
Article

The Simultaneous Local Metric Dimension
of Graph Families

Gabriel A. Barragán-Ramírez 1, Alejandro Estrada-Moreno 1, Yunior Ramírez-Cruz 2,*
and Juan A. Rodríguez-Velázquez 1

1 Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Av. Països Catalans 26,
43007 Tarragona, Spain; gbrbcn@gmail.com (G.A.B.-R.); alejandro.estrada@urv.cat (A.E.-M.);
juanalberto.rodriguez@urv.cat (J.A.R.-V.)

2 Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, 6 av. de la Fonte,
L-4364 Esch-sur-Alzette, Luxembourg

* Correspondence: yunior.ramirez@uni.lu

Received: 10 May 2017; Accepted: 24 July 2017; Published: 27 July 2017

Abstract: In a graph G = (V, E), a vertex v ∈ V is said to distinguish two vertices x and y if
dG(v, x) 6= dG(v, y). A set S ⊆ V is said to be a local metric generator for G if any pair of adjacent
vertices of G is distinguished by some element of S. A minimum local metric generator is called
a local metric basis and its cardinality the local metric dimension of G. A set S ⊆ V is said to be
a simultaneous local metric generator for a graph family G = {G1, G2, . . . , Gk}, defined on a common
vertex set, if it is a local metric generator for every graph of the family. A minimum simultaneous
local metric generator is called a simultaneous local metric basis and its cardinality the simultaneous
local metric dimension of G. We study the properties of simultaneous local metric generators and
bases, obtain closed formulae or tight bounds for the simultaneous local metric dimension of several
graph families and analyze the complexity of computing this parameter.
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1. Introduction

A generator of a metric space is a set S of points in the space with the property that every point
of the space is uniquely determined by its distances from the elements of S. Given a simple and
connected graph G = (V, E), we consider the function dG : V ×V → N, where dG(x, y) is the length
of the shortest path between u and v and N is the set of non-negative integers. Clearly, (V, dG) is
a metric space, i.e., dG satisfies dG(x, x) = 0 for all x ∈ V, dG(x, y) = dG(y, x) for all x, y ∈ V and
dG(x, y) ≤ dG(x, z) + dG(z, y) for all x, y, z ∈ V. A vertex v ∈ V is said to distinguish two vertices x
and y if dG(v, x) 6= dG(v, y). A set S ⊆ V is said to be a metric generator for G if any pair of vertices of
G is distinguished by some element of S.

Metric generators were introduced by Blumental [1] in the general context of metric spaces. They
were later introduced in the context of graphs by Slater in [2], where metric generators were called
locating sets, and, independently, by Harary and Melter in [3], where metric generators were called
resolving sets. Applications of the metric dimension to the navigation of robots in networks are
discussed in [4] and applications to chemistry in [5,6]. This invariant was studied further in a number
of other papers including, for instance [7–20].

As pointed out by Okamoto et al. in [21], there exist applications where only neighboring vertices
need to be distinguished. Such applications were the basis for the introduction of the local metric
dimension. A set S ⊆ V is said to be a local metric generator for G if any pair of adjacent vertices
of G is distinguished by some element of S. A minimum local metric generator is called a local
metric basis and its cardinality the local metric dimension of G, denoted by diml(G). Additionally,
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Jannesari and Omoomi [16] introduced the concept of adjacency resolving sets as a result of considering
the two-distance in V(G), which is defined as dG,2(u, v) = min{dG(u, v), 2} for any two vertices
u, v ∈ V(G). A set of vertices S′ such that any pair of vertices of V(G) is distinguished by an element s
in S′ considering the two-distance in V(G) is called an adjacency generator for G. If we only ask S′

to distinguish the pairs of adjacent vertices, we call S′ a local adjacency generator. A minimum local
adjacency generator is called a local adjacency basis, and the cardinality of any such basis is the local
adjacency dimension of G, denoted adiml(G).

The notion of simultaneous metric dimension was introduced in the framework of the navigation
problem proposed in [4], where navigation was studied in a graph-structured framework in which
the navigating agent (which was assumed to be a point robot) moves from node to node of a “graph
space”. The robot can locate itself by the presence of distinctively-labeled “landmark” nodes in the
graph space. On a graph, there is neither the concept of direction, nor that of visibility. Instead,
it was assumed in [4] that a robot navigating on a graph can sense the distances to a set of landmarks.
Evidently, if the robot knows its distances to a sufficiently large set of landmarks, its position on
the graph is uniquely determined. This suggests the following problem: given a graph G, what are
the fewest number of landmarks needed and where should they be located, so that the distances
to the landmarks uniquely determine the robot’s position on G? Indeed, the problem consists of
determining the metric dimension and a metric basis of G. Now, consider the following extension
of this problem, introduced by Ramírez-Cruz, Oellermann and Rodríguez-Velázquez in [22]. Suppose
that the topology of the navigation network may change within a range of possible graphs, say
G1, G2, ..., Gk. This scenario may reflect several situations, for instance the simultaneous use of
technologically-differentiated redundant sets of landmarks, the use of a dynamic network whose
links change over time, etc. In this case, the above-mentioned problem becomes determining the
minimum cardinality of a set S, which must be simultaneously a metric generator for each graph Gi,
i ∈ {1, ..., k}. Therefore, if S is a solution for this problem, then each robot can be uniquely determined
by the distance to the elements of S, regardless of the graph Gi that models the network at each moment.
Such sets we called simultaneous metric generators in [22], where, by analogy, a simultaneous metric
basis was defined as a simultaneous metric generator of minimum cardinality, and this cardinality was
called the simultaneous metric dimension of the graph family G, denoted by Sd(G).

In this paper, we recover Okamoto et al.’s observation that in some applications, it is only
necessary to distinguish neighboring vertices. In particular, we consider the problem of distinguishing
neighboring vertices in a multiple topology scenario, so we deal with the problem of finding the
minimum cardinality of a set S, which must simultaneously be a local metric generator for each graph
Gi, i ∈ {1, ..., k}.

Given a family G = {G1, G2, ..., Gk} of connected graphs Gi = (V, Ei) on a common vertex set V,
we define a simultaneous local metric generator for G as a set S ⊆ V such that S is simultaneously
a local metric generator for each Gi. We say that a minimum simultaneous local metric generator for G
is a simultaneous local metric basis of G and its cardinality the simultaneous local metric dimension of
G, denoted by Sdl(G) or explicitly by Sdl(G1, G2, ..., Gk). An example is shown in Figure 1, where the
set {v3, v4} is a simultaneous local metric basis of {G1, G2, G3}.

It will also be useful to define the simultaneous local adjacency dimension of a family
G = {G1, G2, . . . , Gk} of connected graphs Gi = (V, Ei) on a common vertex set V, as the cardinality
of a minimum set S ⊆ V such that S is simultaneously a local adjacency generator for each Gi.
We denote this parameter as Sadl G.
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Figure 1. The set {v3, v4} is a simultaneous local metric basis of {G1, G2, G3}. Thus, Sdl(G1, G2, G3) = 2.

In what follows, we will use the notation Kn, Kr,s, Cn, Nn and Pn for complete graphs, complete
bipartite graphs, cycle graphs, empty graphs and path graphs of order n, respectively. Given a graph
G = (V, E) and a vertex v ∈ V, the set NG(v) = {u ∈ V : u ∼ v} is the open neighborhood of v, and
the set NG[v] = NG(v) ∪ {v} is the closed neighborhood of v. Two vertices x, y ∈ V(G) are true twins
in G if NG[x] = NG[y], and they are false twins if NG(x) = NG(y). In general, two vertices are said
to be twins if they are true twins or they are false twins. As usual, a set A ⊆ V(G) is a vertex cover
for G if for every uv ∈ E(G), u ∈ A or v ∈ A. The vertex cover number of G, denoted by β(G), is the
minimum cardinality of a vertex cover of G. The remaining definitions will be given the first time that
the concept appears in the text.

The rest of the article is organized as follows. In Section 2, we obtain some general results on
the simultaneous local metric dimension of graph families. Section 3 is devoted to the case of graph
families obtained by small changes on a graph, while in Sections 4 and 5, we study the particular
cases of families of corona graphs and families of lexicographic product graphs, respectively. Finally,
in Section 6, we show that the problem of computing the simultaneous local metric dimension of graph
families is NP-hard, even when restricted to families of graphs that individually have a (small) fixed
local metric dimension.

2. Basic Results

Remark 1. Let G = {G1, . . . , Gk} be a family of connected graphs defined on a common vertex set V, and let
G′ = (V,∪E(Gi)). The following results hold:

1. Sdl(G) ≥ max
i∈{1,...,k}

{diml(Gi)}.

2. Sdl(G) ≤ Sd(G).

3. Sdl(G) ≤ min

{
β(G′),

k

∑
i=1

diml(Gi)

}
.

Proof. (1) is deduced directly from the definition of simultaneous local metric dimension. Let B be
a simultaneous metric basis of G, and let u, v ∈ V − B be two vertices not in B, such that u ∼Gi v in
some Gi. Since in Gi there exists x ∈ B such that dGi (u, x) 6= dGi (v, x), B is a simultaneous local metric
generator for G, so (2) holds. Finally, (3) is obtained from the following facts: (a) the union of local
metric generators for all graphs in G is a simultaneous local metric generator for G, which implies that
Sdl(G) ≤ ∑k

i=1 diml(Gi); (b) any vertex cover of G′ is a local metric generator of Gi, for every Gi ∈ G,
which implies that Sdl(G) ≤ β(G′).

The inequalities above are tight. For example, the graph family G shown in Figure 1 satisfies
Sdl(G) = Sd(G), whereas Sdl(G) = 2 = diml(G1) = diml(G2) = max

i∈{1,2,3}
{diml(Gi)}. Moreover,

the family G shown in Figure 2 satisfies Sdl(G) = 3 = |V| − 1 <
6

∑
i=1

diml(Gi) = 12, whereas the family

G = {G1, G2} shown in Figure 3 satisfies Sdl(G) = 4 = diml(G1) + diml(G2) < |V| − 1 = 7.
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Figure 2. The family G = {G1, . . . , G6} satisfies Sdl(G) = |V| − 1 = 3.
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Figure 3. The family G = {G1, G2} satisfies Sdl(G) = diml(G1) + diml(G2) = 4.

We now analyze the extreme cases of the bounds given in Remark 1.

Corollary 1. Let G be a family of connected graphs on a common vertex set. If Kn ∈ G, then:

Sdl(G) = n− 1.

As shown in Figure 2, the converse of Corollary 1 does not hold. In general, the cases for which
the upper bound Sdl(G) ≤ |V| − 1 is reached are summarized in the next result.

Theorem 1. Let G be a family of connected graphs on a common vertex set V. Then, Sdl(G) = |V| − 1 if and
only if for every u, v ∈ V, there exists a graph Guv ∈ G such that u and v are true twins in Guv.

Proof. We first note that for any connected graph G = (V, E) and any vertex v ∈ V, it holds that
V − {v} is a local metric generator for G. Therefore, if Sdl(G) = |V| − 1, then for any v ∈ V, the set
V − {v} is a simultaneous local metric basis of G, and as a consequence, for every u ∈ V − {v}, there
exists a graph Guv ∈ G, such that the set V − {u, v} is not a local metric generator for Guv, i.e., u and v
are adjacent in Guv and dGu,v(u, x) = dGu,v(v, x) for every x ∈ V − {u, v}. Therefore, u and v are true
twins in Gu,v.

Conversely, if for every u, v ∈ V there exists a graph Guv ∈ G such that u and v are true twins in
Guv, then for any simultaneous local metric basis B of G, it holds that u ∈ B or v ∈ B. Hence, all but
one element of V must belong to B. Therefore, |B| ≥ |V| − 1, which implies that Sdl G = |V| − 1.

Notice that Corollary 1 is obtained directly from the previous result. Now, the two following
results concern the limit cases of Item (1) of Remark 1.

Theorem 2. A family G of connected graphs on a common vertex set V satisfies Sdl(G) = 1 if and only if
every graph in G is bipartite.

Proof. If every graph in the family is bipartite, then for any v ∈ V, the set {v} is a local metric basis
of every Gi ∈ G, so Sdl(G) = 1.

Let us now consider a family G of connected graphs on a common vertex set V such that
Sdl(G) = 1 and assume that some G ∈ G is not bipartite. It is shown in [21] that diml(G) ≥ 2, so Item
(1) of Remark 1 leads to Sdl(G) ≥ 2, which is a contradiction. Thus, every G ∈ G is bipartite.
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Paths, trees and even-order cycles are bipartite. The following result covers the case of families
composed of odd-order cycles.

Theorem 3. Every family G composed of cycle graphs on a common odd-sized vertex set V satisfies Sdl(G) = 2,
and any pair of vertices of V is a simultaneous local metric basis of G.

Proof. For any cycle Ci ∈ G, the set {v}, v ∈ V, is not a local metric generator, as the adjacent vertices
v

j+
⌊
|V|
2

⌋ and v
j−

⌊
|V|
2

⌋ (subscripts taken modulo |V|) are not distinguished by v, so Item (1) of Remark 1

leads to Sdl(G) ≥ max
G∈G
{diml(G)} ≥ 2. Moreover, any set {v, v′} is a local metric generator for every

Ci ∈ G, as the single pair of adjacent vertices not distinguished by v is distinguished by v′, so that
Sdl(G) ≤ 2.

The following result allows us to study the simultaneous local metric dimension of a family G
from the family of graphs composed by all non-bipartite graphs belonging to G.

Theorem 4. Let G be a family of graphs on a common vertex set V, not all of them bipartite. If H is the
subfamily of G composed of all non-bipartite graphs belonging to G, then:

Sdl(G) = Sdl(H).

Proof. SinceH is a non-empty subfamily of G, we conclude that Sdl(G) ≥ Sdl(H). Since any vertex
of a bipartite graph G is a local metric generator for G, if B ⊆ V is a simultaneous local metric basis
ofH, then B is a simultaneous local metric generator for G and, as a result, Sdl(G) ≤ |B| = Sdl(H).

Some interesting situations may be observed regarding the simultaneous local metric dimension
of some graph families versus its standard counterpart. In particular, the fact that false twin vertices
need not be distinguished in the local variant leads to some cases where both parameters differ greatly.
For instance, consider any family G composed of three or more star graphs having different centers.
It was shown in [22] that any such family satisfies Sd(G) = |V| − 1, yet by Theorem 2, we have that
Sdl(G) = 1.

Given a family G = {G1, G2, . . . , Gk} of graphs Gi = (V, Ei) on a common vertex set V, we define
a simultaneous vertex cover of G as a set S ⊆ V, such that S is simultaneously a vertex cover of each
Gi. The minimum cardinality among all simultaneous vertex covers of G is the simultaneous vertex
cover number of G, denoted by β(G).

Theorem 5. For any family G of connected graphs with common vertex set V,

Sdl(G) ≤ β(G).

Furthermore, if for every uv ∈ ∪G∈GE(G) there exists G′ ∈ G such that u and v are true twins in G′,
then Sdl(G) = β(G).

Proof. Let B ⊆ V be a simultaneous vertex cover of G. Since V − B is a simultaneous independent set
of G, we conclude that Sdl(G) ≤ β(G).

We now assume that for every uv ∈ ∪G∈GE(G), there exists G′ ∈ G, such that u and v are true
twins in G′, and suppose, for the purpose of contradiction, that Sdl(G) < β(G). In such a case, there
exists a simultaneous local metric basis C ⊆ V, which is not a simultaneous vertex cover of G. Hence,
there exist u′, v′ ∈ V − C and G ∈ G such that u′v′ ∈ E(G), ergo u′v′ ∈ ∪G∈GE(G). As a consequence,
u′ and v′ are true twins in some graph G′ ∈ G, which contradicts the fact that C is a simultaneous local
metric basis of G. Therefore, the strict inequality does not hold, hence Sdl(G) = β(G).
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3. Families Obtained by Small Changes on a Graph

Consider a graph G whose local metric dimension is known. In this section, we address two
related questions:

• If a series of small changes is repeatedly performed on E(G), thus producing a family G of
consecutive versions of G, what is the behavior of Sdl(G) with respect to diml(G)?

• If several small changes are performed on E(G) in parallel, thus producing a family G of
alternative versions of G, what is the behavior of Sdl(G) with respect to diml(G)?

Addressing this issue in the general case is hard, so we will analyze a number of particular cases.
First, we will specify three operators that describe some types of changes that may be performed on
a graph G:

• Edge addition: We say that a graph G′ is obtained from a graph G by an edge addition if there is
an edge e ∈ E(G) such that G′ = (V(G), E(G) ∪ {e}). We will use the notation G′ = adde(G).

• Edge removal: We say that a graph G′ is obtained from a graph G by an edge removal if there is
an edge e ∈ E(G) such that G′ = (V(G), E(G)− {e}). We will use the notation G′ = rmve(G).

• Edge exchange: We say that a graph G′ is obtained from a graph G by an edge exchange if there
is an edge e ∈ E(G) and an edge f ∈ E(G) such that G′ = (V(G), (E(G)− {e}) ∪ { f }). We will
use the notation G′ = xche, f (G).

Now, consider a graph G and an ordered k-tuple of operations Ok = (op1, op2, . . . , opk), where
opi ∈ {addei , rmvei , xchei , fi

}. We define the class COk (G) containing all graph families of the form
G = {G, G′1, G′2, . . . , G′k}, composed by connected graphs on the common vertex set V(G), where
G′i = opi(G

′
i−1) for every i ∈ {1, . . . , k}. Likewise, we define the class POk (G) containing all graph

families of the form G = {G′1, G′2, . . . , G′k}, composed by connected graphs on the common vertex
set V(G), where G′i = opi(G) for every i ∈ {1, . . . , k}. In particular, if opi = addei (opi = rmvei ,
opi = xchei , fi

) for every i ∈ {1, . . . , k}, we will write CAk (G) (CRk (G), CXk (G)) and PAk (G) (PRk (G),
PXk (G)).

We have that performing an edge exchange on any tree T (path graphs included) either produces
another tree or a disconnected graph. Thus, the following result is a direct consequence of this fact
and Theorem 2.

Remark 2. For any tree T, any k ≥ 1 and any graph family T ∈ CXk (T) ∪ PXk (T),

Sdl(T ) = 1.

Our next result covers a large class of families composed by unicyclic graphs that can be obtained
by adding edges, in parallel, to a path graph.

Remark 3. For any path graph Pn, n ≥ 4, any k ≥ 1 and any graph family G ∈ PAk (Pn),

1 ≤ Sdl(G) ≤ 2.

Proof. Every graph G ∈ G is either a cycle or a unicyclic graph. If the cycle subgraphs of every graph
in the family have even order, then Sdl(G) = 1 by Theorem 2. If G contains at least one non-bipartite
graph, then Sdl(G) ≥ 2. We now proceed to show that in this case, Sdl(G) ≤ 2. To this end, we denote
by V = {v1, . . . , vn} the vertex set of Pn, where vi ∼ vi+1 for every i ∈ {1, . . . , n − 1}. We claim
that {v1, vn} is a simultaneous local metric generator for the subfamily G ′ ⊂ G composed by all
non-bipartite graphs of G. In order to prove this claim, consider an arbitrary graph G ∈ G ′, and let
e = vpvq, 1 ≤ p < q ≤ n be the edge added to E(Pn) to obtain G. We differentiate the following cases:

1. e = v1vn. In this case, G is an odd-order cycle graph, so {v1, vn} is a local metric generator.
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2. 1 < p < q = n. In this case, G is a unicyclic graph where vp has degree three, v1 has degree one
and the remaining vertices have degree two. Consider two adjacent vertices u, v ∈ V − {v1, vn}.
If u or v belong to the path from v1 to vp, then v1 distinguishes them. If both, u and v, belong to
the cycle subgraph of G, then d(u, v1) = d(u, vp) + d(vp, v1) and d(v, v1) = d(v, vp) + d(vp, v1).
Thus, if vp distinguishes u and v, so does v1, otherwise vn does.

3. 1 = p < q < n. This case is analogous to Case 2.
4. 1 < p < q < n. In this case, G is a unicyclic graph where vp and vq have degree three, v1 and vn

have degree one and the remaining vertices have degree two. Consider two adjacent vertices
u, v ∈ V − {v1, vn}. If u or v belong to the path from v1 to vp (or to the path from vq to vn), then v1

(or vn) distinguishes them. If both u and v belong to the cycle, then d(u, v1) = d(u, vp) + d(vp, v1),
d(v, v1) = d(v, vp) + d(vp, v1), d(u, vn) = d(u, vq) + d(vq, vn) and d(v, vn) = d(v, vq) + d(vq, vn).
Thus, if vp distinguishes u and v, so does v1, otherwise vq distinguishes them, which means that
vn also does.

According to the four cases above, we conclude that {v1, vn} is a local metric generator for G, so it
is a simultaneous local metric generator for G ′. Thus, by Theorem 4, Sdl(G) = Sdl(G ′) ≤ 2.

Remark 4. Let Cn, n ≥ 4, be a cycle graph, and let e be an edge of its complement. If n is odd, then

diml(adde(Cn)) = 2.

Otherwise,
1 ≤ diml(adde(Cn)) ≤ 2.

Proof. Consider e = vivj. We have that Cn is bipartite for n even. If, additionally, dCn(vi, vj) is odd, then
the graph adde(Cn) is also bipartite, so diml(adde(Cn)) = 1. For every other case, diml(adde(Cn)) ≥ 2.
From now on, we assume that n ≥ 5 and proceed to show that diml(adde(Cn)) ≤ 2. Note that adde(Cn)

is a bicyclic graph where vi and vj are vertices of degree three and the remaining vertices have degree
two. We denote by Cn1 and Cn−n1+2 the two graphs obtained as induced subgraphs of adde(Cn), which
are isomorphic to a cycle of order n1 and a cycle of order n− n1 + 2, respectively. Since n ≥ 5, we have
that n1 > 3 or n− n1 + 2 > 3. We assume, without loss of generality, that n1 > 3. Let a, b ∈ V(Cn1) are
two vertices such that:

• if n1 is even, ab ∈ E(Cn1) and d(vi, a) = d(vj, b),
• if n1 is odd, ax, xb ∈ E(Cn1), where x ∈ V(Cn1) is the only vertex such that d(x, vi) = d(x, vj).

We claim that {a, b} is a local metric generator for adde(Cn). Consider two adjacent vertices
u, v ∈ V(adde(Cn)) − {a, b}. We differentiate the following cases, where the distances are taken
in adde(Cn):

1. u, v ∈ V(Cn1). It is simple to verify that {a, b} is a local metric generator for Cn1 , hence
d(u, a) 6= d(v, a) or d(u, b) 6= d(v, b).

2. u ∈ V(Cn1) and v ∈ V(Cn−n1+2) − {vi, vj}. In this case, u ∈ {vi, vj} and d(u, a) < d(v, a) or
d(u, b) < d(v, b).

3. u, v ∈ V(Cn−n1+2) − {vi, vj}. In this case, if d(u, a) = d(v, a), then d(u, vi) = d(v, vi),
so d(u, vj) 6= d(v, vj) and, consequently, d(u, b) 6= d(v, b).

According to the three cases above, {a, b} is a local metric generator for adde(Cn), and as a result,
the proof is complete.

The next result is a direct consequence of Remarks 1 and 4.

Remark 5. Let Cn, n ≥ 4, be a cycle graph. If e, e′ are two different edges of the complement of Cn, then:

1 ≤ Sdl(adde(Cn), adde′(Cn)) = Sdl(Cn, adde(Cn), adde′(Cn)) ≤ 4.
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4. Families of Corona Product Graphs

Let G and H be two graphs of order n and n′, respectively. The corona product G� H is defined
as the graph obtained from G and H by taking one copy of G and n copies of H and joining by an edge
each vertex from the i-th copy of H with the i-th vertex of G. Notice that the corona graph K1 � H is
isomorphic to the join graph K1 + H. Given a graph family G = {G1, . . . , Gk} on a common vertex set
and a graph H, we define the graph family:

G � H = {G1 � H, . . . , Gk � H}.

Several results presented in [23,24] describe the behavior of the local metric dimension on corona
product graphs. We now analyze how this behavior extends to the simultaneous local metric dimension
of families composed by corona product graphs.

Theorem 6. In references [23,25], Let G be a connected graph of order n ≥ 2. For any non-empty graph H,

diml(G� H) = n · adiml(H).

As we can expect, if we review the proof of the result above, we check that if A is a local metric
basis of G� H, then A does not contain elements in V(G). Therefore, any local metric basis of G� H
is a simultaneous local metric basis of G � H. This fact and the result above allow us to state the
following theorem.

Theorem 7. Let G be a family of connected non-trivial graphs on a common vertex set V. For any non-empty
graph H,

Sdl(G � H) = |V| · adiml(H).

Given a graph family G on a common vertex set and a graph familyH on a common vertex set,
we define the graph family:

G �H = {G� H : G ∈ G and H ∈ H}.

The following result generalizes Theorem 7. In what follows, we will use the notation 〈v〉 for
the graph G = (V, E) where V = {v} and E = ∅.

Theorem 8. For any family G of connected non-trivial graphs on a common vertex set V and any family H
of non-empty graphs on a common vertex set,

Sdl(G �H) = |V| · Sadl(H).

Proof. Let n = |V|, and let V′ be the vertex set of the graphs inH, V′i the copy of V′ corresponding to
vi ∈ V,Hi the i-th copy ofH and Hi ∈ Hi the i-th copy of H ∈ H.

We first need to prove that any G ∈ G satisfies Sdl(G�H) = n · Sadl(H). For any i ∈ {1, . . . , n},
let Si be a simultaneous local adjacency basis ofHi. In order to show that X =

⋃n
i=1 Si is a simultaneous

local metric generator for G �H, we will show that X is a local metric generator for G� H, for any
G ∈ G and H ∈ H. To this end, we differentiate the following four cases for two adjacent vertices
x, y ∈ V(G� H)− X.

1. x, y ∈ V′i . Since Si is an adjacency generator of Hi, there exists a vertex u ∈ Si such that
|NHi (u) ∩ {x, y}| = 1. Hence,

dG�H(x, u) = d〈vi〉+Hi
(x, u) 6= d〈vi〉+Hi

(y, u) = dG�H(y, u).
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2. x ∈ V′i and y ∈ V. If y = vi, then for u ∈ Sj, j 6= i, we have:

dG�H(x, u) = dG�H(x, y) + dG�H(y, u) > dG�H(y, u).

Now, if y = vj, j 6= i, then we also take u ∈ Sj, and we proceed as above.
3. x = vi and y = vj. For u ∈ Sj, we find that:

dG�H(x, u) = dG�H(x, y) + dG�H(y, u) > dG�H(y, u).

4. x ∈ V′i and y ∈ V′j , j 6= i. In this case, for u ∈ Si, we have:

dG�H(x, u) ≤ 2 < 3 ≤ dG�H(u, y).

Hence, X is a local metric generator for G� H, and since G ∈ G and H ∈ H are arbitrary graphs,
X is a simultaneous local metric generator for G �H, which implies that:

Sdl(G�H) ≤
n

∑
i=1
|Si| = n · Sadl(H).

It remains to prove that Sdl(G �H) ≥ n · Sadl(H). To do this, let W be a simultaneous local metric
basis of G �H, and for any i ∈ {1, . . . , n}, let Wi = V′i ∩W. Let us show that Wi is a simultaneous
adjacency generator for Hi. To do this, consider two different vertices x, y ∈ V′i −Wi, which are
adjacent in G � H, for some H ∈ H. Since no vertex a ∈ V(G � H) − V′i distinguishes the pair
x, y, there exists some u ∈ Wi, such that dG�H(x, u) 6= dG�H(y, u). Now, since dG�H(x, u) ∈ {1, 2}
and dG�H(y, u) ∈ {1, 2}, we conclude that |NHi (u) ∩ {x, y}| = 1, and consequently, Wi must be
an adjacency generator for Hi; and since H ∈ H is arbitrary, Wi is a simultaneous local adjacency
generator forHi. Hence, for any i ∈ {1, . . . , n}, |Wi| ≥ Sadl(Hi). Therefore,

Sdl(G �H) = |W| ≥
n

∑
i=1
|Wi| ≥

n

∑
i=1

Sadl(Hi) = n · Sadl(H).

This completes the proof.

The following result is a direct consequence of Theorem 8.

Corollary 2. For any family G of connected non-trivial graphs on a common vertex set V and any familyH
of non-empty graphs on a common vertex set,

Sdl(G�H) ≥ |V| · Sdl(H).

Furthermore, if every graph inH has diameter two, then:

Sdl(G�H) = |V| · Sdl(H).

Now, we give another result, which is a direct consequence of Theorem 8 and shows the general
bounds of Sdl(G �H).

Corollary 3. For any family G of connected graphs on a common vertex set V, |V| ≥ 2 and any family H
of non-empty graphs on a common vertex set V′,

|V| ≤ Sdl(G�H) ≤ |V|(|V′| − 1).

We now consider the case in which the graph H is empty.
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Theorem 9. In reference [24], Let G be a connected non-trivial graph. For any empty graph H,

diml(G� H) = diml(G).

The result above may be extended to the simultaneous scenario.

Theorem 10. Let G be a family of connected non-trivial graphs on a common vertex set. For any empty graph H,

Sdl(G � H) = Sdl(G).

Proof. Let B be a simultaneous local metric basis of G = {G1, G2, . . . , Gk}. Since H is empty, any local
metric generator B′ ⊆ B of Gi is a local metric generator for Gi � H, so B is a simultaneous local metric
generator for G � H. As a consequence, Sdl(G � H) ≤ Sdl(G).

Suppose that A is a simultaneous local metric basis of G � H and |A| < |B|. If there exists
x ∈ A ∩Vij for the j-th copy of H in any graph Gi � H, then the pairs of vertices of Gi � H that are
distinguished by x can also be distinguished by vi. As a consequence, the set A′ obtained from A by
replacing by vi each vertex x ∈ A ∩ Vij, i ∈ {1, . . . , k}, j ∈ {1, . . . , n} is a simultaneous local metric
generator for G such that |A′| ≤ |A| < Sdl(G), which is a contradiction, so Sdl(G � H) ≥ Sdl(G).

Theorem 11. In reference [24], Let H be a non-empty graph. The following assertions hold.

1. If the vertex of K1 does not belong to any local metric basis of K1 + H, then for any connected graph G
of order n,

diml(G� H) = n · diml(K1 + H).

2. If the vertex of K1 belongs to a local metric basis of K1 + H, then for any connected graph G of order n ≥ 2,

diml(G� H) = n · (diml(K1 + H)− 1) .

As for the previous case, the result above is extensible to the simultaneous setting.

Theorem 12. Let G be a family of connected non-trivial graphs on a common vertex set V, and letH be a family
of non-empty graphs on a common vertex set. The following assertions hold.

1. If the vertex of K1 does not belong to any simultaneous local metric basis of K1 +H, then:

Sdl(G �H) = |V| · Sdl(K1 +H).

2. If the vertex of K1 belongs to a simultaneous local metric basis of K1 +H, then:

Sdl(G �H) = |V| · (Sdl(K1 +H)− 1) .

Proof. As above, let n = |V|, and let V′ be the vertex set of the graphs in H, V′i the copy of V′

corresponding to vi ∈ V,Hi the i-th copy ofH and Hi ∈ Hi the i-th copy of H ∈ H.
We will apply a reasoning analogous to the one used for the proof of Theorem 11 in [24]. If n = 1,

then G �H ∼= K1 +H, so the result holds. Assume that n ≥ 2, Let Si be a simultaneous local metric
basis of 〈vi〉+Hi, and let S′i = Si − {vi}. Note that S′i 6= ∅ because Hi is the family of non-empty
graphs and vi does not distinguish any pair of adjacent vertices belonging to V′i . In order to show that
X = ∪n

i=1S′i is a simultaneous local metric generator for G �H, we differentiate the following cases for
two vertices x, y, which are adjacent in an arbitrary graph G� H:

1. x, y ∈ V′i . Since vi does not distinguish x, y, there exists u ∈ S′i such that dG�H(x, u) =

d〈vi〉+Hi
(x, u) 6= d〈vi〉+Hi

(y, u) = dG�H(y, u).
2. x ∈ V′i and y = vi. For u ∈ S′j, j 6= i, we have dG�H(x, u) = 1 + dG�H(y, u) > dG�H(y, u).
3. x = vi and y = vj. For u ∈ S′j, we have dG�H(x, u) = 2 = dG�H(x, y) + 1 > 1 = dG�H(y, u).
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Hence, X is a local metric generator for G� H, and since G ∈ G and H ∈ H are arbitrary graphs,
X is a simultaneous local metric generator for G �H.

Now, we shall prove (1). If the vertex of K1 does not belong to any simultaneous local metric basis
of K1 +H, then vi 6∈ Si for every i ∈ {1, ..., n}, and as a consequence,

Sdl(G �H) ≤ |X| =
n

∑
i=1
|S′i | =

n

∑
i=1

Sdl(〈vi〉+Hi) = n · Sdl(K1 +H).

Now, we need to prove that Sdl(G � H) ≥ n · Sdl(K1 + H). In order to do this, let W be
a simultaneous local metric basis of G � H, and let Wi = V′i ∩W. Consider two adjacent vertices
x, y ∈ V′i −Wi in G � H. Since no vertex a ∈ W −Wi distinguishes the pair x, y, there exists
u ∈ Wi such that d〈vi〉+Hi

(x, u) = dG�H(x, u) 6= dG�H(y, u) = d〈vi〉+Hi
(y, u). Therefore, we conclude

that Wi ∪ {vi} is a simultaneous local metric generator for 〈vi〉+Hi. Now, since vi does not belong to
any simultaneous local metric basis of 〈vi〉+Hi, we have that |Wi|+ 1 = |Wi ∪ {vi}| > Sdl(〈vi〉+Hi)

and, as a consequence, |Wi| ≥ Sdl(〈vi〉+Hi). Therefore,

Sdl(G �H) = |W| ≥
n

∑
i=1
|Wi| ≥

n

∑
i=1

Sdl(〈vi〉+Hi) = n · Sdl(K1 +H),

and the proof of (1) is complete.
Finally, we shall prove (2). If the vertex of K1 belongs to a simultaneous local metric basis

of K1 +H, then we assume that vi ∈ Si for every i ∈ {1, ..., n}. Suppose that there exists B such that B
is a simultaneous local metric basis of G �H and |B| < |X|. In such a case, there exists i ∈ {1, ..., n}
such that the set Bi = B ∩V′i satisfies |Bi| < |S′i |. Now, since no vertex of B− Bi distinguishes the pairs
of adjacent vertices belonging to V′i , the set Bi ∪ {vi}must be a simultaneous local metric generator
for 〈vi〉+Hi. Therefore, Sdl(〈vi〉+Hi) ≤ |Bi|+ 1 < |S′i |+ 1 = |Si| = Sdl(〈vi〉+Hi), which is a
contradiction. Hence, X is a simultaneous local metric basis of G �H, and as a consequence,

Sdl(G �H) = |X| =
n

∑
i=1
|S′i | =

n

∑
i=1

(Sdl(〈vi〉+Hi)− 1) = n(Sdl(K1 +H)− 1).

The proof of (2) is now complete.

Corollary 4. Let G be a connected graph of order n ≥ 2, and let H = {Kr1,n′−r1
, Kr2,n′−r2

, . . . , Krk ,n′−rk
},

1 ≤ ri ≤ n′ − 1, be a family composed by complete bipartite graphs on a common vertex set V′. Then,

Sdl(G�H) = n.

Proof. For every x ∈ V′, the set {v, x} is a simultaneous local metric basis of 〈v〉 + H,
so Sd(G�H) = n · (Sd(K1 +H)− 1) = n.

Lemma 1. In reference [24], Let H be a graph of radius r(H). If r(H) ≥ 4, then the vertex of K1 does not
belong to any local metric basis of K1 + H.

Note that an analogous result holds for the simultaneous scenario.

Lemma 2. LetH be a graph family on a common vertex set V, such that r(H) ≥ 4 for every H ∈ H. Then, the
vertex of K1 does not belong to any simultaneous local metric basis of K1 +H.

Proof. Let B be a simultaneous local metric basis of {K1 + H1, . . . , K1 + Hk}. We suppose that the vertex
v of K1 belongs to B. Note that v ∈ B if and only if there exists u ∈ V − B, such that B ⊆ NK1+Hi(u) for
some Hi ∈ H. If r(Hi) ≥ 4, proceeding in a manner analogous to that of the proof of Lemma 1 as given
in [24], we take u′ ∈ V such that dHi(u, u′) = 4 and a shortest path uu1u2u3u′. In such a case, for every
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b ∈ B− {v}, we will have that dK1+Hi(b, u3) = dK1+Hi(b, u′) = 2, which is a contradiction. Hence,
v does not belong to any simultaneous local metric basis of {K1 + H1, K1 + H2, . . . , K1 + Hk}.

As a direct consequence of item (1) of Theorem 12 and Lemma 2, we obtain the following result.

Proposition 1. For any family G of connected graphs on a common vertex set V and any graph familyH on
a common vertex set V′ such that r(H) ≥ 4 for every H ∈ H,

Sdl(G �H) = |V| · Sdl(K1 +H).

5. Families of Lexicographic Product Graphs

Let G = {G1, . . . , Gr} be a family of connected graphs with common vertex set V = {u1, . . . , un}.
For each ui ∈ V, let Hi = {Hi1, . . . Hisi} be a family of graphs with common vertex set Vi. For each
i = 1, . . . , n, choose Hij ∈ Hi and consider the familyHj = {H1j, H2j, . . . , Hnj}. Notice that the families
Hi can be represented in the following scheme where the columns correspond to the familiesHj.

H1 = {H11, . . . H1j, . . . H1s1} defined on V1
...

...
...

...
Hi = {Hi1, . . . Hij, . . . Hisi} defined on Vi

...
...

...
...

Hn = {Hn1, . . . Hnj, . . . Hnsn} defined on Vn

For a graph Gk ∈ G and the family Hj, we define the lexicographic product of Gk and Hj as
the graph Gk ◦ Hj such that V(Gk ◦ Hj) =

⋃
ui∈V({ui} × Vi) and (ui1 , v)(ui2 , w) ∈ E(Gk ◦ Hj) if and

only if ui1 ui2 ∈ E(Gk) or i1 = i2 and vw ∈ E(Hi1 j). Let H = {H1,H2, . . .Hs}. We are interested in
the simultaneous local metric dimension of the family:

G ◦H = {Gk ◦ Hj : Gk ∈ G,Hj ∈ H}.

The relation between distances in a lexicographic product graph and those in its factors is
presented in the following remark.

Remark 6. If (u, v) and (u′, v′) are vertices of G ◦ H, then:

dG◦H((u, v), (u′, v′)) =


dG(u, u′), if u 6= u′,

min{dH(v, v′), 2}, if u = u′.

We point out that the remark above was stated in [26,27] for the case where Hij
∼= H for all

Hij ∈ Hj. By Remark 6, we deduce that if u ∈ V − {ui}, then two adjacent vertices (ui, w), (ui, y) are
not distinguished by (u, v) ∈ V(G ◦H). Therefore, we can state the following remark.

Remark 7. If B is a simultaneous local metric generator for the family of lexicographic product graphs G ◦H,
then Bi = {v : (ui, v) ∈ B} is a simultaneous local adjacency generator forHi.

In order to state our main result (Theorem 13), we need to introduce some additional notation.
Let B be a simultaneous local adjacency generator for a family of non-trivial connected graphs
Hi = {Hi1, . . . , His} on a common vertex set Vi, and let G ◦ H be family of lexicographic product
graphs defined as above.

• D[Hi, B] = {v ∈ Vi : B ⊆ NHij(v) for some Hij ∈ Hi}.
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• If D[Hi, B] 6= ∅, then we define the graphD[Hi, B] in the following way. The vertex set ofD[Hi, B]
is D[Hi, B], and two vertices v, w are adjacent in D[Hi, B] if and only if for for every Hij ∈ Hi,
vw /∈ E(Hij).

• If D[Hi, B] = ∅, then define Ψ(B) = |B|, otherwise Ψ(B) = γ(D[Hi, B]) + |B|, where γ(D[Hi, B])
represents the domination number of D[Hi, B].

• Γ(Hi) = {C ⊆ Vi : C is a simultaneous local adjacency generator forHi}
• Ψ(Hi) = min{Ψ(B) : B ∈ Γ(Hi)}.
• S0 is a family composed by empty graphs.
• Φ(V,H) = {ui ∈ V : Hi ⊆ S0}
• I(V,H) = {ui ∈ V : Ψ(Hi) > Sadl(Hi)}. Notice that Φ(V,H) ⊆ I(V,H).
• Υ(V,H) is the family of subsets of I(V,H) as follows. We say that A ∈ Υ(V,H) if for every

u′, u′′ ∈ I(V,H) − A such that u′u′′ ∈ E(Gk), for some Gk ∈ G, there exists u ∈ (A ∪ (V −
Φ(V,H)))− {u′, u′′} such that dGk(u, u′) 6= dGk(u, u′′).

• G(G, I(V,H)) is the graph with vertex set I(V,H) and edge set E such that uiuj ∈ E if and only if
there exists Gk ∈ G such that uiuj ∈ E(Gk).

Remark 8. Ψ(Hi) = 1 if and only if Hi,j
∼= N|Vi | for every Hi,j ∈ Hi.

Proof. If Hi,j
∼= N|Vi | for every Hi,j ∈ Hi, then B = ∅ is the only simultaneous local adjacency basis

ofHi, D[Hi, ∅] ∼= K|Vi |, and then, Ψ(Hi) = γ(K|Vi |) = 1. On the other hand, suppose that Hi,j 6∼= N|Vi |
for some Hi,j ∈ Hi. In this case, Sadl(Hi) ≥ 1. If Sadl(Hi) > 1, then we are done. Suppose that
Sadl(Hi) = 1. For any simultaneous local adjacency basis B = {v1} of Hi, there exists v2 ∈ NHij(v1)

for some Hij, which implies that D[Hi, {v2}] 6= ∅ and so |γ(D[Hi, {v2}])| ≥ 1. Therefore, Ψ(Hi) ≥ 2,
and the result follows.

As we will show in the next example, in order to get the value of Ψ(Hi), it is interesting to remark
about the necessity of considering the family Γ(Hi) of all simultaneous local adjacency generators and
not just the family of simultaneous local adjacency bases ofHi.

Example 1. Let H1
∼= H2 ∼= P5 be two copies of the path graph on five vertices

such that V(H1) = V(H2) = {v1, v2, . . . , v5}, whereas E(H1) = {v1v2, v2v3, v3v4, v4v5} and
E(H2) = {v2v1, v1v3, v3v5, v5v4}. Consider the family H = {H1, H2}. We have that B1 = {v3} is
a simultaneous local adjacency basis of H and B2 = {v1, v4} is a simultaneous local adjacency generator
for H. Then, D[H, B1] = {v1, v2, v4, v5}, E(D[H, B1]) = {v1v4, v4v2, v2v5, v5v1}, γ(D[G, B1]) = 2,
Ψ(B1) = 2 + 1 = 3. However, D[H, B2] = ∅ and Ψ(B2) = 2.

We define the following graph families.

• S1 is the family of graphs having at least two non-trivial components.
• S2 is the family of graphs having at least one component of radius at least four.
• S3 is the family of graphs having at least one component of girth at least seven.
• S4 is the family of graphs having at least two non-singleton true twin equivalence classes U1, U2

such that d(U1, U2) ≥ 3.

Lemma 3. LetH 6⊆ S0 be a family of graphs on a common vertex set V. IfH ⊆
4⋃

i=0

Si, then:

Ψ(H) = Sadl(H).

Proof. Let B be a simultaneous local adjacency generator forH and v ∈ V. We claim that B 6⊆ NH(v).
To see this, we differentiate the following cases for H ∈ H.

• H has two non-trivial connected components J1, J2. In this case, B∩ J1 6= ∅ and B∩ J2 6= ∅, which
implies that B 6⊆ NH(v).
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• H has one non-trivial component J such that r(J) ≥ 4. If H has two non-trivial components,
then we are in the first case. Therefore, we can assume that J is the only non-trivial component
of H. Suppose that B ⊆ NH(v), and get v′ ∈ V such that dH(v, v′) = 4. If vv1v2v3v′ is a shortest
path from v to v′, then v3 and v′ are adjacent, and they are not distinguished by the elements in B,
which is a contradiction.

• H has one non-trivial component J of girth g(J) ≥ 7. In this case, if H has two non-trivial
components, then we are in the first case. Therefore, we can assume that H has just one non-trivial
component of girth g(J) ≥ 7. Suppose that B ⊆ NH(v). For each cycle v1v2 . . . vnv1, there exists
vivi+1 ∈ E(J) such that dH(v, vi) ≥ 3 and dH(v, vi+1) ≥ 3; therefore, for each b ∈ B, we have
dH(b, vi) ≥ 2 and dH(b, vi+1) ≥ 2, which is a contradiction.

• H has two non-singleton true twin equivalence classes U1, U2 such that dH(U1, U2) ≥ 3. Since
B ∩U1 6= ∅ and B ∩U2 6= ∅, we can conclude that B 6⊆ NH(v).

• H ∼= N|V|. Notice that B 6= ∅, asH 6⊆ S0, so that B 6⊆ ∅ = NH(v).

According to the five cases above,H ⊆ ∪4
i=0Si leads to D[H, B] = ∅, for any simultaneous local

adjacency generator, which implies that Ψ(H) = Sadl(H).

Remark 9. If A ∈ Υ(V,H), then A∪ (V−Φ(V,H)) is a simultaneous local metric generator for G. However,
the converse is not true, as we can see in the following example.

Example 2. Consider the family of connected graphs G = {G1, G2, G3} on a common vertex set
V = {u1, . . . , u8} with E(Gi) = {u1u2, u1u2i+1, u2u2i+2, uju2i+1, uju2i+2, for j /∈ {1, 2, 2i + 1, 2i + 2}}.
LetHi be the family consisting of only one graph Hi, as follows: H1

∼= H2 ∼= K2, H3 ∼= H4
∼= · · · ∼= H8 ∼= N2.

We have that G ◦ H = {Gi ◦ {H1, . . . , H8}, i = 1, 2, 3} and I(V,H) = V. If we take A = ∅,
then A ∪ (V − Φ(V,H)) = {u1, u2} ⊆ I(V,H) is a simultaneous local metric basis of G. However,
∅ /∈ Υ(V,H) because u1 is adjacent to u2 in Gi, i ∈ {1, 2, 3}, and (V −Φ(V,H))− {u1, u2} = ∅.

Lemma 4. Let G ◦H be a family of lexicographic product graphs. Let B ⊆ V be a simultaneous local metric
generator for G. Then, B ∩ I(V,H) ∈ Υ(V,H).

Proof. Let A = B ∩ I(V,H) and ui, uj ∈ I(V,H)− A = I(V,H)− B. Since B ⊆ V is a simultaneous
local metric generator for G, for each Gk ∈ G, there exists b ∈ B such that dGk(b, ui) 6= dGk(b, uj).
If b /∈ I(V,H), then necessarily b ∈ (V − I(V,H)) ⊆ ((V −Φ(V,H))− {ui, uj}), and if b ∈ I(V,H),
then b ∈ A− {ui, uj}; and we are done.

Corollary 5. If there exists a simultaneous local metric generator B for G such that B ⊆ V − I(V,H) or the
graph G(G, I(V,H)) is empty, then ∅ ∈ Υ(V,H).

Remark 10. If B is a vertex cover of G(G, I(V,H), then B ∈ Υ(V,H).

Lemma 5. Let G ◦H be a family of lexicographic product graphs. For each ui ∈ V, let Bi ⊆ Vi be a simultaneous
local adjacency generator forHi, and let Ci ⊆ Vi be a dominating set of D[Hi, Bi]. Then, for any A ∈ Υ(V,H),
the set B = (∪ui∈A{ui} × (Bi ∪ Ci))

⋃
(∪ui /∈A{ui} × Bi) is a local metric generator for G ◦H.

Proof. In order to prove the lemma, let Gk ∈ G,Hj ∈ H, and let (ui1 , v1), (ui2 , v2) be a pair of adjacent
vertices of Gk ◦Hj. If i1 = i2, then there exists v ∈ Bi1 such that (ui1 , v) distinguishes the pair. Otherwise,
i1 6= i2, and we consider the following cases:

1. |{ui1 , ui2} ∩ I(V,H)| ≤ 1, say ui1 /∈ I(V,H). In this case, there exists v ∈ Bi1 such that vv1 /∈
E(Hi1 j), and then, (ui1 , v) distinguishes the pair.
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2. ui1 , ui2 ∈ I(V,H) and {ui1 , ui2} ∩ A = ∅. In this case, by definition of A,
there exists ui3 ∈ (A ∪ (V −Φ(V,H)))− {ui1 , ui2} such that dGk(ui3 , ui1) 6= dGk(ui3 , ui2).
For any v ∈ Bi3 ∪ Ci3 ,

dGk◦Hj((ui3 , v), (ui1 , v1)) = dGk(ui3 , ui1) 6=

dGk(ui3 , ui2) = dGk◦Hj((ui3 , v), (ui2 , v2)).

3. ui1 , ui2 ∈ I(V,H) and |{ui1 , ui2} ∩ A| ≥ 1, say ui1 ∈ A. In this case, if there exists v ∈ Bi1 such
that vv1 /∈ E(Hi1 j), then (ui1 , v) distinguishes the pair. Otherwise, v1 is a vertex of D[Hi1 , Bi1 ],
and either v1 ∈ Ci1 and (ui1 , v1) ∈ B distinguishes the pair or there exists v ∈ Ci1 , such that
vv1 ∈ E(D[Hi1 , Bi1 ]), which means vv1 /∈ E(Hi1 j); then, (ui1 , v) distinguishes the pair.

Corollary 6. Let G ◦H be a family of lexicographic product graphs. Then:

Sdl(G ◦H) ≤ min
A∈Υ(V,H)

{
∑

ui∈A
Ψ(Hi) + ∑

ui /∈A
Sadl(Hi)

}
.

Proof. Let A ∈ Υ(V,H). For each ui /∈ A, let Bi ⊆ Vi be a simultaneous local adjacency basis of Hi.
For each ui ∈ A, let Bi be a local adjacency generator forHi and Ci ⊆ Vi a dominating set of D(Hi, Bi)

such that |Bi ∪ Ci| = Ψ(Hi). Let:

B = (∪uj∈A{uj} × (Bj ∪ Cj))
⋃
(∪ui /∈A{ui} × Bi)

then, by Lemma 5, B is a simultaneous local metric generator for G ◦H, and:

Sdl(G ◦H) ≤ |B| = ∑
ui∈A

Ψ(Hi) + ∑
ui /∈A

Sadl(Hi)

As A ∈ Υ(V,H) is arbitrary:

Sdl(G ◦H) ≤ min
A∈Υ(V,H)

{
∑

ui∈A
Ψ(Hi) + ∑

ui /∈A
Sadl(Hi)

}

and the result follows.

Lemma 6. Let F be a simultaneous local metric basis of G ◦ H. Let Fi = {v ∈ Vi : (ui, v) ∈ F} and
XF = {ui ∈ I(V,H) : |Fi| ≥ Ψ(Hi)}. Then, XF ∈ Υ(V,H).

Proof. Suppose, for the purpose of contradiction, that XF /∈ Υ(V,H). That means that there exist
ui1 , ui2 ∈ I(V,H)− XF and Gk ∈ G such that ui1 ui2 ∈ E(Gk), and dGk(u, ui1) = dGk(u, ui2) for every
u ∈ (XF ∪ (V −Φ(V,H)))− {ui1 , ui2}. As ui1 , ui2 ∈ I(V,H)− XF, |Fi1 | < Ψ(Hi1) and |Fi2 | < Ψ(Hi2),
so that there exist Hi1 j1 ∈ H

i1 and Hi2 j2 ∈ Hi2 such that for some v1 ∈ Vi1 , v2 ∈ Vi2 , Fi1 ⊆ NHi1 j1
(v1) and

Fi2 ⊆ NHi2 j2
(v2). Let Hj be such that Hi1 j1 , Hi2 j2 ∈ Hj. Consider the pair of vertices (ui1 , v1), (ui2 , v2)

adjacent in Gk ◦ Hj. As F is a simultaneous local metric generator, there exists (ui3 , v) ∈ F that
resolves the pair, which implies that Fi3 6= ∅. By hypothesis ui3 ∈ (Φ(V,H)− XF) ∪ {ui1 , ui2}, and so,
ui3 ∈ {ui1 , ui2}. Without loss of generality, we assume that ui3 = ui1 and, in this case,

dGk◦Hj((ui3 , v), (ui1 , v1)) = dHi1 j1
,2(v, v1)

= dGk(ui3 , ui2)

= dGk◦Hj((ui3 , v), (ui2 , v2)),

which is a contradiction. Therefore, XF ∈ Υ(V,H).
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Theorem 13. Let G ◦H be a family of lexicographic product graphs.

Sdl(G ◦H) = min
A∈Υ(V,H)

{
∑

ui∈A
Ψ(Hi) + ∑

ui /∈A
Sadl(Hi)

}

Proof. Let B be a simultaneous local metric basis of G ◦ H. Let Bi = {v ∈ Vi : (ui, v) ∈ B} and
XB = {ui ∈ I(V,H) : |Bi| ≥ Ψ(Hi)}. By Remark 7, |Bi| ≥ Sadl(Hi) for every ui ∈ V, so that Lemma 6
leads to:

min
A∈Υ(V,H)

{
∑

ui∈A
Ψ(Hi) + ∑

ui /∈A
Sadl(Hi)

}
≤ ∑

ui∈XB

Ψ(Hi) + ∑
ui /∈XB

Sadl(Hi) ≤ |B|

and the result follows by Corollary 6.

Now, we will show some cases where the calculation of Sdl(G ◦ H) is easy. At first glance, we
have two main types of simplification: first, to simplify the calculation of Ψ(Hi) and, second, the
calculation of the A ∈ Υ(V,H) that makes the sum achieves its minimum.

For the first type of simplification, we can apply Lemma 3 to deduce the following corollary.

Corollary 7. If for each i,Hi 6⊆ S0 andHi ⊆
4⋃

j=0

Sj, then:

Sdl(G ◦H) = ∑ Sadl(Hi).

Given a family G of graphs on a common vertex set V and a graph H, we define the family
of lexicographic product graphs:

G ◦ H = {G ◦ H : G ∈ G}.

By Theorem 13, we deduce the following result.

Corollary 8. Let G be a family of graphs on a common vertex set V, and let H be a graph. If for every local
adjacency basis B of H, B 6⊆ NH(v) for every v ∈ V(H)− B, then:

Sdl(G ◦ H) = |V| adiml(H).

By Corollary 5 and Theorem 13, we have the following result.

Proposition 2. If V − I(V,H) is a simultaneous local metric generator for G or the graph G(G, I(V,H)) is
empty, then:

Sdl(G ◦H) = ∑ Sadl(Hi)

For the second type of simplification, we have the following remark.

Remark 11. As Sadl(Hi) ≤ Ψ(Hi), if A ⊆ B ⊆ V, then:

∑
ui∈A

Ψ(Hi) + ∑
ui /∈A

Sadl(Hi) ≤ ∑
ui∈B

Ψ(Hi) + ∑
ui /∈B

Sadl(Hi)

From Remark 11, we can get some consequences of Theorem 13.

Proposition 3. Let G ◦H be a family of lexicographic product graphs. For any vertex cover B of G(G, I(V,H)),

Sdl(G ◦H) ≤ ∑
ui∈B

Ψ(Hi) + ∑
ui /∈B

Sadl(Hi)
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Proposition 4. Let G be a family of connected graphs with common vertex set V, and let G ◦ H be a family
of lexicographic product graphs. The following statements hold.

1. If the subgraph of Gj induced by I(V,H) is empty for every Gj ∈ G, then:

Sdl(G ◦H) = ∑
ui∈V

Sadl(Hi).

2. Let ui0 ∈ I(V,H) be such that Ψ(Hi0) = max{Ψ(ui) : ui ∈ I(V,H)}. If Sdl(G) = |V| − 1 and
|I(V,H)| ≥ 2, then:

Sdl(G ◦H) = ∑
ui /∈I(V,H)

Sadl(Hi) + ∑
ui∈I(V,H)−{ui0}

Ψ(Hi) + Sadl(Hi0)

Proof. It is clear that if the subgraph of Gj induced by I(V,H) is empty for every Gj ∈ G,
then ∅ ∈ Υ(V,H), so that Theorem 13 leads to (1). On the other hand, let G be a family of connected
graphs with common vertex set V such that Sdl(G) = |V| − 1 and |I(V,H)| ≥ 2. By Lemma 1, for every
ui, uj ∈ I(V,H), there exists Gij ∈ G such that ui, uj are true twins in Gij. Hence, no vertex u /∈ {ui, uj}
resolves ui and uj. Therefore, A ∈ Υ(V,H) implies |A| = |I(V,H)| − 1, and (2) follows from Theorem
13 and Remark 11.

Proposition 5. Let G be a family of non-trivial connected graphs with common vertex set V. For any family
of lexicographic product graphs G ◦H,

Sdl(G ◦H) ≥ Sdl(G).

Furthermore, ifH = {N|V1|, . . . , N|Vn|}, then:

Sdl(G ◦H) = Sdl(G).

Proof. Let W be a simultaneous local metric basis of G ◦ H and WV = {u ∈ V : (u, v) ∈ W}.
We suppose that WV is not a simultaneous local metric generator for G. Let ui, uj 6∈ WV and G ∈ G
such that uiuj ∈ E(G) and dG(ui, u) = dG(uj, u) for every u ∈ WV . Thus, for any v ∈ Vi, v′ ∈ Vj and
(x, y) ∈W, we have:

dG◦Hi((x, y), (ui, v)) = dG(x, ui) = dG(x, uj) = dG◦Hi((x, y), (uj, v′)),

which is a contradiction. Therefore, WV is a simultaneous local metric generator for G and, as a result,
Sdl(G) ≤ |WV | ≤ |W| = Sdl(G ◦H).

On the other hand, if H = {N|V1|, . . . , N|Vn|}, then V = I(V,H) = Φ(V,H). Let B ⊆ V be
a simultaneous local metric basis of G. Now, for each ui ∈ B, we choose vi ∈ Vi, and by Remark 9,
we claim that B′ = {(ui, vi) : ui ∈ B} is a simultaneous local metric generator for G ◦ H. Thus,
Sdl(G ◦H) ≤ |B′| = |B| = Sdl(G).

Proposition 6. Let G 6= {K2} be a family of non-trivial connected bipartite graphs with common vertex set
V and H 6= {H1, . . . ,Hn} such that Hj 6⊆ S0, for some j. If V = I(V,H) and there exist u1, u2 ∈ V and
Gk ∈ G such that V −Φ(V,H) = {u1, u2} and u1u2 ∈ E(Gk), then:

Sdl(G ◦H) = ∑ Sadl(Hi) + 1,

otherwise,
Sdl(G ◦H) = ∑ Sadl(Hi).
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Proof. If V = I(V,H) and there exist u1, u2 ∈ V and Gk ∈ G such that V −Φ(V,H) = {u1, u2} and
u1u2 ∈ E(Gk), then ∅ /∈ Υ(V,H) because no vertex in (V −Φ(V,H))− {u1, u2} = ∅ distinguishes u1

and u2. Let x, y ∈ I(V,H) such that xy ∈ ∪G∈GE(G). Since any ui ∈ Φ(V,H) distinguishes x and y,
we can conclude that {ui} ∈ Υ(V,H), and by Remark 8, Ψ(Hi) = 1. Therefore, Theorem 13 leads to
Sdl(G ◦H) = ∑ Sadl(Hi) + 1.

Assume that there exists ui ∈ V − I(V,H), or V −Φ(V,H) = {ui}, or V −Φ(V,H) = {ui, uj}
and, for every Gk ∈ G, uiuj /∈ E(Gk) or {ui, uj, uk} ⊆ V −Φ(V,H). In any one of these cases {ui} is
a simultaneous local metric basis of G and, for every pair u1, u2 of adjacent vertices in some Gk ∈ G such
that ui /∈ {u1, u2}, ui distinguishes the pair. Since ui ∈ V −Φ(V,H), we can claim that ∅ ∈ Υ(V,H),
and by Theorem 13, Sdl(G ◦H) = ∑ Sadl(Hi).

5.1. Families of Join Graphs

For two graph families G = {G1, . . . , Gk1} and H = {H1, . . . , Hk2}, defined on common vertex
sets V1 and V2, respectively, such that V1 ∩V2 = ∅, we define the family:

G +H = {Gi + Hj : 1 ≤ i ≤ k1, 1 ≤ j ≤ k2}.

Notice that, since for any Gi ∈ G and Hj ∈ H the graph Gi + Hj has diameter two,

Sdl(G +H) = Sadl(G +H).

The following result is a direct consequence of Theorem 13.

Corollary 9. For any pair of families G and H of non-trivial graphs on common vertex sets V1 and V2,
respectively,

Sdl(G +H) = min{SdA,l(G) + Ψ(H), SdA,l(H) + Ψ(G)}

Remark 12. Let G be a family of graphs defined on a common vertex set V1. If there exists B a simultaneous
local adjacency basis of G such that D[G, B] = ∅, then for everyH family of graphs defined on a common vertex
set V2, we have:

Sdl(G +H) = Sadl(G) + Sadl(H)

By Lemma 3 and Remark 12, we deduce the following result.

Proposition 7. Let G andH be two families of non-trivial connected graphs on a common vertex set V1 and V2,
respectively. If G ⊆ ∪4

i=1Si, then:

Sdl(G +H) = Sadl(G) + Sadl(H).

6. Computability of the Simultaneous Local Metric Dimension

In previous sections, we have seen that there is a large number of classes of graph families
for which the simultaneous local metric dimension is well determined. This includes some cases
of graph families whose simultaneous metric dimension is hard to compute, e.g., families composed
by trees [22], yet the simultaneous local metric dimension is constant. However, as proven in [23],
the problem of finding the local metric dimension of a graph is NP-hard in the general case, which
trivially leads to the fact that finding the simultaneous local metric dimension of a graph family is also
NP-hard in the general case.

Here, we will focus on a different aspect, namely that of showing that the requirement
of simultaneity adds to the computational difficulty of the original problem. To that end, we will show
that there exist families composed by graphs whose individual local metric dimensions are constant,
yet it is hard to compute their simultaneous local metric dimension.
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To begin with, we will formally define the decision problems associated with the computation
of the local metric dimension of one graph and the simultaneous local metric dimension
of a graph family.

Local metric Dimension (LDIM)
Instance: A graph G = (V, E) and an integer p, 1 ≤ p ≤ |V(G)| − 1.
Question: Is diml(G) ≤ p?

Simultaneous Local metric Dimension (SLD)
Instance: A graph family G = {G1, G2, . . . , Gk} on a common vertex set V and an integer p, 1 ≤ p ≤
|V| − 1.
Question: Is Sdl(G) ≤ p?

As we mentioned above, LDIM was proven to be NP-complete in [23]. Moreover, it is simple to
see that determining whether a vertex set S ⊆ V, |S| ≤ p, is a simultaneous local metric generator can
be done in polynomial time, so SLD is in NP. In fact, SLD can be easily shown to be NP-complete, since
for any graph G = (V, E) and any integer 1 ≤ p ≤ |V(G)| − 1, the corresponding instance of LDIM
can be trivially transformed into an instance of SLD by making G = {G}.

For the remainder of this section, we will address the issue of the complexity added by the
requirement of simultaneity. To this end, we will consider families composed by the so-called tadpole
graphs [28]. An (h, t)-tadpole graph (or (h, t)-tadpole for short) is the graph obtained from a cycle
graph Ch and a path graph Pt by joining with an edge a leaf of Pt to an arbitrary vertex of Ch.
We will use the notation Th,t for (h, t)-tadpoles. Since (2q, t)-tadpoles are bipartite, we have that
diml(T2q,t) = 1. In the case of (2q + 1, t)-tadpoles, we have that diml(T2q+1,t) = 2, as they are not
bipartite (so, diml(T2q+1,t) ≥ 2), and any set composed by two vertices of the subgraph C2q+1 is a local
metric generator (so, diml(T2q+1,t) ≤ 2). Additionally, consider the sole vertex v of degree three in
T2q+1,t and a local metric generator for T2q+1,t of the form {v, x}, x ∈ V(C2q+1)− {v}. It is simple to
verify that for any vertex y ∈ V(Pt), the set {y, x} is also a local metric generator for T2q+1,t.

Consider a family T = {Th1,t1 , Th2,t2 , . . . , Thk ,tk
} composed by tadpole graphs on a common vertex

set V. By Theorem 4, we have that Sdl(T ) = Sdl(T ′), where T ′ is composed by (2q + 1, t)-tadpoles.
As we discussed previously, diml(T2q+1,t) = 2. However, by Remark 1 and Theorem 1, we have that
2 ≤ Sdl(T ′) ≤ |V| − 1. In fact, both bounds are tight, since the lower bound is trivially satisfied
by unitary families, whereas the upper bound is reached, for instance, by any family composed by
all different labeled graphs isomorphic to an arbitrary (3, t)-tadpole, as it satisfies the premises of
Theorem 1. Moreover, as we will show, the problem of computing Sdl(T ′) is NP-hard, as its associated
decision problem is NP-complete. We will do so by showing a transformation from the hitting set
problem, which was shown to be NP-complete by Karp [29]. The hitting set problem is defined as
follows:

Hitting Set Problem (HSP)
Instance: A collection C = {C1, C2, . . . , Ck} of non-empty subsets of a finite set S and a positive integer
p ≤ |S|.
Question: Is there a subset S′ ⊆ S with |S′| ≤ p such that S′ contains at least one element from each
subset in C?

Theorem 14. The Simultaneous Local metric Dimension problem (SLD) is NP-complete for families
of (2q + 1, t)-tadpoles.

Proof. As we discussed previously, determining whether a vertex set S ⊆ V, |S| ≤ p, is a simultaneous
local metric generator for a graph family G can be done in polynomial time, so SLD is in NP.

Now, we will show a polynomial time transformation of HSP into SLD. Let S = {v1, v2, . . . , vn}
be a finite set, and let C = {C1, C2, . . . , Ck}, where every Ci ∈ C satisfies Ci ⊆ S. Let p be a positive
integer such that p ≤ |S|. Let A = {w1, w2, . . . , wk} such that A ∩ S = ∅. We construct the family
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T = {T2q1+1,t1 , T2q2+1,t2 , . . . , T2qk+1,tk} composed by (2q + 1, t)-tadpoles on the common vertex set
V = S ∪ A ∪ {u}, u /∈ S ∪ A, by performing one of the two following actions, as appropriate, for every
r ∈ {1, . . . , k}:

• If |Cr| is even, let C2qr+1 be a cycle graph on the vertices of Cr ∪ {u}; let Ptr be a path graph on
the vertices of (S− Cr) ∪ A; and let T2qr+1,tr be the tadpole graph obtained from C2qr+1 and Ptr by
joining with an edge a leaf of Ptr to a vertex of C2qr+1 different from u.

• If |Cr| is odd, let C2qr+1 be a cycle graph on the vertices of Cr ∪ {u, wr}; let Ptr be a path graph on
the vertices of (S− Cr) ∪ (A− {wr}); and let T2qr+1,tr be the tadpole graph obtained from C2qr+1

and Ptr by joining with an edge the vertex wr to a leaf of Ptr .

Figure 4 shows an example of this construction.

v5w3w2w1v4

u
v1

v2

v3

T(1)
5,4

v3v1w2w1w3

u
v2

v4

v5

T(3)
5,4

v4v2v1w3w2w1v5

u

v3

T(2)
3,6

Figure 4. The family T = {T(1)
5,4 , T(2)

3,6 , T(3)
5,4 } is constructed for transforming an instance of the Hitting

Set Problem (HSP), where S = {v1, v2, v3, v4, v5} and C = {{v1, v2, v3, v4}, {v3, v5}, {v2, v4, v5}}, into
an instance of Simultaneous Local metric Dimension (SLD) for families of (2q + 1, t)-tadpoles.

In order to prove the validity of this transformation, we claim that there exists a subset S′′ ⊆ S
of cardinality |S′′| ≤ p that contains at least one element from each Cr ∈ C if and only if Sdl(T ) ≤ p+ 1.

To prove this claim, first assume that there exists a set S′′ ⊆ S, which contains at least one element
from each Cr ∈ C and satisfies |S′′| ≤ p. Recall that any set composed by two vertices of C2qr+1 is
a local metric generator for T2qr+1,tr , so S′′ ∪ {u} is a simultaneous local metric generator for T . Thus,
Sdl(T ) ≤ p + 1.

Now, assume that Sdl(T ) ≤ p + 1, and let W be a simultaneous local metric generator for T
such that |W| = p + 1. For every T2qr+1,tr ∈ T , we have that u ∈ V(C2qr+1) and δT2qr+1,tr

(u) = 2,
so | ((W − {x}) ∪ {u}) ∩V(C2qr+1)| ≥ |W ∩V(C2qr+1)| for any x ∈ W. As a consequence, if u /∈ W,
any set (W − {x}) ∪ {u}, x ∈ W, is also a simultaneous local metric generator for T , so we can
assume that u ∈ W. Moreover, applying an analogous reasoning for every set Cr ∈ C such that
W ∩ Cr = ∅, we have that, firstly, there is at least one vertex vri ∈ Cr such that vri ∈ V(C2qr+1)− {u}
and δT2qr+1,tr

(vri ) = 2, and secondly, there is at least one vertex xr ∈ W ∩ ({wr} ∪V(Ptr )), which can
be replaced by vri . Then, the set:

W ′ =
⋃

W∩Cr=∅
((W − {xr}) ∪ {vri})

is also a simultaneous local metric generator for T of cardinality |W ′| = p + 1 such that u ∈W ′ and
(W ′ − {u}) ∩ Cr 6= ∅ for every Cr ∈ C. Thus, the set S′′ = W ′ − {u} satisfies |S′′| ≤ p and contains at
least one element from each Cr ∈ C.



Symmetry 2017, 9, 132 21 of 22

To conclude our proof, it is simple to verify that the transformation of HSP into SLD described
above can be done in polynomial time.

7. Conclusions

In this paper we introduced the notion of simultaneous local dimension of graph families. We
studied the properties of this new parameter in order to obtain its exact value, or sharp bounds, on
several graph families. In particular, we focused on families obtained as the result of small changes in
an initial graph and families composed by graphs obtained through well-known operations such as
the corona and lexicographic products, as well as the join operation (viewed as a particular case of the
lexicographic product). Finally, we analysed the computational complexity of the new problem, and
showed that computing the simultaneous local metric dimension is computationally difficult even
for families composed by graphs whose (individual) local metric dimensions are constant and well
known.
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