03 15 8 10 204 1 204 53 204 3

Mk04 15 8 10 60 66 60 30 60 11

Mk05 15 4 10 173 78 172 36 172 19

Mk06 10 15 15 60 173 59 80 59 63

Mk07 20 5 5 139 66 139 37 139 43

Mk08 20 10 15 523 2 523 77 523 4

Mk09 20 10 15 307 304 307 75 307 34

Mk10 20 15 15 202 418 202 90 202 94

γ = 0.1. The variation of P and G was based on the size of each instance. We
used P = 125 and G = 100 for small instances, i.e. less or equal to 6 jobs and
5 machines; P = 250 and G = 200 for medium instances i.e. less or equal to 10
jobs and 8 machines; P = 500 and G = 300 for instances that does not belong
to another group.

4.1 Fattahi Instances

We compare the proposed model and the DFA experimentally with [8] (OOY),
a concise MILP model for the FJSP and has proven to be effective when com-
pared to other state-of-the-art MILP models, as shown in [2]. Both models were
implemented in the same platform and experiments were conducted in the same
computer, mentioned in Sect. 4. The weight coefficients employed in this exper-
iment are: λ1 = 1.0, λ2 = 0.0, and λ3 = 0.0. Table 2 shows the numerical results
of the experiments involving the Fattahi instances.

The proposed model contains additional constraints (compared to OOY
model) to address the FJSP-FCR. Even with the additional constraints to
address the available periods, our model can achieve similar results solving the
standard FJSP. CPLEX found the optimal solution for the instances MFJS01-08.
The DFA obtained the best solutions for all instances.

4.2 FJSP-FCR Instances

Due to the lack of literature, in order to compare the DFA with other algorithms
using the FJSP-FCR instances, we implemented a GA for this experiment. The
results of this experiment are presented in the Table 3. This set of instances can
be obtained in JSON format through the following URL: https://github.com/
snt-robotics/fjsp fcr.

https://github.com/snt-robotics/fjsp_fcr
https://github.com/snt-robotics/fjsp_fcr

558 W. Tessaro Lunardi et al.

Table 5. The experimental results on Kacem instances of a multi-objective optimiza-
tion experiment.

Algorithm 4 × 5 8 × 8 10 × 7 10 × 10 15 × 10

f1 f2 f3 CPU f1 f2 f3 CPU f1 f2 f3 CPU f1 f2 f3 CPU f1 f2 f3 CPU

AL+CGA 16 10 34 − 15 13 79 − − − 7 5 45 − 23 11 93 −
PSO+SA − − 15 12 75 − − − 7 6 44 − 12 11 91 −
AIA − − 14 12 77 0.76 − − 7 5 43 8.97 11 11 93 109.22

P-DABC 11 10 32 − 14 12 77 − 12 11 61 − 8 7 41 − 12 11 91 −
SMF 12 8 32 2.6 14 12 77 39.5 11 10 62 109.5 7 6 42 39.1 11 10 93 864.6

PSO+TS 12 8 32 0.34 14 12 77 1.67 − − 7 6 43 2.05 11 11 93 10.88

WLH 12 8 32 0.06 14 12 77 0.54 11 10 62 0.36 7 5 43 1.07 11 11 93 211.74

GA 11 10 32 0.29 14 12 77 0.90 11 10 62 1.57 7 6 42 2.02 12 12 93 18.76

DFA 12 8 32 0.11 14 12 77 0.64 11 10 62 0.84 7 5 43 1.27 11 11 93 6.86

n × m total number of jobs and machines. − equals not available. f1, f2 and f3 are respectively

the Cmax, Wmax, and total workload of the machines.

In this experiment, we can see that the DFA achieve better results, and
is more efficient and effective than the GA. The MILP model has found best
solutions for the FCR01,. . . , FCR06, and for the other instances, bounds were
provided.

4.3 Brandimarte Instances

To better demonstrate the effectiveness of the DFA we compare results with
other state-of-the-art algorithms for the FJSP using the Brandimate instances.
We compare the DFA with an artificial bee colony algorithm (TABC) [4] and a
memetic algorithm (MA) [12]. The TABC was implemented on an Intel 2.4 GHz
Core 2 Duo processor with 4.0 GB of RAM memory in C++. The MA was
implemented on an Intel Core i7-3520M 2.9 GHz processor with 8.0 GB of
RAM memory in Java. The weight coefficients employed in this experiment are:
λ1 = 1.0, λ2 = 0.0, and λ3 = 0.0. Table 4 shows the comparison on the 10 Brandi-
marte instances. In this experiment, we can see that the DFA can achieve similar
results to state-of-the-art algorithms.

4.4 Kacem Instances

Kacem et al. proposed five multi-objective FJSP instances. Using these instances
our MILP model (WLH), and the DFA are compared with the hybrid parti-
cle swarm optimization and tabu search (PSO + TS) [13], implemented on a
Pentium IV 1.8 GHz in C++; the discrete artificial bee colony (DABC) [6],
implemented on a Pentium IV 1.8 GHz with MB of RAM memory in C++;
the artificial immune algorithm (AIA) [1] implemented on a 2.0 GHz processor
with 256 MB of RAM memory in C++; the simulation modeling (SMF) [11],
implemented on a Pentium IV 2.4 GHz personal with 512 MB RAM memory
in Matlab; the hybrid evolutionary and fuzzy logic (AL + CGA) [5]; the GA

A Mathematical Model and a Firefly Algorithm for an Extended FJSP 559

proposed in [7], and the hybrid particle swarm optimization and simulating
annealing (PSO + SA) [10]. The weight coefficients used in this experiment are:
λ1 = 0.5, λ2 = 0.3, and λ3 = 0.2. Table 5 shows the comparison of the results on
the five Kacem instances.

5 Conclusion

Planning and scheduling with machine availability constraint become increas-
ingly more important as a better understanding of their importance in various
applications. We put forward a new MILP model and an FA for the FJSP-FCR.
New instances are provided. We further presented computational experiments
on classical instances in order to provide comparisons with other state-of-the-art
algorithms. The numerical results make clear that the MILP model is impor-
tant for comparisons with non-exact methods, providing good bounds to many
small and medium size instances. The experiments among the DFA and oth-
ers recently published algorithms shows that it is a feasible approach for the
considered problem.

References

1. Bagheri, A., Zandieh, M., Mahdavi, I., Yazdani, M.: An artificial immune algorithm
for the flexible job-shop scheduling problem. Future Gener. Comput. Syst. 26(4),
533–541 (2010)

2. Demir, Y., İşleyen, S.K.: Evaluation of mathematical models for flexible job-shop
scheduling problems. Appl. Math. Model. 37(3), 977–988 (2013)

3. Gao, J., Gen, M., Sun, L.: Scheduling jobs and maintenances in flexible job shop
with a hybrid genetic algorithm. J. Intell. Manuf. 17(4), 493–507 (2006)

4. Gao, K.Z., Suganthan, P.N., Chua, T.J., Chong, C.S., Cai, T.X., Pan, Q.K.: A
two-stage artificial bee colony algorithm scheduling flexible job-shop scheduling
problem with new job insertion. Expert Syst. Appl. 42(21), 7652–7663 (2015)

5. Kacem, I., Hammadi, S., Borne, P.: Pareto-optimality approach for flexible job-
shop scheduling problems: hybridization of evolutionary algorithms and fuzzy logic.
Math. Comput. Simul. 60(3), 245–276 (2002)

6. Li, J.Q., Pan, Q.K., Gao, K.Z.: Pareto-based discrete artificial bee colony algorithm
for multi-objective flexible job shop scheduling problems. Int. J. Adv. Manuf. Tech-
nol. 55(9), 1159–1169 (2011)

7. Lunardi, W.T., Voos, H.: Comparative study of genetic and discrete firefly algo-
rithm for combinatorial optimization. In: 33rd ACM/SIGAPP Symposium on
Applied Computing, Pau, France, 9–13 April 2018 (2018)

8. Özgüven, C., Özbakır, L., Yavuz, Y.: Mathematical models for job-shop scheduling
problems with routing and process plan flexibility. Appl. Math. Model. 34(6), 1539–
1548 (2010)

9. Wang, S., Yu, J.: An effective heuristic for flexible job-shop scheduling problem
with maintenance activities. Comput. Ind. Eng. 59(3), 436–447 (2010)

10. Xia, W., Wu, Z.: An effective hybrid optimization approach for multi-objective
flexible job-shop scheduling problems. Comput. Ind. Eng. 48(2), 409–425 (2005)

560 W. Tessaro Lunardi et al.

11. Xing, L.N., Chen, Y.W., Yang, K.W.: Multi-objective flexible job shop schedule:
design and evaluation by simulation modeling. Appl. Soft Comput. 9(1), 362–376
(2009)

12. Yuan, Y., Xu, H.: Multiobjective flexible job shop scheduling using memetic algo-
rithms. IEEE Trans. Autom. Sci. Eng. 12(1), 336–353 (2015)

13. Zhang, G., Shao, X., Li, P., Gao, L.: An effective hybrid particle swarm optimiza-
tion algorithm for multi-objective flexible job-shop scheduling problem. Comput.
Ind. Eng. 56(4), 1309–1318 (2009)

14. Zribi, N., El Kamel, A., Borne, P.: Minimizing the makespan for the MPM job-shop
with availability constraints. Int. J. Prod. Econ. 112(1), 151–160 (2008)

	A Mathematical Model and a Firefly Algorithm for an Extended Flexible Job Shop Problem with Availability Constraints
	1 Introduction
	2 MILP Model
	3 Firefly Algorithm
	3.1 Variations of Light Intensity and Attractiveness
	3.2 Firefly Representation for the FJSP
	3.3 Discrete Firefly Algorithm for the FJSP
	3.4 Distance
	3.5 Attraction and Movement

	4 Numerical Results
	4.1 Fattahi Instances
	4.2 FJSP-FCR Instances
	4.3 Brandimarte Instances
	4.4 Kacem Instances

	5 Conclusion
	References

