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Abstract—In this letter, we investigate optimal and relaxed
constructive interference regions (CIR) for the symbol-level
precoding (SLP) problem in the downlink of a multiuser multiple-
input single-output (MISO) channel. We define two types of CIRs,
namely, distance preserving CIR (DPCIR) and union bound CIR
(UBCIR) for any given constellation shape and size. We then
provide a systematic way to describe these regions as convex
sets. Using the definitions of DPCIR and UBCIR, we show that
the SLP power minimization problem, minimizing either sum or
peak (per-antenna) transmit power, can always be formulated
as a convex optimization problem. Our results indicate that
these regions allow further reduction of the transmit power
compared to the current state of the art without increasing the
computational complexity at the transmitter or receiver.

Index Terms—Constructive interference, multiuser MISO,
symbol-level precoding, Voronoi regions.

I. INTRODUCTION

Transmit beamforming in the downlink of multiuser
multiple-antenna channels, which is commonly referred to as
multiuser precoding, has been widely studied in the literature
(see for example [1] and the references within). In general, this
problem is formulated as a constrained optimization problem,
where the objective function and the constraints are defined
so as to keep a balance between the available resources and
the target quality-of-service (QoS). Some well-known formu-
lations for this problem are power minimization with signal-
to-interference-plus-noise ratio (SINR) constraints, max-min
SINR balancing, and (weighted) sum-rate maximization [2]
[3]. In the power minimization problem with SINR constraints,
which is the main focus of this letter, the goal is to minimize
the sum or peak (per-antenna) transmit power subject to
individual SINR requirements.

Conventional multiuser precoding schemes try to design the
precoder in order to mitigate the multiuser interference. For
quasi-static fading scenarios, the precoder is redesigned in
each block using the instantaneous channel state information
(CSI). These methods can be interpreted as block-level pre-
coding. On the other hand, symbol-level precoding (SLP) tries
to turn the interference into a useful source of desired signal
power instead of considering it as an unwanted distortion to be
mitigated or eliminated. This leads to introducing the notion
of constructive interference (CI), which was first presented in
[4]. Accordingly, in addition to CSI, the instantaneous data
information (DI) of all users are used to design the precoder.
An SLP optimization problem then needs to be solved for each
symbol period. It has been shown that significant gains can be
achieved with respect to conventional schemes at the cost of
higher transmitter complexity [5] [6]. One can also formulate
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the SLP problem to directly find the optimal transmit vector,
as proposed in [6], instead of finding the precoding matrix.

The constraints in the SLP optimization problem push each
noiseless received signal to its correct constructive interference
region (CIR), and therefore, the constraints depend on the
constellation shape. In [5] and [6], the authors formulate
the SLP optimization problem only for PSK constellations,
considering sum transmit power, and the extension to peak
per-antenna power is presented in [7]. The problem is also
addressed for QAM and APSK constellations in [8] and [9],
respectively. A generic formulation (i.e., not depending on a
specific constellation) for the SLP optimization problem is not
provided in the literature.

In this letter, we first discuss optimal and relaxed CIRs
for a generic constellation, and then show that the SLP
problem can always be formulated as a convex optimization
problem defined on these regions. We provide explicit convex
formulations for the SLP power minimization problem, and
compare their performances and computational complexities
with the state of the art techniques.

The rest of this letter is organized as follows. In Section II
we describe our system model and review the CI-based SLP
problem. We discuss optimal and relaxed CIRs for a generic
constellation in Section III. In Section IV we formulate the
SLP power minimization problem as a convex optimization
problem for given CIRs. We present the simulation results in
Section V. Finally, we conclude the letter in Section VI.

II. SYSTEM MODEL AND PROBLEM DEFINITION

We consider the downlink of a multiuser multiple-input
single-output (MISO) channel where a single base station
(BS) with N transmit antennas simultaneously serves K users,
each equipped with a single receive antenna. A block fading
channel is assumed between any transmit/receive antenna pair.
We denote by hk ∈ C1×N the channel vector between
the BS transmit antennas and the k-th user, and by H =
[hT1 , . . . ,h

T
K ]T the channel matrix, where [ · ]T denotes the

transpose operator. Throughout the letter, we drop the symbol’s
time index to simplify the notation. At a given symbol period,
K independent data symbols are collected in users’ symbol
vector s = [s1, . . . , sK ]T ∈ CK×1 with sk denoting the
symbol intended for the k-th user. The elements of s are
drawn from (potentially non-identical) finite equiprobable two-
dimensional constellation sets. Without loss of generality, we
assume a generic constellation set χ = {xi|xi ∈ C}Mi=1 for all
users, where M is the modulation order. We further assume
that χ has unit average power, i.e., Eχ{|xi|2} = 1.

Assuming perfect channel knowledge, the user’s symbol
vector is mapped to N transmit antennas by a symbol-level
precoder resulting in the signal vector u ∈ CN×1 to be
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transmitted by the BS. The received signal by the k-th user
is then rk = hku + wk, where wk ∼ CN (0, σ2

k) is the
complex additive white Gaussian noise (AWGN) at the k-
th receiver. Again without loss of generality, we assume
identical noise distributions at the receiver of different users,
i.e., σk = σ, k = 1, ...,K. From the received scalar rk, the user
k tries to detect its own symbol using the maximum-likelihood
(ML) decision rule.

An effective measure of QoS in multiuser interference chan-
nels is SINR [10], which is translated to received SNR when
CI is of interest. In the SLP power minimization problem, the
transmit vector u is designed instantaneously in each symbol
period based on a constrained optimization problem, and is in
general a function of s, H, and the set of given SNR thresholds
for all users. The SNR-related constraints can be expressed as

|hku|2 ≥ σ2γk|sk|2, k = 1, ...,K, (1)

where γk is the SNR threshold for the k-th user. Notice
that the SNR thresholds {γk}Kk=1 typically refer to long-term
(e.g., frame-level) SNRs, i.e., the average received SNR over
all the symbols in a frame. For sufficiently large frames we
have E{|sk|2} → 1, k = 1, ...,K, and therefore the symbol-
level constraints (1) satisfy the frame-level SNR thresholds
E{|hku|2} ≥ σ2γk, k = 1, ...,K, where the expectations are
taken over the entire frame. In this letter, we use the symbol-
level SNR constraints (1), although they may not be in general
necessary conditions to meet the frame-level SNR thresholds.

Considering (1), the SLP power minimization problem has
been formulated in [5] and [6] as

u(s,H,γ) = argmin
u

f(u)

s.t. hku ∈ σ
√
γk Dk, k = 1, ...,K,

(2)

where Dk represents the CIR associated with symbol sk, γ
is the vector collecting all the SNR thresholds {γk}Kk=1, and
the objective function f(u) can be either ‖u‖22 or ‖u‖2∞
depending on whether sum or peak (per-antenna) transmit
power is minimized. The constraints in (2) satisfy the SNR
constraints (1) if the amplitude of any point in Dk is equal
to or larger than |sk|, for all k = 1, ...,K. We call this the
amplitude condition in what follows.

III. CONSTRUCTIVE INTERFERENCE REGIONS

In this section, we define several types of CIRs and describe
them in a systematic way based on the ML decision regions
of the constellation χ. Hereinafter, we denote each complex-
valued constellation point by its equivalent real-valued vector
form, and thus the set of points in χ is denoted by {xi|xi ∈
R2}Mi=1.

The ML decision rule for the constellation set χ has a
geometric interpretation; it corresponds to the Voronoi regions
of χ which are bounded by hyperplanes. Assuming a given
constellation point xi and one of its neighboring points xj , the
hyperplane separating the Voronoi region of xi from that of xj
is described as {x | x ∈ R2,aTi,jx = bi,j}, where ai,j ∈ R2,
ai,j 6= 0, and bi,j ∈ R. This hyperplane is a decision boundary
between xi and xj , which splits R2 into two halfspaces. The
halfspace extending towards xi is the solution set of a linear

inequality represented by {x | x ∈ R2,aTi,jx ≥ bi,j}, where
the vector ai,j is the inward normal of this halfspace, and
the constant bi,j determines the offset from the origin. The
Voronoi region of xi is then given by intersecting all such
halfspaces, i.e.,

Di,ML =
{
x | x ∈ R2,aTi,jx ≥ bi,j ,∀xj ∈ Si

}
, (3)

where Si denotes the set of points sharing a decision boundary
with xi, and cardinality |Si| = Mi . Equation (3) can be
written in a more compact form as

Di,ML =
{
x | x ∈ R2,Aix � bi

}
, (4)

where Ai ∈ RMi×2 and bi ∈ RMi contain aTi,j and bi,j ,
respectively, for all xj ∈ Si, and� denotes the componentwise
inequality. The Voronoi region (4) can be either an unbounded
polyhedron, if xi is an outer constellation point, or a bounded
polyhedron (polytope), if xi is an inner point. It is easy to show
that polyhedra, and hence the Voronoi regions, are always
convex sets [11].

Each normal vector ai,j in (3) is orthogonal to the Voronoi
edge shared by xi and xj , thus it can be obtained as ai,j =
xi−xj (or any scalar multiplication of xi−xj). Furthermore,
this Voronoi edge passes through the point (xi + xj)/2, and
therefore the corresponding offset bi,j in (3) is obtained by
simple vector algebra as bi,j = aTi,j(xi + xj)/2 [11, p. 27].
Notice that bi,j is found such that the orthogonal distance
between xi and the corresponding hyperplane is equal to half
of the distance between xi and xj . By changing bi,j to bi,j +
δi,j , where δi,j ≥ 0, we get a new hyperplane displaced by
δi,j/‖ai,j‖2 in the direction of ai,j (thus being parallel to the
original hyperplane).

According to the definition of CI [5] [6], the CIR associated
with xi should be a subset of Di,ML. In this letter we propose
a construction method such that each CIR is obtained by
displacement of the hyperplanes contributing to Di,ML. The
displacement values δi,j must be chosen carefully as they
determine the margins from the Voronoi decision boundaries
and thus affect the symbol error rate (SER). It is clear that
for a fixed SNR, reducing the margins causes higher SER. On
the other hand, from (2) it is deduced that for a given SNR
threshold, having narrower margins gives larger search domain
to find the vector u with minimum transmit power.

A. Distance Preserving Constructive Interference Regions

We call a CIR distance preserving (DPCIR) if it does
not decrease the original distances between the constellation
points. As a consequence, the achievable SER will be always
lower than that of the original constellation. Let di,j denote
the distance between the points xi and xj , the distance
preserving margin is then equal to di,j/2. Obtaining δi,j
from δi,j/‖ai,j‖2 = di,j/2, the DPCIR associated with xi
is expressed as

Di,DP
def
=
{
x | x ∈ R2,Aix � bi + ∆i,DP

}
, (5)

where ∆i,DP ∈ RMi is the vector containing di,j‖ai,j‖2/2
for all xj ∈ Si. From (5) it follows that if xi is an inner
constellation point, Di,DP will be only xi itself, and thus
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the noiseless received signal should exactly locate at xi. In
case where xi is an outer point, Di,DP will be a convex cone
with a vertex at xi, and the noiseless received signal can lie
anywhere on this cone. Figure 1 illustrates the DPCIRs (blue
shaded regions with blue dotted boundary edges) for an 8-ary
constellation which is optimized over AWGN channel using
the method presented in [12]. Notice that if SER is not allowed
to increase, then DPCIRs are optimal and correspond to the
CIRs introduced for PSK and QAM constellations in [5] and
[8], respectively.

B. Union Bound Constructive Interference Regions

In practice, the users may have some flexibility in terms of
SER. In such cases, one may relax the DPCIRs as long as a
given target SER is ensured. By doing so, we may have larger
search domains available for the solution of the SLP problem
(2), and possibly lower transmit powers are achievable. The
relaxation can be done by bringing the CIR hyperplanes closer
to the Voronoi decision boundaries.

In what follows, we use the union bound on symbol error
probability to determine how close the CIR hyperplanes can
get to the Voronoi boundaries. A tractable form of the union
bound, known as the nearest neighbor union bound (NNUB)
[13], is given by

Pe,ML ≤
(

1

M

∑
i

Mi

)
Q

(
dmin

2σ

)
, (6)

where Q(·) is the standard Q-function and dmin is the minimum
distance of the constellation. The NNUB gives a tight bound
on symbol error probability being quite close to the exact SER
at high SNRs. Notice that in our model, the received signal
rk can be considered as the output of an AWGN channel and
therefore the NNUB is valid.

Using (6), for a given Pe, we define the distance threshold
dmin,UB as

dmin,UB = 2σQ−1
(
M Pe∑
iMi

)
. (7)

The value of dmin,UB implies how far the noiseless received
signal is allowed to deviate from the desired symbol without
violating the target SER. Hence, dmin,UB as defined in (7)
is the smallest minimum distance by which the worst SER
performance is guaranteed to be Pe. This provides us with
the intervals [dmin,UB, di,j ] from which we can choose the
relaxed distances; however, the most energy-efficient choice
is dmin,UB. We refer to these regions as union bound CIRs
(UBCIR). Notice that in the general case of unequal target
SERs, UBCIRs can be obtained separately for each user.

Obtaining the displacement values δi,j from δi,j/‖ai,j‖2 =
dmin,UB/2, the UBCIR associated with xi is defined as

Di,UB
def
=
{
x | x ∈ R2,Aix � bi + ∆i,UB

}
, (8)

where the vector ∆i,UB ∈ RMi contains dmin,UB‖ai,j‖2/2 for
all xj ∈ Si. Notice that, in general, the shapes of UBCIRs
for a given constellation depend on the Voronoi regions,
as illustrated in Fig. 1 (green shaded regions with dashed
boundary edges).

Fig. 1. An illustration of DPCIRs and UBCIRs for the AWGN-optimized
8-ary constellation. The CIR hyperplanes are depicted by dotted and dashed
lines, and shaded areas represent the intersection of halfspaces.

Di,UB as defined in (8) may not fulfill the amplitude
condition deduced from (1). Therefore, we should consider
an additional constraint for each constellation point xi. In
fact, the amplitude condition is satisfied if the relaxed CIR
associated with xi is a subset of the complementary region of
the disc centered at the origin passing through xi. However,
intersecting such a region with Di,UB yields a non-convex
set. An approximate alternative is to consider the outward
halfspace generated by the hyperplane tangent to the disc at xi.
This halfspace can be specified by a normal vector ai,0 parallel
to xi and the offset constant bi,0 = aTi,0xi. Subsequently, Ai,
bi and ∆i,UB in (8) are replaced with A′i = [AT

i |ai,0]T ,
b′i = [bTi | bi,0]T , ∆′i,UB = [∆T

i,UB| 0]T , respectively, where
[ · | · ] denotes an augmented vector. Loosely speaking, we also
refer to these modified regions as UBCIRs in the following.
These regions are red-shaded in Fig. 1 with dash-dotted
boundary edges.

The definitions of DPCIR and UBCIR are valid for all
generic constellations since they depend only on the Voronoi
regions. It is also important to note that one can relax the
DPCIRs such that the distance between each CIR hyperplane
and the corresponding Voronoi boundary is dmin. In this case,
the upper bound on SER provided by the NNUB (6) remains
unchanged (with respect to the original constellation) as the
minimum distance of the constellation is preserved. These
relaxed regions may be referred to as minimum distance
preserving CIRs (MDPCIR). For the constellation point xi, if
there exists at least one neighboring point xj with di,j > dmin,
the associated MDPCIR will be larger than Di,DP, but not
larger than Di,UB. Therefore, in the rest we only concentrate
on DPCIRs and UBCIRs.

IV. OPTIMIZATION PROBLEM FORMULATION

Having DPCIRs and UBCIRs defined, we can formulate
the SLP design problem for the generic constellation set χ. In
particular, we are interested in power minimization problem
with SNR constraints. To this end, we use the hyperplane
representation of DPCIRs or UBCIRs to form the set of
constraints in the optimization problem (2). If the constraints
are defined based on DPCIRs, we call the problem DP-SP
or DP-PP, depending on whether sum or peak (per-antenna)
transmit power is minimized. Similarly, for UBCIR-based
constraints, we call the problem UB-SP or UB-PP.
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Each symbol sk, k = 1, ...,K, corresponds to one of the
points {xi}Mi=1. We denote by ik the index of the constellation
point corresponding to sk, thus ik ∈ {1, ...,M}, k = 1, ...,K.
Using (5), DP-SP and DP-PP problems can be written as

u(s,H,γ)=argmin
u

f(u)

s.t. Aik

[
<{hku}
={hku}

]
� σ√γk (bik + ∆ik,DP),

k = 1, ...,K,

and using (8), UB-SP and UB-PP problems are formulated as

u(s,H,γ)=argmin
u

f(u)

s.t. A′ik

[
<{hku}
={hku}

]
� σ√γk b′ik + ∆′ik,UB,

k = 1, ...,K,

to find the optimal transmit vector u with minimum sum,
i.e., f(u) = ‖u‖22, or peak per-antenna, i.e., f(u) = ‖u‖2∞,
power. Due to convex objective functions and linear inequality
constraints, both the optimization problems are convex and can
efficiently be solved via standard methods [11]. In general,
the number of constraints in DP-SP or DP-PP varies from
2K to

∑
kMik , and in UB-SP or UB-PP varies from 3K to

K +
∑
kMik , depending on the adopted constellation.

V. SIMULATION RESULTS

In this section, we present the simulation results obtained
from averaging the multiuser MISO downlink transmission
over 100 frames of 50 symbols. The simulations are done using
MATLAB software and CVX convex programming package
(SDPT3 solver). The fading coefficients are generated every
frame and distributed as H ∼ CN (0, IN ), where IN denotes
the identity matrix. We consider identical SNR thresholds for
all users, i.e., γk = γ, k = 1, ...,K. In UB-SP and UB-PP, a
fixed target SER Pe = 10−3 is assumed for all SNR thresholds.

Fig. 2 shows average per-antenna transmit power (sum
power divided by N ) and peak per-antenna transmit power
obtained from various SLP power minimization problems for
two different constellations. The results are compared to CI
zero forcing (CIZF), CI sum power minimization (CIPM) [6],
and CI peak power minimization (CIPPM) [7] schemes.

For 8-PSK constellation, Fig. 2 (a), the transmit powers with
DP-SP and DP-PP are around 2 dBW less than those obtained
by CIPM and CIPPM, respectively. It should be also noted that
DP-SP and the SLP power minimization problem presented for
PSK constellations in [5] are equivalent due to having same
CIRs (as mentioned in Subsection III-A). As expected, UB-
SP and UB-PP with relaxed CIRs are the most energy-efficient
SLP schemes both with 1 dBW less transmit power at γ = 23
dB, compared to DP-SP and DP-PP. This reduction of power is
achieved in exchange for possibly higher, but upper bounded
by 10−3, SERs. In order to have an estimate of the variance
of minimum transmit power due to the random channel matrix
H, we have also simulated 700 frames of 100 symbols for 8-
PSK constellation at γ = 21 dB. The results show a maximum
of 4% with respect to those shown in Fig. 2 (a).

Similar trends can be observed in Fig. 2 (b) for the optimal
transmit powers obtained from different SLP problems with
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Fig. 2. Transmit power versus SNR threshold with N = K = 8 and σ2 = 1.
The solid and dashed curves show average per-antenna and peak per-antenna
transmit powers, respectively.

optimized 8-ary constellation. Notice that CIPM and CIPPM
schemes as formulated in [6] and [7] are not applicable to this
constellation.

We also compare the computational complexity of various
SLP sum power minimization schemes in terms of the average
solution time computed by CVX. The relative solution times
(normalized by the smallest value in order to have a meaning-
ful comparison) and the number of constraints are reported in
Table I. As it can be seen, CIZF has the lowest computational
complexity, but it is the least energy-efficient SLP scheme. DP-
SP and UB-SP problems both require less time than CIPM to
be solved, and indeed they are more energy-efficient.

TABLE I
NUMBER OF CONSTRAINTS AND RELATIVE SOLUTION TIME OF VARIOUS

SLP SCHEMES WITH 8-PSK CONSTELLATION.

CIZF CIPM DP-SP UB-SP
Number of constraints 2K 3K 2K 3K

Solution time 1.000 1.330 1.192 1.318

VI. CONCLUSIONS

In this letter, first we define DPCIRs for the multiuser SLP
problem. These regions are optimal when the original SER is
not allowed to increase. In a more flexible case, we consider
relaxed CIRs and guarantee the target SER using the union
bound. This leads to introducing the UBCIRs. We describe
both these CIRs based on the hyperplane representation of
decision regions for any given constellation shape and size.
We then provide a convex formulation for the SLP power
minimization problem defined on DPCIRs and UBCIRs. Our
simulation results verify that the obtained transmit vectors
reduce the power consumption without imposing additional
computational complexity on the transmitter compared to the
current schemes.
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