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Abstract— Cognitive Radio (CR) communication has been con-
sidered as one of the promising technologies to enable dynamic
spectrum sharing in the next generation of wireless networks.
Among several possible enabling techniques, Spectrum Sensing
(SS) is one of the key aspects for enabling opportunistic spectrum
access in CR Networks (CRN). From practical perspectives, it is
important to design low-complexity wideband CR receiver having
low resolution Analog to Digital Converter (ADC) working at a
reasonable sampling rate. In this context, this paper proposes
a novel spatio-temporal wideband SS technique by employing
multiple antennas and one-bit quantization at the CR node, which
subsequently enables the use of a reasonable sampling rate. In
our analysis, we show that for the same sensing performance
requirements, the proposed wideband receiver can have lower
power consumption than the conventional CR receiver equipped
with a single-antenna and a high-resolution ADC. Furthermore,
the proposed technique exploits the spatial dimension by esti-
mating the direction of arrival of Primary User (PU) signals,
which is not possible by the conventional SS methods and can
be of a significant benefit in a CRN. Moreover, we evaluate the
performance of the proposed technique and analyze the effects
of one-bit quantization with the help of numerical results.

I. INTRODUCTION

One of the main challenges towards meeting the capacity
requirements of the Fifth Generation (5G) wireless Communi-
cations is the lack of usable radio spectrum [1]. In this regard,
several promising solutions such as dynamic spectrum sharing,
exploitation of unlicensed WiFi spectrum, and licensed shared
access mechanisms are under investigation [1], [2]. Towards
enabling dynamic spectrum sharing among heterogeneous
wireless networks, Cognitive Radio (CR) communication can
exploit the available radio resources in a flexible and intelligent
manner with the help of various spectrum awareness and
exploitation techniques [3], [4]. In a CR Network (CRN), the
cognitive devices, which are named as Secondary Users (SUs),
must be aware of their surroundings and occupy the available
spots of the radio frequency spectrum that are not used by the
licensed Primary Users (PUs) at a particular location and time.

Spectrum Sensing (SS) is one of the main functionalities
required by a CR and in most of the cases, it requires the
estimation of the receiver noise in an explicit or implicit way
in order to perform accurate signal detection. However, in
a practical scenario, the receiver noise can not be perfectly
known (i.e., noise variance uncertainty phenomena), which

gives as a consequence the existence of Signal to Noise Ratio
(SNR) walls [5], [6], which are the limits in the negative
values of the SNR beyond which it is impossible to have
an accurate detection even if the sensing is performed during
unlimited periods [5], [6]. Towards addressing this problem,
Generalized Energy Detector (GED) has been recently pro-
posed as a promising solution [7], [8]. Although there are
other alternatives such as eigenvalue based detector and the
cyclostationary feature detector [4], these techniques require a
much higher level of detector complexity as compared to the
GED.

In the GED, it is assumed that when a wideband spectrum
is simultaneously sensed, there is at least one empty sub-
band which can be used to perform detection over the other
subbands using a ratio-based test statistic. However, if the
sensing time is increased, the probability of getting at least
one empty subband decreases, which becomes an issue for
the GED technique. Also, the accuracy of the conventional
GED depends implicitly on the ergodicity of the noise process
at the receiver. Therefore, if the noise power changes over
time, as it is commonly observed in practical scenarios, the
increase of the sensing time may result in the degradation of
the detection performance. Another drawback of the existing
techniques including the GED is that they do not provide any
spatial information about the interfering PU signals, although
acquiring and using this information can significantly improve
the performance of the CRN.

In order to address the aforementioned drawbacks of the
GED, we propose a novel technique based on a muti-antenna
receiver with one-bit quantization in the Analog to Digital
Converter (ADC), which can reduce the required sensing time
considerably while keeping reasonable system complexity and
power consumption. The proposed technique can be applied
in 5G massive Multiple Input Multiple Output (MIMO) base
stations, in which the number of antennas is increased at least
one or two orders of magnitude [9]. The power consumption
and the cost of a digital radio receiver are mostly determined
by the Radio Frequency (RF) front-end and the ADC. The
power consumed by these two elements increases as the
amplitude (and therefore the SNR) of the received signals
is increased. In addition, in order to achieve the high SNR
after quantization, the number of quantization bits is increased
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resulting in a considerable increase in power consumption and
system complexity. As an instance, one of the most popular
ADC technologies used in wireless communications, the flash
topology, follows a model in which the power consumption
and chip size are increased exponentially with the number
of bits and linearly with the sampling frequency [10], and
a typical commercially available high resolution ADC has a
power consumption of several Watts.

Towards reducing the power consumption, the use of one bit
quantization has been previously investigated for communica-
tion and channel estimation purposes [11], [12]. In [13], an
SS method for CR applications using one-bit ADC has been
proposed, and it has been shown that the feasibility of the
detector depends on the increase of the sampling frequency
in a few orders of magnitude, thus resulting in higher power
consumption. Also, the use of few number of bits for spectrum
sensing has been proposed in [14], [15], where the use of
a fusion center is proposed which performs Mean Square
Error (MSE) or Maximum Likelihood (ML) estimations using
few-bits quantized signals generated by scattered low-end
sensors. In contrast to the aforementioned works, this paper
examines the possibility of employing multiple antennas to
enable the use of one-bit ADC with reasonable sampling rate
in a CRN. We propose the use of a multi-antenna compact
station, which is a synchronized array that performs coherent
beamforming at its reception. This allows to meet stringent
low SNR requirements while maintaining the total consumed
power and the total system complexity in the same order
of magnitude as that of the single antenna case. Besides, in
the proposed scheme, the SU can detect the PU signals in
different frequency subbands, and in addition, can find their
directions of arrival, which can be subsequently utilized to
employ suitable interference mitigation techniques at the SU
in order to provide better protection to the PU receivers.

In this paper, first, we propose a spatio-temporal acquisition
model using a two-dimensional (2D) planar array. Subse-
quently, we propose the use of one-bit (per complex element,
I and Q) quantization of the baseband down-converted signal.
The acquired samples are used to obtain a tri-dimensional
Power Spectrum Density (PSD) map of the received signal
during a sensing period. This map is then classified using
an edge detection algorithm in several sub-sets, which are
evaluated as occupied or not using the GED detector. We show
that with the proposed technique, the total power consumption
and system complexity can be decreased while increasing the
detection performance compared to the single-antenna high-
resolution ADC case. Finally, we evaluate the performance
of the proposed technique and analyze the effects of one-bit
quantization with the help of numerical results.

The remainder of this paper is organized as follows: In Sec-
tion II, the system model and problem statement are described.
In Section III, the proposed multi-dimensional wideband SS
technique is presented. Numerical results are provided in
Section IV. Finally, Section V concludes the paper.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Let us consider an SU which needs to perform SS over
a wide range of frequencies which have different PSDs and
come from different incident directions. We assume that the
SU attempts to identify and perform sensing for each sub-band
and utilizes only white sub-bands for communications.

For the analysis of the detector performance, it is observed
that a given PSD is associated to a unique surface power
density flux (measured in Watts/Hz/m2). This flux can be
derived from the regulations reports (Federal Communications
Commission [FCC], Electronic Communications Committee
[ECC] and others), where they also assume an omnidirectional
antenna in the receiver [16], [17]. As an example, it is stated in
FCC recommendations that in order to provide an acceptable
level of protection to the primary network, the SU should be
able to detect signals with a total power of -120dBm integrated
inside a TV band, which is 6MHz [16], [17]. This should
be done with the maximum sensing time of 2 seconds, and
assuming that the SU uses a non-directive antenna with 0dBi
gain. Having the receiver at ambient temperature and with
an estimate for the noise figure of 6dB, which can be seen
as very benign estimate1, it will represent an SNR of -20dB.
These signals can not be accurately detected by a conventional
energy detector due to the SNR wall effect [5], [7], [8].

A. Antenna array analysis

The proposed cognitive device is equipped with N antennas,
distributed over a 2D surface to perform the signal acquisition.
The set of antennas is equally spaced in the x and y axes and
each of them is located at a position in the [x, y] plane. Figure
1 shows one receiving antenna of the planar array which is
impinged by an incident wavefront which comes at the angles
θ and φ. A given incident wavefront will produce a signal
S0w(t) as a function of time at an antenna located in x = 0,
y = 0.

The signal back-propagated to the position [x, y], by the
same wavefront can be obtained from the geometry of Figure
1 to be [18]

Sw(t, x, y) = S0w(t)ej2π(x sin θ cosφ+y sin θ sinφ), (1)

given that the source is far enough from the 2D surface that
both positions receive the wavefront with the same incident
angle. Assuming that the intensity of the incident wavefront
as a function of the incident angle is v(t, θ, φ), the total signal
collected by an antenna located at [x, y], will be integral of
all the incident waveforms which is given by [18]

V (t, x, y) =
∫ 2π

0

∫ π

0

v(t, θ, φ) G(θ, φ) ·
ej2π(x sin θ cosφ+y sin θ sinφ)sinθdθdφ.

(2)

We assume that the receiving antennas have a gain G(θ, φ)
expressed as a function of the incident solid angle [θ, φ]
with respect to the 2D surface. In our case, we assume for

1Estimate of the noise figure of the entire receive chain, from amplifiers to
ADC.
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Fig. 1. Receiving geometry for one antenna within the 2D array. The angles
θ and φ are taken with respect to the projection on the x and y reference
planes [18].

simplicity that G(θ, φ) has a constant value G0(θ, φ) for [θ, φ]
in the range ([0, π/2], [0, 2π]) and zero outside this range. This
represents a 3dBi gain given by a half-sphere radiation pattern.
From this, an estimation of the intensity function can be
obtained from the inverse Fourier transform of the V (t, x, y)
measurements by [18]

ṽ(t, η, ζ) =
∫ ∞

−∞

∫ ∞

−∞
V(t, x, y) ·

e−j2π(x sin θ cosφ+y sin θ sinφ)dxdy.

(3)

The above expression is well known in the interferomet-
ric radiometry community [18]–[20]. It can be expressed
in terms of the angular frequency variables (ζ, η) =
(sin θ cos φ, sin θ sin φ), as

ṽ(t, η, ζ) =
∫ ∞

−∞

∫ ∞

−∞
V (t, xi, yi)e−j2π(xζ+yη)dxdy. (4)

We introduce ṽω(f, η, ζ), which is the Fourier transform in
the t variable of ṽ0(t, η, ζ) by

ṽω(f, η, ζ) =
∫ ∞

−∞
ṽ(t, η, ζ)e−j2πft dt =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
V (t, x, y)e−j2π(xζ+yη+ft)dxdydt,

(5)

which is an estimation of the radiation intensity as a function
of the temporal and angular frequencies. However, in a prac-
tical application scenario, the acquired signal is restricted by
a number of finite samples in time and space using an array
with a finite number of antennas, as shown in Figure 2. Here,
we determine a given number of rows and columns in the 2D
plane, Nx and Ny . For this, the SU collects a finite number of
time samples Nt acquired by each antenna to have a discrete
version of V(t, x, y) over a finite interval.

The signal received by the antenna array, at a given discrete
time i at each antenna (row n, and column m) will be

s(i, n,m) = V (iΔt, nΔd,mΔd), i = 1, ..., Nt,

n = 1, ..., Nx,

m = 1, ..., Ny.

(6)

1 2 Nx x

1

2

Ny

y

Fig. 2. Receiving array geometry. The antennas have a constant separation
for the indexes of x and y.

Using s(i, n,m), we can have a discrete version of
ṽω(f, η, ζ) where the integrals of the equation can be replaced
by a summation of discrete samples, to have a Discrete Fourier
Transform, defined by

Dω(kt, kx, ky) =
Nt−1∑
i=0

Ny−1∑
m=0

Nx−1∑
n=0

s(i, n,m) e
− j2π(ikt+nkx+mky)

NtNxNy√
NtNxNy

,

kt = 1, ..., Nt,

kx = 1, ..., Nx,

ky = 1, ..., Ny.

(7)

B. Receiver signal model

We assume that the incident wavefront from a single PU
is observed as coming at a unique incident angle for all the
receiving antennas in the SU array. The complex sampled
baseband signal at the receiver after down-conversion and
filtering becomes

s̃(i,m, n) = s(i,m, n) + w(i,m, n), (8)

where the elements of w(i,m, n) � CN(0, σ2)∀(i,m, n) are
independent and identically distributed zero mean circularly
symmetric complex Gaussian (ZMCSCG) random variables,
all with unknown variance σ2, generated by the antenna
temperature, antenna temperature efficiency and the noise
figure of the the receiver chains. It is assumed that the
PU signal has a wide-band Gaussian distribution, with a
surface power spectrum density flux measured in Watts/Hz/m2,
which is almost constant within the subband which is at
least BminHz. However, in the following we are not assuming
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that the primary signals do not generate tail-shaped out-of-
band interferences to the adjacent subbands. The total scanned
bandwidth is assumed to have one or more white sub-bands as
in [7]. These assumptions are reasonable since according to the
FCC report, spectrum utilization in most frequency bands can
be quite low [16], [17]. Here, we assume that all the antennas
are at the same temperature for a given acquisition and this
temperature does not vary during the acquisition, and all the
receiver chains have the same noise figure. Consequently, it
is assumed that all the receivers have the same noise variance
during one acquisition.

III. MULTI-DIMENSIONAL WIDEBAND SENSING

In order to perform SS at the SU, the baseband signals are
quantized using one-bit ADCs. Therefore, the sign of the I and
Q components of the baseband signal s̃(i,m, n) is quantized
in the following way

s̃q(i,m, n) = sign(real(s̃(i,m, n)))+jsign(imag(s̃(i,m, n))).
(9)

Then, the transformation for the quantized signals becomes

Dωq(kt, kx, ky) =
Nt−1∑
i=0

Ny−1∑
m=0

Nx−1∑
n=0

s̃q(i, n,m) e
− j2π(ikt+nkx+mky)

NtNxNy√
NtNxNy

,

kt = 1, ..., Nt,

kx = 1, ..., Nx,

ky = 1, ..., Ny.

(10)

Subsequently, this signal is used to get the test statistics
required by the SU.

In this paper, we propose to employ the Generalized Energy
Detector (GED) proposed in [7] and [8] for the detection
of the white subbands, however, in this case, the procedure
is applied to the tridimensional array Dωq(kt, kx, ky), which
includes two axes for the angular frequency, and one axis for
the temporal frequency. The procedure is described as follows

• Detect the boundaries of the subbands in frequencies (two
angular axes and one temporal axes). For this, a new
method based on the edge detection procedure [7] is used.

• Detect the subband (in temporal and angular frequencies)
with minimum power spectrum density and use it as
the reference subband for the detection of the rest of
subbands [7].

• Perform subband detection using the GED computing the
ratio of the average PSD of the evaluated subbands to the
PSD of reference subband.

In the following subsections, these three steps are discussed.
Additionally, the quantization effects of the one-bit ADC are
taken into consideration. It is worth to mention that in [11] and
[12], it has been shown that the effect of one-bit quantization
goes to a limit of 2/π of degradation in achievable channel
capacity as the input SNR goes low [11], [12]. In our work,
we found by mean of simulations that the degradation of the
ratio-based test statistic approaches to the 2/π limit as the
incident SNR goes to low values.

A. Edge Detection

It is required to detect the boundaries of the subbands and
classify different volumetric spaces in order to perform the
GED in each of the subbands. In this case, the detection of the
edges in the temporal frequency domain is similar to the one
described in [7] for each of the vectors associated to one pair
of points kx, ky . For this operation, one or more realizations of
Dωq(kt, kx, ky) can be used. After this, the final operation to
classify the subbands is to detect the boundaries in the angular
frequency axes.

For the detection of the boundaries in the kt axis, we assume
a minimum detectable size for any subband, which is denoted
by Bmin (Hz). Using one single realization of Dωq, it is
possible to obtain a test statistic that can indicate the presence
of an edge in point kt0 over the kt axis for a given kx, ky point.
The test statistics are obtained from the ratio of the average of
the magnitude squared of Dωq at the left and right sides of kt

over Net number of samples Net = �BminT

2
�, where T is the

sampling time period. Therefore, the test statistics becomes

Ret(kt0) =

√
Net

2

⎛
⎜⎜⎜⎝

kt0+Net−1∑
kt=kt0

|Dωq(kt, kx, ky)|2

kt0−1∑
kt=kt0−Net

|Dωq(kt, kx, ky)|2
− 1

⎞
⎟⎟⎟⎠.

(11)

Under the noise only hypothesis, H0e: both segments have
the same PSD and then Ret can be modeled by a Gaussian
random variable with zero mean and unitary variance. Under
the signal plus noise hypothesis H1e: the evaluated point kt0 is
located at a boundary, where the points at the right of kt0 have
a PSD σ2

r greater than the PSD, σ2
l of the points at the left

of kt0, and γe = σ2
r/σ2

l , then Ret can be approximated by a
Gaussian random variable with mean γe

√
Net/2 and variance

(1 + γe)2.
The probabilities of false alarm, Pfet, and the probability

of detection, Pdet, are obtained for a given threshold value λ
in the following way

Pfet = Q
(

λ − μHe0

σHe0

)
= Q(λ), Pdet = Q

(
λ − μHe1

σHe1

)
,

(12)
where Q(·) is the standard Gaussian complementary cumula-
tive distribution function, and [μHe0, σHe0] and [μHe1, σHe1]
are the mean and variance of Rk under the two evaluated
hypotheses. It is worth to note that other possible scenarios,
different to the two main hypotheses, are possible. As an
instance, the case in which the PSD is not constant inside
the evaluated segments, or even the simple case where γe is
lower than one (falling edge case).

A more reliable test statistic can be obtained using multiple
realizations of Dωq(kt, kx, ky) having in consideration that the
boundaries in the subbands are remain unchanged even if the
occupancy and PSD of each of the subbands are changed.
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The consolidated test statistic can be obtained by averaging
the absolute value of Ret as proposed in [7], or using a
logical operator over multiple detection results given by single
realizations.

For the detection of the edges in the angular dimension,
we propose a similar procedure in which the length of the
averaged segment in the kx (or the ky) is equal to one.
Wherewith, the test statistic, for a given kt, and ky and for an
evaluated point kx0 becomes

Rex(kx0) =

√
1
2

( |Dωq(kt, kx0, ky)|2
|Dωq(kt, kx0 − 1, ky)|2 − 1

)
. (13)

The probabilities of false alarm and detection can be found in
a similar way to the one used in the kt axis. After performing
these procedures in the three axes, a set of volumetric sets are
classified and used for its detection.

B. Generalized Energy Detection

After the samples Dωq(kt, kx, ky) are classified in different
tridimensional subbands, the average energy is computed for
each of these subbands. Having the assumption that there is
always a white subband at any moment, the subband with
the lowest average power is selected as white and used as the
reference subband for the other subbands. The test statistic for
each subband is obtained from the ratio between its average
energy and the average energy of the reference subband. Let us
assume that the reference subband has a length of Ndt in the
kt axis, Ndx in the kx axis and Ndy in the ky axis for a total of
Nd = NdtNdxNdy . Similarly, the sth evaluated tridimensional
subband has a total number of points Ns = NstNsxNsy .

For each subband, the average energy, Æs is computed
by averaging |Dωq(kt, kx, ky)|2 for the points inside each
subband, and the test statistics for the detection of the sth
sub-band is computed by

Rs =
√

NdNs

Nd + Ns

(
Æs

Æd
− 1

)
, (14)

where Æs is the average energy in the sth evaluated subband
and Æd is the average energy in the reference subband. It can
be shown that Rs is a Gaussian random variable with mean
γs

√
NdNs/(Nd + Ns) and variance (1 + γs)

2, where γk ≥ 0
is the SNR of sub-band s (i.e., γs = 0 under noise only case).
The probabilities of false alarm, Pf , and the probability of
detection, Pd, are obtained for a given threshold value λ as
[7]

Pf = Q
(

λ − μH0

σH0

)
= Q(λ), Pd = Q

(
λ − μH1

σH1

)
.

(15)
where Q(·) is the standard Gaussian complementary CDF, and
[μH0, σH0] and [μH1, σH1] are the mean and variance of Rs

under the two possible hypothesis, H0: the sensed sub-band
is free and H1: the sensed sub-band is occupied.

Fig. 3. |GxGy(η, ζ)| for the case Nx = Ny = 16. The maximum amplitude
gain is

√
NxNy = 16

IV. SYSTEM ANALYSIS AND SIMULATION RESULTS

In order to validate the proposed technique, we simulate
the system using different number of antennas separated by
one half of the carrier wavelength. The array is tested using
different number of incident wavefronts with different incident
angles and power flux densities. An incident wavefront with
power flux density Φ0 inside a given subband will produce a
given PSD inside the given subband for the given the array
gain, as explained in the following subsection.

A. Array gain

The maximum array gain is obtained when the angular
frequencies η and ζ of the incident wavefront are integer
multiples of 1/Nx and 1/Ny. In this case, all the energy
remains concentrated in one [kx0, ky0] pair of values inside
the matrix Dω(kt, kx, ky), and no contribution is seen for the
points with kx �= kx0, ky �= ky0. Consequently, the amplitude
gain in the peak will be

√
NxNy and therefore the power gain

becomes NxNy . This maximum gain is not observed for all
the incident angles, and the actual value is obtained from the
projection of η and ζ in the summation of (7). It can be seen
that this gain is a periodic function of the incident angle that
varies between 1 and 2/π. As an instance, for the cases in
which Nx (and similarly for Ny) is an integer multiple of 4,
the gain in amplitude can be approximated by

Gx(η) =
√

Nx

(∣∣∣∣cos
(

η
πN2

x

2(Nx − 1)

)∣∣∣∣
(

2 − π

π

)
+

2
π

)
.

(16)
Using Gx(η) and Gy(ζ), the array gain in amplitude will be
Gx(η)Gy(ζ). Figure 3 shows an example of the array gain
for the particular values of number of rows and columns of
antennas, Nx = Ny = 16, for the values of η and ζ from 0 to
0.25.

B. Quantization effects

For evaluating the quantization effect, a set of Monte-Carlo
simulations were performed using one-bit quantization, for
different numbers of incident wavefronts, and for different
number of antennas. For the simulations, we assume omni-
directional receivers at ambient temperature (300K) and 6dB
noise figure, separated by half wavelengths in the x and y axes.
We take 256 temporal samples in each antenna at a sampling
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Fig. 4. One-bit quantization of the baseband received signal. The one-bit
ADC is a zero crossing comparator for the I and Q baseband components.

frequency of 40MHz which represents a sensing time of 6.4
μsecs. We simulate two simultaneous incident wavefronts with
two arbitrarily selected incident angular frequencies, one at
[η,ζ] = [0.4, 0.4] and another one at [η, ζ] = [0.11,−0.7].
The total bandwidth was divided in 8 subbands with the
same size. The energy of the incident wavefronts were only
allocated in one of these subbands. To obtain this behavior, an
OFDM was implemented using two type of symbols, first, a
QPSK constellation with random symbols or second a set of
random complex numbers (with random angle and amplitude),
and then we vary the incident power flux density to obtain
different SNR values for a single antenna. One-bit quantization
is performed for each of the I and Q components of the
received signal. Figure 4 shows an snapshot of a section of
the received signal, in which the sign of the I component is
quantized.

We compute the ratio Rs for both cases, the quantized and
non quantized matrices, assuming that we know a priori the
location of the evaluated subbands which includes a single
value for kx, ky . For the reference subband, we use a range
of indexes in order to get an average that includes a set of tri-
dimensional points. We compute this test statistic for the sim-
ulated data using the quantized and not quantized version of
the received signals, and in this way get the test statistics from
Dωq(kt, kx, ky) and Dω(kt, kx, ky) respectively. We computed
the ratio of these two test statistic using 220 realizations whose
results are in Figure 5 for Nx = Ny = 16. From here we
corroborate the limit of 2/π (-1.96dB) degradation in the mean
of the test statistics for the quantized version. From Figure 5,
it can be seen that the degradation can be tractable (around
2.5dB) for medium SNR values around 3dB.

C. Subband detection

We also performed Monte-Carlo simulations to corroborate
the theoretical expressions for Pd and Pf obtained for the
proposed detector including the 2/π correction for the quanti-
zation effect. We checked the Pf values for other indexes dif-
ferent to the ones occupied by the PU incident wavefronts, and
we ensured that it follows accurately the analytical equation
as a function of the threshold. Next, we checked the Pd from
the simulated data and checked concordance with the theory.
Figure 6 shows a plot of Pd versus Pf for different SNR
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Fig. 5. Ratio in dB of the test statistics obtained from a one-bit quantized
signal to the non quantized test statistics. This is plotted as a function of the
single antenna SNR γ.
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Fig. 6. Simulation results for Pd as a function of Pf . The plots are obtained
using 1024 samples in time, equivalent at 40MHz to 25.56μsecs (Ns = 1024
and Nd =65536). The array gain with the especific η, ζ = 0.4, 0.4 is 18.72
dB. Finally the γarray is affected by quantization degradation which is -1.96dB.

values. In this point, we also show in Figure 7 the analytical
curves for the required sensing time for the worst case of the
array gain.

D. Power consumption and system complexity

The power consumption of the proposed signal is evaluated
in relation to a single antenna full resolution ADC receiver. For
the conventional flash ADC, it is stated that the size and power
consumption doubles for the increase of one bit in the resolu-
tion [10], [21]. The power consumption of a dual ADC (I and
Q branches) with a resolution of b bits, working at a sampling
frequency of Fs can be approximated to 2b+1FsKtech, where
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Fig. 7. Analytical values for Pd as a function of the sensing time (Ns/Nd=
1024/65536). The especific η, ζ = 0.4102, 0.4102 which is one of the worst
degradation possible for Gx(η)Gy(ζ) which is 16.24dB. Finally the γarray is
affected by quantization degradation which is -1.96dB.
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Ktech is a parameter given by the implementation technology
used. In contrast to this, the consumption of the one-bit ADC
will be the one of a single comparator per branch, which
can be accomplished with a few transistors, and will have
a power consumption of 21+1FsKtech [21]. In this case, the
power consumption of a dual 16 bits ADC will be the same of
the all ADCs in an array with with 65536 antennas, which is
two orders of magnitude higher than the number of antennas
evaluated on the simulations. For the analog front-end part, it
is also observed that some improvement can be obtained due
to the dynamic range of the input signal which is substantially
reduced. This reduction gives the possibility to perform a
single stage analog processing without the need to perform
an Automatic Gain Controllled (AGC) amplifier.

V. CONCLUSIONS

This paper has proposed a novel spatio-temporal wideband
spectrum sensing technique which is based on a multi-antenna
receiver with one-bit complex quantization. It has been shown
that the proposed spectrum sensing technique can improve the
detection performance, in terms of detection statistics for a
given incident power and sensing times, while decreasing the
total consumed power and system complexity compared to the
single-antenna high-resolution ADC case.

The proposed method was verified by simulations for dif-
ferent parameter settings. Furthermore, it has been illustrated
that the proposed method can obtain the desired detection
performance with a sensing time which is several order of
magnitudes lower than the conventional case. In addition, this
reduction can help to alleviate the non-ergodicity effects over
the GED under the assumption that all the receiver chains in
the array have the same noise distribution. This is a reasonable
assumption since the detector can be designed as a compact
device in which all the antennas and receive chains employ the
same physical parameters. In addition, the proposed technique
provides spatial information for the detected PUs, which can
improve the overall CRN performance while providing better
protection to the PUs.
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