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Abstract. In this work, we describe a new polynomial-time attack on the multilinear maps of Coron,
Lepoint, and Tibouchi (CLT13), when used in candidate iO schemes. More specifically, we show that
given the obfuscation of the simple branching program that computes the always zero functionality
previously considered by Miles, Sahai and Zhandry (Crypto 2016), one can recover the secret parameters
of CLT13 in polynomial time via an extension of the zeroizing attack of Coron et al. (Crypto 2015).
Our attack is generalizable to arbitrary oblivious branching programs for arbitrary functionality, and
allows (1) to recover the secret parameters of CLT13, and then (2) to recover the randomized branching
program entirely. Our analysis thus shows that several of the single-input variants of iO over CLT13 are
insecure.
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1 Introduction

Since their introduction, all candidates for multilinear maps [GGH13a, CLT13, GGH15] have been
shown to suffer from zeroizing attacks [GGH13a, CHL+15, GGH15], sometimes even when no low-level
encoding of zero was made available to the adversary [CGH+15]. However, the leading application
of multilinear maps, indistinguishability obfuscation, has until now remained little affected by this
kind of attacks. This resistance seemed to come from the fact that the particular combinations
enforced in indistinguishability obfuscation constructions did not allow enough freedom to obtain a
simple system of successful zero-tests that could be solved using linear algebraic techniques; see the
discussion on the limitations of zeroizing attacks in [CGH+15, Sec. 1.2].

Attacks against iO (Related Work). Attacks against simplified variants of certain obfuscation
schemes instantiated over the Coron-Lepoint-Tibouchi (CLT13) multilinear maps [CLT13] have
been described in [CGH+15]. Firstly, the GGHRSW branching-program (BP) obfuscation procedure
from [GGH+13b] has been shown to be broken for branching programs with a special “decomposable”
structure where the inputs bits can be partitioned in three sets, and so that one set only affects the
first steps of the BP, a second set the middle steps of the BP, and the last set the final steps of
the BP. Secondly, the simple variants of the circuit obfuscation procedures from [Zim15, AB15] has
been shown to be broken for simple circuits, such as point functions.

Recently in [MSZ16], Miles, Sahai and Zhandry introduced annihilation attacks against multilinear
maps, and applied them to cryptanalyze in polynomial-time several candidate iO schemes [BGK+14,
MSW14, AGIS14, PST14, BMSZ16] over the Garg-Gentry-Halevi (GGH13) multilinear maps. The
core idea of the attack against to differentiate whether an obfuscated program O comes from a
branching program A or a branching program A′ is the following: evaluate specific inputs xi’s that
evaluate to 0 on A and A′, get the zero-tested values yi = O(xi), and then evaluate an annihilating
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polynomial QA constructed from A over the yi’s. When A was obfuscated, QA(y) belongs to an ideal
I independent of y and A; otherwise QA(y) 6∈ I with high probability. Annihilation polynomials
can also be used to attack the order revealing encryption scheme proposed in [BLR+15], but fall
short of attacking the initial GGHRSW candidate iO scheme [GGH+13b].

Our contributions. In the remaining of the document, we cryptanalyze several constructions
of indisguishability obfuscation [GGH+13b, MSW14, AGIS14, PST14, BMSZ16, GMM+16] when
instantiated over CLT13. More specifically, we show the following theorem.

Theorem 1. Let O denote the single-input variant of the iO candidates in [GGH+13b, MSW14,
AGIS14, PST14, BMSZ16, GMM+16] (over CLT13 multilinear maps). There exists a branching
program A such that, given O(A), one can break the CLT13 multilinear maps in polynomial-time.

To show this, we use the branching program A that computes the always-zero function previously
considered in [MSZ16], in which every matrix is simply the identity matrix. This branching program
does not fit in the framework of the zeroizing attacks proposed in [CGH+15], but we show that one
can reconstruct the three-ways structure required by the zeroizing attacks by using tensor products.
More precisely, consider a branching program evaluation on input x

A(x) = Â0 ×
2t∏
i=1

Âi,xinp(i) × Â2t+1 × pzt mod x0 ,

where inp(i) = min(i, 2t+ 1− i) denotes the input bit used at the i-th step of the computation and
Â = {Â0, Â2t+1, Âi,b | i ∈ [2t], b ∈ {0, 1}} is the obfuscated branching program. We show that A(x)
can be rewritten as a product of consecutive factors

A(x) = B(x)×C(x)×D(x)×C ′(x)×B′(x)× pzt mod x0

=
(
B′(x)

T ⊗B(x)
)
×
(
C ′(x)

T ⊗C(x)
)
× vec

(
D(x)

)
× pzt mod x0,

where the factors B′(x)T ⊗B(x),C ′(x)T ⊗C(x) and D(x) that can be made to vary independently,
and vec(D) denotes the vector formed by stacking the columns of the matrix D on top of each
other. We then show how to extend the zeroizing attack approach described in [CHL+15, CGH+15]
to construct a block diagonal matrix, and apply the Cayley-Hamilton theorem to recover all the
secrets embedded in the CLT13 public parameters. Once the multilinear map secret parameters have
been recovered, one can then recover the randomized branching program Ã completely. Thus, one
can distinguish between the obfuscation of two branching programs whenever they are inequivalent
under Kilian’s randomization.

Our attack is applicable to the single-input version of the candidate obfuscators from [MSW14,
AGIS14, PST14, BMSZ16], to the GGHRSW obfuscator [GGH+13b] (as opposed to annihilations
attacks), but also to the obfuscator [GMM+16] proved secure in the weak multilinear map model
(therefore preventing annihilation attacks).

Last, but not least, we then show how to generalize our attack to branching programs with an
essentially arbitrary structure, including oblivious branching programs, and to programs achiev-
ing essentially arbitrary functionalities. This shows that the previously mentioned single-input
obfuscators should be considered broken when instantiated with CLT13.
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2 Preliminaries

Notation. We use [a]n or a mod n to denote a unique integer x ∈ (−n
2 ,

n
2 ] which is congruent to a

modulo n. A set {1, 2, . . . , n} is denoted by [n]. Vectors and matrices will be denoted by bold letters.
The transpose of a matrix A is denoted by AT .

2.1 Kronecker product of matrices

For any two matrices A ∈ Rm×n and B ∈ Rp×q, we define the Kronecker product (or tensor product)
of A and B as the block matrix A⊗B ∈ R(mp)×(nq) given by:

A⊗B =

a11B · · · a1nB...
. . .

...
am1B · · · amnB

 , where A = (aij).

We will be using the following important property of the Kronecker product. Consider a matrix
C ∈ Rn×m and let ci ∈ Rn, i = 1, . . . ,m be its column vectors, so that C =

[
c1, . . . , cm

]
. We

denote by vec(C) the column vector of dimension mn formed by stacking the columns ci of C on
top of one another:

vec(C) =

c1...
cm

 ∈ Rmn.
Now for any three matrices A, B, and C for which the matrix product A ·B ·C is defined, the
following property holds [Lau04, Ch. 13]:

vec(A ·B ·C) = (CT ⊗A) · vec(B)

(this follows from the fact that vec(xyT ) = y ⊗ x for any two column vectors x and y). Note that
for any column vector c, vec(c) = c.

2.2 CLT13 multilinear map

We briefly recall the asymmetric CLT13 scheme; we refer to [CLT13] for a full description. The CLT13
scheme relies on the Chinese Remainder Theorem (CRT) representation. For large secret primes
pk’s, let x0 =

∏n
k=1 pk. We denote by CRT(a1, a2, . . . , an) or CRT(ak)k the number a ∈ Zx0 such

that a ≡ ak (mod pk) for all k ∈ [n]. The plaintext space of CLT13 scheme is Zg1 × Zg2 × · · · × Zgn
for small secret integers gk’s. An encoding of a vector a = (a1, . . . , an) at level set S = {i0} is an
integer α ∈ Zx0 such that α = [CRT(a1 + g1r1, . . . , an + gnrn)/zi0 ]x0 for small rk’s, and where zi0 is
a secret mask in Zx0 uniformly chosen during the parameters generation procedure of the multilinear
map. To support a κ-level multilinearity, κ distinct zi’s are used. We do not consider the straddling
set system [BGK+14] since it is not relevant to our attacks.

Additions between encodings in the same level set can be done by modular additions in Zx0 .
Multiplication between encodings can be done by modular multiplication in Zx0 , only when those
encodings are in disjoint level sets, and the resulting encoding level set is the union of the input level
sets. At the top level set [κ], an encoding of zero can be tested by multiplying it by the zero-test
parameter pzt = [

∏κ
i=1 zi · CRT(p∗khkg

−1
k )k]x0 in Zx0 where p∗k = x0/pk, and comparing the result to

x0. If the result is small, then the encoding encodes a zero vector.4

4 In this paper, for simplicity of notation, we only consider a single zero-testing element instead of a vector
thereof [CLT13].
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2.3 Indistinguishability obfuscation

We borrow the definition of indistinguishability obfuscation from [GGH+13b], where iO for circuits
are defined.

Definition 1 (Indistinguishability Obfuscator (iO)). A uniform PPT machine iO is called an
indistinguishability obfuscator for a circuit class {Cλ} if the following conditions are satisfied:

– For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have that

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1.

– For any (not necessarily uniform) PPT distinguisher D, there exists a negligible function α such
that the following holds: For all security parameters λ ∈ N, for all pairs of circuits C0, C1 ∈ Cλ,
we have that if C0(x) = C1(x) for all inputs x, then

|Pr[D(iO(λ,C0)) = 1− Pr[D(iO(λ,C1)) = 1| ≤ α(λ).

Circuits can be directly obfuscated using circuit obfuscators [Zim15, AB15]. However, most of
the iO candidate obfuscators (see [GGH+13b, MSW14, AGIS14], [PST14, BMSZ16, GMM+16])
first convert the circuits to matrix branching programs, randomize them, and then obfuscated them
using a candidate multilinear maps scheme such as [GGH13a, CLT13, GGH15].

Obviously, for the converted branching program B, the iO obfuscator O should preserve the
functionality: B(x) = O(B)(x) for all x. Moreover, for two functionally-equivalent branching
programs B and B′, O(B) and O(B′) should be computationally indistinguishable, unless they
have different length or types of matrices. The concrete instance of such branching programs and
their obfuscations are described in Section 3.1 and 3.2, respectively.

Note that, while the candidate multilinear maps [GGH13a, CLT13, GGH15] have recently been
found to fail to securely realize multi-party key exchanges (see [HJ15, CHL+15, CLLT16]), few
weaknesses were found in the iO candidates over CLT13 (and GGH15 [GGH15]), mainly due to
the absence of the low-level encodings of zeroes in the public domain. In [CGH+15], Coron et al.
described an attack against the circuit obfuscators for simple circuits, and the GGHRSW obfuscator
for branching programs with a special decomposable structure (but not on oblivious branching
programs). Annihilations attacks [MSZ16] were recently introduced and allowed to break many iO
candidates over GGH13; however, they do not carry to obfuscators over CLT13 as far as we know.

3 Zeroizing attack on indistinguishability obfuscation of simple branching
programs

For simplicity, we describe our attack on the simple single input branching program introduced in
[MSZ16]. We will show how to generalize our attack to oblivious branching programs with arbitrary
functionalities in Section 4.

3.1 Target branching program

We consider the following branching program A that evaluates to zero for all t-bit inputs. Let us
first define the function which describes what input bit is examined at the i-th step:

inp(i) = min(i, 2t+ 1− i) for i ∈ [2t] .
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Now, the branching program is defined as follows:

A = {inp,A0,A2t+1,Ai,b | i ∈ [2t], b ∈ {0, 1}} ,

where

A0 = [0 1], A2t+1 = [1 0]T , Ai,0 = Ai,1 =

[
1 0
0 1

]
for i ∈ [2t].

It is evaluated in the usual way on x ∈ {0, 1}t:

A(x) := A0 ×
2t∏
i=1

Ai,xinp(i) ×A2t+1.

3.2 Obfuscation of branching programs

To obfuscate a branching program, we follow the standard recipe of indistinguishability obfuscation
constructions: use Killian style randomization with extra scalar multiplications by random numbers,
and encode the resulting matrices with the candidate multilinear maps.

Let us describe the obfuscation procedure of the branching program A from Section 3.1, over
the CLT13 multilinear map. Let

∏n
k=1 Zgk be the plaintext space of the CLT13 map, and denote

g =
∏n
k=1 gk. We first choose random invertible matrices {Ri ∈ Z2×2

g }i∈[2t+1] and non-zero scalars
{αi,x ∈ Zg}i∈[2t],b∈{0,1}. Then the matrices in the branching program A are randomized using Killian

randomization, and we define Ã the randomized branching program:

Ã = {inp, Ã0, Ã2t+1, Ãi,b | i ∈ [2t], b ∈ {0, 1}}

where

Ã0 = A0 ·R−11 , Ã2t+1 = R2t+1 ·A2t+1, Ãi,b = αi,b ·Ri ·Ai,b ·R−1i+1,

for i ∈ [2t], b ∈ {0, 1}.
Next, the randomized branching program Ã is encoded using the CLT13 scheme. In order to

evaluate the randomized branching program, our multilinear map must accommodate κ = 2t+ 2
products, i.e. the multilinearity level is set to [κ]. Each element ã ∈ Zg of the matrices Ãi,b’s is
considered as a vector ([ã]g1 , . . . , [ã]gn) ∈ Zg1 × · · · ×Zgn , and encoded as an integer â ∈ Zx0 at level
S = {i}. In particular, we have that â = [CRT([ã]g1 + g1r1, . . . , [ã]gn + gnrn)/zi]x0 for small random

integers rk’s. The matrices Ã0 and Ã2t+1 are encoded analogously.

The resulting obfuscated branching program is

Â = {inp, Â0, Â2t+1, Âi,b | i ∈ [2t], b ∈ {0, 1}}

where Âi,b is an entry-wise encoding of Ãi,b. The obfuscated branching program Â can be evaluated
in the usual way: define A(x) be

A(x) := Â0 ×
2t∏
i=1

Âi,xinp(i) × Â2t+1 × pzt mod x0.

Then Â(x) = 0 if and only if A(x) is small compared to x0.
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3.3 Attack over CLT13 encoding

As in the previous zeroizing attacks [CHL+15, CGH+15] against the CLT13 graded encoding scheme,
our approach will be to decompose the zero-tested values A(x) into a product of several factors that
can be made to vary independently. We then use those varying factors to construct a matrix that
will reveal the factorization of the modulus x0, and hence entirely break the security of the scheme.

To obtain this decomposition, we will rely on the identity vec(ABC) = (CT ⊗A) vec(B) (see
Section 2.1). First, we define several matrices B(x), B′(x), C(x), C′(x), and D(x) as products of
consecutive factors appearing in the product A(x):

A(x) := Â0 ×
2t∏
i=1

Âi,xinp(i) × Â2t+1 × pzt mod x0

= Â0 ·
s∏
i=1

Âi,xinp(i)︸ ︷︷ ︸
B(x)

× Âs+1,xinp(s+1)︸ ︷︷ ︸
C(x)

×
2t−s−1∏
i=s+2

Âi,xinp(i)︸ ︷︷ ︸
D(x)

× Â2t−s,xinp(2t−s)︸ ︷︷ ︸
C′(x)

×
2t∏

i=2t−s+1

Âi,xinp(i) · Â2t+1︸ ︷︷ ︸
B′(x)

×pzt mod x0.

Using the identity above, we can then rewrite A(x) as follows:

A(x) = B(x)× (C(x)D(x)C ′(x))×B′(x)× pzt mod x0

= vec
(
B(x)×

(
C(x)D(x)C ′(x)

)
×B′(x)

)
× pzt mod x0

=
(
B′(x)

T ⊗B(x)
)
× vec

(
C(x)D(x)C ′(x)

)
× pzt mod x0

=
(
B′(x)

T ⊗B(x)
)
×
(
C ′(x)

T ⊗C(x)
)
× vec

(
D(x)

)
× pzt mod x0.

Furthermore, recall that CRT values have the property that CRT(p∗k · uk)k =
∑

k p
∗
k · uk mod x0

for any tuple (uk)k, and the relation holds over Z when the uk’s are small compared to the pk’s.
Now, for a multilinear encoding α with level set S, denote by [α](k) its underlying CRT component
modulo pk (and similarly for vectors and matrices of encodings); in other words:

α = CRT
(
[α](1), . . . , [α](n)

)
·
∏
i∈S

z−1i mod x0.

With that notation and in view of the definition of pzt, the expression of A(x) can be extended
further as:

A(x) =
[
. . .
[
B(x)′T ⊗B(x)

](k)
. . .
]

×


. . .

p∗khkg
−1
k ·

[
C(x)′T ⊗C(x)

](k)
. . .

×


...[
vec(D(x))

](k)
...

 , (1)
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where the three matrices are respectively of dimensions 1× 4n, 4n× 4n and 4n× 1. For all x, the
fact that the branching program evaluates to zero (and hence A(x) is an encoding of zero) ensures
that the relation holds over Q and not just modulo x0: indeed, it guarantees that the factor that
each p∗k gets multiplied with is small modulo pk.

Now the key point of the attack is that the first matrix in the relation above depends only
on the first s bits of the input x, the second matrix only on the (s+ 1)-st bit of x, and the third
matrix on the remaining (t− s− 1) bits of x. Given integers i, j, b with 0 ≤ i < 2s, 0 ≤ j < 2t−s−1

and b ∈ {0, 1}, denote by W
(b)
ij the value A(x) ∈ Z corresponding to the input x whose first s bits

are the binary expansion of i, whose last (t− s− 1) bits are the binary expansion of j and whose

(s+ 1)-st bit is b. By the above, we can write W
(b)
ij in the form:

W
(b)
ij = Xi ·U (b) · Y j

where Xi is the row vector of size 4n, Y j the column vector of size 4n and U (b) the square matrix
of size 4n that appear in Equation (1).

Assuming that 2min(s,t−s−1) ≥ 4n (which can be achieved by taking s = bt/2c as long as
2t/2 ≥ 8n), we can thus form two matrices W (0), W (1) with any choice of 4n indices i and j, and
those matrices satisfy a relation of the form W (b) = X · U (b) · Y with X, Y square matrices
of dimension 4n independent of b. The attack strategy is then similar to [CGH+15]. With high
probability on the sets of indices i and j, these matrices will be invertible over Q, and we will have:

W (0)
(
W (1)

)−1
=
(
XU (0)Y

)
·
(
XU (1)Y

)−1
= X ·U (0)

(
U (1)

)−1 ·X−1.
In particular, the characteristic polynomials of the matrices W (0)

(
W (1)

)−1
and U (0)

(
U (1)

)−1
are

equal, and since we know the W (b), we can compute that common polynomial P in polynomial
time, together with its factorization. Now the latter matrix is block diagonal, and satisfies:

U (0)
(
U (1)

)−1 ≡


. . .

Γ mod pk
. . .

 (mod x0)

where Γ =
(
C ′T0 ⊗C0

)
·
(
C ′T1 ⊗C1

)−1
(with obvious definitions for C0, C

′
0, C1, C

′
1). Therefore,

P decomposes as a product of factors Pk, k = 1, . . . , n, such that Pk(Γ ) ≡ 0 (mod pk). Moreover,
as characteristic polynomials over Q are essentially random matrices, the polynomials Pk should
heuristically be irreducible with high probability, and hence occur directly in the factorization of P
(that assumption, which is well verified in practice, appears as Conjecture 1 in [CGH+15, Section
3.3]). This yields to the complete recovery of the pk’s as pk = gcd

(
x0, Pk(Γ )

)
, where the Pk are the

irreducible factors of P .
Clearly, once the pk’s are found, it is straightforward to break indistinguishability obfuscation.

Indeed, given any two multilinear encodings at level {i}, applying rational reconstruction to their
ratio modulo pk reveals zi mod pk, and hence the entire zi. Then, even if the gk’s are kept secret,
rational reconstruction again applied to pzt allows to recover them. This makes it possible to
completely “decrypt” multilinear encodings, and hence obtain the full original randomized branching
program Ã.

In particular, we can distinguish between the obfuscation of two branching programs whenever
they are inequivalent under Kilian’s randomization. This applies for example to A and the functionally
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equivalent branching program A′ defined in Section 3.1, since A satisfies Ã1,0 = Ã1,1 whereas

Ã′1,0 6= Ã′1,1.

3.4 Implementation of the attack

Since the attack relies on some heuristic assumptions regarding e.g. the irreducibility of the factors
of the characteristic polynomial of U (0)

(
U (1)

)−1
corresponding to its block diagonal submatrices,

we have written an implementation to check that these assumptions were indeed satisfied in practice.
The source code in Sage [S+16] is provided in Appendix A.

Running that implementation, we have verified that we could always recover the full factorization
of x0 efficiently.

4 Generality of our attack

In the previous section, we have described a zeroizing attack that breaks CLT13-based indistin-
guishability obfuscation for a specific branching program (previously considered in [MSZ16]) for
which no previous attack was known in the CLT13 setting. In particular, that program does not
have the decomposable structure required to apply the attack of [CGH+15, Section 3.4]. In that
sense, we do extend the scope of zeroizing attacks beyond the setting of [CGH+15].

However, our attack setting may seem quite special at first glance. In particular, the following
aspects of our attack may seem to restrict its generality:

– we have described our attack against a somewhat simplified obfuscation construction, that yields
2× 2 matrix encodings and does not include all the countermeasures against potential attacks
suggested in [GGH+13b] and later papers;

– our attack appears to rely in a crucial way on the specific structure of the branching program
A (and its inp function in particular) in order to achieve the partitioning necessary to apply
zeroizing techniques;

– we only target a branching program for a very simple functionality (the identically zero function).

In this section, we show that all of these limitations can be overcome, so that our attack is in
fact quite general:

– we can apply it to essentially all proposed (single-input) iO candidates instantiated over CLT13
multilinear maps, including the single-input variants of [GGH+13b, MSW14, AGIS14, PST14,
BMSZ16, GMM+16];

– we can extend it to branching programs with an essentially arbitrary structure, including
oblivious branching programs;

– we can mount it with programs achieving essentially arbitrary functionalities.

4.1 Attacking other obfuscators

The attack of Section 3 targets a somewhat simplified obfuscator that takes a branching program,
randomizes it using Kilian-style random matrices together with multiplicative bundling with random
scalars αi,x, and outputs multilinear encodings of the resulting randomized matrices directly. Actual
candidate constructions of indistinguishability obfuscation in the literature, on the other hand, are
usually more complicated, and typically involve extending the matrices in the original branching
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program using dummy diagonal blocks that get canceled out when carrying out multilinear zero
testing. The goal of these changes is usually to protect against classes of attacks that could exploit
the particular algebraic structure of branching programs in undesirable ways—see e.g. [GMM+16]
and references therein.

However, for the most part, these additional security features have no incidence on the ap-
plicability of our attack. This is because we only rely on the zero-testing of top-level multilinear
encodings of zero being small—the precise algebraic structure of the matrices involved is essentially
irrelevant for our purposes. This is in contrast, in particular, with Miles et al.’s annihilation at-
tacks [MSZ16], which do exploit algebraic properties of the branching program matrices (such as
low-degree polynomial relations they satisfy), and hence get thwarted by dummy submatrices used
in [GGH+13b, GMM+16].

More precisely, the only difference between proposed obfuscators that matters in our attack is
the dimension of the matrix encodings involved. If the obfuscated branching program Â consists of
w × w matrices instead of 2× 2 matrices as in Section 3, C ′(x)T ⊗C(x) is of dimension w2. As a
result, we need to construct matrices W (b) of dimension w2n, and in particular the number t of
input bits should satisfy 2t/2 ≥ 2w2n.

Note that this condition is never a restriction in non-trivial cases: this is because 2t/2 < 2w2n
implies that there is only a logarithmic number of input bits, or in other words a polynomial-
size domain. But indistinguishability obfuscation for functions with a polynomial-size domain
is trivial: it is equivalent to giving out the graph of the function in full, since it is a canonical
(hence indistinguishable) representation, and anyone with access to an obfuscation can recover it in
polynomial time.

We finish this paragraph by reviewing several candidate iO constructions and discussing how
they fit within the argument above. This will prove Theorem 1, which we now recall.

Theorem 1. Let O denote the single-input variant of the iO candidates in [GGH+13b, MSW14,
AGIS14, PST14, BMSZ16, GMM+16] (over CLT13 multilinear maps). There exists a branching
program A such that, given O(A), one can break the CLT13 multilinear maps in polynomial-time.

[AGIS14], [MSW14] and [BMSZ16]. The obfuscator described in Section 3.2 is essentially
identical to the single-input versions of the constructions from [AGIS14], [MSW14] and [BMSZ16].
The only difference is that those papers do not directly encode matrices at singleton multilinear
levels {i}, but use a more complicated level structure involving straddling sets. Since our attack
relies on the honest evaluation of the obfuscated branching program, it automatically respects the
multilinear level structure of any correct obfuscator. Therefore, it applies to those schemes without
any change.

[GGH+13b, GMM+16]. The main difference between the obfuscator proposed in [GGH+13b]
and the one described in Section 3.2 is that the former extends the original branching program
matrices Ai,b by random diagonal matrices ∆i,b of dimension d = 2t+ 5 before applying Kilian’s
randomization and multilinear encoding (and the matrices Ai,b themselves are assumed to be of
dimension 5 instead of 2, to accommodate for the original formulation of Barrington’s theorem). In
other words, the randomized branching program Ã has the form:

Ãi,b = αi,bRi ·
[
Ai,b

∆i,b

]
·Ri+1,
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with the bookend matrices Ã0, Ã2t+1 adapted in such a way that the condition:

A(x) = 0 if and only if Ã0 ·
∏
i

Ãi,xinp(i) · Ã2t+1 = 0

continues to hold. Because that condition holds, our attack applies in exactly the same way, except
again for the fact that the dimension of encoded matrices Ãi,b increases from 2 to w = d+5 = 2t+10.
This means that the condition on t becomes 2t/2 ≥ 2(2t+ 10)2n, which is, again, not a meaningful
restriction.

Note that the attack does not depend on any property of the matrices ∆i,b’s, other than the fact
that correctness holds for A(x) = 0. Therefore, the countermeasure of having a completely random
∆i,b proposed in [GMM+16] does not prevent the attack. This shows that the weak multilinear map
model described in [GMM+16] does not prevent this zeroizing attack, while it seemingly provably
prevents annihilitations attacks over GGH13 [MSZ16].

[PST14]. The situation for the obfuscator of [PST14] is similar. In that scheme, the randomized
branching program Ã takes the form:

Ãi,b = αi,bRi ·
[
Ai,b

I5

]
·Ri+1,

where I5 is simply the 5 × 5 identity matrix, and the original branching program matrices are
also assumed to be of dimension 5. Again, our attack extends to that setting directly, the only
difference being that the dimension of encoded matrices Ãi,b increases from 2 to w = 10. The fact
that the scheme from [PST14] uses straddling sets has, again, no bearing on the applicability of our
techniques.

4.2 Attacking branching programs with arbitrary structure

Another apparent limitation of our attack is related to the particular structure of the branching
program A, and in particular its inp function. Indeed, the key point of our attack is our ability to
obtain a partitioning of the branching program, i.e. express the associated zero-test value A(x) as a
product of three successive factors depending on disjoint subsets of input bits. We achieved this by
observing that A(x) can be put in the form:

A(x) = B(x) ·C(x) ·D(x) ·C ′(x) ·B′(x)× pzt mod x0

where B(x),B′(x) depend on one subset of input bits, C(x), C ′(x) a different, disjoint subset,
and D(x) on a third subset disjoint from the first two. We then used the tensor product identity
mentioned in Section 2.1 to reorder those matrices so as to get a factor depending only on B(x)
and B′(x) on the left, another one depending only on C(x) and C ′(x) in the middle, and a last one
depending only on D(x) on the right:

A(x) =
(
B′(x)

T ⊗B(x)
)
×
(
C ′(x)

T ⊗C(x)
)
× vec

(
D(x)

)
× pzt mod x0.

This technique seems to rely in an essential way on the order in which input bits are assigned to
successive branching program layers, and although we did not come up with the branching program
A ourselves (as it was proposed earlier in [MSZ16]), we have to admit that it is rather special.
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Indeed, proposed candidate iO constructions are often supposed to operate on oblivious branching
programs, whose length is a multiple of the number t of input bits and whose inp function is fixed
to inp(i) = (i mod t) + 1 (i.e. the input bits are associated to successive layers in cyclic order). This
is natural, since all branching programs can be trivially converted to that form, and a canonical inp
function is needed to ensure indistinguishability. However, the branching program A above is not
oblivious, and it isn’t immediately clear that our partitioning technique based on tensor products
extends to that case.

Fortunately, it turns out that our technique does extend to oblivious (and hence to arbitrary)
branching programs as well, at the cost of an increase in the dimension of the matrix encodings
involved. There is in fact a simple greedy algorithm that will convert any scalar expression consisting
of a product of three types of matrices Bi, Ci, Di to an equal product of three factors, the first of
which involves only the Bi’s, the second only the Ci’s and the third only the Di’s. Writing down a
description of the algorithm would be somewhat tedious, but it is easy to understand on an example.

If we consider for example an oblivious branching program A2 of length 2t (i.e. with two groups
of t layers associated with all successive input bits), the corresponding zero-test value can be put in
the form:

A(x) = B ·C ·D ·B′ ·C ′ ·D′ · pzt mod x0

where, again, B,B′ depend on one subset of input bits, C, C ′ a different, disjoint subset, and D, D′

on a third subset disjoint from the first two (and we omit the dependence of these matrices on x to
simplify notations). The matrices all have dimension w×w, except the first and the last, which are of
dimension 1×w and w×1 respectively. Denoting by Azt the value such that A(x) = Azt ·pzt mod x0,
we can then put Azt in the desired partitioned form as follows:

Azt = BC · vec
(
D · (B′C ′) ·D′

)
= BC

(
D′T ⊗D

)
vec(IwB

′C ′)

= BC
(
D′T ⊗D

)(
C′T ⊗ Iw

)
vec(B′)

=
(
vec(B′)T ⊗B

)
· vec

(
C
(
D′T ⊗D

)(
C′T ⊗ Iw

))
=
(
vec(B′)T ⊗B

)
·
(
C′ ⊗ Iw ⊗C

)
· vec

(
D′T ⊗D

)
,

and clearly a similar procedure works for any number of layer groups, allowing us to adapt the
attack to oblivious branching programs in general.

However, for an oblivious branching program of length mt (with m groups of t layers), we can
see that the dimension of the resulting square matrix in the middle is given by w2m−1, and therefore,
we need to have 2t/2 ≥ nw2m−1 to obtain sufficiently many zeros to apply the zeroizing technique.
As a result, we can attack oblivious branching programs only when the number m of layer groups is
not too large compared to the number t of input bits. In particular, we cannot break the obfuscation
of oblivious branching programs with length greater than ω(t2) using that technique.

Thus, in principle, using oblivious branching programs whose length is quite large compared to
the number of inputs might be an effective countermeasure against our attack. It remains to be
seen whether further improvements could yield to a successful attack against oblivious branching
programs of length Ω(tc) for c > 2.

On the flip side, we will see below that by adding “dummy” input bits, we can pad essentially
any oblivious branching program into another oblivious branching program that computes the same
functionality (ignoring the dummy input bits), with the same number of layer groups, and whose
obfuscation is broken using our techniques.
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4.3 Attacking arbitrary functionalities

The attack on Section 3 was described against a branching program for the always-zero function.
Since we do not use any property of the underlying matrices other than the fact that the program
evaluates to zero on many inputs, it is clear that the attack should extend to branching programs
for other functionalities as well. Describing the class of functionalities we can capture in that way is
not easy, however.

If we take for example a branching program A′′ with the same input size, the same length and
the same inp function as A (and with encoding matrices of dimension w, say), then a sufficient
condition for the attack to apply to A′′ is essentially that we can find sufficiently many “contiguous”
inputs on which the program evaluates to zero. More precisely, suppose that we can find a subset R
of the set [t] of input bit indices and an assignment (yr)r∈R ∈ {0, 1}R of these input bits such that
A′′ evaluates to zero on all inputs x ∈ {0, 1}t that coincide with (yr) on R. In other words:(

∀r ∈ R, xr = yr
)

=⇒ A′′(x) = 0.

Then we can break the obfuscation of A′′ using the obfuscator of Section 3.2 as soon as 2(t−r)/2 ≥
2w2n. The idea is simply to apply the attack in 3.3 with s chosen in such a way that s+ 1 is exactly
the (b(t− r)/2c+ 1)-st element of [t] \R (in increasing order). Then, A(x) satisfies Equation (1) for
all values of x with xr = yr for r ∈ R. This provides at least 2(t−r)/2−1 choices for Xi, 2(t−r)/2−1 for
Y j and two choices for U (b), so we have enough zero values to apply the attack.

While the condition above is quite contrived, it should be satisfied by many branching programs
(especially as t− r can be chosen to be logarithmic: it follows that almost all functionalities should
satisfy the condition), including many natural examples (a branching program whose underlying
circuit is the nontrivial conjunction of two sub-circuits, one of which depends only on t− r input
bits would be an example). But it gives little insight into the class of functionalities we end up
capturing.

A different angle of approach towards this problem is the padding technique already considered
in [MSZ16, Section 3.3]. Given a branching program A0 implementing any functionality and for
which we can find an input where it evaluates to zero, we can convert it into another branching
program A∗0 with slightly more input bits, that implements the same functionality (it simply ignores
the additional dummy input bits and evaluates to the same values as A0 everywhere), and whose
obfuscation is broken using our attack.

This is in fact trivial: take the branching program A0, and append to it (before the final bookend
matrix) additional layers associated with the new input bits consisting entirely of identity matrices,
in the same order as the inp function of the branching program A from Section 3.1. Since all the
added layers contain only identity matrices, they do not change the functionality at all. Then, if we
simply fix the non-dummy input bits to the value on which we know A0 vanishes, we are exactly
reduced to the setting of Section 3.3, and our attack applies directly.

This may be a bit too trivial, however, since we could just as well append a branching program
with a “decomposable” structure in the sense of [CGH+15, Section 3.4], and the corresponding
attack would apply already.

A less trivial observation is that we can start from any oblivious branching program A0 (for which
we know an input evaluating to zero), and convert it to another oblivious branching program A∗0
with more input bits but the same number of layer groups, that implements the same functionality
in the sense above, and whose obfuscation is, again, broken using our attack.
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The idea this time is to add layers associated with the dummy input bits with all-identity
matrices in each layer group. This does not change the functionality, and once we fix the original
input bits to the input evaluating to zero, we are reduced to breaking an oblivious branching program
for the always-zero function with a fixed number m of layer groups and a number of input bits that
we can choose. By the discussion of Section 4.2 above, if the matrix encodings are of dimension w,
it suffice to add t dummy inputs bits where 2t/2 ≥ nw2m−1, which is always achievable.

5 Conclusion

Our attack shows that the single-input candidate iO constructions for branching programs over the
CLT13 multilinear map proposed in the literature should be considered insecure. We leave as a
challenging open problem how to extend our attack to the dual-input iO schemes, and to GGH13.
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Mariana Raykova, Amit Sahai, and Mehdi Tibouchi. Zeroizing without low-level zeroes: New MMAP
attacks and their limitations. In Rosario Gennaro and Matthew Robshaw, editors, CRYPTO (1), volume
9215 of LNCS, pages 247–266. Springer, 2015.

CHL+15. Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé. Cryptanalysis of the
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A Source code of the attack

lam=20

n=3

t=ceil(log(4*n ,2)+1)*2+2

l0=4*n

inp=[min(i,2*t-1-i) for i in range (2*t)]

def cmod(x,n):

z=x%n

if (z>n//2):

z=z-n

return z

def cmodM(M,n):

Z=matrix(ZZ,M.nrows(),M.ncols ())

for i in range(M.nrows ()):

for j in range(M.ncols ()):

Z[i,j]=cmod(M[i,j],n)

return Z

def encode(m,idx ,SK ,PP):

[lam ,spb ,lpb ,x0,pzt]=PP

[p,g,z,H]=SK

msg=[ZZ(m)%g[i] for i in range(n)]

rr=[ZZ.random_element (2^ spb) for i in range(n)]

emsg=[msg[i]+g[i]*rr[i] for i in range(n)]

tmp=crt(emsg ,p)/z[idx]%x0

return tmp

def encodem(M,idx ,SK ,PP):

[lam ,spb ,lpb ,x0,pzt]=PP

n1=M.nrows (); n2=M.ncols ()

tmp=matrix(Integers(x0),n1 ,n2)

for i in range(n1):

for j in range(n2):

tmp[i,j]= encode(M[i,j],idx ,SK ,PP)

return tmp

def instgen(lam ,n,t):

lbr =2*t+2

spb=lam
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lpb =2*( spb +2)* lbr+spb

print "params: n, t, spb , lpb =",n,t,spb ,lpb

g=[ random_prime (2^spb) for i in range(n)]

q=prod(g)

Zq=Integers(q)

p=[ random_prime (2^lpb) for i in range(n)]

x0=prod(p)

pis=[x0/p[i] for i in range(n)]

H=matrix(ZZ,n,n,[ZZ.random_element (2^spb) for i in range(n^2)])

Pih =[[ pis[i]*H[j][i]*(g[i]^( -1)%p[i]) for i in range(n)] for j in range(n)]

z=[ Integers(x0). random_element () for i in range(lbr)]

Z=prod(z)

pzt=[Z*crt(Pih[j],p)%x0 for j in range(n)]

SK=[p,g,z,H]

PP=[lam ,spb ,lpb ,x0,pzt]

ve0=matrix (1,2,[0,1])

ve1=matrix (2,1,[1,0])

I=identity_matrix (2)

BR0=[ve0 ]+[I for i in range (2*t)]+[ ve1]

BR1=[ve0 ]+[I for i in range (2*t)]+[ ve1]

BR=[BR0 ,BR1]

k=1

R=matrix(ZZ ,2,2,[0,1,1,0])

BR0p=[ve0 ]+[I for i in range (2*t)]+[ ve1]

BR1p=[ve0 ]+[R for i in range(k)]+[I for i in range (2*t-2*k)]\

+[R for i in range(k)]+[ ve1]

BRp=[BR0p ,BR1p]

RM=[ random_matrix(Zq ,2,2) for i in range (2*t+1)]

RMi=[RM[i]^( -1) for i in range (2*t+1)]

alp =[[Zq.random_element () for i in range (2*t)],\

[Zq.random_element () for i in range (2*t)]]

RBR0=[BR0 [0]* RMi [0]]+[ alp [0][i-1]*RM[i-1]* BR0[i]*RMi[i] \

for i in [1..2*t]]+[RM[-1]*BR0[-1]]

RBR1=[BR1 [0]* RMi [0]]+[ alp [1][i-1]*RM[i-1]* BR1[i]*RMi[i] \

for i in [1..2*t]]+[RM[-1]*BR1[-1]]

RBR=[RBR0 ,RBR1]

RBR0p =[BR0p [0]* RMi [0]]+[ alp [0][i-1]*RM[i-1]* BR0p[i]*RMi[i] \

for i in [1..2*t]]+[RM[-1]* BR0p [-1]]

RBR1p =[BR1p [0]* RMi [0]]+[ alp [1][i-1]*RM[i-1]* BR1p[i]*RMi[i] \

for i in [1..2*t]]+[RM[-1]* BR1p [-1]]

RBRp=[RBR0p ,RBR1p]
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eRBR =[[ encodem(RBR [0][i],i,SK,PP) for i in range(lbr)], \

[encodem(RBR [1][i],i,SK ,PP) for i in range(lbr)]]

eRBRp =[[ encodem(RBRp [0][i],i,SK ,PP) for i in range(lbr)], \

[encodem(RBRp [1][i],i,SK ,PP) for i in range(lbr)]]

print "Randomized BP encoded."

return [SK,PP,BR,RBR ,eRBR ,BRp ,RBRp ,eRBRp]

def fx(x,BR ,inp ,PP ,red =0):

[lam ,spb ,lpb ,x0,pzt]=PP

st=ZZ(x). binary ()

while(len(st)<t):

st=’0’+st

res=BR [0][0]

for i in range (2*t):

s=ZZ(st[inp[i]])

if red:

res=res*BR[s][i+1]%x0

else:

res=res*BR[s][i+1]

if red:

res=res*BR[0][ -1]%x0

else:

res=res*BR[0][ -1]

return res

def atkio(eRBR):

[lam ,spb ,lpb ,x0,pzt]=PP

m=t//2

W0=matrix(Integers(x0),l0,l0)

W1=matrix(Integers(x0),l0,l0)

for i in range(l0):

for j in range(l0):

W0[i,j]=fx(i+2^(t//2+2)*j,eRBR ,inp ,PP ,1)[0 ,0]

W1[i,j]=fx(i+2^m+2^(t//2+2)*(j),eRBR ,inp ,PP ,1)[0 ,0]

W0p=(W0*pzt [0]). change_ring(ZZ)

W0p=cmodM(W0p ,x0)

W1p=(W1*pzt [0]). change_ring(ZZ)

W1p=cmodM(W1p ,x0)

T1=W0p*W1p^(-1)

T1p=T1.charpoly ()

T1pf=T1p.factor ()

rm=t-m

tmp1=eRBR [0][rm]. tensor_product(eRBR[0][-1-rm])

tmp2=eRBR [1][rm]. tensor_product(eRBR[1][-1-rm])

tmp3=(tmp1*tmp2 ^( -1)). change_ring(ZZ)%x0

res =[]

for i in range(len(T1pf )):

ttmp=T1pf[i][0]. subs(x=tmp3)%x0

for j1 in range(ttmp.nrows ()):

for j2 in range(ttmp.ncols ()):
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tmpgcd=gcd(ttmp[j1,j2],x0)

if tmpgcd not in res:

res.append(tmpgcd)

return res

[SK ,PP ,BR ,RBR ,eRBR ,BRp ,RBRp ,eRBRp]= instgen(lam ,n,t)

[lam ,spb ,lpb ,x0 ,pzt]=PP

res1=atkio(eRBR)

res2=atkio(eRBRp)

tmpsk=SK[0]

res1.sort (); res2.sort (); tmpsk.sort()

if res1==res2 and res2==tmpsk:

print "Secret key recovered"

else:

print "Failed"
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