
A Search-based Approach for Accurate Identification of
Log Message Formats

Salma Messaoudi
University of Luxembourg

Luxembourg
salma.messaoudi@uni.lu

Annibale Panichella
University of Luxembourg

Luxembourg
a.panichella@tudelft.nl

Domenico Bianculli
University of Luxembourg

Luxembourg
domenico.bianculli@uni.lu

Lionel Briand
University of Luxembourg

Luxembourg
lionel.briand@uni.lu

Raimondas Sasnauskas
SES

Luxembourg
raimondas.sasnauskas@ses.com

ABSTRACT
Many software engineering activities process the events contained
in log files. However, before performing any processing activity, it
is necessary to parse the entries in a log file, to retrieve the actual
events recorded in the log. Each event is denoted by a log message,
which is composed of a fixed part—called (event) template—that is
the same for all occurrences of the same event type, and a variable
part, which may vary with each event occurrence. The formats
of log messages, in complex and evolving systems, have numer-
ous variations, are typically not entirely known, and change on a
frequent basis; therefore, they need to be identified automatically.

The log message format identification problem deals with the
identification of the different templates used in the messages of a
log. Any solution to this problem has to generate templates that
meet two main goals: generating templates that are not too general,
so as to distinguish different events, but also not too specific, so as
not to consider different occurrences of the same event as following
different templates; however, these goals are conflicting.

In this paper, we present the MoLFI approach, which recasts the
log message identification problem as a multi-objective problem.
MoLFI uses an evolutionary approach to solve this problem, by
tailoring the NSGA-II algorithm to search the space of solutions for
a Pareto optimal set of message templates. We have implemented
MoLFI in a tool, which we have evaluated on six real-world datasets,
containing log files with a number of entries ranging from 2K to
300K. The experiments results show that MoLFI extracts by far
the highest number of correct log message templates, significantly
outperforming two state-of-the-art approaches on all datasets.

CCS CONCEPTS
• Software and its engineering → Search-based software en-
gineering;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPC ’18, May 27–28, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5714-2/18/05. . . $15.00
https://doi.org/10.1145/3196321.3196340

KEYWORDS
log parsing, log analysis, log message format, NSGA-II

ACM Reference Format:
Salma Messaoudi, Annibale Panichella, Domenico Bianculli, Lionel Briand,
and Raimondas Sasnauskas. 2018. A Search-based Approach for Accurate
Identification of Log Message Formats. In Proceedings of ICPC ’18: 26th
IEEE/ACM International Conference on Program Comprehension (ICPC ’18).
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3196321.3196340

1 INTRODUCTION
Logging is a programming practice that is used for gathering run-
time information of a software system. Developers carry out logging
by inserting into the source code of an application statements that
specify which messages and which run-time information to print
into the entries of log files.

Logging is a pervasive activity: recent studies [35, 36] show
that between 1/30 and 1/58 of the lines of code in large software
systems correspond to logging statements. Furthermore, the impor-
tance of logging is also recognized by developers: a recent survey
reported that 96% of a group of experienced developers from a
leading software company “strongly agree/agree that logging state-
ments are important in system development and maintenance” [13].
Indeed, the information contained in log files can be used for a
variety of purposes, such as process mining [15, 30], anomaly detec-
tion [4, 12, 14], behavioral differencing [14], fault localization [33],
invariant inference [5], performance diagnosis [21], and offline
trace checking [3].

All these activities carry out some sort of log analysis, which
processes the events corresponding to the entries contained in the
log files. Before performing any processing activity, it is necessary
to parse the log entries, to retrieve the actual events recorded in the
log. A log entry typically includes a timestamp (which records the
time at which the logged event occurred) and the actual log message
(containing run-time information associated with the logged event).
An example of log entry is the following:
20050605-06.45.36 send RST CORE to addr 0x0000df30
The log message part of a log entry (e.g., the block “send RST

CORE to addr 0x0000df30” in the above example) is a block of
free-form text, which poses a challenge to parsing because it does
not have a structured format. More specifically, a log message is

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/154761212?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3196321.3196340
https://doi.org/10.1145/3196321.3196340

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden S. Messaoudi, A. Panichella, D. Bianculli, L. Briand, and R. Sasnauskas

composed of two parts: 1) a fixed part, also called (event) template1,
which is the same for all occurrences of the same event type; 2) a
variable part, which may vary with each event occurrence, con-
taining tokens filled at run time with dynamic information. In the
above example, the template contains the fixed words “send”, “to”,
“addr”, while “RST”, “CORE” and “0x0000df30” are variable tokens.
A template is represented as “send * * to address *”, where
the asterisks indicate placeholders for tokens of the variable part.

The lack of a structured format for log messages leads to the
definition of the log message format identification2 problem: given a
log file, we want to identify the different templates used in the log
messages contained in the log in order to enable automated data
extraction and analysis on a large scale.

Solving this problem for complex and evolving systems requires
to tackle several challenging issues. First, in these systems log
message formats are numerous, changing on a frequent basis (e.g.,
in Google systems hundreds of new logging statements are added
every month [34]), and are typically not entirely known by those
who need to analyze log files.

Second, these systems can produce around 120–200 million log
entries per hour [20]. Therefore, log message formats need to be
identified automatically and in a scalable way.

Such requirements rule out the use of regular expressions for
extracting the templates, since it would still require a manual ef-
fort, to create and update regular expressions based on the logging
statements contained in the source code of the application. Manual
creation and update of regular expressions would be a tedious and
error-prone task, given the number of logging statements and the
fast pace of their updates [34]. Another strategy would be to stati-
cally analyze the application source code, locate logging statements,
and extract the templates from the print operations. However, the
definition of the static analysis would be tedious and require an ex-
tensive knowledge of logging techniques, since logging statements
can take different forms in different programming languages and
logging frameworks. Furthermore, both strategies outlined above
would require to access the source code, which is not always possi-
ble, especially in the case of complex software systems that rely on
3rd-party components.

To overcome these limitations, some approaches [11, 12, 17, 19]
adopt a black-box strategy that relies on a combination of clustering
and heuristic rules to group words into templates, based on their
similarity and the frequency within log message blocks. However,
our experience on real-world logs shows that these approaches yield
low accuracy, as demonstrated by the empirical results reported
in this paper. Furthermore, their parameters (e.g., text similarity)
need to be fine-tuned for each log to analyze, usually following a
trial-and-error process; these requirements make such approaches
neither scalable nor effective.

Independently from the specific strategy adopted, any technique
for extracting message templates from logs ought to meet two
objectives: the generated templates should 1) match as many log
messages as possible (i.e., achieve high frequency in matching log

1Additional names used in the literature for denoting the fixed part of a log message
are “line pattern”, “log key”, and “message signature”.
2This problem is often called “log parsing” in the literature; we believe “log message
format identification” is a more specific term, since “log parsing” includes also parsing
more structured elements like timestamps and log verbosity levels.

messages); 2) correspond to the largest extent possible to a particular
type of event (i.e., achieve high specificity). However, these two
objectives—high frequency and high specificity—are conflicting. A
template achieving high frequency will contain many tokens in the
variable part (to match many log messages), but will be too generic
(i.e., it will match messages corresponding to different events); on
the other hand, a template achieving high specificity will have a few
or no tokens in the variable part (to be able to distinguish between
different event types), but it will match only few messages.

Given the presence of conflicting objectives and the limitations of
existing solutions [11, 12, 17, 19], in this paper we propose to recast
the log message format identification problem as a multi-objective
optimization problem, where frequency and specificity are explicitly
considered as two competing objectives to optimize simultaneously.
Our approach, named MoLFI (Multi-objective Log message Format
Identification), leverages an evolutionary approach to solve this
problem. MoLFI applies the Non-dominated Sorting Genetic Al-
gorithm II (NSGA-II [10]) on a given log file to search the space
of solutions for a Pareto optimal set of message templates. The
two main strong points of MoLFI are: 1) it does not require access
to the source code of the application producing the log(s) being
analyzed, since it is a black-box technique that works only on the
log files; 2) different from existing approaches, it does not require
any parameter tuning before its execution.

We implemented MoLFI in a prototype tool. We evaluated the ac-
curacy and efficiency of MoLFI on one proprietary and five publicly-
available real-world datasets, containing log files with a number of
entries ranging from 2K to 300K; we also compared our approach
with IPLoM [19] and Drain [17], two state-of-the-art approaches.
The results show that MoLFI achieves by far the highest precision
and recall, outperforming the other approaches with substantial im-
provements in both precision (ranging between +14pp and +86pp,
with pp=percentage points) and recall (ranging between +25pp
and +75pp) on all datasets, while keeping a running time of less
than 126 s when analyzing the largest dataset. A higher accuracy
in the identification of log message formats usually has practical
implications, in terms of effectiveness, in the log analysis tasks
that rely on log message format identification. For example, in the
context of anomaly detection—the original motivation for exist-
ing work [12, 17]—log analysis is effective only when the parsing
accuracy is high enough [16].

To summarize, the main contributions of this paper are: 1) the
formulation of the log message format identification problem as a
multi-objective optimization problem; 2) the MoLFI approach for
the solution of this problem, based on the NSGA-II algorithm; 3) a
publicly-available implementation of MoLFI3; 4) the empirical eval-
uation, in terms of accuracy and efficiency, of the implementation
of MoLFI and its comparison with two state-of-the-art approaches.

The rest of the paper is organized as follows. Section 2 gives an
overview of multi-objective optimization and genetic algorithms.
Section 3 illustrates the problem of log message format identifi-
cation with an example. Section 4 describes how MoLFI tailors
NSGA-II to solve the log message identification problem. Section 5
reports on the evaluation of MoLFI. Section 6 discusses practical
3 The evaluation artifacts are available from the following links:
• tool https://github.com/SalmaMessaoudi/MoLFI.git;
• log files https://github.com/SalmaMessaoudi/ICPC-2018-Artifacts.git.

https://github.com/SalmaMessaoudi/MoLFI.git
https://github.com/SalmaMessaoudi/ICPC-2018-Artifacts.git

A Search-based approach For Accurate Identification of Log Message Formats ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

implications, alternative solutions, and limitations of our approach.
Section 7 examines related work. Section 8 concludes the paper and
gives directions for future work.

2 BACKGROUND
This section summarizes basic concepts of multi-objective optimiza-
tion and briefly describes NSGA-II [10].

2.1 Multi-objective optimization problems
A multi-objective problem is an optimization problem that involves
multiple objective functions.

Let S be the space (set) of all feasible solutions and F be a
vector-valued objective function F : S → Rk composed of k real-
valued objective functions F = (f1, . . . , fk), where fi : S → R for
j = 1, . . . ,k ; a multi-objective optimization problem is defined as
max(f1(x), . . . , fk (x)) subject to X ⊆ S . In other words, the prob-
lem consists in finding a set of feasible solutions that maximize the
objective functions in F .

The goodness of a solution in a multi-objective optimization
problem is defined in terms of the dominance relation and Pareto
optimality. More precisely, a solution X is said to dominate another
solution Y , denoted as X ≺ Y , if and only if for all indices i ∈
{1, . . . ,k}, fi (X) ≥ fi (Y) and fj (X) > fj (Y) for at least one index
j ∈ {1, . . . ,k}. A solution X is called Pareto optimal if there does
not exist another solution in the search space that dominates it.
The set of all Pareto optimal solutions of a given problem is called
Pareto front. The Pareto front can be used to decide which solution
to select, according to the preferences of a decision maker.

2.2 NSGA-II
The Non-dominated Sorting Genetic Algorithm II (NSGA-II) [10]
is a well-known and efficient technique to solve multi-objective
problems. NSGA-II is a multi-objective genetic algorithm (GA) that
provides well-distributed Pareto fronts and good performance when
dealing with up to three objectives [10, 18]; it has been widely
used in software engineering to solve problems involving multiple
objectives [32] and with chromosome representations that require
complex data structures (as in our case, see Section 4.2.2).

In NSGA-II (and GAs in general), the candidate solutions to a
problem are called chromosomes. The encoding of a chromosome
depends on the type of problem to solve. GAs refine and evolve
randomly-generated chromosomes through subsequent iterations
(called generations), mimicking selection and reproduction mecha-
nisms in nature.

NSGA-II starts with a pool of randomly generated chromosomes
(i.e., population). In each generation, the algorithm evaluates the
goodness of a chromosome in the current population based on the
objectives to optimize. Chromosomes dominating other chromo-
somes are considered as fitter solutions and therefore have higher
chances to be selected for reproduction (i.e., for generating new
chromosomes). NSGA-II selects the best solutions (parents) within
the current population by using binary tournament selection [10].
Reproduction is performed by combining pairs of parents to form
new chromosomes (called offsprings) using two operators: crossover
and mutation. The crossover operator generates two offsprings by
exchanging some chromosome parts between the two parents. The

1 20050605 -06.45.36 INFO generating core 135
2 20050605 -06.45.36 INFO generating core 198
3 20050605 -06.45.36 INFO generating core 199
4 20050605 -06.45.36 FATAL instruction address 0x0000df30
5 20050605 -06.45.36 FATAL instruction address 0x0000f450
6 20050605 -06.45.36 FATAL machine state register 0x00003000
7 20050605 -06.45.36 FATAL wait state enable 0
8 20050605 -06.45.36 FATAL critical input interrupt enable 0
9 20050605 -06.45.36 FATAL external input interrupt enable 0
10 20050605 -06.45.36 FATAL problem state (0=sup ,1=usr)
11 20050605 -06.45.36 FATAL floating point instr. enabled 1
12 20050605 -06.45.36 FATAL machine check enable 1
13 20050605 -06.45.37 FATAL rts internal error
14 20050605 -06.45.37 FATAL rts panic - stopping execution
15 20050605 -06.59.14 FATAL data TLB error interrupt

Figure 1: Excerpt (simplified) of real-world log entries

mutation operator applies small changes to each offspring to get a
more diverse solution. Notice that the implementation of mutation
and crossover depends on the problem to solve. The new population
for the next generation is formed by selecting the fittest individuals
among parents and offsprings according to the dominance relation
(non-dominated ranking) and crowding distance (to promote diver-
sity) [10]. The process of selecting and recombining chromosomes
is repeated multiple times, once for each generation. It terminates
either when a given amount of generations is reached or when a
time-out occurs. The non-dominated solutions contained in the
population of the last iteration represent the final Pareto front.

3 THE PROBLEM OF LOG MESSAGE FORMAT
IDENTIFICATION

We illustrate the problem of log message format identification
through the example in Figure 1, which provides a simplified ex-
cerpt of log entries extracted from an open dataset of logs collected
from a BlueGene/L supercomputer system at Lawrence Livermore
National Labs.

One can see that the log messages of the first three entries in
the example log correspond to the same event type. This event
type could be matched with the template ⟨INFO generating core
*⟩, where the variable part contains one token (indicated with the
placeholder *). Similarly, entries of log messages at lines 4–5 could
be matched with the template ⟨FATAL instruction address *⟩.

However, one could define other templates for the log messages
considered above. For example, another template that could match
the messages at lines 4–5 would be ⟨FATAL * * *⟩, with three
tokens in the variable part. Notice that this template is more general
than the previous one, since it matches two different types of event
(one type associated with messages at lines 4–5, and another type
associated with the message at line 13). Another possible template
would be ⟨FATAL * address 0x0000df30⟩, which is too specific
because it matches only the log message at line 4 and misses the
message at line 5, even if it is of the same event type.

These examples show that two distinct objectives must be met
when identifying message templates:

• maximizing the number of log messages matched by each
template, i.e., maximizing the frequency of message matches;
• maximizing the specificity of a template to a particular type
of event.

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden S. Messaoudi, A. Panichella, D. Bianculli, L. Briand, and R. Sasnauskas

These two goals are conflicting: to maximize frequency, templates
should contain many tokens in the variable part (to match many log
messages); however, such templates would have a low specificity
(i.e., they would be too generic), matching messages corresponding
to different events. On the other hand, to maximize specificity,
templates should contain only a few or no tokens in the variable part
(to be able to distinguish between different event types); however,
they would match only few messages.

Any method proposed to solve the log message format identifi-
cation problem has to deal with the trade-off between these two
conflicting goals.

4 LOG MESSAGE FORMAT IDENTIFICATION
AS A MULTI-OBJECTIVE OPTIMIZATION
PROBLEM

In this section, we illustrate how log message format identification
can be recast as a multi-objective optimization problem and present
our approach MoLFI for the solution of this problem, based on
NSGA-II.

4.1 Problem Formulation
As discussed in section 3, we consider frequency and specificity as
objective functions to optimize simultaneously. The multi-objective
optimization formulation of the log message format identification
problem entails that we find, from the set S of all feasible solu-
tions, a set of templates X = {τ1, . . . ,τn }, X ⊆ S , such that each
template τi ∈ X with i = 1, . . . ,n, matches as many log messages
as possible (high frequency) and contains as few variable tokens
as possible (high specificity). More formally, the objective func-

tions are the frequency: Freq(X) =
∑n
i=1
|match(τi ,M)|

n × |M |
, and the

specificity: Spec(X) =
∑n
i=1

fixed(τi)
n × tok(τi)

, where n is the number of

templates in X ,M is a list of log messages,match(τ ,M) denotes the
list of log messages inM that match a template τ , fixed(τ) denotes
the number of tokens in the fixed part of τ , tok(τ) denotes the total
number of tokens in τ .

When determining a solution to this problem, there are two
important aspects to assess. First, the templates contained in a
(Pareto optimal) solution may not match all the log messages inM .
For example, the solution X = { ⟨FATAL instruction address
0x0000df30⟩, ⟨INFO generating core 135⟩ } is Pareto optimal
for the log messages in Figure 1, since it has the highest possible
specificity (Spec(X) = 1). However, the templates in X match only
two out of the 15 log messages (Freq(X) = 2

15). Second, two different
templates τ1 and τ2 in the same solution X may match the same
log messages, i.e., match(τ1,M) ∩match(τ2,M) , ∅. To avoid this
type of solutions, we introduce two additional constraints to the
optimization problem to determine the set of feasible solutions S .
More specifically, a solution X = {τ1, . . . ,τn } ⊆ S is feasible if it
satisfies the following constraints:

n⋃
i=1

match(τi ,M) = M (1)

match(τi ,M) ∩match(τj ,M) = ∅ for all τi ,τj ∈ X ,τi , τj (2)

4.2 MoLFI
To solve the multi-objective optimization formulation of the log
message format identification problem, we introduce our approach,
namedMoLFI, which tailors the standard NSGA-II to our context. In
particular, we detail the encoding schema and the genetic operators
(i.e., crossover and mutation) we use, the pre- and post-processing
procedures we apply, and the procedure we follow to select one
solution from the Pareto front.

4.2.1 Pre-processing. Before starting the search process, we first
pre-process the log messages to improve the accuracy of the pro-
cess; we follow the guidelines by He et al. [16, 17]. We first use
regular expressions to identify trivial variable parts within the log
messages based on domain knowledge, e.g., numbers, memory and
IP addresses. Strings in the log messages matching these regular
expressions are replaced with a special variable token #spec# that
cannot be mutated in the later stages of the search. To reduce the
computation cost of the template identification process, we filter
out duplicated log messages, reducing the number of messages
to consider for generating templates. The messages are then tok-
enized, using blanks, parentheses and punctuation characters as
word-separators. Finally, messages are grouped into buckets, with
each bucket containing messages that have the same number of
tokens; we denote with ML the bucket/group containing messages
with exactly L tokens.

4.2.2 Encoding Schema. In our context, a solution is a set of
templates X = {τ1, . . . ,τn } where each template τi corresponds to
a group of pre-processed log messages having the same length and
sharing all fixed tokens in τi . Therefore, each template τi is a list
of tokens, where each token can be either variable (denoted by the
symbols * or #spec#) or fixed (i.e., the tokens identified during the
pre-processing step).

Although very intuitive, this encoding schema is not efficient
for computing the log messages being matched by each template.
Indeed, this procedure requires comparing every template against
all log messages even if most of them have a number of tokens
not compatible with what is prescribed by the template. To speed-
up the matching process, we design a two-level encoding schema:
a chromosome C is a set of groups C = {G1, . . . ,Gmax }, where
each groupGL = {τ1, . . . ,τk } is a set of templates having the same
number of tokens L. This encoding schema guarantees that the
matching procedure is applied only for messages and templates of
the same length.

Figure 2 shows an example of chromosome for the log messages
in Figure 1 based on our encoding schema. It has four groups of
templates with lengths 4, 5, 6, and 12; it also satisfies the constraints
for feasible solutions.

4.2.3 Initial Population. MoLFI uses the algorithm InitialPop-
ulation (Algorithm 1) for generating the initial population. The
algorithm takes as input a set of pre-processed log messagesM , the
population size N ; it returns a population P. Each chromosome is
randomly generated inside the loop at lines 4–16: after initializing
the chromosome C (line 4), it is iteratively filled with groups of
templates (lines 5–15), one group of templatesGL for each group
of pre-processed log messagesML ∈ M with the same length L.

A Search-based approach For Accurate Identification of Log Message Formats ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

Groups Templates

L=4

FATAL rts internal error
INFO generating core *

FATAL instruction address #spec#

L=5

FATAL machine state register *

FATAL wait state enable *

FATAL machine check enable *

FATAL data TLB error interrupt

L=6

FATAL * input interrupt enable *

FATAL floating point instr enabled *

FATAL rts panic - stopping execution

L=12
{

FATAL problem state (* = sup , * = usr)

Figure 2: An example of chromosome for the log messages
in figure 1.

Algorithm 1: InitialPopulation
Input: Set of pre-processed log messages M

Population size N
Result: Initial population P

1 begin
2 P ← ∅
3 while |P | < N do
4 C ← ∅
5 for each group ML ∈ M do
6 GL ← create an empty group for templates with length L
7 unmatched ← ML
8 while |unmatched | > 0 do
9 log_message← randomly select one message from

unmatched
10 τ ← copy(log_message)
11 index ← random integer ∈ [1; L]
12 τ [index] ← “*”
13 GL ← GL

⋃
{τ }

14 unmatched ← unmatched \match(τ , ML)

15 C ← C
⋃
{GL }

16 P ← P
⋃
{C }

For each group of messages ML ∈ M , the algorithm creates a
corresponding group of templates GL (line 6). Initially, the group
GL is empty and therefore it does not match any log message.
The algorithm keeps track of the unmatched messages in the set
unmatched, initialized with ML (line 7). Then, a log message is
randomly selected from unmatched (line 9) and used to generate a
template τ (lines 10–12). Template τ is a copy of the original log
message with the exception of one single token (randomly selected
at line 11), which is replaced with the variable token “*” (line 12).
The newly generated template is then added to the group GL and
used to update the set of unmatched log messages (line 14). The loop
at lines 8–14 terminates when the templates composing the group
GL match all log messages in ML (i.e., when the set unmatched
is empty). Since this condition has to be satisfied for each group
of messages ML ∈ M , the chromosome C is a feasible solution.
Therefore, Algorithm 1 guarantees that all chromosomes in the
initial population satisfy our constraints.

4.2.4 Crossover. We implemented the uniform crossover, which
is one of the most popular crossover operators [26, 27]. It generates
two offsprings by shuffling the different characteristics (groups of
templates in our case) of the parents. Let A = {A1, . . . ,Amax } and
B = {B1, . . . ,Bmax } be the two selected parents where each pair
of groups AL ∈ A and BL ∈ B matches the same pre-processed
log messages ML ∈ M with length L. The uniform crossover first
generates a random binary vector β (called the crossover mask)
with a length equal to the number of groups in A and B. Then,
the two offsprings O1 and O2 are obtained as follows: when the
binary element in β for the group with length L is zero, offspring
O1 inherits group AL while O2 inherits group BL ; otherwise, O1
inherits group BL while O2 inherits group AL .

Notice that this crossover operator swaps groups of templates
between the two parents without changing the set of templates
composing each group. Therefore, it generates offsprings that are
feasible solutions: each group AL ∈ A and BL ∈ B covers all pre-
processed log messagesML ∈ M and they do not contain overlap-
ping templates (i.e., templates that match the same log messages).
Since AL and BL are not modified by our crossover, the properties
above are preserved independently from which offspring inherits
the two groups.

4.2.5 Mutation. After crossover, offsprings are mutated using
the mutation operator to randomly change the generated tem-
plates. Given a chromosome to mutate C = {G1, . . . ,Gmax }, each
group GL = {τ1, . . . ,τk } is mutated with probability 1

max . A group
GL is mutated by changing one of its templates; the template is
mutated by adding or removing variable tokens. In particular, let
τ = [token1, . . . , tokenn] be the template to mutate; each token is
mutated with probability 1

n . The token tokeni is mutated as follows:
if it is a fixed one, it is replaced by the variable token “*”; if it is a
variable token, it is replaced by a fixed token, which is randomly
selected among all fixed tokens in position i of the log messages
that match τ ; if it is the special token #spec# added during the
pre-processing, it is not mutated. Therefore, our mutation operator
either increases or reduces the number of variable tokens in τ . In
the former scenario, it likely increases the frequency of the original
template τ ; in the latter case it increases its specificity.

Different from the crossover, the mutation operator changes
the templates within the chromosome’s groups. Therefore, it does
not guarantee that the mutated chromosomes satisfy the feasible
solution constraints. For this reason, we developed a correction
operator that (i) removes overlapping templates (i.e., two or more
templates matching the same pre-processed log messages), and (ii)
adds randomly generated templates if a mutated groupGL does not
match all messages inML . Random templates are added following
the same procedure used at lines 7–14 of Algorithm 1. Notice that
the correction operator is applied after the mutation operator and it
is applied only to the mutated chromosome’s groups.

4.2.6 Post-processing. At the end of the search, NSGA-II returns
a set of feasible solutions that are Pareto optimal, i.e., representing
optimal trade-off between frequency and specificity. Due to the
random nature of NSGA-II, Pareto optimal solutions may contain
log message templates with spurious variable tokens, i.e., variable
tokens that have been inserted by mutation across the generations

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden S. Messaoudi, A. Panichella, D. Bianculli, L. Briand, and R. Sasnauskas

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Knee Point

A

B

C

Ideal Point

Specificity

Fr
eq
ue
nc
y

Figure 3: The concepts of Pareto front and knee point.

but that do not contribute to match more pre-processed log mes-
sages. For this reason, MoLFI post-processes the templates in each
Pareto optimal chromosome with a greedy procedure, which itera-
tively removes all variable tokens that do not affect the frequency
scores. In other words, given a template τ to post-process, the pro-
cedure temporarily removes one of its variable tokens and checks
whether the set of log messages matched by τ remains unchanged.
If the applied change affects the set of matched log messages, the
change is reverted; otherwise it is maintained. The post-processing
procedure ends once all variable tokens in τ have been verified.

4.2.7 Choosing a Pareto optimal solution. If the number of so-
lutions in the generated Pareto front is large it may be difficult to
choose one solution (best trade-off) among the different alterna-
tives. For this reason, researchers proposed various guidelines to
find and suggest points of interest in the Pareto front, such as the
knee points [6], mid points [22], or the best point (corner) for each
objective [23].

According to Branke et al. [6], the most interesting Pareto op-
timal solution is the knee point because any other solution in the
front leading to a small improvement in one of the two objectives
(e.g., Freq) would lead to a large deterioration in the other objective
(e.g., Spec). To provide a graphical interpretation of the knee point,
Figure 3 depicts an example of Pareto front for the log message for-
mat identification problem. The Pareto front is composed of seven
non-dominated solutions: points A and B are the corner solutions
of the front while the other solutions represent intermediate trade-
offs. Point C can be considered as a knee point since any marginal
improvement to Freq will correspond to a large deterioration in
Spec, and vice versa. Therefore, the knee point leads to the lowest
loss in both objectives.

To identify the knee point, we measure the distance of each
Pareto optimal solution from the ideal point [26]. The coordinates
of the ideal point correspond to the maximum objective values
among all solutions in the Pareto front, considering each objective
function separately. For example, for the Pareto front in Figure 3,
the ideal point has the coordinates (Fmax , Smax), where Fmax = 0.85
(from pointA) and Smax = 0.9 (from point B). More formally, given a
Pareto front P =

{
C1, . . . ,Cp

}
, the knee pointCk ∈ P is the solution

minimizing the distance
√
(Fmax − Freq(Ci))2 + (Smax − Spec(Ci))2,

for all Ci ∈ P .

5 EVALUATION
We have implemented the MoLFI approach as a Python program. In
this section we report on the evaluation of the effectiveness of the
MoLFI implementation in identifying accurate log message formats.

First, we want to assess the performance of MoLFI in compar-
ison with state-of-the-art techniques, in terms of accuracy and
efficiency. Second, there are various factors that may influence
the effectiveness of MoLFI, such as (1) the number of templates
to identify, (2) the population size in NSGA-II; (3) the removal of
duplicate messages from the log file to analyze, performed as part
of the pre-processing step; we want to understand whether and to
what extent these factors affect the effectiveness of MoLFI. Last, in
MoLFI we choose the knee point as most valuable solution from
the Pareto front, following the general guidelines by Branke et al.
[6]. However, different trade-offs in the Pareto front may provide
equal or better results in our context; hence, we want to assess
whether the knee point is the best Pareto optimal solution for the
log message format identification problem.

Summing up, we investigate the following research questions:
RQ1: How does MoLFI perform when compared to state-of-the-art

techniques for the log message format identification problem?
RQ2: Which factors impact the effectiveness of MoLFI?
RQ3: Is the knee point the best solution to choose from the Pareto

front?

5.1 Benchmark
To evaluate MoLFI, we used a benchmark composed of six different
datasets: five datasets are publicly available and have been used in
previous work on the logmessage format identification problem [16,
17], while the last one is industrial and proprietary.

The five public datasets are HDFS, BGL, HPC, Zookeeper (short-
ened to “ZK”) and Proxifier (shortened to “PRX”). HDFS consists of
logs from the Hadoop file system that were collected from a 203-
node cluster on the Amazon EC2 platform [16]. BGL contains logs
generated from the Blue Gene/L (BGL) supercomputer, collected by
the Lawrence Livermore National Labs (LLNL) [16]. The logs con-
tained in the HPC dataset were collected from a high-performance
cluster with 49 nodes and thousands of cores [16]. The logs in ZK
were collected by He et al. [16, 17] from a 32-node cluster. PRX
consists of logs generated by a standalone software [16].

The proprietary dataset (named PR) has been provided by one of
our industrial partners, active in the aerospace industry; it contains
logs produced by a complex system with more than 20 distributed
processes.

All datasets contain log files of various size. For the HDFS, BGL,
HPC, ZK, and PRX datasets, we used the same samples of 2K log
entries used in previous studies [16, 17]. In addition, we also selected
a sample of 100K log entries from BGL and a sample of 60K log
entries from HDFS. As for the proprietary dataset, we considered
three different log files, generated by three different sub-systems,
containing 2K, 20K, and 300K log entries.

Ground truth definition. In the case of the log message format
identification problem, the ground truth is represented by the ac-
tual log message templates. For our evaluation, we established the
ground truth as follows.

A Search-based approach For Accurate Identification of Log Message Formats ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

For the log files with 2K log entries of the public datasets, we
used the ground truth defined by He et al. [16, 17] and publicly
available from their replication package. In the case of the BGL and
HPC datasets, the original set of correct templates contains some
mistakes, e.g., templates with unbalanced parentheses and missing
punctuation marks. Therefore, we manually validated and fixed
them before performing our evaluation.

No ground truth is available for the proprietary logs, the 100K log
file from BGL, and the 60K log file from HDFS. Therefore, we had to
manually establish the ground truth. Two validators independently
inspected each log file and extracted the corresponding templates.
Then, the two sets of templates independently extracted by the
two validators were merged into a single ground truth set, by in-
cluding only the templates extracted by both validators. Templates
identified by only one of the two validators were discussed and
further added to the ground truth only upon agreement between
the validators. At the end of the validation process, we also verified
that no log message in our datasets could be matched by more than
one single template in the ground truth. In total, 486K log messages
were manually inspected to establish the ground truth. The number
of log message templates in each log file ranges from 13 (PRX) to
394 (PR with 20K messages).

5.2 Effectiveness of MoLFI
To answer RQ1, we assess the performance of MoLFI, in terms
of accuracy and efficiency, in comparison with DRAIN [17] and
IPLoM [19], which are the two most recent and effective tools for
the log message format identification problem [16, 17]. We use the
implementation of DRAIN available in [17] and the one of IPLoM
available in [16].

5.2.1 Methodology. The NSGA-II algorithm used in MoLFI re-
quires to set four parameters: crossover probability, mutation prob-
ability, population size, and stopping condition. To set these pa-
rameters, we followed the guidelines proposed in the literature.
More specifically, Arcuri and Fraser [1] and Sayyad et al. [25] have
empirically demonstrated that the benefits of fine-tuning the pa-
rameters of search-based algorithms often do not compensate for
the required overhead; both studies recommend to use the default
parameters values, since they provide competitive results.

We set the NSGA-II parameters as follows:

• crossover probability pc = 0.70, since the recommended val-
ues are within the interval 0.45 ≤ pc ≤ 0.95 [7, 8];
• the mutation probability pm is proportional to the length of
the chromosome (see section 4.2.5), as recommended in the
related literature [10];
• the population size is set to 20 individuals; according to our
preliminary experiments (see section 5.3.2), this small value
corresponds to the best compromise between accuracy and
efficiency;
• the stopping condition is set to 200 generations [10].

As selection operator, we used binary tournament selection [10],
which is based on dominance and crowding distance.

For DRAIN, in the case of the public datasets, we used the same
parameters values used in [17]; in the case of our proprietary dataset,
we used the default parameter values: depth = 4, similarity = 0.5. We

also pre-processed the logs, as suggested in [17], to identify trivial
variable parts within the log messages based on domain knowledge.

For IPLoM, we used the default parameter values used in [19]: file
support threshold = 0, partition support threshold = 0, upper bound =
0.9, lower bound = 0.25, and cluster goodness threshold = 0.35.

We ran the three tools on each log file in our benchmark and
collected the generated log message templates. We measured the
accuracy of each tool by comparing the set of generated templates
with the ground truth. Furthermore, we measured the wall-clock
time for executing the complete program (including pre- and post-
processing tasks for MoLFI). To measure the accuracy, we used the
metrics used in previous studies [16, 17], i.e., Precision = |CRT∩GEN |

|GEN | ,

Recall = |CRT∩GEN |
|CRT | , and F -measure = 2 × Precision×Recall

Precision+Recall , where
GEN denotes the set of templates generated by a tool and CRT
denotes the set of templates generated by a tool which are correct,
i.e., conform to the ground truth.

To account for the random nature of NGSA-II, we executed
MoLFI 50 times on each log and computed the median and stan-
dard deviation of the effectiveness metrics; DRAIN and IPLoM were
executed only once due to their deterministic nature. However,
DRAIN generated duplicated templates, i.e., multiple templates hav-
ing exactly the same fixed and variable tokens. To avoid any bias
due to duplicated templates, we detected and removed them before
computing the various effectiveness metrics.

Furthermore, we used the Welch’s t-test to verify whether the
F-measure scores achieved by MoLFI are significantly higher than
those achieved by the alternative tools. The Welch’s t-test is a test
for statistical significance suitable for distributions with different
variance. In our case, the variance for DRAIN and IPLoM is zero as
they are deterministic; MoLFI may return a non-zero variance due
to NSGA-II. For this test, we consider a level of significance α=0.05.
Other than simply testing the statistical significance, we estimated
the magnitude of the differences (effect size) using the Vargha-
Delaney (Â12) statistic [31]. Â12 takes values in [0; 1]; Â12 > 0.50
values indicate that MoLFI outperforms the alternative tool while
for Â12 < 0.50 the contrary is true. Â12 = 0.50 if the two tools are
equivalent.

5.2.2 Results. Table 1 shows the results of the three tools, grouped
by dataset and log file size. Column “#T” indicates the number
of templates in a file; column “NTT” indicates the percentage of
templates with more than one variable token in a file; columns
“Prec”, “Rec”, “F-m”, “T” indicate, respectively, the precision, recall,
F-measure, and the execution time in seconds. For MoLFI, the table
reports the median results achieved across the 50 runs as well as
the corresponding standard deviation values.

According to our results, MoLFI obtains, on all the log files in
the benchmark, a better F-measure than both DRAIN and IPLoM.

We compared the effectiveness of our approach with the two
state-of-the-art tools and we present the differences in percentage
points (pp). The difference between MoLFI and DRAIN in terms
of F-measure ranges between +13pp and +36pp. The values for
the difference are always statistically significant according to the
Welch’s t-test (all p-values are lower than 0.01) and the effect size
is always large (i.e., Â12 ≈ 1). This difference is due both to better
precision and to better recall. We also remark that DRAIN crashed

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden S. Messaoudi, A. Panichella, D. Bianculli, L. Briand, and R. Sasnauskas

Table 1: Precision (Prec), recall (Rec), F-measure (F-m), and execution time (T(s)) of the three approaches.

Dataset Size #T NTT Drain IPLoM MoLFI

Prec Rec F-m T(s) Prec Rec F-m T(s) Prec Rec F-m T(s)

BGL 2K 114 31% 0.55 0.51 0.53 0.54 0.47 0.46 0.46 0.28 0.83 ±0.03 0.86 ±0.03 0.84 ±0.03 17.38 ±0.32
100K 57 22% 0.60 0.74 0.66 32.89 0.42 0.53 0.47 5.76 0.83 ±0.03 0.78 ±0.04 0.80 ±0.03 10.91 ±0.11

HDFS 2K 16 93% 0.86 0.75 0.80 0.29 0.86 0.75 0.80 0.27 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 3.36 ±0.02
60K 62 43% 0.79 0.68 0.73 2.11 0.56 0.45 0.50 2.87 0.94 ±0.02 0.95 ±0.01 0.94 ±0.01 10.32 ±0.09

HPC 2K 42 33% 0.49 0.61 0.54 0.32 0.37 0.52 0.43 0.27 0.92 ±0.02 0.88 ±0.04 0.90 ±0.03 7.56 ±0.32

PR
2K 286 14% 0.60 0.64 0.62 0.27 0.52 0.51 0.51 0.40 0.77 ±0.04 0.82 ±0.03 0.79 ±0.03 36.80 ±0.65
20K 394 17% 0.61 0.57 0.59 1.51 0.54 0.47 0.50 2.38 0.71 ±0.03 0.82 ±0.02 0.76 ±0.02 79.59 ±2.86
300K 52 80% – – – – 0.08 0.13 0.10 49.49 0.94 ±0.01 0.88 ±0.00 0.91 ±0.01 125.84 ±4.14

PRX 2K 13 61% 0.46 0.46 0.46 0.21 0.45 0.38 0.42 0.26 0.77 ±0.00 0.77 ±0.00 0.77 ±0.00 3.46 ±0.09

ZK 2K 47 30% 0.77 0.77 0.77 0.22 0.47 0.46 0.46 0.28 0.93 ±0.03 0.87 ±0.01 0.90 ±0.02 6.94 ±0.26

0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.2

0.4
Knee Point

DRAINIPLoM

Specificity

Fr
eq
ue
nc
y

Figure 4: Pareto front generated byMoLFI and the objectives
scores of the templates generated by DRAIN and IPLoM

on the 300K log from the proprietary dataset, without yielding any
message template.

The difference between MoLFI and IPLoM in terms of F-measure
ranges between +20pp and +81pp. For all logs in our study, the dif-
ferences are statistically significant (p-values are always lower than
0.01) with a large effect size (Â12 ≈ 1). Also in this case, the better
F-measure is ascribable to the substantial improvements in both
precision (ranging between +14pp and +86pp) and recall (ranging
between +25pp and +75pp). An interesting case is represented by
the 300K log from the proprietary dataset: MoLFI generates very
accurate templates achieving an F-measure of 0.91while IPLoM
obtains a very low F-measure of 0.1.

Figure 4 shows an example of the Pareto front generated by
MoLFI for the dataset HPC on one single run. It also displays the
knee point (red point) and two further points (in black color) corre-
sponding to the frequency and specificity values of the templates
generated by DRAIN and IPLoM. The knee point dominates the
templates produced by IPloM, meaning that MoLFI generates tem-
plates having both better frequency and better specificity. Instead,
the templates produced by DRAIN are non-dominated neither by

the knee point nor by the other Pareto optimal solutions. Indeed,
their objective scores are located in one of the corners of the Pareto
front, meaning that their specificity is very high (few variable to-
kens) but their frequency is very low. Similar results are obtained
also for the other logs in the benchmark. To sum up, both IPLoM
and DRAIN are not able to provide optimal compromises between
the two objective functions.

In terms of efficiency, MoLFI is the slowest technique; this can
be explained because of the usage of NSGA-II, which is an iterative
algorithm. The fastest technique is IPLoM, which, however, is also
the one with the lowest F-measure values. DRAIN is faster than
MoLFI in all the cases with the only exception of the 100K log
from the BGL dataset: for this file DRAIN takes 32.89 swhile MoLFI
takes only 10.91 s. Although MoLFI takes longer to converge than
state-of-the-art tools, the increment of the running time has no
practical implications since it took less than 126 s when analyzing
the largest dataset.

5.3 Factors influencing the effectiveness of
MoLFI

To answer RQ2, we investigate the effect of the following three
factors on the effectiveness of MoLFI: (1) the number of templates
to identify in a log file, (2) the population size in NSGA-II; (3) the re-
moval of duplicate messages from the log file to analyze, performed
as part of the pre-processing step. In the following, we illustrate the
evaluation methodology and the results for each of these factors.

5.3.1 Number of templates. To test the effect of this factor, we
used the one-way permutation test [2] to assess whether the number
of templates to identify in a log file statistically interacts with the
F-measure scores achieved by MoLFI. The permutation test is a
non-parametric test and therefore it does not assume that the data
are normally distributed. We ran this test with a very large number
of iterations (i.e., 108), as suggested in the literature [2].

According to the one-way permutation test, there is no interac-
tion between the number of templates to be identified in a log file

A Search-based approach For Accurate Identification of Log Message Formats ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

and the F-measure values obtained by MoLFI (p-value=0.08). This
means that our technique yields high F-measure scores both with
log files containing a low number of templates (e.g., see the 2K log
from PRX in Table 1) and with log files containing a high number
of templates (e.g., see the 20K log from PR in Table 1).

5.3.2 Population size. Given the nature of NSGA-II, using a
large population size may significantly increase the execution time
for finding the best solutions; however, using a population with
few individuals may yield poor results. We test the effect of this
factor by running MoLFI (on each log file of the benchmark) with a
population size of 40 and 80 individuals. We repeated each run ten
times and computed the median F-measure and execution time. We
compared these results with those obtained by the baseline (with a
population of 20 individuals, see Table 1).

Table 2 shows the results of this comparison. Column “T” indi-
cates the median execution time in seconds; column “R” is the ratio
between the execution time achieved by the new configurations
and the baseline; column “F-m” is the median F-measure; column
“∆F-m” indicates the difference, in percentage points, between the
F-measure achieved by the new configurations and the baseline.
All these values are shown for the columns labeled “pop=40” and
“pop=80” of Table 2.

In terms of F-measure, MoLFI performs almost equivalently for
the three configurations, with an increase for the majority of log
files reaching 4pp for the 2K log file from BGL. We remark two
exceptions where the F-measure decreased with a population size
of 80: the 300K log file from PR (-5pp) and the BGL log file of size
100K (-1pp).

Execution time sharply increases as the population size grows.
This is to be expected since a larger population size entails more
fitness computations for NSGA-II.

5.3.3 Removal of duplicate messages. In the pre-processing step
presented in section 4.2.1, we filter out duplicated log messages,
to reduce the number of log messages to consider for generating
templates. However, such a reduction may also directly affect the
value of one of our two objective functions, frequency, which could
be further reflected in changes to the shape of the Pareto front and
to its knee point.

To test the effect of this factor, we ran MoLFI by disabling the
routine responsible for removing duplicated log messages in the
pre-processing step. As above, each run was repeated ten times and
we computed the median F-measure and execution time, as well as
the ratio between execution times and the difference in percentage
points of the F-measure. The results are shown in the column “no
filtering” of Table 2. No data are reported for the 300K log from the
PR dataset, since it timed-out (> 3 hours) when completing the first
generation of NSGA-II.

We compare these effectiveness scores with those reported in
Table 1 (i.e., with filtering enabled). We observe that the F-measure
scores obtained by the two configurations are the same for all log
files, with only 1pp increase for the BGL dataset. These results show
that filtering out duplicated log messages during pre-processing
does not significantly alter the final F-measure. However, it results
in a substantial reduction of the execution time. For example, when
the filter is enabled, MoLFI requires 126 s to converge for the largest

Table 2: Comparison between three different configurations
of MoLFI: with population size of 40 (column “pop=40”)
and 80 (column “pop=80”) individuals, and without filter-
ing the duplicated log messages (column “no filtering”). “T”:
median execution time in seconds, “R”: ratio of execution
time values, “F-m”: median F-measure, ∆F-m: difference of
F-measure in percentage points

Dataset Size pop=40 pop=80 no filtering

T R F-m ∆F-m T R F-m ∆F-m T R F-m ∆F-m
(s) (pp) (s) (pp) (s) (pp)

BGL 2K 35.84 2.06 0.86 2 70.97 4.08 0.88 4 25.80 1.48 0.85 1
100K 17.88 1.64 0.80 0 31.90 2.92 0.79 −1 397.76 36.46 0.81 1

HDFS 2K 6.36 1.89 1.00 0 12.48 3.71 1.00 0 13.21 3.93 1.00 0
60K 18.26 1.77 0.94 0 34.32 3.33 0.94 0 175.09 16.97 0.94 0

HPC 2K 15.33 2.03 0.90 0 29.75 3.94 0.92 2 15.43 2.04 0.90 0

PR
2K 75.44 2.05 0.80 1 162.37 4.41 0.79 0 45.39 1.23 0.79 0
20K 157.88 1.98 0.78 2 315.11 3.96 0.76 0 217.43 2.73 0.76 0
300K 155.58 1.24 0.91 0 235.69 1.87 0.86 −5 >3h − − −

PRX 2K 6.55 1.89 0.77 0 12.88 3.72 0.77 0 14.47 4.18 0.77 0

ZK 2K 13.86 2.00 0.90 0 26.56 3.83 0.90 0 15.05 2.17 0.90 0

log file (the 300K log file from the PR dataset), while it times out
(after three hours) for the same log file when the filter is disabled.

5.4 Is the knee point the best solution?
To answer RQ3, we analyze, over the entire benchmark, the F-
measure scores achieved by all solutions in the Pareto front. This
means comparing the F-measure of the knee point with the scores
achieved by the other Pareto optimal solutions. For the sake of
analysis, for each log, we selected one single Pareto front among
those obtained with 50 independent runs. For the selection, we
first computed the F-measure for the knee point generated in each
run; then, we selected the knee point having the median F-measure
across the runs and its corresponding Pareto front.

Figure 5 shows, for all the log files in our benchmark, the F-
measure of the knee points (indicated with red points) when com-
pared with all the Pareto optimal solutions (represented by the
boxplots). One can see that, in all cases, the F-measure score of the
knee point is located at the very top of the boxplot. This confirms
our conjecture that, in the context of the log message format identi-
fication problem, the knee point is the best solution to choose from
the Pareto front.

6 DISCUSSION
Practical implications. As discussed in Section 5.2,MoLFI achieves

a substantial higher accuracy than alternative algorithms. Such im-
provements in accuracy represent a considerable reduction in the
time needed by analysts to inspect the generated templates, validate
them and eventually modify the incorrect ones. For example, MoLFI
generates 62 templates for HDFSwith the 60K log; on average across
runs, 60 templates are correct (as they match the ground truth).
One incorrect template is T=⟨PacketResponder * for block *
*⟩, which is too general as it matches log messages belonging to
two different log events: (i) when the PacketResponder for a given
block terminated correctly and (ii) when it has been interrupted.
The log messages for these two log events are very similar as they

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden S. Messaoudi, A. Panichella, D. Bianculli, L. Briand, and R. Sasnauskas

BGL
-2K

BGL
-100

K

HD
FS-

2K

HD
FS-

60K
HPC

-2K
PRX

-2KZK-
2K
PR-

2K
PR-

20K
PR-

300
K

0.4

0.6

0.8

1

F-
m
ea
su
re

Knee Point

Figure 5: Comparisons between the knee-point and other
Pareto front solutions in terms of F-measure

differ only by one single token. Fixing this template would need
to create two templates, each one with an additional fixed token.
Since T matches only those two log events, fixing it is trivial.

Sum-scalarization vs. multi-objective search. An alternative search-
based solution to solve our multi-objective problem would be apply-
ing sum scalarization [9]. Such a strategy combines the objectives
to optimize into one single function by using the sum operator and
thus enabling the use of a single-objective genetic algorithm to opti-
mize the aggregated function. In our case, the aggregation function
combines frequency and specificity, i.e., f (X) = Freq(X)+ Spec(X).
To assess this alternative search strategy, we ran a classical genetic
algorithm to optimize the function f (X)mentioned above on HDFS
with the 60K log. The median F-measure obtained over 10 indepen-
dent runs is 0.65 (± 0.02), which is statistically significantly lower
than the value achieved by MoLFI (i.e., NSGA-II and the knee point),
which is 0.94. Note that for the single-objective genetic algorithm
we use the same parameter values as for NSGA-II.

The role of constraints. In our problem formulation, we consider
two constraints: (i) each log message has to be matched by only
one template in a solution X ; and (ii) the templates in X have to
match all log messages (100% coverage). The former constraint is
straightforward since templates in a given solution X should not
overlap; the latter is less intuitive but analysts, for some specific
applications, could be interested in solutions not covering all log
messages. However, we observed that the solutions obtained when
removing the coverage constraint have only one single template.
For example, if we run MoLFI on HDFS with 60K logs by disabling
the coverage constraint, NSGA-II returns a knee point which is a
solution with only one template having one variable token and 12
fixed tokens. Such a template has high frequency (Freq=0.06) and
high specificity (Spec=12/13=0.94). No other template is included
in the solution because adding any other template would penalize
both frequency and specificity.

Limitations. Our approachmay produce incorrect results because
of the method we use to group messages. In particular, log messages
whose variable part has a variable composition (e.g., because of
a variable-length argument list), could lead to different templates
even if they have the same fixed part.

7 RELATEDWORK
Researchers have proposed various black-box techniques for the
log message format identification problem. These techniques rely
on clustering [12, 28], heuristics [19, 29], longest common sequence
method [11], and textual similarities [17]. Recently, He et al. [16]
carried-out an empirical study comparing four techniques for the
log message format identification problem: SLCT [29], LKE [12],
LogSig [28], and IPLoM [19]. The results of this study revealed
that (i) IPLoM produces the most accurate templates, and (ii) log
pre-processing (like the one applied in MoLFI) is very critical to
achieving good clustering performance. In a later study, He et al.
[17] introduced DRAIN, a novel technique that processes the log
messages through a fixed-depth parse tree. Their empirical study
showed that DRAIN generates more correct templates than IPLoM.

One limitation of the two best techniques (DRAIN and IPLoM)
is that they require their parameters to be tuned for each log file.
Such parameters, if not chosen carefully, will significantly affect the
performance of the tool. Different from state-of-the-art techniques,
our approach MoLFI uses an automated heuristic to automatically
choose the best compromise between the two objectives of the log
message format identification problem (frequency and specificity)
without using a priori, user-defined thresholds. Our evaluation
results show that MoLFI significantly outperforms both IPLoM and
DRAIN, both in precision and in recall.

8 CONCLUSION AND FUTUREWORK
The log message format identification problem deals with the identi-
fication of the different templates used in the log messages. In this
paper, we formulated this problem as a multi-objective optimization
one, where the goal is to generate log message templates with high
frequency (i.e., they match as many log entries as possible) and high
specificity (i.e., specific for each log event). To tackle the problem,
we introduced MoLFI, a tool implementing a search-based approach
based on a multi-objective genetic algorithm and trade-off analysis.

An empirical study involving six real-world datasets (five publicly-
available and one proprietary) showed that MoLFI (i) achieved
significantly higher accuracy than DRAIN and IPLoM, two state-
of-the-art tools; (ii) is highly scalable to large logs since it requires
slightly above two minutes to analyze hundreds of thousands of
messages.

As part of future work, we plan to improve the effectiveness of
MoLFI by investigating other encoding schemas, experimenting
with other formulations of the problem (e.g., by introducing the
coverage of log messages as another optimization objective), and by
handling semantically equivalent templates. We also plan to assess
the use of MoLFI for supporting various software maintenance and
testing activities, such as boosting test case generation techniques
through the definition of new seeding strategies [24] based on input
and output values (variable parts) observed in the logs.

ACKNOWLEDGMENTS
This work has received funding from the European Research Coun-
cil under the European Union’s Horizon 2020 research and inno-
vation programme (grant agreement No 694277), from the Lux-
embourg National Research Fund (FNR) under grant agreement
No C-PPP17/IS/11602677, and from a research grant by SES.

A Search-based approach For Accurate Identification of Log Message Formats ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

REFERENCES
[1] Andrea Arcuri and Gordon Fraser. 2013. Parameter Tuning or Default Values?

An Empirical Investigation in Search-Based Software Engineering. Empirical
Software Engineering 18, 3 (2013), 594–623.

[2] Rose D. Baker. 1995. Modern Permutation Test Software. In Randomization Tests,
Third Edition. Marcel Dekker, New York, NY, USA, 391–401.

[3] David Basin, Germano Caronni, Sarah Ereth, Matúš Harvan, Felix Klaedtke,
and Heiko Mantel. 2014. Scalable Offline Monitoring. In Proceedings of the 5th
International Conference on Runtime Verification (RV 2014) (LNCS), Vol. 8734.
Springer, Cham, Switzerland, 31–47.

[4] Christophe Bertero, Matthieu Roy, Carla Sauvanaud, and Gilles Trédan. 2017.
Experience Report: Log Mining using Natural Language Processing and Applica-
tion to Anomaly Detection. In Proceedings of the 28th International Symposium on
Software Reliability Engineering (ISSRE 2017). IEEE, Piscataway, NJ, USA, 351–360.

[5] Ivan Beschastnikh, Yuriy Brun, Sigurd Schneider, Michael Sloan, and Michael D.
Ernst. 2011. Leveraging Existing Instrumentation to Automatically Infer Invariant-
constrained Models. In Proceedings of the 19th ACM SIGSOFT Symposium and
the 13th European Conference on Foundations of Software Engineering (ESEC/FSE
2011). ACM, New York, NY, USA, 267–277.

[6] Jürgen Branke, Kalyanmoy Deb, Henning Dierolf, and Matthias Osswald. 2004.
Finding Knees in Multi-objective Optimization. In Proceedings of the 8th Inter-
national Parallel Problem Solving from Nature (PPSN 2004) (LNCS), Vol. 3242.
Springer, Berlin, Heidelberg, 722–731.

[7] Lionel C. Briand, Yvan Labiche, and Marwa Shousha. 2006. Using Genetic Algo-
rithms for Early Schedulability Analysis and Stress Testing in Real-time Systems.
Genetic Programming and Evolvable Machines 7, 2 (2006), 145–170.

[8] Helen G. Cobb and John J. Grefenstette. 1993. Genetic Algorithms for Tracking
Changing Environments. In Proceedings of the 5th International Conference on
Genetic Algorithms (ICGA 1993). Morgan Kaufmann Publishers, San Francisco,
CA, USA, 523–530.

[9] Kalyanmoy Deb. 2014. Multi-objective Optimization. In Search Methodologies:
Introductory Tutorials in Optimization and Decision Support Techniques, Second
Edition. Springer, New York, NY, USA, 403–449.

[10] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A
Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation 6, 2 (2002), 182–197.

[11] Min Du and Feifei Li. 2016. Spell: Streaming Parsing of System Event Logs. In
Proceedings of the16th IEEE International Conference on Data Mining (ICDM 2016).
IEEE, Piscataway, NJ, USA, 859–864.

[12] Qiang Fu, Jian-Guang Lou, Yi Wang, and Jiang Li. 2009. Execution Anomaly
Detection in Distributed Systems through Unstructured Log Analysis. In Proceed-
ings of the 9th IEEE International Conference on Data Mining (ICDM 2009). IEEE
Computer Society, Los Alamitos, CA, USA, 149–158.

[13] Qiang Fu, Jieming Zhu, Wenlu Hu, Jian-Guang Lou, Rui Ding, Qingwei Lin,
Dongmei Zhang, and Tao Xie. 2014. Where Do Developers Log? An Empirical
Study on Logging Practices in Industry. In Proceedings of the 36th International
Conference on Software Engineering (ICSE Companion 2014). ACM, New York, NY,
USA, 24–33.

[14] Maayan Goldstein, Danny Raz, and Itai Segall. 2017. Experience Report: Log-
Based Behavioral Differencing. In Proceedings of the 28th International Symposium
on Software Reliability Engineering (ISSRE 2017). IEEE, Piscataway, NJ, USA, 282–
293.

[15] Christian W. Günther and Wil M. P. van der Aalst. 2007. Fuzzy Mining-adaptive
Process Simplification based on Multi-perspective Metrics. In Proceedings of the
5th International Conference on Business Process Management (BPM 2007) (LNCS),
Vol. 4714. Springer, Berlin, Heidelberg, 328–343.

[16] Pinjia He, Jieming Zhu, Shilin He, Jian Li, andMichael R. Lyu. 2016. An Evaluation
Study on Log Parsing and Its Use in Log Mining. In Proceedings of the 46th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN
2016). IEEE, Piscataway, NJ, USA, 654–661.

[17] Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R. Lyu. 2017. Drain: An Online
Log Parsing Approach with Fixed Depth Tree. In Proceedings of the International
Conference on Web Services (ICWS 2017). IEEE, Piscataway, NJ, USA, 33–40.

[18] Vineet Khare, Xin Yao, and Kalyanmoy Deb. 2003. Performance Scaling of Multi-
objective Evolutionary Algorithms. In Proceedings of the 2nd International Confer-
ence on Evolutionary Multi-criterion Optimization (EMO 2003) (LNCS), Vol. 2632.

Springer-Verlag, Berlin, Heidelberg, 376–390.
[19] Adetokunbo Makanju, A. Nur Zincir-Heywood, and Evangelos E. Milios. 2012. A

Lightweight Algorithm for Message Type Extraction in System Application Logs.
IEEE Transactions on Knowledge and Data Engineering 24, 11 (2012), 1921–1936.

[20] Haibo Mi, Huaimin Wang, Yangfan Zhou, Michael R. Lyu, and Hua Cai. 2013.
Toward Fine-Grained, Unsupervised, Scalable Performance Diagnosis for Pro-
duction Cloud Computing Systems. IEEE Transactions on Parallel and Distributed
Systems 24, 6 (2013), 1245–1255.

[21] Karthik Nagaraj, Charles Killian, and Jennifer Neville. 2012. Structured Compara-
tive Analysis of Systems Logs to Diagnose Performance Problems. In Proceedings
of the 9th USENIX Conference on Networked Systems Design and Implementation
(NSDI 2012). USENIX Association, Berkeley, CA, USA, 26–26.

[22] Réka Nagy, Mihai A. Suciu, and Dumitru Dumitrescu. 2012. Lorenz Equilibrium:
Equitability in Non-cooperative Games. In Proceedings of the 14th Annual Confer-
ence on Genetic and Evolutionary Computation (GECCO 2012). ACM, New York,
NY, USA, 489–496.

[23] Annibale Panichella, Fitsum M. Kifetew, and Paolo Tonella. 2015. Reformulating
Branch Coverage as a Many-objective Optimization Problem. In Proceedings of the
8th IEEE International Conference on Software Testing, Verification and Validation
(ICST 2015). IEEE, Piscataway, NJ, USA, 1–10.

[24] José Miguel Rojas, Gordon Fraser, and Andrea Arcuri. 2016. Seeding Strategies in
Search-based Unit Test Generation. Software Testing, Verification and Reliability
26, 5 (2016), 366–401.

[25] Abdel Salam Sayyad, Katerina Goseva-Popstojanova, Tim Menzies, and Hany
Ammar. 2013. On Parameter Tuning in Search Based Software Engineering:
A Replicated Empirical Study. In Proceedings of the 3rd International Workshop
on Replication in Empirical Software Engineering Research (RESER 2013). IEEE
Computer Society, Washington, DC, USA, 84–90.

[26] S.N. Sivanandam and S.N. Deepa. 2008. Introduction to Genetic Algorithms.
Springer, Berlin, Heidelberg.

[27] Gilbert Syswerda. 1989. Uniform Crossover in Genetic Algorithms. In Proceedings
of the 3rd International Conference on Genetic Algorithms (ICGA 1989). Morgan
Kaufmann Publishers, San Francisco, CA, USA, 2–9.

[28] Liang Tang, Tao Li, and Chang-Shing Perng. 2011. LogSig: Generating System
Events from Raw Textual Logs. In Proceedings of the 20th ACM International
Conference on Information and Knowledge Management (CIKM 2011). ACM, New
York, NY, USA, 785–794.

[29] Risto Vaarandi. 2003. A Data Clustering Algorithm for Mining Patterns from
Event Logs. In Proceedings of the 3rd IEEE Workshop on IP Operations & Manage-
ment (IPOM 2003). IEEE, Piscataway, NJ, USA, 119–126.

[30] Jan M. E. M. van der Werf, Boudewijn F. van Dongen, Cor A. J. Hurkens, and
Alexander Serebrenik. 2008. Process Discovery Using Integer Linear Program-
ming. In Proceedings of the 29th International Conference on Applications and
Theory of Petri Nets (PETRI NETS 2008) (LNCS), Vol. 5062. Springer, Berlin, Hei-
delberg, 368–387.

[31] András Vargha and Harold D. Delaney. 2000. A Critique and Improvement of the
CL Common Language Effect Size Statistics of McGraw and Wong. Journal of
Educational and Behavioral Statistics 25, 2 (2000), 101–132.

[32] Shuai Wang, Shaukat Ali, Tao Yue, Yan Li, and Marius Liaaen. 2016. A Practical
Guide to Select Quality Indicators for Assessing Pareto-based Search Algorithms
in Search-based Software Engineering. In Proceedings of the 38th International
Conference on Software Engineering (ICSE 2016). ACM, New York, NY, USA, 631–
642.

[33] W. Eric Wong, Vidroha Debroy, Richard Golden, Xiaofeng Xu, and Bhavani
Thuraisingham. 2012. Effective Software Fault Localization Using an RBF Neural
Network. IEEE Transactions on Reliability 61, 1 (2012), 149–169.

[34] Wei Xu. 2010. System Problem Detection by Mining Console Logs. Ph.D. Disserta-
tion. University of California Berkeley.

[35] Ding Yuan, Soyeon Park, and Yuanyuan Zhou. 2012. Characterizing Logging Prac-
tices in Open-source Software. In Proceedings of the 34th International Conference
on Software Engineering (ICSE 2012). IEEE, Piscataway, NJ, USA, 102–112.

[36] Jieming Zhu, Pinjia He, Qiang Fu, Hongyu Zhang, Michael R. Lyu, and Dongmei
Zhang. 2015. Learning to Log: Helping Developers Make Informed Logging Deci-
sions. In Proceedings of the 37th International Conference on Software Engineering
(ICSE 2015). IEEE, Piscataway, NJ, USA, 415–425.

