
DIFFERENTIALS ON GRAPH COMPLEXES II - HAIRY GRAPHS
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Abstract. We study the cohomology of the hairy graph complexes which compute the rational homotopy of embedding
spaces, generalizing the Vassiliev invariants of knot theory. We provide spectral sequences converging to zero whose first
pages contain the hairy graph cohomology. Our results yield a way to construct many non-zero hairy graph cohomology
classes out of (known) non-hairy classes by studying the cancellations in those sequences. This provide a first glimpse
at the tentative global structure of the hairy graph cohomology.

1. Introduction

The graph complexes in its various flavors are some of the most intriguing objects of homological algebra.
Determining their cohomology is arguably one of the most fundamental open problem in the field, and at present
there are few mathematical tools available to obtain information on this cohomology.

In this paper we study one type of graph complexes, namely the complexes of linear combinations of ordinary
graphs with external legs (“hairs”), such as the following examples:

(1) , , , .

Due to different possible choices regarding the gradings and signs associated to symmetries, the complexes of such
hairy graphs in fact come in various flavors, indexed by a pair of integers (m, n). We denote the corresponding
hairy graph complexes by HGCm,n, a detailed definition can be found in section 2.5 below. These complexes
compute the rational homotopy of the spaces of embeddings of disks modulo immersions, fixed at the boundary

Emb∂(Dm,Dn)

provided that n − m ≥ 3, cf. [1, 8]. Furthermore, the diagrams enumerating Vassiliev invariants of knot theory
appear as the top cohomology of the hairy graph complex HGC1,3. The long standing open problem we are
attacking in this paper is the following:

Open Problem: Compute the hairy graph cohomology H(HGCm,n).
Unfortunately, we currently have very few tools available for computing this cohomology, or even for guiding

our intuition as to what the correct answer might be. The purpose of this paper is to introduce a new tool to attack
the above open problem. It will not give us a complete answer as to what H(HGCm,n) is, but it will allow us to
construct (infinitely) many new non-zero hairy graph cohomology classes, and display a rich set of constraints
among all the hairy classes, thus giving a glimpse of the global structure of H(HGCm,n).

Before describing our results, let us review some known basic facts and previous results about the hairy graph
cohomology. First, from the definition of the complexes HGCm,n given below it will be evident that they split into
subcomplexes according to the number of hairs and the Betti number (i.e., the loop order) of graphs. In other
words, the complexes HGCm,n are tri-graded, by the cohomological degree, the number of hairs, and the loop
order. The subcomplexes of fixed numbers of hairs and loops are finite dimensional. Furthermore, the complexes
HGCm,n and HGCm′,n′ are isomorphic up to some unimportant degree shifts if m ≡ m′ mod 2 and n ≡ n′ mod 2.
Hence it suffices to understand 4 possible cases according to parity of m and n.

Several less trivial partial results have been obtained about the hairy graph cohomology in the last decades.
Classes in low degrees have been computed by hand or with computer assistance [9, 5]. Furthermore, it is known
[22, Propositions 4.1 and 4.4] that the 2-hair-subspace H−1(HGC2−hair

1,3 ) and the 3-hair-subspace H1(HGC3−hair
2,3 ) are

each isomorphic to the non-hairy graph cohomology H−3(GC3). The Euler characteristics have been computed in
[19, 1, 18].
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Now let us describe the results of this paper, and the proposed line of attack on the open problem above. We
construct deformations of the graph differentials to differentials for which the cohomology can be computed for
m even, and can conjecturally be computed for m odd. The spectral sequences thus obtained can be used to obtain
information about the non-deformed cohomology. Concretely, our main result will be the following.

Theorem 1. For each n there is a differential D on HGC0,n with the following properties:
(1) D deforms the standard differential δ: The operation D− δ decreases the number of hairs by at least one.
(2) D preserves the grading on HGC0,n by the number

(loop order) + (number of hairs)

(3) We have H(HGC0,n,D) = 0.
(4) The spectral sequence associated to the filtration by number of hairs converges to H(HGC0,n,D) = 0, and

its first page consists of the hairy graph cohomology H(HGC0,n) = H(HGC0,n, δ).

For m odd we can also construct a similar deformation of the differential and hence an associated spectral
sequence. We conjecture (see Conjecture 1 below) that the resulting deformed complex is acyclic. This conjecture
is consistent with computer data for the hairy graph cohomology, which is available up to loop order 5.1

Next, let us describe the implications of Theorem 1 for the hairy graph cohomology. To this end, we need to
recall one more ingredient: By results of V. Turchin and the second author [24, 20] it is known that on each of the
complexes HGCn,n and HGCn−1,n there is a deformation of the differential (say D′) such that the cohomology of
the deformed complex is equal to the ordinary (non-hairy) graph cohomology:

H(HGCn,n,D′) � H(GCn) H(HGCn−1,n,D′) � H(GCn).(2)

These results and the definition of D′ in each case will be recalled in more detail in section 2.6 below. Here GCn is
the non-hairy graph complex, defined similarly to HGCm,n, except that graphs are not allowed to have hairs. The
result (2) is interesting because of the following facts:

• The structure of H(GCn) is significantly better understood then the structure of its hairy counterpart
H(HGCm,n). In particular, one knows large families of non-zero cohomology classes explaining all co-
homology in the computer accessible regime, and one has certain vanishing conjectures, see [11] for an
overview.

• From (2) and a spectral sequence argument one can in particular see that the non-hairy graph cohomology
H(GCn) embeds into H(HGCm,n)[1] for all m, n. Concretely, given a non-hairy graph cocycle γ ∈ GCn

the corresponding hairy graph cocycle is obtained by summing over all ways of attaching one hair to a
vertex of γ, pictorially:

GCn 3 γ 7→
∑

γ
∈ HGCm,n[1].

In particular, note that the hairy graph cohomology classes thus obtained all live in the one-hair piece of
the hairy graph cohomology.

• The differentials D′ respect the grading on the hairy graph complex by loop order.

Constraints on the cohomology and the waterfall mechanism. Let us now describe how to construct from
the above two spectral sequences a large set of additional non-trivial hairy graph cohomology classes by a process
we call the waterfall mechanism. We call the spectral sequence arising from the deformed differential D of
Theorem 1the first spectral sequence, and the one arising from D′ the second. Let us focus on the case of m, n
even for concreteness, say m = n = 0. The case of m even and n odd (and the cases m odd, n even or odd provided
Conjecture 1) is treated analogously.

Note that the convergence of the spectral sequence of Theorem 1 implies that the hairy graph cohomology
classes must come “in pairs”. More concretely, given a hairy graph cohomology class Γ, it will survive up to
some page of the spectral sequence, on which it is either killed by or kills (the image of) another hairy graph
cohomology class. More concretely, from (2) of Theorem 1 we see that if Γ lives in tri-degree

(cohom. degree, number of hairs, loop order) =: (d, h, l),

then the “partner class” that it kills (or is killed by) must live in tri-degree (d + 1, h− j, l + j) (or (d− 1, h + j, l− j))
for some yet unknown positive integer j. Hence from the existence of the non-trivial class Γ ∈ HGC0,0 we can
conclude that there is another nontrivial class in HGC0,0 whose tri-degree lies on a union of half-lines in Z3. A
representative of this (or rather, some such) class may be constructed by following the spectral sequence.

Now consider the second spectral sequence arising from the deformed differential D′ of (2). As before, non-
trivial hairy graph cohomology classes which are not in the image of H(GC0) must kill or be killed by other

1In fact, by now the third author has shown Conjecture 1, see [27, 26].
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non-trivial classes on some page of the spectral sequence. For this second spectral sequence, one can see that the
partner class of a class in tri-degree (d, h, l) must live in tri-degree (d + 1, h + j, l) (or (d − 1, h − j, l)) for a positive
integer j. In fact, it is shown in [21] that the spectral sequence abuts on the second page and hence j = 1.

Now, using the constraints provided by the first and the second spectral sequences together, we may construct a
large set of hairy graph cohomology classes from (assumed to be known) non-hairy classes. Concretely, consider
a non-hairy class γ ∈ H(GC0). As above, by adding one hair we obtain a non-trivial hairy class Γ. It must be killed
by (the image of) some other class, say Γ1, in the first spectral sequence (the one from Theorem 1). The class Γ1
must necessarily have more than one hair. Hence it must kill or be killed by (the image of) some other class in
the second spectral sequence. This class must again be killed by (the image of) some class in the first spectral
sequence etc., until at some point we reach another hairy graph cohomology class in the image of H(GC0). By this
process we conclude from the existence of a non-hairy graph cohomology class the existence of a string of hairy
graph cohomology classes. For an illustration of the process, see the computer generated table of the hairy graph
cohomology in Figure 1, in which (some of) the cancellations in the two spectral sequences have been inscribed.
We call the above mechanism to construct strings of hairy classes from non-hairy the “waterfall mechanism”, by
visual similarity of the cancellation pattern to a waterfall.

This paper may be seen as a continuation of [11], where we used similar methods to study the ordinary (non-
hairy) graph complexes.

Structure of the paper. In section 2 we recall the relevant definitions. Section 3 is dedicated to the construction
of the deformed differentials and the spectral sequences for m even, and in particular the proof of Theorem 1.
In section 3.3 we furthermore investigate how these spectral sequences can be used to construct many nontrivial
hairy graph cohomology classes by the “waterfall mechanism”.

The analogous construction of the deformed differentials for odd m is carried out in section 4. We leave the
vanishing result analogous to Theorem 1 open for odd m, see Conjecture 1.

2. Background and definitions

In this section we will recall basic notation and several results shown in the literature that will be used below,
for the readers convenience.

2.1. Basic Notation. We will work over a ground field K of characteristic zero. All vector spaces and differential
graded vector spaces are assumed to be K-vector spaces. The phrase differential graded will be abbreviated by
dg. We use cohomological conventions, so that the degree of the differentials is +1. We denote the subspace of
elements of homogeneous degree k of a graded vector space V by Vk. We define the degree shifted vector space
V[r] such that (V[r])k � Vk+r.

We will use the language of operads. A good introduction is found in the standard textbook [15]. The as-
sociative, commutative and Lie operads are denoted by Assoc,Com, Lie respectively. We denote by Poissn the
n-Poisson operad generated by a binary commutative product − ∧ − of degree zero, and a compatible Lie bracket
[−,−] of degree 1 − n.

The r-fold operadic (de)suspension is denoted by P{r}. It is defined such that if the vector space V carries
a P{r}-algebra structure then V[r] carries a P-algebra structure. We denote by Ω(C) the cobar construction of
coaugmented cooperad, and by P∨ the Koszul dual cooperad to P. The canonical minimal resolutions of the
”standard” operads are denoted by hoLie = Ω(Lie∨), hoPoissn = Ω(Poiss∨n ), etc. We will furthermore abbreviate
hoLien = hoLie{n − 1} so that we have a natural operad map hoLien → hoPoissn.

Suppose we are given some operad map f : Ω(C) → P. Such a map describes a Maurer-Cartan element (say
α f ) in the operadic convolution dg Lie algebra

Conv(C,P) =
∏

N

HomS(C(N),P(N)),

see [15, section 6.4.4] for the definition. We define the deformation complex of the operad map f to be the
convolution dg Lie algebra, twisted by the Maurer-Cartan element α f corresponding to f ,

Def(Ω(C)
f
−→ P) := Conv(C,P)α f .

2.2. M. Kontsevich’s graph complexes. We quickly recall the construction of the (commutative) graph com-
plexes. For more details see [24]. Consider the set of connected directed graphs graN,k with N vertices (uniquely)
labelled by numbers {1, . . . ,N} and k edges labelled set {1, . . . , k}. There is a natural right action of the group
S N × (S k n S k

2) by permuting the labels and changing the direction of edges. We define the operad Grad such that

Grad(N) = ⊕k

(
K〈graN,k〉 ⊗ K[d − 1]⊗k

)
S knS k

2
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where we declare that S k acts diagonally, and on the K[d − 1] factors by permutation with sign (if d is even), and
S k

2 acts with a sign if d is odd. The signs are chosen such that there is a map of operads ed → Grad. The full graph
complex is the deformation complex

fGCd = Def(hoLied → Grad) �
∏
N≥1

(Grad(N) ⊗ K[−d]⊗N)S N [d].

It carries a natural dg Lie algebra structure. We will in particular consider two subcomplexes

GCd ⊂ GC2
d ⊂ fGCd

where GC2
d is spanned by the connected graphs with at least bivalent vertices and GCd is spanned by connected

graphs with at least trivalent vertices. We denote the differential on the graph complex by δ. Combinatorially, δ
acts like

(3) δΓ =
∑

x∈V(Γ)

1
2

sx − ax,

where V(Γ) is the set of vertices of Γ, sx stands for “splitting of x” and means inserting instead of the vertex x
and summing over all possible ways of connecting the edges that have been connected to x to the new two vertices,

and ax stands for “Adding an edge at x” and means adding x on the vertex x. Unless x is an isolated vertex,
ax will cancel one term of the splitting sx.

The graph complex GCd splits into a direct product of finite dimensional sub complexes according to loop
order.

2.3. The spectral sequence of [11]. In the first paper of this series we introduced deformed differentials on the
graph complexes above. For d = 0 we can deform the differential to δ + ∇, where the additional operator ∇ is
defined as the Lie bracket with the tadpole graph

∇ = [ , ·].

Combinatorially, ∇ acts by adding one edge, in all possible ways.
For d = 1 we may deform the differential in a different way. First, note that there is a map of operads

Assoc→ Gra1

by sending the generator to the series of graphs

∑
k≥0

1
k!

1 2
k×

We hence obtain a map Lie→ Assoc→ Grad by composition. We may form the deformation complex

Def(hoLie1 → Grad) =: fGCΘ.

As a graded vector space the right hand side is isomorphic to fGC but the differential is deformed to, say,

δΘ = δ +
∑
k≥1

1
(2k + 1)!

 2k+1×

, ·


The main results of [11] is the following.

Theorem 2 (Theorem 2 and Corollary 4 of [11]).

H(GC2
0, δ + ∇) � K[1](4)

H(GC2
1, δΘ) � K[3](5)

As a consequence one obtains spectral sequences converging to (essentially) 0, whose first page contains
H(GC2

d, δ), for d = 0, 1.
4



2.4. Graph operads and operadic twisting. Given an operad P with a map hoLied → P one may apply the
formalism of operadic twisting [7] to produce another operad TwP which has the property that TwP algebras
may be ”naturally” twisted by Maurer-Cartan elements. Furthermore, TwP comes with a natural action of the
deformation complex Def(hoLied → P). We will consider the twisted operad

fGraphsd = TwGrad.

Elements of fGraphsd(N) are series of graphs with N numbered (”external”) vertices and an arbitrary number of
indistinguishable (”internal”) vertices, for example the following:

1 2

3 4

The operad fGraphsd contains a suboperad Graphsd (defined by Kontsevich [12]) spanned by graphs such that
each connected component contains at least one external vertex and such that each internal vertex is at least
trivalent. For example, the graph shown above does not satisfy these criteria, but the one below does:

1 2

3 4

Combinatorially the differential δ on Graphsd is given by summing over all ways of splitting an (either external
or internal) vertex, producing one additional internal vertex. Pictorially:

δ =
∑

or δ j =
∑

j .(6)

We refer the reader to [12, 24] for more details.
The important result for us is the following.

Theorem 3 (Kontsevich [12], Lambrechts–Volić [14]). The map of operads

Poissd → Graphsd.

given on generators by the assignment

− ∧ − 7→ 1 2 [−,−] 7→ 1 2

is a quasi-isomorphism. In particular H(Graphsd(1)) � K.

Furthermore, we note that (from the operadic twisting procedure) one obtains an action of the graph complex
GCd on the graphs operad Graphsd by operadic derivations. In particular, given any Maurer-Cartan element in
GCd we may construct a deformation of the differential of Graphsd. Two cases are important for us:

• For d = 0 we can choose the Maurer-Cartan element µ = . The deformed differential then has the
form δ + µ·, where µ· is the action of µ on Graphs0. Combinatorially, for a graph Γ ∈ Graphs0(r), the
element µ · Γ ∈ Graphs0(r) is a sum over all graphs obtained by adding one edge between two distinct
vertices (internal or external) in all possible ways. We denote the operad Graphsn with the thus twisted
differential by Graphs	0 .

• For d = 1 we may similarly consider the Maurer-Cartan element

Θ =
∑
j≥1

1
(2 j + 1)!

···︸   ︷︷   ︸
2 j+1 edges

and obtain a deformed differential δ+ Θ· on the operad Graphs1. We denote the operad Graphs1 with the
thus twisted differential by GraphsΘ

1 .

2.5. Hairy graph complexes. We consider the operad map hoPoissm
∗
→ Graphsn defined as the composition of

the natural maps
hoPoissm → Poissm → Com→ Poissn → Graphsn.

The hairy graph complexes HGCm,n are subcomplexes of the deformation complexes

Def(hoPoissm
∗
→ Graphsn) ⊃ HGCm,n.

Concretely, these complexes consist of maps that factor through hoLien and having images in connected graphs
all of whose external vertices have valence one. Alternatively, we may describe elements of HGCm,n as graphs

5



without bivalent vertices, the univalent vertices having degree m and the other vertices degree n (and the edges
degree 1 − n). Examples of such graphs are shown in (1) in the introduction.

The differential on the hairy graph complexes is the one inheritex from Graphsn. Combinatorially it is given
by splitting vertices, pictorially

δ =
∑

,

where one sums over splittings producing only vertices of valence at least 3.
The subcomplex HGCm,n ⊂ Def(hoPoissm

∗
→ Graphsn) is in fact closed under the natural Lie bracket on

the deformation complex. Combinatorially, the induced Lie bracket of two hairy graphs Γ and Γ′ is obtained by
summing over all ways of attaching one hair of Γ to a vertex of Γ′, minus the same with Γ and Γ′ interchanged.
Pictorially:

 Γ
,

Γ′
 =

∑ Γ

Γ′

±
∑ Γ′

Γ
.

2.6. The spectral sequences of [24, 20, 21]. One can check that the element

h0 =

is a Maurer-Cartan element of the dg Lie algebra HGCn,n. Likewise, one can check that the element

h1 =
∑
k≥1

1
(2k + 1)! ︸  ︷︷  ︸

2k+1×

is a Maurer-Cartan element in HGCn−1,n.

Theorem 4 ( [20], [21], [24]). There are quasi-isomorphisms

K ⊕ GC2
n → (HGCn,n, δ + [h0, ·])

K ⊕ GC2
n → (HGCn−1,n, δ + [h1, ·]).

Furthermore the spectral sequence obtained by the filtration by number of hairs abuts at the E2 page in the first
case.

3. The spectral sequence: m even

Our goal in this section is to deform the differential δ on the hairy graph complex HGC0,n to a new differential
D for which the cohomology is computable, and, in fact, trivial. The construction goes as follows: The space
of unary operations Graphsn(1) in the Kontsevich operad Graphsn of section 2.4 may be identified with the
completed symmetric algebra Ŝ (HGC0,n) as a graded vector space. Indeed, the identification is realized by deleting
the external vertex in a graph in Graphsn(1) and interpreting the edges previously incident at the external vertex
as hairs, as the following example illustrates.

1

7→

If the hairy graph thus produced is not connected, we interpret it as a product (within the symmetric algebra) of its
connected components. We call a graph in Graphsn internally connected if the graph obtained by deleting of all
external vertices is non-empty and connected. In particular, the internally connected graphs in Graphsn(1) may
be identified with HGCm,n as a graded vector space.2

It is clear from the combinatorial description (6) of the differential on Graphsn that the internally connected
graphs form a subcomplex of Graphsn(r) for each r. In particular, the differential of Graphsn(1) defines a differ-
ential on the internally connected subcomplex. Identifying this subcomplex with HGC0,n we obtain our desired

2Likewise, the internally connected graphs in Graphsn(r) can be identified with hairy graphs whose hairs come in r colors. Such graphs
are connected to the study of string links [17], but we will not pursue them further in this paper.
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deformed differential D as the one induced by the differential on Graphsn(1). This differential has the following
explicit combinatorial form:

D Γ = δΓ +
∑

S

Γ

S .

Here δ is the original (undeformed) differential and the sum on the right-hand side is over all subsets S of the set
of hairs with at least two elements.

It is clear that our new differential D on HGC0,n is indeed a deformation of the original differential δ: Filtering
HGC0,n by the number of hairs, the differential induced by D on the associated graded is exactly δ. Furthermore,
the filtration by the number of hairs gives rise to the spectral sequence of Theorem 1. To show Theorem 1 it hence
suffices to show the following result.

Proposition 1. The complex (HGC0,n,D) is acyclic, and the spectral sequence associated to the filtration by arity
of the external vertex converges to 0.

Proof. The complex Graphsn(1), and the internally connected piece splits into a direct sum of finite dimensional
subcomplexes according to the Euler characteristic of graphs. Hence the above spectral sequence clearly converges
to the cohomology H(HGC0,n,D). Hence it suffices to show that this cohomology vanishes. A proof of this
vanishing result may be found in [16] (see in particular Appendix B therein), where the internally connected
subcomplex was denoted by CG. (In fact, loc. cit. only considers the case n = 2, but this does not play a role for
the proof.)

�

3.1. Remark: The image of the ordinary graph cohomology. As noted in (e.g.) [21] the ordinary (non-hairy)
graph complex GCn may be embedded into the hairy complexes HGCm,n by adding one hair, in all possible ways.

(7) γ 7→ F(γ) :=
∑

v

γ
(attach hair at vertex v)

Furthermore, this map induces an injection on the cohomology level. In particular, the image of any bald graph
cocycle γ ∈ GCn yields a cocycle Γ ∈ HGC0,n which must be a coboundary under the deformed differential D
according to Proposition 1. The purpose of this section is to remark that one has an explicit formula for the element
whose D-coboundary is Γ. To this end let us restrict to the subcomplex GC1vi

n ⊂ GCn of one-vertex-irreducible
graphs.3 (This subcomplex is known to be quasi-isomorphic to the full complex [6, 24] and hence restricting to
the subcomplex does not harm generality.) Define the map

(8)
GC1vi

n → HGC0,n

γ 7→ γ1

that sums over all vertices of γ, deleting the vertex and declaring the incident edges as hairs.

Proposition 2. The map γ 7→ γ1 above satisfies the equation

(δγ)1 = Dγ1 ± F(γ).

In particular, it follows that if γ ∈ GCn is a one-vertex irreducible cocycle, then

Dγ1 = ±Γ.

3.2. Remark: Compatibility of the differentials. By Theorem 1 and the results recalled in sections 2.3 and 2.6
we have several spectral sequences containing the non-hairy and hairy graph cohomology.

We want to remark that all the above deformations of the differential are quite beautifully compatible, in the
sense that they may be extracted from one deformation of the differential on HGC0,n (n = 0, 1). In fact, we saw
at the beginning of this section that HGC0,n may be considered as the internally connected part of Graphsn(1),
as a graded vector space, and the differential on Graphsn(1) yielded the deformed differential D on HGC0,n. But
we may as well consider HGC0,n as the internally connected part of Graphs	0 (1) for n = 0 and GraphsΘ

0 (1) for
n = 1,4 and consider the corresponding induced differentials (say D̃) on HGC0,0 and HGC0,1. The differential D̃
deforms D and hence also the original differential δ.

In fact, one has the following results:

3A graph is called one-vertex-irreducible if it has no cut vertices, i.e., no vertices whose removal would disconnect the graph.
4See the end of section 2.4 for the definition.
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1 2 3 4 5 6 7 8

9 116 116

8 115

7 112 112

6 111

5 18 111

4 18

3 14 17

2

1 11 11 14 11 11, 14

1 2 3 4 5 6 7 8

9 16

8

7 15 15 25

6 12

5 12 22 32 52

4 11 11 1−1

3 11 11 21 21 31

2 1−2 1−2

1 1−2 1−2 2−2 2−2, 1−5 1−5

Figure 1. Computer generated table of the dimensions of the hairy graph cohomology
dimH(HGC2,2) (left) and dimH(HGC2,3) (right). The rows indicate the number of hairs (↑),
the columns the loop order (→). A table entry 13 means that there the degree 3 subspace is
one-dimensional. The arrows indicate (some of) the cancellations of classes in the two spectral
sequences discussed in section 3.3, which we call the “waterfall mechanism”. The computer
program used approximate (floating point) arithmetic, so the displayed numbers should not be
considered as rigorous results.

• One can consider the descending complete filtration on (HGC0,n, D̃) by loop number (in HGCn).5 The
associated graded complex is the complex (HGC0,n, [hn, ·]) considered in section 2.6.

• One can consider the descending complete filtration on (HGC0,n, D̃) by the number of loops in the images
of hairy graphs in Graphsn(1).5 The associated graded complex is (HGC0,n,D) as considered above.

• If n = 0 the map (8) is already a map of complexes (GC0, δ + ∇) → (HGC0,n, D̃). For n = 1 there is a
modified version of the map (8) defined as

γ 7→ F′(γ)
∑
k≥0

1
(2k + 1)!

∑ Γ︸  ︷︷  ︸
2k+1×

(sum over all ways of attaching hairs)

• Proposition 2 extends nicely. Namely, the map (8) satisfies for n = 0 the compatibility relation

D̃γ1 = ((δ + ∇)γ)1 ± F(γ)

and for n = 1 the relation
D̃γ1 = (δΘγ)1 ± F′(γ).

3.3. Picture of the hairy graph cohomology: The waterfall mechanism. As described in the introduction, the
spectral sequences considered above can be used to generate many (non-trivial) hairy graph cohomology classes
from non-hairy classes. Concretely, start with a nontrivial non-hairy graph cocycle γ. Then the corresponding
hairy cocycle Γ = F(γ) is a non-trivial graph cocycle in (HGC0,n, δ). Hence it must be killed by some other
cocycle X under the deformed differential D. In fact, by the remarks of section 3.1 we may take X = γ1. Now X
must either kill or be killed by some other cohomology class Y in the second spectral sequence. This class Y must
in turn kill or be killed by another class, etc.

Overall, there is a string of non-trivial hairy graph cohomology classes obtained from any non-hairy class. The
tables in Figure 1 show the dimensions of the hairy graph cohomology in each bidegree (number of hairs and loop
order). The arrows indicate how classes kill each other in the two spectral sequences of Theorem 1 (blue) and
Theorem 4 (red). (Not all cancellations are shown for the sake of readability.)

We call this mechanism of creating hairy classes from bald the “waterfall mechanism”. (The cancellation
patterns look a bit like streams of water going downhill. The (bald) cohomology in the bottom line is witness that
there are streams above it, and a source from which streams originate.)

5 Note that the number of loops of an element Γ ∈ HGC0.n differs from the number of loops of the image of that element in Graphsn(1) by
the number of hairs minus one.
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We note that in the case of even n the waterfall mechanism accounts for all hairy classes in the computer
accessible regime. For odd n, we see an additional 4 classes which do not originate from bald classes in hairs/loop
order combinations (1, 5), (4, 5), (4, 3) and (6, 3).

Note also that the convergence of the spectral sequences to known data is not enough to reconstruct the precise
location (i.e., tri-degree) of non-trivial cohomology classes in the “string”, because we do not know on in general
on which pages certain classes are cancelled. However, the picture in Figure 1 seems to indicate that such cancel-
lations follow a fairly regular pattern. The study of the abutment properties might hence be an interesting topic of
future work. Indeed, for n even the result of the forthcoming work [21] shows that all cancellations of the spectral
sequence of section 2.6 happen on the E2-page, in consistency with the numerical tables.

4. The spectral sequence: m odd

If the source dimension is m = −1, i.e., odd, we can define the following additional operation of degree 1:

∆ : HGC−1,n → HGC−1,n

Γ 7→


0 if Γ has exactly one hair.

∑
± Γ

where the sum in the second line is over all ways of choosing one of the hairs and reconnecting it to a vertex of Γ

other than the vertex the hair originated from.

Lemma 1. The operation ∆ squares to zero and (anti-)commutes with δ, so that (δ + ∆)2 = 0.

Proof. A straightforward verification. �

Of course, in analogy with Proposition 1 we would like to show the following result.

Conjecture 1. H(HGC−1,n, δ + ∆) = 0 for all n.

The conjecture is supported by low loop-order calculations and computer results, cf. Figure 2
We may endow HGC−1,n with a descending complete filtration by loop number. It is clear that the differential

∆ increases the loop number by one, and hence the first page of the associated spectral sequence will agree with
(HGC−1,n,∆). Let us summarize the situation.

Proposition 3. Consider the spectral sequence obtained from the filtration by loop order on (HGC−1,n, δ + ∆). Its
first page is the hairy graph complex (HGC−1,n, δ). Furthermore, if Conjecture 1 holds, than the spectral sequence
converges to 0.

Proof. The only non-obvious statement is that the spectral sequence converges to the cohomology. However, it
holds in general that the spectral sequence of a descending complete (bounded above) filtration converges to a
subspace of the cohomology, which must 0 in this case as the cohomology is (assumed to be) 0. �

4.1. Tentative picture of the hairy graph cohomology for m odd and the waterfall mechanism. If Conjecture
1 holds we may again use the two spectral sequences of Theorem 4 and of the previous section to generate many
non-trivial hairy cohomology classes out of bald classes, just as in section 3.3. We will again call the mechanism
the “waterfall mechanism”. The tentative cancellations in the two spectral sequences are illustrated in Figure 2 in
the computer accessible regime.
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