
The KISS principle in Software-Defined Networking:
An architecture for Keeping It Simple and Secure

Diego Kreutz, Jiangshan Yu, Paulo Esteves-Verissimo,
SnT, University of Luxembourg, Luxembourg

{Diego.Kreutz,Jiangshan.Yu,Paulo.Verissimo}@uni.lu

Cátia Magalhães, Fernando M. V. Ramos
LaSIGE/FCUL, University of Lisboa, Portugal

catiamagalhaes27@gmail.com, fvramos@ciencias.ulisboa.pt

Abstract—Security is an increasingly fundamental require-
ment in Software-Defined Networking (SDN). However, the pace
of adoption of secure mechanisms has been slow, which we
estimate to be a consequence of the performance overhead of
traditional solutions and of the complexity of the support infras-
tructure required. As a first step to addressing these problems,
we propose a modular secure SDN control plane communications
architecture, KISS, with innovative solutions in the context of key
distribution and secure channel support. A comparative analysis
of the performance impact of essential security primitives guided
our selection of basic primitives for KISS. We further propose
iDVV, the integrated device verification value, a deterministic but
indistinguishable-from-random secret code generation protocol,
allowing the local but synchronized generation/verification of
keys at both ends of the channel, even on a per-message basis.
iDVV is expected to give an important contribution both to the
robustness and simplification of the authentication and secure
communication problems in SDN.

We show that our solution, while offering the same security
properties, outperforms reference alternatives, with performance
improvements up to 30% over OpenSSL, and improvement in
robustness based on a code footprint one order of magnitude
smaller. Finally, we also prove and test randomness of the
proposed algorithms.

Keywords—software-defined networking, SDN, security, system
architecture, control plane communications, performance of cryp-
tographic primitives, integrated device verification value (iDVV),
perfect forward secrecy.

I. INTRODUCTION

In Software-Defined Networking (SDN), network control is
separated from the forwarding devices and logically centralised
in a controller. This separation is achieved by means of a pro-
tocol (typically, OpenFlow) that enables the SDN controller to
remotely populate the forwarding tables of network switches.
The OpenFlow standard includes Transport Layer Security
(TLS) [1] as an optional security feature for authenticating
forwarding devices and controllers and for encrypting the
communication channel. However, to date most reported de-
ployments still use TCP for control traffic, and SDN controllers
and switching hardware with TLS support are still rare [2].
Moreover, most deployments communicate control plane traffic
in-band with data traffic to reduce the infrastructure required,
making control plane communication vulnerable to different
attacks [2]. For instance, a single malicious forwarding device
can intercept control traffic and become a dangerous threat to
the SDN infrastructure [3].

Four fundamental issues can slow down the rate of adoption
of secure mechanisms in SDN. First, securing communications

has a non-negligible cost in terms of increased communica-
tions latency and reduced performance. Several recent studies
have analysed this overhead in various contexts [4], [5], [6].
Second, the computing capabilities of commodity switches
are typically weak. The typical SDN switch (e.g. [7], [8],
[9]) is equipped with a single or dual-core CPU running
at approximately 1GHz, which compares unfavourably with
the multi-core CPUs found in typical commodity servers.
Imposing the additional cost of TLS to these computing-
constrained networking devices is a problem. Third, poor
choice of cryptographic primitive implementations can also
have a significant impact on the performance of the control
plane communications handled by the controller. Finally, the
Public Key Infrastructure (PKI) on which TLS relies is com-
plex and thus vulnerability prone [10], [11], opening a large
surface for successful attacks [12].

In order to meet these challenges, we propose a modular
secure SDN control plane communications architecture KISS
(Section II), which aims to increase the robustness of con-
trol communications whilst enhancing their performance, by
decreasing the complexity of the support infrastructure, as an
alternative to current approaches based on classic configura-
tions of TLS and PKI.

A core novel component of our architecture is the inte-
grated device verification value (iDVV), a deterministic but
indistinguishable-from-random secret code generation protocol
(Section III). The concept was inspired by the iCVVs (inte-
grated card verification values) used in credit cards to authen-
ticate and authorize transactions in a secure and inexpensive
way. We develop and extend the idea for SDN, proposing a
flexible method of generating iDVVs by adapting proven one-
time password-like techniques. iDVV codes allow the safe
decentralized generation/verification of keys at both ends of
the channel, at will, even on a per-message basis.

To understand and minimize the cost of security, we
quantify (Section IV) the impact of secure primitives on the
performance and scalability of control plane communications,
through a compared study of different implementations of
TCP vs. TLS, complemented by a deeper study of underlying
hashing and message authentication code (MAC) primitives.
Those experiments confirm our intuition that the choice of
protocols and primitives used in secure communication may
well be one strong reason behind the slow adoption of these
mechanisms in SDN. This in-depth study lead to the selection
of the NaCl cryptographic library [13], and the best performing
MAC and hash primitives — Poly1305 and SHA512 OpenSSL
– as the baseline secure channel technologies for KISS.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/154761387?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

iDVVs team-up with NaCl, in order to safely replace the
cryptographic primitives and key-exchange protocols and key
derivation functions commonly used in TLS. As a result, the
NaCl-iDVV compound, while achieving the same functional
level of security, is simpler, potentially leading to a higher
level of implementation robustness by vulnerability reduction.
In fact, we estimate the proposed security architecture foot-
print to be smaller than TLS-PKI alternatives with traditional
protocols, by an order of magnitude, in terms of the number of
lines of code (LOC). Such a differential also points to reducing
the cyclomatic complexity. These metrics are typically used
to assess the robustness and estimate verifiability of software
systems.

Furthermore, in Section V we evaluate the iDVV de-
sign in terms of performance, security and randomness. Key
generation latency of iDVV compares very favourably with
common implementations of key derivation functions. On the
security side, we prove the indistinguishability-from-random
and determinism of the iDVV generator. Finally, the iDVV
successfully passed several empirical randomness tests, further
confirming its indistinguishability-from-random, and showing
its suitability for highly-robust key generation. We end the
paper with a discussion and some pointers to further work.

II. KISS ARCHITECTURE

In this section we present our proposal of KISS, a modular
secure control plane communications architecture for SDN
offering alternatives to classic configurations of secure channel
and authentication protocols and subsystems followed in TLS
and PKI. We assume a typical SDN architecture, as illustrated
in Figure 1, composed of controllers and forwarding devices.
We further assume that device registration and association
services are in place. For lack of space, we do not discuss them
in detail, but for self-containment, we discuss some properties
and their interface below.

The two components encapsulated by the KISS boxes
are the crucial components of the architecture, and the main
subject of our study: a secure channel protocol suite, composed
of a judicious choice of state-of-the-art mechanisms and proto-
cols, which we dub SC for convenience of description, and a
novel deterministic but indistinguishable-from-random secret
code generation protocol, which we call iDVV (integrated
device verification value).

We have considered using TLS implementations (e.g.
OpenSSL) as the baseline protocol for SC. However, the
experiments in Section IV have alerted us to: the sheer perfor-
mance cost of cryptographic communication; and the further
impact of sub-optimal choices of cryptographic primitives.
This motivated us to adopt NaCl [13], a high performance
yet secure cryptographic library, as the substrate of SC, com-
plemented by the MAC and strong hash primitives with best
performance according to our experiments – Poly1305 and
SHA512 OpenSSL. SHA-512 is used by the iDVV generator
while Poly1305 is a fast MAC algorithm.

The iDVV, a novel component we propose, helps to further
enhance the security of SC, through strong crypto material
generated at a low cost (e.g. one-time keys, per-message
authentication and authorization codes) to be used by NaCl

ciphers. The indistinguishability-from-random allied to the de-
terminism allow the safe decentralized generation/verification
of per-message keys at both ends of the channel.

Device	Registration

Device	Association

Net	AppNet	App

SDN CONTROLLER

Network
O.S.

Net	AppNet	App

FLOW	TABLES

KISS

KISS

Net	AppNet	App

SDN DEVICE

iDVV

iDVV

SC

SC

‘KDC’

Fig. 1. General architecture

A. System and threat model

For simplicity and without loss of generality, we assume
that the controllers and forwarding devices are registered
and associated through a secure and robust key distribution
service provided by a key distribution center (KDC), which
for space reasons is out of the scope of this paper, but can
be readily secured by state-of-the-art KDCs like Kerberos Key
Distribution Center [14].

The device registration process is by default invoked by
network administrators to the KDC, to register new devices.
In result of device registration, the device and the KDC
securely share a symmetric key. We denote Kkc the shared
key between the KDC authority and a registered controller,
and Kkf the shared key between the KDC authority and a
registered forwarding device.

Registered controllers and forwarding devices must be
securely associated, also through the KDC authority, as a pre-
condition to communicate securely. The most common case is
a forwarding device fi requesting an association to a controller
cj , through the KDC. After associating, a controller and a
forwarding device share two symmetric secrets (of size 256
bits), namely a seedij and a keyij . The key is generated by
the KDC and the seed is generated by the KDC in cooperation
with the controller. These secrets will be used to bootstrap the
iDVV module, as we discuss ahead.

As threat model, we consider a Dolev-Yao style attacker,
who has a complete control of the network, namely the
attacker logs all messages, and can arbitrarily delay, drop,
re-order, insert, or modify messages. In addition, this strong
attacker is able to compromise any network device (e.g. a
controller or a forwarding device) at any time. We assume the
security of the used cryptographic primitives, including MAC
(i.e. Poly1305), hash function (i.e. SHA-512), and symmetric
encryption algorithm (e.g. AES). We will prove the security
of the iDVV codes in Section V. We also assume that the
device registration and association services can rely on robust
pseudo-random number generators.

2

B. Security goals

The main goal of KISS is to provide security properties
including authenticity, integrity, and confidentiality for control
plane communications, while minimizing cost and complexity.

The secure communication between participants can be
easily guaranteed when a secure encryption algorithm is used,
as long as the shared secret key is kept secure. To provide a
robust SDN system, we focus on advanced security guarantees
for the situation when the shared key is exposed to an
attacker, as this might happen in practice. In particular, if an
attacker has compromised a device and learnt its shared keys,
then we are aiming at providing “perfect forward secrecy”
(PFS) of communications. That is, the secrecy of a device’s
past communications should be protected when the device is
compromised and its shared keys are exposed to an attacker. It
is important to emphasize that PFS is an essential requirement
for SDN. The lack of it can lead to information disclosure,
i.e., reveal different aspects of the network’s state and the
controller’s strategy (e.g., proactive or reactive flow setup).

Established KDC technologies like Kerberos have robust
implementations and are intensely used by industry, which
makes us consider the logical single-point-of-failure they
present as moderate, and an acceptable option for the current
state of the art. However, and though, as we said, the KDC is
out of the scope of the paper, we present mitigation measures
to achieve PFS in case of compromise of the KDC. We also
plan, as future work, to investigate towards the development
of SDN KDCs resilient to accidental and malicious faults,
drawing from fault and intrusion tolerance techniques [15].

On the devices side, we make no claim about their sheer
resilience, since this is largely dependent on vendors. More
precisely, when a controller and/or a forwarding device is
compromised, we consider that the attacker is able to obtain all
knowledge of the victim device(s), including all stored secrets
and the session status. However, it is our goal to guarantee the
confidentiality of all past communications through measures
that allow us to achieve perfect forward secrecy.

III. IDVV: KEEP IT SIMPLE AND SECURE

Integrated device verification values (iDVVs) are sequen-
tially generated to protect and authenticate requests between
two networking devices. The generator is conceived so that its
output sequence has the indistinguishability-from-random and
determinism properties. In consequence, the same sequence of
random-looking secret values is generated on both ends of the
channel, allowing the safe decentralized generation/verification
of per-message keys at both ends. However, if the seed and
key initial values and the state of the generator are kept secret,
there is no way an adversary can know, predict or generate an
iDVV.

In other words, an iDVV is a unique secret value generated
by a device A (e.g. a forwarding device), which can be locally
verified by another device B (e.g. a controller). The iDVV
generation is made flexible to serve the needs of SDN. iDVVs
can therefore be generated: (a) on a per message basis; (b)
for a sequence of messages; (c) for a specific interval of time;
and (d) for one communication session. The main advantages
of iDVVs are their low cost and the fact that they can be

generated locally, i.e., without having to establish any previous
agreement.

Different from standard KDF algorithms such as HKDF,
which assumes that keying material is not uniformly random
or pseudorandom, our keying material (i.e. seed and key) are
random symmetric secrets (each of size 256 bits), generated
by the KDC, with high entropy. In such cases, a strong hash
function can be safely used to derive a key (RFC 4880). As
shown by the results in Section V, the iDVV generation is
simpler and faster than standard KDF algorithm such as HKDF
(RFC 5869) and similar solutions.

A. iDVV bootstrap

As discussed before, the association between two SDN
devices, e.g., forwarding device fi and controller cj , happens
through the help of KDC, under the protection of the long-
term secret keys obtained from registration (Kkf , resp. Kkc).
The outcome of the association protocol is the distribution of
two random secrets to both devices: a seed seedij , and an
association key keyij . The iDVV mechanism is bootstrapped
by installing these two secret values in both the controller and
the switch, to animate the iDVV generation algorithms, which
we describe next.

Note that the set-up and generation of the iDVV values
are performed in a deterministic way, so that they can be
done locally at both ends. However, as iDVVs will be used as
keys by cryptographic primitives such as MAC or encryption
functions, they have to be indistinguishable from random.
Hashing primitives are natural choices for our algorithms, since
they provide indistinguishable-from-random values if one or
more of the input values are known only by the sender and
the receiver. This explains why it is crucial that seed and
association key are sent encrypted and therefore known only
to the communicating devices. Moreover, in order to prevent
information leakage, all variables seed, key, and idvv in the
algorithms below should have the same length, which we
chose to be 256 bits in our design. This length is commonly
considered robust, and the evaluation in Section V-D confirms
that. From our experiments reported ahead in Section IV, the
hashing primitive to be used is SHA512, which yields 512 bits,
of which we will use the most-significant q bits if we need to
reduce the output length to q (as recommended by [16]). For
example, we use the most-significant 256 bits of the SHA512
output as the key for symmetric ciphers.

The initial iDVV value is deterministically created at
both ends of the association between two devices1, by call-
ing function idvv_init, which performs hashing on the
concatenation of the initial seed and key, as illustrated by
algorithm 1. After set-up, the generator is ready for first use,
as described in the following section.

Algorithm 1: iDVV set-up

1: idvv_init()
2: idvv ← H(seed || key)

1For readability, we omit the device-identifying subscripts in the variables.

3

B. iDVV generation

After the bootstrap with the initial idvv value, the
idvv_next function is invoked on-demand (again, syn-
chronously at both ends of the channel) to autonomously
generate authentication or encryption keys that will be used
for securing the communications, as illustrated by algorithm 2.

The key remains the only constant shared secret between
the devices. The seed evolves to a new indistinguishable-from-
random value each time idvv_next is invoked to generate a
new iDVV. The new seed is the outcome of a hashing primitive
H over the current seed and current idvv (line 2). The new
idvv, output of function idvv_next, is the outcome of a
hashing primitive H over the concatenation of the new seed
and association key key.

Algorithm 2: iDVV generation

1: idvv_next()
2: seed ← H(seed || idvv)
3: idvv ← H(seed || key)

C. iDVV synchronization

The iDVV mechanism is agnostic w.r.t. secure communi-
cation protocols, and can be used in a number of ways, in a
number of protocols, as a key-per-message or key-per-session,
etc. The only key issue about iDVV generation, is to keep it
synchronized in both extremes of the channel. So, we discuss
recommendations in this regard.

As a generic baseline robustness technique, communication
should be authenticated (encrypt-then-MAC recommended),
such that any messages failing crypto (decryption or MAC
verification), can be simply discarded and that fact handled by
whatever existing error recovery mechanisms. This brings in
robustness against de-synchronization, or malicious attacks, as
we show below.

iDVVs can get out of sync for a number of reasons, like
speed differences, omission errors, or even DOS attacks. When
de-synchronization happens, a baseline technique consists of
advancing the iDVV of the “slower” end, to catch up. This
lets us introduce another baseline robustness technique: when
say, idvvk is advanced to idvvl (k < l) to re-synchronize, and
the operation is not successful (crypto fails), the old idvvk is
restored, and the message motivating the recovery, is discarded.
This restoration does not affect the PFS of communications
because the idvvk (or newer) has not yet been used to secure
the traffic between the two communicating devices.

Suppose an attacker can forge a re-synchronization request
to claim that it is in a future state (i.e. with a more advanced
iDVV), and fool the recipient to advance its iDVV to catch up:
then the attacker is able to play DoS attacks by keeping on
asking all devices to synchronize to an advanced iDVV. This
is foiled by the first robustness technique, since the attacker
cannot mimic valid crypto, so the message is discarded, and the
second robustness technique ensures that the node gets back
to the original iDVV state.

Now we discuss some styles of using iDVVs, and possible
protocol classes they serve:

Simple iDVV - used as is, works for lock-step, or producer-
consumer communication, where the advance is, respectively,
either round based, alternatively dictated by each end, or
dictated by the producer.

If the channel is unreliable, packet losses may occur, and
then the receiver (R) gets out of sync and is not able to verify
the next received message from sender S. If the network has
a bounded omission degree (maximum number of consecutive
omissions), say Od, R can perform a simple recovery process:
its iDVV is successively advanced up to Od+1 times, until it
is able to verify the incoming message. If the process fails, the
message is discarded and the iDVV goes back to the original
value (as per the techniques discussed above).

If packet losses can be unexpectedly high, or both ends
send competitively and/or in a non-synchronized way, this
algorithm is not suitable.

Indexed iDVV - iDVVs are indexed by the generation
number. Also, they are operated in "one key per direction"
mode, i.e., at each end, one iDVV is generated for each
communication direction. This way, they support competitive,
non-synchronized correspondents. This mode also supports
unreliable, connectionless protocols like UDP.

Each iDVV generated is indexed by a sequence number
(the initial iDVV being idvv0) and the sequence number is
included in the message where the respective idvv is used.
This way, each receiving end (this works in either direction, as
we have two pairs of iDVVs) can know the exact idvv number
that should be used and, for example, detect and recover from
omissions, by generating idvv’s the necessary number of times
to resynchronize. Again, the process is robust: if it fails, the
message is discarded and the iDVV goes back to the original
value.

Session iDVV - iDVVs now mark sessions, inside which
sets of messages are sent that use crypto related to the current
session iDVV. It is quite suitable for example, for connection-
oriented protocols.

Each idvvj is valid for the entire session j. A session may
be a standard, long-duration session a la SSL, or artificially
short, rolling session, for higher security, e.g. in a timed (e.g.
1-minute) way. Anyway, at the end of the session and start of
the next one, the idvvj is updated to idvvj+1.

Messages pertaining to a session j, labelled (j), may all
use the same idvvj key. However, better can be done: inside
a session, rolling per-message keys may be created, based on
idvvj , for example, kN = H(idvvj ||N), used for message
labelled (j,N), the N-th message in the j-th session. Whenever
a message with label (j,N) is received, if j is the current
session, then the device calculates the key H(idvvj ||N) and
decrypts or verifies this message. Again, if the process fails,
or j does not match, the message is discarded and the iDVV
goes back to the original value.

D. iDVV implementation and application

iDVVs require minimal resources, which means that they
can be implemented on any device, from a simple and very
limited smart card to most existing devices. In other words,
they are a simple and viable solution that can be embedded

4

in any networking device. Just three values per association
have to be securely stored — the seed, the association key
and the iDVV itself — in order to use iDVV continuously.
Furthermore, only hash functions, simple to implement and
with a very small code base, are required to generate iDVVs.
Such kind of resource is already available on all networking
devices that support traditional network protocols and basic
security mechanisms.

We advocate (and demonstrate in Section V) that iDVVs
are inexpensive and, as a result, can be used on a per-message
basis to secure communication. It is worth emphasizing that,
from a security perspective, one fresh iDVV per message
makes it much harder for attacks such as key recovery [17],
advanced side channel attacks [18], among other general
HMAC attacks [19], to succeed. In fact, the one-time key
approach was initially used for generating MACs. Yet, it was
let aside (i.e. replaced by keys with a longer lifetime) due to
performance reasons. However, as the iDVV generation has a
low cost (see Section V-A), we incur in a lower penalty.

Finally, iDVVs can have further practical applications. For
instance, the TLS handshake can be used to bootstrap the
iDVV. After that, iDVVs can be used as session keys, i.e.,
in security mechanisms such as encrypt-then-MAC.

IV. ON THE COST OF SECURITY

In this section we provide a quantitative analysis of the im-
pact of cryptographic primitives on control plane communica-
tion. Although the number of use cases is expanding, SDN has
been mainly targeting data centers. As such, SDN controllers
have to be capable of dealing with the challenging workloads
of these large-scale infrastructures. In these environments new
flows2 can arrive at a given forwarding device every 10 µs, with
a great majority of mice traffic lasting less than 100ms [20].
This means that current data centers need to handle peak loads
of tens of millions of new flows/s. The control plane has to
meet both the network latencies and throughputs required to
sustain these high rates. Current controllers are capable of
achieving a throughput of up to 20M flows/s using TCP [2].

So any effort to systematically secure control plane com-
munications has to meet these challenges. In the following we
try to put the problem in perspective, by analysing the effect
of including even the most basic security primitives to ensure
authenticity, confidentiality and integrity when considering
peak loads of this magnitude.

We start by analyzing the latency impact of TLS, rela-
tive to TCP, and then we focus on hashes and MACs as
they are the essential primitives for authenticity and integrity
of communication. To measure the latency of control plane
communication3 we used Linux’s resource usage system call
(getrusage()) to get the user CPU execution time. This
function is commonly used to measure the performance of
cryptographic primitives. Then, we compare the performance
of 50+ hashing and MAC primitives, including different imple-
mentations such as those provided by OpenSSL (version 1.0.0)

2In spite of the fact that there are several definitions of flow in SDN [2],
we equate SDN flow with TCP flow for the sake of simplicity.

3Time required to send a PACKET_IN message and receive a FLOW_MOD
message without taking into account any further processing time of the
controller.

and PolarSSL (version 1.3.9), two of the most widely used SSL
libraries. We evaluate these primitives using a hardware plat-
form that includes two quad-core Intel Xeon E5620 2.4GHz,
with 2x4x256KB L2 / 2x12MB L3 cache, 32GB SDIMM at
1066MHz, with hyper-threading enabled and overclocking and
dynamic CPU frequency scaling disabled. These machines ran
Ubuntu Server 14.04 LTS and were connected via Gigabit
Ethernet.

A. The cost of secure channels

Our first experiments assess the compared average la-
tency of TCP and TLS on control plane communication.
We analyse the latency of connection setup and of Open-
Flow PACKET_IN/FLOW_MOD messages. The OpenFlow
PACKET_IN message is used by switches to send packets
to the controller (e.g. when there is no rule matching the
packet received in the switch). FLOW_MOD messages allow
the controller to modify the state of an OpenFlow switch.
One of the two nodes of the evaluation platform emulates
the controller, whereas the other assumes the role of the for-
warding devices. The emulation removes the overhead specific
to the controller’s implementation, for instance. In practice,
there is a huge performance gap among different controllers,
most of which due to the chosen technologies and implemen-
tation details. Similarly, the performance of switching devices
varies also a lot due to implementation details. To eliminate
the implementation-specific performance penalty, we wrote
a multi-threaded controller and forwarding devices that just
send and receive PACKET_IN and FLOW_MOD messages. This
also means that the controller sends FLOW_MOD messages in
parallel to the forwarding devices.

The emulated controllers and forwarding devices are im-
plemented in C, using the OpenSSL and PolarSSL (a library
used in systems from companies such as Gemalto, ARM, and
Linksys) TLS implementations in their standard configuration
(i.e. no library-specific optimizations were applied). Figures 2
and 3 show the median of the measured latency over 40k
executions. The standard deviation is below 3% so we do not
include it in the figures.

Figure 2 shows the connection setup time (per forwarding
device). The higher costs of the two TLS implementations are
due to the execution of a more elaborate handshake protocol
between the devices. While TCP uses a simple three-way
handshake, TLS requires a nine message handshake for mutual
authentication of the communicating entities. As expected, the
overhead increases with the number of forwarding devices.
Interestingly, our results also suggest that the choice of im-
plementation has a non-negligible performance impact. For
connection setup, PolarSSL induces nearly twice the overhead
of OpenSSL.

Although important, a high connection cost can be amor-
tized by maintaining persistent connections. As such, the
communications cost is usually considered more relevant.
Figure 3 shows the latency of FLOW_MOD messages (56
bytes, as specified in OpenFlow 1.4 [21]), averaged over 10k
messages. The results with PACKET_IN messages (32 bytes)
were similar so we omit them for clarity. The costs of TCP,
OpenSSL and PolarSSL grow nearly linearly with the number
of forwarding devices. OpenSSL latency is approximately 3x

5

 0.01

 0.1

 1

 10

 100

 1000

 10000

2 4 8 16 32 64 128 256

* *S
e
t
u
p

t
i
m
e

(
m
s
)

Number of forwarding devices

TCP

OpenSSL

PolarSSL

Fig. 2. TCP and TLS connection setup times (in log scale)

higher than TCP. This is explained by the high overhead of
cryptographic primitives, as we further analyse in the next
section. PolarSSL is significantly worse, increasing the latency
by up to 7x when compared with TCP.

Conclusions: The main findings of this analysis can be
summarised in two points. First, different implementations
of TLS present very different performance penalties. Sec-
ond, the additional computation required by the cryptographic
primitives used in TLS leads anyway to a non-negligible
performance penalty in the control plane. In consequence, we
turn to lightweight cryptographic libraries, such as NaCl [13]
and TweetNaCl [22], which are starting to be used in dif-
ferent applications. NaCl has been designed to be secure
and to be embedded in any system [23], taking a clean
slate approach and avoiding most of the pitfalls of other
libraries (e.g. OpenSSL – misuse issues). First, it exposes a
simple and high-level API, with a reduced set of functions
for each operation. Second, it uses high-speed and highly-
secure primitives, carefully implemented to avoid side-channel
attacks. Third, NaCl is less error-prone because low-security
options are eliminated and it also provides a limited number
of cryptographic primitives. In other words, users do not need
deep knowledge regarding security to use it correctly. This
is one of the major differences between it and other libraries
such as OpenSSL. For instance, it has been recurrently shown
that developers have been using OpenSSL in incorrect ways,
leading to several security issues. Fourth, it has already been
shown that secure and high-performance network protocols,
outperforming OpenSSL, can be designed and implemented
using NaCl [24].

B. A closer look at the cost of cryptography

To understand in more detail the cause of the previous
findings we now perform a fine-grained analysis of two main
classes of security primitives used in secure channel protocols:
hashing and MAC.

To measure the overhead of these primitives we disabled
hyper-threading, in order to remove noise and randomness
due to the implied resource sharing. As commodity switching
devices do not implement direct cache access, we have ensured
that the data to be hashed resides in main memory. This avoids

 0.1

 1

 10

 100

 1000

2 4 8 16 32 64 128 256

* *

L
a
t
e
n
c
y

o
f

c
o
n
t
r
o
l

c
o
m
m
u
n
i
c
a
t
i
o
n
s

(
s
)

Number of forwarding devices

FLOW-MOD.TCP

FLOW-MOD.OpenSSL

FLOW-MOD.PolarSSL

Fig. 3. FLOW_MOD latency (in log scale)

artificial performance boosts when operating on cached data4.
To mimic the behaviour of a switch, we circulated over an
input buffer that is twice as large as the last-level cache (L3)
to ensure that every read resulted in a cache miss. The numbers
in the following graphs represent the median of 1M executions,
with a standard deviation below 3%.

We analyse the performance of nine hashing primitives.
The results are presented in Figure 4. The red bars represent
primitives that are provided by OpenSSL, while white bars
(BLAKE and KECCAK) indicate the original implementation
of primitives that are not part of OpenSSL. From Figure 4, we
observe that the primitives with smaller digest sizes (SHA-
1 and MD5) achieve better performance, as expected. The
stronger versions of the SHA and BLAKE families achieve
comparable performance (slightly slower), with higher secu-
rity guarantees. Interestingly, SHA-512 outperforms SHA-256.
This behavior is explained by the fact that on a 64-bit processor
each round can process twice as much data (64-bit words
instead of 32-bit words). However, SHA-256 is faster on a
32-bit processor. In the case of KECCAK the difference in
performance is due to the additional computational complex-
ity of the mechanisms employed. For instance, this solution
requires 24 rounds of permutation on each compression step,
while BLAKE requires up to 16 rounds.

To understand the variance between different implemen-
tations, we present in Figure 5 the costs of the five hashing
primitives for which different implementations were available.
The OpenSSL implementation shows the best performance
performance for hashing primitives. With the exception of
RIPEMD160, the PolarSSL implementation always presented
higher message latencies. In addition to OpenSSL and Po-
larSSL, we included EVP, a library that provides a high-level
interface to cryptographic functions. Its main purpose is the
ability to replace cryptographic algorithms without having to
modify applications. The added flexibility comes at a cost, as
we can observe in the results. The same OpenSSL primitives
used through an EVP interface experience a penalty between
3% and 15%.

Finally, Figure 6 shows the results of the latency analysis

4With cached data, we observed artificial gains of up to 20% for hashing
and of 12% for MAC primitives.

6

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

K
E
C
C
A
K
2
5
6

K
E
C
C
A
K
5
1
2

B
L
A
K
E
2
5
6

S
H
A
2
5
6

R
I
P
E
M
D
1
6
0

B
L
A
K
E
5
1
2

S
H
A
5
1
2

S
H
A
1

M
D
5

T
i
m
e

(
i
n

m
s
)

Latency for messages of 56 bytes

Red bars: OpenSSL implementation

White bars: standard implementation

Fig. 4. Hashing primitives

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

 0.0011

 0.0012

SHA256 RIPEMD160 SHA512 SHA1 MD5

T
i
m
e

(
i
n

m
s
)

Latency for messages of 56 bytes

PolarSSL

EVP

OpenSSL

Fig. 5. Implementations of hashing primitives

of six MAC primitives. It is clear that Poly1305 outperformed
all other primitives, being approximately two times faster than
OpenSSL’s HMAC-SHA1, and close to four times faster than
HMAC-SHA512, for instance. For MAC primitives, the choice
of specific implementations remains relevant. Curiously, in this
case the PolarSSL implementation always outperformed the
equivalent OpenSSL implementation. The reason may lie on
the fact that OpenSSL does not provide native HMAC im-
plementations, but rather highly configurable HMACs through
EVP interfaces. These primitives thus carry the overhead of
EVP and the extra costs of configurability.

Conclusions: From the results of Figure 6, considering
the MAC primitive with best performance in the analysis
(Poly1305 with 0.001ms per message), around 20 dedicated
cores are needed to compute a MAC in order to maintain a rate
of 20M flows/s. To understand the importance of judiciously
selecting the security primitives implementation, the HMAC-
SHA512 OpenSSL (worst case performance in the analysis)
would require over three times more cores (up to 65) to
compute MACs at these rates. From the hashing primitives
analysis, we conclude that SHA-512 performs best among the
strong primitives (i.e. all except SHA1 and MD5), even better
than SHA-256. Concerning MAC primitives, the performance
of HMAC-SHA512 disappoints, and it is clear that Poly1305

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

H
M
A
C
-
S
H
A
5
1
2

H
M
A
C
-
S
H
A
2
5
6

H
M
A
C
-
R
I
P
E
M
D
1
6
0

H
M
A
C
-
S
H
A
1

H
M
A
C
-
M
D
5

P
o
l
y
1
3
0
5

T
i
m
e

(
i
n

m
s
)

Latency for messages of 56 bytes

PolarSSL

OpenSSL

Poly1305

Fig. 6. MAC primitives

outperformed all other primitives, providing security with high
speed and low per-message overhead.

In summary, our findings in this section indicate that (i)
the inclusion of cryptographic primitives results in a non-
negligible performance impact on the latency and through-
put of the control plane; and that (ii) a careful choice of
the primitives used and their respective implementations can
significantly contribute to reduce this performance penalty
and enable feasible solutions in certain scenarios. Taking the
outcome of our analysis into consideration, and given the
benefits of NaCl described in Section IV, we have selected the
NaCl lightweight cryptographic library, and the MAC and hash
primitives with best performance – Poly1305 and SHA512
OpenSSL – as the baseline SC secure channel component
technologies. NaCl is complemented in our architecture with
the iDVV mechanism to generate crypto material (e.g. keys)
used by NaCl ciphers. Taken together they provide, as per our
evaluation, the best trade-off between security and performance
for control plane communications in SDN. We evaluate the
overall result in the next section.

V. IDVV EVALUATION

A. Performance

Figure 7 shows the performance of different primitives
for generating cryptographic material. We compare the iDVV
generator using SHA512 (iDVV-S5), with an implementation
of a common key derivation function (KDFx) with different
values for the exponent c (128, 64, 32, and 16, respectively),
the Diffie-Hellman implementation used by OpenSSL (DH-
OSSL), and the randombytes() function (NaCl-R) pro-
vided by NaCl. The latency of a KDF is very high, increasing
linearly with the number of iterations. Our results for DH are
compatible with other publicly available performance mea-
surements done on service providers such as Amazon [25],
showing a latency several times higher than the iDVV gener-
ator. The randombytes() primitive of NaCl, used to generate
random keys, is the second faster after iDVV, but still results
a latency at least 2.6x higher. NaCl-R’s main latency lies on
I/O operations required to read the special random number
generator device of the Linux kernel, the /dev/urandom.
Last, but not least, it is worth emphasizing that NaCl-R

7

cannot be used for the same purposes of iDVVs, since it
only generates non-sequential random values, i.e., the values
would be different on both ends of the communication channel,
defeating our initial purpose.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

K
D
F
1
2
8

K
D
F
6
4

K
D
F
3
2

K
D
F
1
6

D
H
-
O
S
S
L

N
a
C
l
-
R

i
D
V
V
-
S
5

T
i
m
e

(
i
n

m
s
)

Latency to generate one iDVV

16B

Fig. 7. Latency to generate keys

B. Security

Now, we provide a security analysis for the iDVV Algo-
rithms 1 and 2, proving that they provide indistinguishable-
from-random and deterministic outputs.

Algorithm 1

Theorem 1: If the initial values of seed and key are indis-
tinguishable from random, then the resulting initial idvv (line
2) is indistinguishable from random.

Proof: The seed and key are, by assumption (Section II) of
the availability of robust sources of pseudo-random number
generators in the central services (which generate the former),
indistinguishable from random. In consequence, and assuming
that H is a strong hash function, the output of H(seed || key)
will thus be indistinguishable from random. �

Theorem 2: Any execution of the function H(seed ||
key) with the same input values seed and key, produces the
same output value (idvv in line 2).

Proof: Proof that Algorithm 1 is deterministic follows trivially
from the deterministic nature of hash functions. �

Algorithm 2

Lemma 1: If the seed and idvv are indistinguishable from
random, then the resulting new seed (line 2) is indistinguish-
able from random.

Proof: We start by proving the result of the run with the
initial values of seed and idvv. The initial seed is, by
assumption (Section II) of the availability of robust sources
of pseudo-random number generators in the central services
(which generate the former), indistinguishable from random.
Theorem 1 states that the initial idvv is indistinguishable from
random. In consequence, with a similar argumentation of the
proof of Theorem 1, and assuming that H is a strong hash
function, the output of H(seed || idvv) will be indistinguishable
from random.

Now we recurse the argumentation, to show that the proof
is valid for any input values of seed and idvv. A new seed
was just proven to be indistinguishable from random. A new
idvv is proven below in Theorem 3 to be indistinguishable
from random. Feeding these into the argumentation above, we
generalise the proof ∀ seed and idvv. �

Theorem 3: If the seed and key are indistinguishable from
random, then the resulting new idvv (line 3) is indistinguish-
able from random.

Proof: Lemma 1 establishes that seed, output by line 2 and
thus used as input in line 3, is indistinguishable from random.
The key is, by assumption of the availability of robust sources
of pseudo-random number generators in the central services
(which generate the former), indistinguishable from random.

We start by proving the result of the run with the initial
value idvv. Theorem 1 states that the initial idvv is indis-
tinguishable from random. In consequence, with a similar
argumentation of the proof of Theorem 1, and assuming that
H is a strong hash function, the output of H(seed || key) will
be indistinguishable from random.

Now we recurse the argumentation, to show that the proof
is valid for any values of idvv. Any new idvv was just proven
to be indistinguishable from random. In some next run, it will
pair with key, by nature indistinguishable from random, and
with any new seed, proven by Lemma 1 to be indistinguishable
from random. Feeding these into the argumentation above, we
generalise the proof ∀ key, seed and idvv.

In other words, the newly generated iDVV is an indis-
tinguishable from random value that can be safely used as an
authentication or authorization code, secret key, random nonce,
and so forth. �

Lemma 2: Any execution of the function H(seed ||
idvv) with the same input values seed and idvv, produces
the same output value (seed in line 2).

Proof: Proof that the function is deterministic follows trivially
from the deterministic nature of hash functions. �

Lemma 3: Any execution of the function H(seed ||
key) with the same input values seed and key produces the
same output value (idvv in line 3).

Proof: Proof that the function is deterministic follows trivially
from the deterministic nature of hash functions. �

Theorem 4: Any execution of Algorithm 2 with the same
input values seed, idvv and key produces the same output value
(idvv in line 3).

Proof: Proof that Algorithm 2 is deterministic follows trivially
from Lemma 2 and 3: since the two functions are executed in
a row, and the seed output of line 2 used as input in line 3 is
deterministic (Lemma 2), it satisfies the conditions of Lemma 3
for determinism. �

C. Perfect forward secrecy

In this section, we provide a discussion about the per-
fect forward secrecy properties of our protocols, in face of
compromise of any of KDC, controller, forwarding device.
We re-state our goal in that case: safeguard secrecy of past

8

communications from the time the key became active, to the
time it became known to the attacker.

Note that when the assumed key distribution authority (e.g.
the Kerberos KDC) is compromised, then the attacker is able
to obtain all the shared secrets Kkc (resp. Kkf) between
the authority and every controller (resp. every forwarding
device). In this case, the attacker would be able to decrypt the
past communication that delivered the initial seed and key
to the associated devices, and in consequence, decrypt past
conversations, since the generation of iDVVs is deterministic
from the initial state (see idvv_init in Section III-A).

Although providing secure and robust key distribution
services is an open challenge and orthogonal to this paper, we
provide a simple mechanism for providing PFS even when the
authority is compromised. We achieve it by updating the shared
key (between the authority and registered devices) each time
a forwarding device is associated with a controller. The key is
updated as follows: Kkc ← H(Kkc) and Kkf ← H(Kkf).
This way, a shared key captured cannot decrypt any past
messages, since they have been encrypted with previous gener-
ations of that key, which have been “forgotten” in the system,
given the irreversible nature of hashes.

As far as devices are concerned, when they are compro-
mised, the current values of seed, key and idvv are captured.
Mote that seed is rolled forward every time a new iDVV is
generated. Only key stays as the original secret, but short
of having as well the initial seed as sent at the end of the
association procedure, the attacker will also not be able to
synthesize any past iDVVs since day one and so, cannot also
decrypt past conversations, achieving PFS, as we sought.

As far as devices are concerned, when they are compro-
mised, the current values of seed, key and idvv are captured.
Note that key stays as the original secret, but seed is rolled
forward every time a new iDVV is generated. So, the attacker
will be unable to synthesize any past iDVVs since day one
and so, cannot decrypt past conversations, achieving PFS, as
we desired.

D. Randomness

We empirically assessed the quality and confidence of the
iDVV generator using two techniques. First, we generated
more than 200 billion iDVVs to verify if there was any
repetition, i.e., the same iDVV generated more than once.
There was no a single repeated iDVV. This indicates that our
solution is (indeed) suitable for short term iDVVs (e.g. one
per message).

Second, pseudorandom generators should be always em-
pirically tested [26]. Again, we used NIST’s test suite [27] to
statistically assess the confidence of the iDVV generator. For
the sake of our tests, we generated 1M iDVVs of 64 bytes.
The file, containing 1M iDVVs, was used as input for the test
suite. The streams of bits corresponding to the iDVVs passed
all tests, i.e., there was no single failure. This gives us a good
level of confidence on the robustness of the iDVV generator.

We also used ent [28], which is a pseudorandom num-
ber sequence test program, to evaluate the serial correlation
coefficient of our implementation. While non-random and pre-
dictable sequences of bytes have a serial correlation coefficient

of approximately 0.5 and 1.0, respectively, a random byte
stream should have a coefficient near to zero. Our implementa-
tion, featuring SHA512, had a serial correlation coefficient of
0.0004. Alternative implementations, using MD5 and SHA1,
presented the worst case coefficients, as high as 0.035. Typical
pseudo-random functions or methods provided by a program-
ming language, such as rand() from C and SecureRandom from
Java, have a serial correlation of approximately 0.0148 and
0.0127, respectively. This shows us that SHA512 is indeed a
strong candidate to securely generate iDVVs.

VI. DISCUSSION

A. On the cost of the infrastructure

Our proposal compares well with traditional solutions such
as EJBCA (http://www.ejbca.org/) and OpenSSL, two popular
implementations of PKI and TLS, respectively.

The first interesting take away is that our solution has
nearly one order of magnitude less LOC (85k) and uses
four times less external libraries and only four programming
languages. This makes a huge difference from a security and
dependability perspective. For instance, to formally prove more
than 717k LOC (OpenSSL + EJBCA) is by itself a tremen-
dous challenge. And it gets considerably worse if we take
into account eighty external libraries and eleven development
languages. Moreover, it is worth emphasizing that libraries
such as OpenSSL suffer from different fundamental issues
such as too many legacy features accumulated over time, too
many alternative modes as result of tradeoffs made in the
standardization, and too much focus on the web and DNS
names.

Second, OpenSSL is complex and highly configurable.
This has been also the source of many security incidents,
i.e., developers and users frequently use the library in an
inappropriate way [29], [30]. It has also been shown that
the majority of the security incidents are still caused by
errors and misconfiguration of systems [31], [32]. Lastly,
recent research has uncovered new vulnerabilities on TLS
implementations [33].

In contrast, our proposed architecture exhibits gains in
both performance and robustness, contributing to solving the
dilemma we enunciated in the introduction. By having less
LOC, we significantly reduce the threat surface – by one order
of magnitude – and by combining NaCl and the iDVV mecha-
nism, we provide a potentially equivalent level of security, but
quite increased performance/robustness product, as keys can
be rolled even on a per message basis.

B. Size and complexity matter

The more complex the system, the higher the probability
of having vulnerabilities and hence a broader attack surface.
Nowadays, this is still one of the major problems faced
by the technology industry. Specialized security reports have
recurrently highlighted the complexity and size of systems as
one of the most important security challenges [34]. The time
for re-thinking the security of communication channels may
have come, and that is also the position we take in this paper.

Renowned cryptographers and security experts have been
claiming that simplicity is one of the keys in securing computer

9

http://www.ejbca.org/

systems [13], [35], [36]. In fact, the trusted computing commu-
nity has been advocating simple interfaces and concerned with
the size and complexity of components for a long time [37],
[38].

These positions have in essence been echoed in our KISS
work (starting with the name metaphor, keep it simple, stupid).
We methodically selected high performance MAC and hashing
primitives for KISS – Poly1305 and SHA512 OpenSSL –
and actually showed the penalty to be paid by less attentive
choices. We also turned to lightweight but comparatively
secure cryptographic libraries for secure channel support, like
NaCl. NaCl was complemented in our architecture with the
iDVV mechanism, to generate secrets to be used for example
by NaCl ciphers, again in a fast, very simple and decentralized
way.

C. On the cost of iDVV

Similarly to iCVVs, iDVVs are a low overhead solution
that requires minimal resources. This solution is thus feasible
to be integrated into compute-constrained devices as commod-
ity switches. Our preliminary evaluation has revealed that the
iDVV mechanism is faster than traditional solutions, namely,
the key-exchange algorithms embedded in the OpenSSL im-
plementation. Considering a setup with 128 switching devices,
sending PACKET_IN messages to and receiving FLOW_MOD
messages from the controller our results shows our proposed
solution (iDVV + NaCl’s ciphers) to be more than 30%
faster than an OpenSSL-based implementation using AES256-
SHA (the most common high performance cipher suite, used
by IT companies such as Google, Facebook, Microsoft, and
Amazon). Importantly, we were able to outperform OpenSSL-
based deployments while still providing the same security
properties: authenticity, integrity, and confidentiality. In ad-
dition, we achieved this result not only while offering the
same properties, but also with stronger security guarantees: the
tests were made by generating one iDVV per packet, while
the OpenSSL-based implementation uses a single key (for
symmetric ciphering) for the entire communication session.

VII. RELATED WORK

There are several feasible attacks against the SDN control
plane [39], [40]. Most of them explore vulnerabilities such
as the lack of authentication, authorization and other essential
security properties. However, almost no attention has been paid
to the security requirements of control plane associations and
communication between devices. For instance, only recently,
the use of secrecy through obscurity has been proposed to
protect SDN controllers from DoS attacks [41]. In this case,
the switch authentication ID is hidden in a specific field in
the IP protocol. It is assumed that the devices share a look-
up table and unique IDs. However, in spite of being capable
of mitigating DoS attacks, this technique does not address the
security issues of control plane communications.

VIII. CONCLUDING REMARKS

In this paper, we set out to explore and confirm our intuition
for the possible reasons behind a slower than expected adoption
of security mechanisms in SDN, and based on those findings,

we proposed KISS, a modular secure SDN control plane
communications architecture.

We started by investigating the impact of essential crypto-
graphic primitives and TLS implementations on the control
plane performance. We showed that whilst even the most
basic security primitives add a non-negligible degradation of
performance, a judicious choice of these primitives and their
specific implementations can mitigate the penalty significantly.
This is particularly important for the typical SDN scenario
that resorts to commodity hardware, sometimes with modest
computing capabilities.

The second problem we explored in this paper was the
complexity of the centralized support infrastructure for authen-
tication and key distribution. We proposed iDVV, a simple and
robust decentralized mechanism for generating and verifying
the secrets necessary for secure communications between
network devices. As future work, we are also investigating the
reduction of single-point-of-failure syndromes: architectures
for SDN KDCs resilient to accidental and malicious faults,
drawing from fault and intrusion tolerance techniques.

Our results are encouraging in terms of an increase of
performance — 30% improvement over OpenSSL — and
robustness — an order of magnitude reduction in the number
of LOC, and implied cyclomatic complexity. This also means
that formal verification is more tractable, which is one of our
future goals for iDVV, for instance.

We believe that this is one first step towards lightweight
but effective security for control plane communication, and
potentially for SDN in general. We make a “call to arms”
to foster developments on securing SDN communications
without impairing performance, a fundamental pre-condition
for widespread adoption by future SDN deployments.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers of
IEEE Security & Privacy and Christian Esteve Rothenberg
and Marcus Völp for the insightful comments. It is worth
mentioning that a short version of this report has been accepted
for publication in IEEE Security & Privacy.

This work is partially supported by the Fonds National
de la Recherche Luxembourg (FNR) through PEARL grant
FNR/P14/8149128, by European Commission funds through
the H2020 programme, namely by funding of the SUPER-
CLOUD project, ref. H2020-643964, and by Portuguese na-
tional funds through Fundação para a Ciência e a Tecnologia
(FCT), namely by funding of LaSIGE Research Unit, ref.
UID/CEC/00408/2013.

REFERENCES

[1] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS)
Protocol Version 1.2,” RFC 5246 (Proposed Standard), IETF, Aug.
2008, updated by RFCs 5746, 5878, 6176.

[2] D. Kreutz, F. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, Jan 2015.

10

[3] M. Antikainen, T. Aura, and M. Särelä, “Spook in your network:
Attacking an SDN with a compromised openflow switch,” in Secure
IT Systems, ser. Lecture Notes in Computer Science, K. Bernsmed
and S. Fischer-Hübner, Eds. Springer International Publishing,
2014, pp. 229–244. [Online]. Available: http://dx.doi.org/10.1007/
978-3-319-11599-3_14

[4] D. Naylor, A. Finamore, I. Leontiadis, Y. Grunenberger, M. Mellia,
M. Munafo, K. Papagiannaki, , and P. Steenkiste, “The cost of the
"S" in HTTPS,” in Proceedings of the Tenth ACM Conference on
Emerging Networking Experiments and Technologies, ser. CoNEXT
’14. New York, NY, USA: ACM, 2014, p. 7. [Online]. Available:
http://doi.acm.org/10.1145/2535372.2535416

[5] C. Shen, E. Nahum, H. Schulzrinne, and C. P. Wright, “The impact
of TLS on SIP server performance: Measurement and modeling,”
IEEE/ACM Trans. on Networking, vol. 20, no. 4, Aug 2012.

[6] J. Schonwalder and V. Marinov, “On the impact of security protocols
on the performance of SNMP,” IEEE Trans. on Net. and Service
Management, vol. 8, no. 1, 2011.

[7] Hewlett-Packard Development Company, L.P., “HP 3800 switch series,”
2015. [Online]. Available: http://h17007.www1.hp.com/docs/products/
4aa3-7115enw.pdf

[8] Advantech Co., Ltd., “Freescale introduces a new breed of
intelligent switching for the SDN era,” 2015. [Online]. Available:
http://www.advantech.com

[9] NEXCOM International Co., Ltd., “NSA 5640,” 2015. [Online].
Available: http://www.nexcom.com/

[10] A. Wazan, R. Laborde, F. Barrere, A. Benzekri, and D. Chadwick, “PKI
interoperability: Still an issue? a solution in the x.509 realm,” in Info.
Assurance and Sec. Education and Training. Springer, 2013, vol. 406.

[11] J. Yu and M. Ryan, “Evaluating web PKIs,” in Software Architecture
for Big Data and the Cloud, 1st ed., I. Mistrik, R. Bahsoon, N. Ali,
M. Heisel, and B. Maxim, Eds. Elsevier, June 2017, ch. 7.

[12] N. van der Meulen, “DigiNotar: Dissecting the first dutch digital
disaster,” Journal of Strategic Security, vol. 6, no. 2, 2013.

[13] D. Bernstein, T. Lange, and P. Schwabe, “The security impact of a new
cryptographic library,” in Progress in Cryptology - LATINCRYPT, ser.
L. N. in CS. Springer, 2012, vol. 7533.

[14] B. C. Neuman and T. Ts’o, “Kerberos: An authentication service for
computer networks,” IEEE Communications magazine, vol. 32, no. 9,
pp. 33–38, 1994.

[15] P. Verissimo, M. Correia, N. F. Neves, and P. Sousa, “Intrusion-
resilient middleware design and validation,” in Information Assurance,
Security and Privacy Services, ser. Handbooks in Information
Systems. Emerald Group Publishing Limited, May 2009, vol. 4, pp.
615–678. [Online]. Available: http://www.navigators.di.fc.ul.pt/archive/
papers/annals-IntTol-compacto.pdf

[16] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer,
“OpenPGP Message Format,” RFC 4880 (Proposed Standard), RFC
Editor, Fremont, CA, USA, pp. 1–90, Nov. 2007.

[17] H. Handschuh and B. Preneel, “Key-recovery attacks on universal hash
function based mac algorithms,” in Advances in Cryptology - CRYPTO,
ser. L. N. in CS, D. Wagner, Ed. Springer, 2008, vol. 5157.

[18] O. Benoit and T. Peyrin, “Side-channel analysis of six sha-3 candidates,”
in Cryptographic Hardware and Embedded Systems, CHES 2010, ser.
L. N. in CS. Springer, 2010, vol. 6225, pp. 140–157.

[19] J. Kim, A. Biryukov, B. Preneel, and S. Hong, “On the security of
HMAC and NMAC based on HAVAL, MD4, MD5, SHA-0 and SHA-1
(extended abstract),” in Security and Cryptography for Networks, ser.
L. N. in CS. Springer, 2006, vol. 4116.

[20] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proceedings of the 10th ACM
SIGCOMM Conference on Internet Measurement, ser. IMC ’10. New
York, NY, USA: ACM, 2010, pp. 267–280. [Online]. Available:
http://doi.acm.org/10.1145/1879141.1879175

[21] ONF, “Openflow switch specification (version 1.4.0),” October 2013.
[Online]. Available: http://goo.gl/1DYxw6

[22] D. Bernstein, B. van Gastel, W. Janssen, T. Lange, P. Schwabe,
and S. Smetsers, “TweetNaCl: A crypto library in 100 tweets,” in
Progress in Cryptology - LATINCRYPT 2014, ser. Lecture Notes in
Computer Science, D. F. Aranha and A. Menezes, Eds. Springer

International Publishing, 2015, vol. 8895, pp. 64–83. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-16295-9_4

[23] J. B. Almeida, M. Barbosa, J. S. Pinto, and B. Vieira, “Formal
verification of side-channel countermeasures using self-composition,”
Science of Computer Programming, vol. 78, no. 7, pp. 796 – 812, 2013,
special section on Formal Methods for Industrial Critical Systems
(FMICS 2009 + FMICS 2010) & Special section on Object-Oriented
Programming and Systems (OOPS 2009), a special track at the
24th ACM Symposium on Applied Computing. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167642311001857

[24] W. M. Petullo, X. Zhang, J. A. Solworth, D. J. Bernstein, and
T. Lange, “MinimaLT: Minimal-latency networking through better
security,” in Proceedings of the 2013 ACM SIGSAC Conference
on Computer & Communications Security, ser. CCS ’13. New
York, NY, USA: ACM, 2013, pp. 425–438. [Online]. Available:
http://doi.acm.org/10.1145/2508859.2516737

[25] N. Mavrogiannopoulos, “The price to pay for perfect-forward
secrecy,” Dec. 2011. [Online]. Available: http://nmav.gnutls.org/2011/
12/price-to-pay-for-perfect-forward.html

[26] L. E. Bassham, III, A. L. Rukhin, J. Soto, J. R. Nechvatal, M. E. Smid,
E. B. Barker, S. D. Leigh, M. Levenson, M. Vangel, D. L. Banks, N. A.
Heckert, J. F. Dray, and S. Vo, “Sp 800-22 rev. 1a. a statistical test suite
for random and pseudorandom number generators for cryptographic
applications,” Gaithersburg, MD, United States, Tech. Rep., 2010.

[27] NIST, “NIST statistical test suite,” 2017. [Online]. Available:
http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html

[28] J. Walker, “ent - a pseudorandom number sequence test program,”
2008. [Online]. Available: http://www.fourmilab.ch/random/

[29] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An empirical
study of cryptographic misuse in Android applications,” in Proceedings
of the 2013 ACM SIGSAC Conference on Computer & Communications
Security, ser. CCS ’13. New York, NY, USA: ACM, 2013, pp. 73–84.
[Online]. Available: http://doi.acm.org/10.1145/2508859.2516693

[30] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben,
and M. Smith, “Why eve and mallory love Android: an analysis
of Android SSL (in)security,” in Proceedings of the 2012 ACM
conference on Computer and communications security, ser. CCS ’12.
New York, NY, USA: ACM, 2012, pp. 50–61. [Online]. Available:
http://doi.acm.org/10.1145/2382196.2382205

[31] Verizon, “2015 data breach investigations report,” Verizon, Tech.
Rep., 2015. [Online]. Available: http://www.verizonenterprise.com/
DBIR/2015/

[32] J. Zhang, Z. Durumeric, M. Bailey, M. Liu, and M. Karir, “On the
mismanagement and maliciousness of networks,” in Symposium on
Network and Distributed System Security (NDSS), 2014.

[33] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet,
M. Kohlweiss, A. Pironti, P.-Y. Strub, and J. K. Zinzindohoue, “A messy
state of the union: Taming the composite state machines of TLS,” in
2015 IEEE Symposium on Security and Privacy. IEEE, 2015, pp.
535–552.

[34] Cisco, “Annual security report,” 2014. [Online]. Available: https:
//www.cisco.com/web/offer/gist_ty2_asset/Cisco_2014_ASR.pdf

[35] Stanford University, “Stanford cybersecurity expert: Dan
Boneh,” 2015. [Online]. Available: https://www.youtube.com/watch?v=
H-YGdcNFBJk

[36] B. Preneel, “System security after Snowden,” 2015. [Online]. Available:
http://2015.dsn.org/keynote-speakers/

[37] G. Heiser, T. Murray, and G. Klein, “It’s time for trustworthy systems,”
IEEE Security & Privacy, vol. 10, no. 2, pp. 67–70, 2012.

[38] H. Raj, D. Robinson, T. B. Tariq, P. England, S. Saroiu, and
A. Wolman, “Credo: Trusted computing for guest vms with a
commodity hypervisor,” Microsfot Research, Tech. Rep. MSR-
TR-2011-130, December 2011. [Online]. Available: http://research.
microsoft.com/apps/pubs/default.aspx?id=157213

[39] S. Scott-Hayward, S. Natarajan, and S. Sezer, “A survey of security in
software defined networks,” IEEE Communications Surveys Tutorials,
vol. 18, no. 1, pp. 623–654, Firstquarter 2016.

[40] D. Kreutz, F. M. Ramos, and P. Verissimo, “Towards secure and
dependable software-defined networks,” in Proceedings of the Second
ACM SIGCOMM Workshop on Hot Topics in Software Defined

11

http://dx.doi.org/10.1007/978-3-319-11599-3_14
http://dx.doi.org/10.1007/978-3-319-11599-3_14
http://doi.acm.org/10.1145/2535372.2535416
http://h17007.www1.hp.com/docs/products/4aa3-7115enw.pdf
http://h17007.www1.hp.com/docs/products/4aa3-7115enw.pdf
http://www.advantech.com
http://www.nexcom.com/
http://www.navigators.di.fc.ul.pt/archive/papers/annals-IntTol-compacto.pdf
http://www.navigators.di.fc.ul.pt/archive/papers/annals-IntTol-compacto.pdf
http://doi.acm.org/10.1145/1879141.1879175
http://goo.gl/1DYxw6
http://dx.doi.org/10.1007/978-3-319-16295-9_4
http://www.sciencedirect.com/science/article/pii/S0167642311001857
http://doi.acm.org/10.1145/2508859.2516737
http://nmav.gnutls.org/2011/12/price-to-pay-for-perfect-forward.html
http://nmav.gnutls.org/2011/12/price-to-pay-for-perfect-forward.html
http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html
http://www.fourmilab.ch/random/
http://doi.acm.org/10.1145/2508859.2516693
http://doi.acm.org/10.1145/2382196.2382205
http://www.verizonenterprise.com/DBIR/2015/
http://www.verizonenterprise.com/DBIR/2015/
https://www.cisco.com/web/offer/gist_ty2_asset/Cisco_2014_ASR.pdf
https://www.cisco.com/web/offer/gist_ty2_asset/Cisco_2014_ASR.pdf
https://www.youtube.com/watch?v=H-YGdcNFBJk
https://www.youtube.com/watch?v=H-YGdcNFBJk
http://2015.dsn.org/keynote-speakers/
http://research.microsoft.com/apps/pubs/default.aspx?id=157213
http://research.microsoft.com/apps/pubs/default.aspx?id=157213

Networking, ser. HotSDN ’13. New York, NY, USA: ACM, 2013,
pp. 55–60. [Online]. Available: http://doi.acm.org/10.1145/2491185.
2491199

[41] O. I. Abdullaziz, Y. J. Chen, and L. C. Wang, “Lightweight authentica-
tion mechanism for software defined network using information hiding,”
in 2016 IEEE Global Communications Conference (GLOBECOM), Dec
2016, pp. 1–6.

12

http://doi.acm.org/10.1145/2491185.2491199
http://doi.acm.org/10.1145/2491185.2491199

	Introduction
	KISS architecture
	System and threat model
	Security goals

	iDVV: Keep It Simple and Secure
	iDVV bootstrap
	iDVV generation
	iDVV synchronization
	iDVV implementation and application

	On the cost of security
	The cost of secure channels
	A closer look at the cost of cryptography

	iDVV evaluation
	Performance
	Security
	Perfect forward secrecy
	Randomness

	Discussion
	On the cost of the infrastructure
	Size and complexity matter
	On the cost of iDVV

	Related work
	Concluding remarks
	References

