
1

On the Synchronization Bottleneck of
OpenStack Swift-like Cloud Storage Systems

Mingkang Ruan, Thierry Titcheu, Ennan Zhai, Zhenhua Li, Member, IEEE,
Yao Liu, Jinlong E, Yong Cui, Member, IEEE, and Hong Xu, Member, IEEE

Abstract—As one type of the most popular cloud storage services, OpenStack Swift and its follow-up systems replicate each object
across multiple storage nodes and leverage object sync protocols to achieve high reliability and eventual consistency. The performance
of object sync protocols heavily relies on two key parameters: r (number of replicas for each object) and n (number of objects hosted
by each storage node). In existing tutorials and demos, the configurations are usually r = 3 and n < 1000 by default, and the sync
process seems to perform well. However, we discover in data-intensive scenarios, e.g., when r > 3 and n � 1000, the sync process is
significantly delayed and produces massive network overhead, referred to as the sync bottleneck problem. By reviewing the source
code of OpenStack Swift, we find that its object sync protocol utilizes a fairly simple and network-intensive approach to check the
consistency among replicas of objects. Hence in a sync round, the number of exchanged hash values per node is Θ(n× r). To tackle
the problem, we propose a lightweight and practical object sync protocol, LightSync, which not only remarkably reduces the sync
overhead, but also preserves high reliability and eventual consistency. LightSync derives this capability from three novel building
blocks: 1) Hashing of Hashes, which aggregates all the h hash values of each data partition into a single but representative hash value
with the Merkle tree; 2) Circular Hash Checking, which checks the consistency of different partition replicas by only sending the
aggregated hash value to the clockwise neighbor; and 3) Failed Neighbor Handling, which properly detects and handles node failures
with moderate overhead to effectively strengthen the robustness of LightSync. The design of LightSync offers provable guarantee on
reducing the per-node network overhead from Θ(n× r) to Θ(n

h
). Furthermore, we have implemented LightSync as an open-source

patch and adopted it to OpenStack Swift, thus reducing the sync delay by up to 879× and the network overhead by up to 47.5×.

Index Terms—Cloud storage, OpenStack Swift, object synchronization, performance bottleneck.

F

1 INTRODUCTION

TODAY’S cloud storage services, e.g., Amazon S3, Google
Cloud Storage, Windows Azure Storage, Aliyun OSS,

and Rackspace Cloud Files, provide highly available and ro-
bust infrastructure support to upper-layer applications [1]–
[10]. As one type of the most popular open-source cloud
storage services, OpenStack Swift and its follow-up systems
such as Riak S2 and Apache Cassandra (called OpenStack
Swift-like systems) have been used by many organizations
and companies like Rackspace, UnitedStack, Sina Weibo,
eBay, Instagram, Reddit, and AiMED Stat. In order to offer
high data reliability and durability, OpenStack Swift-like
systems typically replicate each data object across multi-
ple storage nodes, thus leading to the need of maintain-
ing consistency among the replicas. Almost all existing
OpenStack Swift-like systems employ the eventual consis-
tency model [11] to offer consistency guarantees to the

• Mingkang Ruan and Zhenhua Li (corresponding author) are with
the School of Software, Tsinghua University, Beijing, China. Email:
brmk@vip.qq.com, lizhenhua1983@tsinghua.edu.cn

• Thierry Titcheu is with the Interdisciplinary Centre for Security, Reliabil-
ity and Trust, University of Luxembourg. Email: thierry tct@yahoo.com

• Ennan Zhai is with the Department of Computer Science, Yale University,
New Haven, CT, US. Email: ennan.zhai@yale.edu

• Yao Liu is with the Department of Computer Science, Binghamton
University, NY, US. Email: yaoliu@binghamton.edu

• Jinlong E and Yong Cui are with the Department of Computer
Science and Technology, Tsinghua University, Beijing, China. Email:
ejl14@mails.tsinghua.edu.cn, cuiyong@tsinghua.edu.cn

• Hong Xu is with the Department of Computer Science, City University
of Hong Kong. Email: henry.xu@cityu.edu.hk

hosted data objects’ replica versions. Here, eventual con-
sistency means that if no new update is made to a given
object, eventually all read/write accesses to that object
would return the last updated value. For OpenStack Swift-
like systems, the eventual consistency model is embodied
by leveraging an object sync(hronization) protocol to check
different replica versions of each object.

While OpenStack Swift-like systems have been widely
used, we still hope to deep understand how well they
achieve the consistency in practice. To this end, the first
part of our work is to make a lab-scale case study based
on OpenStack Swift. In our realistic deployment and exper-
iments, we observe that OpenStack Swift indeed performs
well (with just a few seconds of sync delay and a few MBs
of network overhead) for regular configuration (as proposed
in most existing tutorials and demonstrations [12]–[14]), i.e.,
r = 3 and n < 1000. Here r denotes the number of replicas
for each object, and n denotes the number of objects hosted
by each storage node. Nevertheless, we find that in data-
intensive scenarios, e.g., when r > 3 and n � 1000, the
object sync process is significantly delayed and produces
massive network overhead. 1 For example, when r = 5 and
n = 4M , the sync delay is as long as 58 minutes and there
are 3.63 GB of network messages exchanged by every node in
a single sync round.

The exposed phenomenon is referred to as the sync
bottleneck problem of OpenStack Swift, which also occurs

1. On the other hand, although both the CPU and memory usages
increase as r and n increase, they generally stay at an affordable level.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/154761091?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

in Riak S2 and Cassandra. Moreover, the problem is con-
siderably aggravated in the presence of data updates (e.g.,
object creations and deletions) and node failures (the worst
case). In particular, when node failures occur, the failed node
needs multiple (typically 3 to 4) sync rounds to converge,
i.e., to re-enter a stable state. Furthermore, our experiments
show that this problem cannot be fundamentally addressed
by employing parallelism techniques, i.e., by increasing the
number of sync threads Nthread (detailed in §3.7).

Therefore, the sync bottleneck problem would easily lead
to negative influences because many of today’s data-centric
applications have to configure their back-ends with r > 3
and n � 1000 while still desiring for quick (eventual)
consistency and low overhead. Such kinds of applications
are pretty common in practice: first, in a realistic object
storage system the number of objects is typically far more
than 1000; second and more importantly, a larger r (ex-
ceeding 3) is often adopted by systems that require faster
access to numerous small objects [15], a higher level of fault
tolerance [16], or better geo-distributed availability [17].

Driven by the above observations, the second part of our
work is to investigate the source code of OpenStack Swift,
so as to thoroughly understand why the sync bottleneck
problem happens. In particular, we find that during each
sync round, the storage node for each data partition (say P)
compares its local fingerprint of P with the fingerprints of all
the other r − 1 replicas of P . This sync process introduces
network overhead of r(r − 1) sync messages. Specifically,
as a typical storage technique, partitioning allows the entire
object storage space to be divided into smaller pieces, where
each piece is called a (data) partition. The fingerprint of a
partition is denoted by a file which records the hash values
of all the h suffix directories included in this partition.
Therefore, each sync message contains h hash values.

More in detail, as one storage node can host multiple
(≈ n

h) partitions, the number of exchanged hash values by
each storage node is as large as Θ(n × r) in a single sync
round. This brings about considerable unnecessary network
overhead. In addition, the aforementioned shortcomings
are also found in other OpenStack Swift-like systems such
as Riak S2 (the active anti-entropy component [18]) and
Cassandra (the anti-entropy node repair component [19]).

To tackle the sync bottleneck problem, we propose a
lightweight and practical sync protocol, called LightSync. At
the heart of LightSync lie three novel building blocks:

• HoH aggregates all the h hash values of each data parti-
tion (in one sync message) into a single but representative
hash value by using the Merkle tree structure. Thus, one
sync message contains only one hash value.
• CHC is responsible for reducing the number of sync

messages exchanged in each sync round. Specifically,
CHC organizes the r replicas of a partition with a small
ring structure. During a certain partition’s object sync
process, CHC only sends the aggregated hash value to
the clockwise neighbor in the small ring.
• FNH properly detects and handles node failures with

moderate overhead, so as to effectively strengthen the
robustness of LightSync. Also, FNH helps a failed node
quickly rejoin the system with a consistent, latest state.

With the above design, the per-node network over-
head for OpenStack Swift object sync is provably reduced
from Θ(n × r) to Θ(n

h) hash values. Besides, the perfor-
mance degradation incurred by node failures is substan-
tially mitigated. To evaluate the real-world performance,
we have implemented LightSync as an open-source patch
to OpenStack Swift, which is also applicable to Riak S2 and
Cassandra in principle. The patch can be downloaded from
https://github.com/lightsync-swift/lightsync. In both lab-scale
(including 5 physical servers) and large-scale (including 64
Aliyun ECS virtual servers) deployments, we observe that
LightSync remarkably reduces the sync delay by up to 879×
and the network overhead by up to 47.5× . We also compare
LightSync with existing object sync protocols using other
topologies (e.g., Primary/Backup using Star [20], [21] and
Chain Replication using Chain [22], [23]), and find that the
sync delay of LightSync is obviously shorter by 2–8 times.

This paper makes the following contributions:
• We (are the first to) discover the sync bottleneck problem

of OpenStack Swift-like systems through comprehensive
experiments (§3). In particular, this problem is consider-
ably aggravated in the presence of data updates (§3.5) and
node failures (§3.6), and cannot be fundamentally solved
by increasing the number of sync threads (§3.7).
• We reveal the key factors that lead to the problem by

investigating the source code of OpenStack Swift (§4).
• We propose an efficient and practical object sync protocol,

named LightSync, to address the problem (§5).
• We implement an open-source LightSync patch which is

suited to general OpenStack Swift-like systems (§5.5).
• After the patch is applied to realistic deployments, both

lab-scale and large-scale testbed results illustrate that
LightSync is capable of significantly improving the object
sync performance. (§6) Also, LightSync essentially outper-
forms its counterparts in terms of sync delay. (§6.4).

2 BACKGROUND

OpenStack Swift is a well-known open-source object storage
system. It is typically used to store diverse unstructured
data objects, such as virtual machine (VM) snapshots, pic-
tures, audio/video volumes, and various backups. Many ex-
isting cloud storage systems are designed and implemented
by (partially) following the paradigm of OpenStack Swift.

2.1 Design Goals of OpenStack Swift
OpenStack Swift offers each data object eventual consistency,
a well-studied consistency model in the area of distributed
systems. Compared with the strong consistency model, the
eventual consistency model can achieve better data avail-
ability but may lead to a situation where some clients read
an old copy of the data object [24]. Besides, OpenStack
Swift provides reliability (and durability) by replicating
each object across multiple (3 by default) storage nodes. .

2.2 OpenStack Swift Architecture
As demonstrated in Fig. 1, there are two types of nodes
in an OpenStack Swift cluster: storage nodes and proxy nodes.
Storage nodes are responsible for storing objects while proxy

https://github.com/lightsync-swift/lightsync

3

Fig. 1: OpenStack Swift architecture.

nodes—as a bridge between clients and storage nodes—
communicate with clients and allocate requested objects on
storage nodes. On receiving a client’s read request on an
object o, the proxy node first searches for the storage nodes
hosting the replicas of o and then sends requests to all
the replica nodes of the object o. We use r to denote the
number of replicas for each object throughout the paper.
By default, OpenStack Swift utilizes a quorum-based voting
mechanism for replica control [25]. Once a valid number of
(≥ br/2c+ 1) responses are received, the proxy node selects
the best response (i.e., the one with the latest version of o)
and then redirects the response to the client. On the other
side, for a given write request on o, the proxy node sends
the request to all the r storage nodes hosting o. As long as a
certain number (≥ br/2c+1) of them reply with “successful
write,” the update is taken as successful.

2.3 Partition and Synchronization
Like many popular storage systems, OpenStack Swift or-
ganizes data partitions through consistent hashing (or
says DHT, distributed hash table) [26], [27]. Specifically,
OpenStack Swift constructs a logical ring (called the object
ring or partition ring) to represent the entire storage space.
This logical ring is composed of many equivalent subspaces.
Each subspace represents a partition and includes a number
of (h)2 objects belonging to the partition. According to
the working principle of consistent hashing, h dynamically
changes with the system scale.

Each partition is replicated r times on the logical ring,
physically mapped to r different storage nodes. If all the
N storage nodes in the logical ring are homogeneous, the
number of partitions hosted by each node is r×p

N , where p
denotes the total number of unique partitions.

Each object is assigned a unique identifier, i.e., an MD5
hash value of the object’s path. Further, objects in the same
partition are split into multiple subdirectories (suffix direc-
tories) according to the suffixes of their hash values. For
Example in Fig. 2, one suffix in the directory 25 is 882, so
the last three characters of all the hash values located in this
suffix directory are exactly 882.

For a given partition, its fingerprint is denoted by the
hashes.pkl file. Each line of the hashes.pkl file contains at least

2. Mostly each suffix directory contains only one object, i.e., we may
assume h ≈ the number of objects in a partition.

Fig. 2: An example for a data partition’s structure.

35 hex characters: 3 for the hash suffix and 32 for the MD5
hash value. The corresponding sync message of a partition
mainly contains its hashes.pkl file.

3 CASE STUDY

To deep understand how well OpenStack Swift-like systems
achieve consistency, this section presents a lab-scale case
study on the object sync performance of OpenStack Swift.
We first conduct experiments to understand OpenStack
Swift’s sync delay (§3.2), network overhead (§3.3), and CPU
& memory usages (§3.4) in a stable state. Here a stable state
means very few to no data updates (e.g., object creations or
deletions) occur to the OpenStack Swift system. Then, on the
contrary, we examine the sync delay and network overhead
of OpenStack Swift in the presence of bursty data updates
(§3.5) and node failures (§3.6). We finally summarize our
OpenStack Swift case study in §3.8.

3.1 Experimental Setup
We make a lab-scale OpenStack Swift deployment for the
case study. The deployment involves five Dell PowerEdge
T620 servers, each equipped with 2×8-core Intel Xeon
CPUs@2.0 GHz, 32-GB 1600-MHz DDR3 memory, 8×600-
GB 15K-RPM SAS disk storage, and two 1-Gbps Broadcom
Ethernet interfaces. The operating system of each server
is Ubuntu 14.04 LTS 64-bit. All these servers, as well as
the client devices, are connected by a commodity TP-LINK
switch with 1-Gbps wired transmission rate.

One of these servers (Node-0) is used to run the
Openstack Keystone service for account/data authentica-
tion, and meanwhile plays the roles as both a proxy node
and a storage node in the OpenStack Swift system. The other
servers (Node-1, Node-2, Node-3, and Node-4) are only used
as storage nodes. In this lab-scale OpenStack Swift system,
the max number of partitions is fixed to 218 = 262144 (as
recommended in the official OpenStack installation guide
[14]), and the number of replicas for each data object is
configured as r = 2, 3, 4, 5, respectively.

In addition, we employ multiple common laptops as
the client devices. They are responsible for sending both
object read and write requests through ssbench (SwiftStack
Benchmark Suite [28]), a benchmarking tool for automati-
cally generating intensive OpenStack Swift workloads. Each
data object is filled with random bytes between 6 KB and
10 KB (we will prove in §4 that the object sync performance
of OpenStack Swift is generally irrelevant to the concrete
content and size of each data object).

4

 0

 10

 20

 30

 40

 50

 60

1K 10K 100K 1M 2M 3M 4M

S
y
n
c
 D

e
la

y
 (

m
in

u
te

)

Number of Objects (n)

r = 5
r = 4
r = 3
r = 2

Fig. 3: Sync delay in a stable
state.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1K 10K 100K 1M 2M 3M 4M

N
e
tw

o
rk

 O
v
e
rh

e
a
d
 (

M
B

)

Number of Objects (n)

r = 5
r = 4
r = 3
r = 2

Fig. 4: Network overhead in a
stable state.

 0

 5

 10

 15

 20

 25

 30

1K 10K 100K 1M 2M 3M 4M

C
P

U
 U

s
a
g
e
 (

%
)

Number of Objects (n)

r = 5
r = 4
r = 3
r = 2

Fig. 5: CPU usage in a stable
state.

 0

 20

 40

 60

 80

 100

 120

 140

 160

1K 10K 100K 1M 2M 3M 4M

M
e
m

o
ry

 U
s
a
g
e
 (

M
B

)

Number of Objects (n)

r = 5
r = 4
r = 3
r = 2

Fig. 6: Memory usage in a
stable state.

3.2 Sync Delay in a Stable State
First of all, we want to understand the impact of the
two key parameters, i.e., r and n, on the running time
of a sync round (called the sync delay). To this end,
we conduct multiple experiments with increasing n =
1K, 10K, 100K, 1M, 2M, 3M, 4M and r = 2, 3, 4, 5, respec-
tively, and measure the sync delay when the system enters
a stable state. In an OpenStack Swift system, the sync delay
is recorded in its log file, i.e., /var/log/syslog.

As shown in Fig. 3, when n ≤ 1K , the sync delay is
merely a few seconds. However, when n reaches several
million, it sharply increases to tens of minutes. Meanwhile,
the sync delay increases with a larger r. The above phenom-
ena are not acceptable in practical data-intensive scenarios,
since they may well influence the desired availability and
consistency of OpenStack Swift. An interesting finding is
when n > 1M , the sync delay increases quite slowly (for a
fixed r). This can be explained by the number of partitions
(p) illustrated in Fig. 7. As mentioned in §3.1, the max
number of partitions is fixed to 218 = 262144. When n
grows, p is automatically increased by OpenStack Swift. But
when n > 1M � 262144, p stays close to (but no more than)
262144. Hence, the number of sync messages exchanged per
node (heavily depending on the value of p) keeps stable
while the size of each sync message is enlarged, which will
be thoroughly explained in §4.

3.3 Network Overhead in a Stable State
Next, we aim at understanding the network overhead in a
sync round, which might be an essential factor that deter-
mines the sync delay. For this purpose, we measure the size
of network messages exchanged within the OpenStack Swift
system during the object sync process in a stable state. The
measurement results in Fig. 4 show that the network over-
head increases with larger n and/or r. More importantly,
the four curves in Fig. 4 are basically consistent with those
in Fig. 3 in terms of variation trend. For example, when
n = 4M and r = 5, the sync delay reaches the maximum 58
minutes, and meanwhile the network overhead reaches the
maximum 3.63 GB. When n > 1M � 262144 (for a fixed
r), although the number of sync messages keeps stable, the
size of each sync message still grows with n since each sync
message contains more hash values (of more data objects).
This is why the network overhead continues growing with
n when n > 1M .

3.4 CPU and Memory Usages in a Stable State
In addition to sync delay and network overhead, we wish to
know the computation overhead of the object sync process.

We, therefore, measure the CPU and memory usages of
OpenStack Swift in a sync round. The CPU usage per
storage server is plotted in Fig. 5 and the memory usage
per storage server is plotted in Fig. 6. As shown in these
two figures, we have the following two findings. First, both
the CPU and memory usages increase as the number of
objects (n) and/or the number of replicas for each object (r)
increase. Second, even for the largest deployment (where
n = 4M and r = 5), the CPU usage is close to 30% and the
memory usage is close to 160 MB. Since each storage server
has 32 GB of memory, the highest memory usage rate is
merely 0.5% (= 160 MB

32 GB). Thus, both the CPU and memory
usages are affordable for the OpenStack Swift system.

3.5 Sync Performance in the Presence of Data Updates
We now examine the sync delay and network overhead of
OpenStack Swift in the presence of data updates. Specif-
ically, we generate two types of data updates. First, we
create a certain portion (10%) of data objects relative to the
existing n objects, and then record the sync performance
right after the new objects are successfully created. Second,
we delete a certain portion (10%) of objects, and then
record the sync performance right after the 10% objects are
successfully deleted. The sync delay corresponding to the
two types of data updates is shown in Fig. 8 and Fig. 10,
respectively. The two figures consistently illustrate that the
sync delay is increased when data updates happen to the
system. Compared with the stable state, object creations and
deletions lead to around 34.4% and 40.2% addition to the
sync delay, respectively. This is because OpenStack Swift
needs to recalculate the hash values of the modified data
partitions, which takes extra time 3. Differently, we observe
that the network overhead in the presence of data updates is
comparable to that in a stable state, indicated by the measure
results in Fig. 9 and Fig. 11.

3.6 Sync Performance in the Presence of a Node Fault
In addition to data updates, we study the performance
degradation caused by a node failure in OpenStack Swift.
We conduct the study in the following two steps. First, we
remove a storage node from the system by disconnecting it
with the switch, and then record the sync performance of
the remaining live nodes. Next, we modify a certain portion
(10%) of data objects in the system, and then add the failed
node into the system. At the same time, we record the

3. Caching such hash values in memory using systems such as
Memcached or Mbal [29], however, would considerably increase the
system complexity, and thus cannot fundamentally address the issue.

5

 0

 50000

 100000

 150000

 200000

 250000

1K 10K 100K 1M 2M 3M 4M

N
u
m

b
e
r

o
f
P

a
rt

it
io

n
s

Number of Objects (n)

Fig. 7: Number of partitions
(p).

 0

 10

 20

 30

 40

 50

 60

 70

 80

1K 10K 100K 1M 2M 3M 4M

S
y
n
c
 D

e
la

y
 (

m
in

u
te

)

Number of Objects (n)

r = 5
r = 4
r = 3
r = 2

Fig. 8: Sync delay right after
10% object creations.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1K 10K 100K 1M 2M 3M 4M

N
e
tw

o
rk

 O
v
e
rh

e
a
d
 (

M
B

)

Number of Objects (n)

r = 5
r = 4
r = 3
r = 2

Fig. 9: Network overhead
right after 10% object cre-
ations.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1K 10K 100K 1M 2M 3M 4M

S
y
n
c
 D

e
la

y
 (

m
in

u
te

)

Number of Objects (n)

r = 5
r = 4
r = 3
r = 2

Fig. 10: Sync delay right af-
ter 10% object deletions.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1K 10K 100K 1M 2M 3M 4M

N
e
tw

o
rk

 O
v
e
rh

e
a
d
 (

M
B

)

Number of Objects (n)

r = 5
r = 4
r = 3
r = 2

Fig. 11: Network overhead
right after 10% object dele-
tions.

 0

 50

 100

 150

 200

1K 10K 100K 1M 2M 3M 4M

S
y
n
c
 D

e
la

y
 (

h
o
u
r)

Number of Objects (n)

r = 5
r = 4
r = 3
r = 2

Fig. 12: Sync delay in the
presence of a node failure.

 0

 500

 1000

 1500

 2000

 2500

1K 10K 100K 1M 2M 3M 4M

N
e
tw

o
rk

 O
v
e
rh

e
a
d
 (

M
B

)

Number of Objects (n)

r = 5
r = 4
r = 3
r = 2

Fig. 13: Network overhead
in the presence of a node
failure.

 0

 50

 100

 150

 200

1K 10K 100K 1M 2M 3M 4M

S
y
n
c
 D

e
la

y
 (

m
in

u
te

)

Number of Objects (n)

r = 5
r = 4
r = 3
r = 2

Fig. 14: Sync delay during a
failed node’s rejoining pro-
cess.

 0

 1000

 2000

 3000

 4000

 5000

1K 10K 100K 1M 2M 3M 4M

N
e
tw

o
rk

 O
v
e
rh

e
a
d
 (

M
B

)

Number of Objects (n)

r = 5
r = 4
r = 3
r = 2

Fig. 15: Network overhead during a
failed node’s rejoining process.

 0

 50

 100

 150

 200

 250

 300

1 2 3 4

S
y
n
c
 D

e
la

y
 (

m
in

u
te

)

Number of Sync Rounds

r = 5, n = 4M

Fig. 16: Sync delay of a failed node
in different sync rounds right after
it rejoins the system.

 0

 50

 100

 150

 200

 250

1 2 4 8 16
 0

 50

 100

 150

 200

S
y
n
c
 D

e
la

y
 (

m
in

u
te

)

A
v
g
.
C

P
U

 U
ti
liz

a
ti
o
n
 (

%
)

Number of Threads

Rejoin

Update

Stable

Stable

Update

Rejoin

Fig. 17: Sync delay and CPU utilization
in a stable state, in the presence of data
updates, and during a node’s rejoining
process when r = 5 and n = 4M .

sync performance of the live nodes during the failed node’s
rejoining process. Here modify means that we first delete a
certain portion of objects and then create the same number
of new objects using the previous object paths.

The sync delay in the presence of a node failure is
presented in Fig. 12. When r ≥ 2 and n � 10000, the sync
delay is extremely long (e.g., 220 hours when r = 5 and
n = 4M). The corresponding network overhead is shown
in Fig. 13, which is however less than that in a stable state
because many messages cannot be sent to or received from
the failed node. Next, the sync delay and network overhead
corresponding to the failed node’s rejoining process are
shown in Fig. 14 and Fig. 15, respectively. Compared with
the case in a stable state, the rejoining process incurs about
297% and 32.5% addition to the sync delay and network
overhead, respectively. In addition, we observe that the
failed node itself needs multiple (typically 3 to 4) sync
rounds to converge (i.e., to re-enter a stable state), as shown
in Fig. 16. When the failed node rejoins the system, the sync
processes of the other live nodes are at different levels of
completion, therefore some partitions on the failed node

have to be updated (by the live nodes) in the subsequent
sync rounds. In general, a node failure leads to the worst
case in the sync performance of OpenStack Swift.

3.7 Using Multiple Sync Threads

OpenStack Swift provides an optimization option to accel-
erate the object sync process by increasing the number of
sync threads (Nthread) (i.e., the so-called “parallelism”). By
default, Nthread = 1, which is the configuration adopted
in §3.2 and §3.3. To understand the influence of Nthread on
the sync delay, we make every storage node host n = 4M
objects with r = 5 replicas, and run experiments with differ-
ent Nthread. As demonstrated in Fig. 17, the sync delay in a
stable state can be considerably reduced from 58 minutes to
21 minutes when Nthread increases from 1 to 8, but cannot
be further reduced when Nthread > 8. Differently, Nthread

does not impact the network overhead of the sync process.
Even worse, increasing parallelism contributes little to

the reduction of sync delay, especially in scenarios when
hash values have to be recalculated and rewritten on disk

6

r1

r2

r3

r4

r5 r1

r2

r3

r4

r5 r1

r2

r3

r4

r5 r1

r2

r3

r4

r5 r1

r2

r3

r4

r5

Fig. 18: An example for a complete object sync process. The five sub-processes run in parallel rather than in sequence.

(e.g., in the presence of data updates or during a rejoining
process). This is because the object sync process is an I/O-
bound process. The disk bandwidth has become the ma-
jor performance bottleneck when Nthread reaches a certain
level (e.g., Nthread > 2 during a rejoining process). Simply
increasing the level of parallelism may even aggravate the
problem (by investing more CPU resources).

On the other hand, as Nthread increases, the average
CPU utilization (in unit of CPU core) also increases. For in-
stance, the average CPU utilization of a storage node reaches
100% (200%) if we use 4 (16) sync threads. In conclusion,
parallelism could partially reduce the sync delay (since the
sync delay can hardly be reduced when Nthread > 8) but
at the cost of higher computation overhead. Further, we
observe the similar phenomenon in the presence of data
updates and node failures.

3.8 Summary: The Sync Bottleneck Problem
Based on all the revealed results in this section, we discover
an important phenomenon: the object sync performance can
be badly influenced once the data intensity of OpenStack
Swift becomes higher than a certain level, e.g., r > 3 and
n � 1000. This phenomenon is referred to as the sync
bottleneck problem of OpenStack Swift, which also occurs in
the follow-up systems like Riak S2 and Cassandra, where
similar benchmark experiments illustrate similar situations.
In particular, our experimental results demonstrate the fol-
lowing four features of OpenStack Swift. First, common
configurations, e.g., r = 3 and n < 1000, make OpenStack
Swift work well. Second, data-intensive configurations, e.g.,
r > 3 and n � 1000, would lead to the sync bottleneck
problem. Third, the sync bottleneck problem is considerably
aggravated in the presence of data updates and node fail-
ures (the worst case). Finally, the optimization mechanism
by increasing Nthread cannot fundamentally solve the sync
bottleneck problem in practice. Thus, we will only use the
default Nthread = 1 in the remainder of the paper.

4 ROOT CAUSE ANALYSIS

To explore the root cause of the sync bottleneck problem,
we investigate the source code of OpenStack Swift. This
section presents our investigation results about: 1) how the
object sync process works in OpenStack Swift; and 2) how
expensive the current object sync protocol is.

4.1 Object Sync Process in OpenStack Swift
The relevant source code of OpenStack Swift (the Icehouse
version 4) is mainly included in the files listed in Table 1.

4. We have also examined the latest Liberty version of OpenStack
Swift and find that the concerned source code is generally unchanged.

TABLE 1: Source code of OpenStack Swift relevant to its
object sync process.

Path File

python2.7/dist-packages/swift/obj

diskfile.py
mem diskfile.py

replicator.py
server.py

python2.7/dist-packages/swift/proxy server.py

python2.7/dist-packages/swift/proxy/controller base.py
obj.py

python2.7/dist-packages/swift/common bufferedhttp.py
http.py

python2.7/dist-packages/swift/common/ring ∗.py

Through the source code review, we find that OpenStack
Swift is currently using a fairly simple and network-
intensive approach to check the consistency among replicas
of a data partition, where a partition consists of h objects.
Fig. 18 depicts an example for a complete OpenStack Swift
object (partition) sync process with r = 5. For a given
partition P , in each sub-process, all the nodes hosting the
r replicas will randomly elect one node as the leader, but
different sub-processes must generate different leaders. The
leader sends one sync message to each of the other r − 1
nodes to check the statuses of P on them. When all the r
sub-processes finish, we say an object sync process (i.e., a
sync round) of the partition P is completed.

In addition, by examining the relevant source code, we
find the above approach is also adopted by other OpenStack
Swift-like systems, such as Riak S2 (the active anti-entropy
component [18]) and Cassandra (the anti-entropy node re-
pair component [19]).

4.2 Network Overhead Analysis
While we have observed the sync bottleneck problem from
our case study (§3), we hope to quantitatively under-
stand how expensive the current object sync protocol of
OpenStack Swift is in principle/theory. As §3 has clearly
illustrated that it is the enormous network overhead that
leads to the sync bottleneck problem, we focus on analyzing
the network overhead. It is straightforward to deduce from
Fig. 18 that for a given partition P , the total number of sync
messages exchanged during an entire object sync process
is 2C2

r = r(r − 1), assuming no message loss. Besides,
the size of each sync message depends on the size of the
hashes.pkl file (see Fig. 2), which contains h hash values.
Furthermore, as one storage node can host multiple (nh)
partitions, the number of exchanged hash values by each
node is around n

h ×
r(r−1)×h

r = n(r − 1) in a sync round.
Finally, taking the other involved network overhead (e.g.,
HTTP/TCP/IP packet headers for delivering the hash val-
ues) into account, we conclude that the per-node per-round

7

network overhead of OpenStack Swift is in Θ(n× r). Apart
from the hash values, OpenStack Swift needs to push the
content of corresponding objects to remote nodes if there is
any inconsistency.

5 LIGHTSYNC: DESIGN AND IMPLEMENTATION

Guided by the thorough understanding of the object sync
process of OpenStack Swift, we design a lightweight and
practical object sync protocol, called LightSync, to tackle the
sync bottleneck problem. LightSync not only significantly
reduces the sync overhead, but also is applicable to general
OpenStack Swift-like systems.

5.1 LightSync Overview
LightSync is designed to replace the original object sync
protocols in current OpenStack Swift-like systems. Besides
reducing the sync overhead, it can also ensure high reliabil-
ity and eventual consistency. LightSync derives the desired
properties from the following three novel building blocks.

First, LightSync employs the Hashing of Hashes (HoH)
mechanism (§5.2) to reduce the size of each sync message.
The basic idea of HoH is to aggregate all the h hash values
in each partition into a single but representative hash value
by using the Merkle tree data structure. HoH replaces the
original approach to generating the fingerprint file hashes.pkl
by generating a much smaller fingerprint file changed.pkl.

Second, LightSync leverages the Circular Hash Checking
(CHC) mechanism (§5.3) to reduce the number of sync
messages exchanged in each sync round. CHC organizes
all the replicas of a partition with a ring structure. During a
certain partition’s object sync process, CHC only sends the
aggregated hash value (by HoH) to the clockwise neighbor
in the ring (instead of the original all-to-all manner).

Third, LightSync utilizes the Failed Neighbor Handling
(FNH) mechanism (§5.4) to properly detect and handle
node failures with moderate overhead, so as to effectively
strengthen the robustness of LightSync.

Finally, §5.5 describes how we implement LightSync as
an open-source patch to OpenStack Swift.

5.2 Hashing of Hashes (HoH)
Preliminary: Merkle tree. A Merkle tree [30] is a tree
structure for organizing and representing the hash values
of multiple data objects. The leaves of the tree are the hash
values of data objects. Nodes further up in the tree are the
hash values of their respective children. For example, in
Fig. 19, Hash 0 is the hash value of concatenating Hash 0-
0 and Hash 0-1, i.e., Hash 0 = Hash(Hash 0-0 + Hash 0-1),
where “+” means concatenation. In practice, Merkle tree
is mainly used to reduce the amount of data transferred
during data checking. Suppose two storage nodes A and B
use a Merkle tree to check the data stored by each other.
First, A sends the root-layer hash value of its Merkle tree
to B. Then, B compares the received hash value with the
root-layer hash value of its local Merkle tree. If the two
values match, the checking process terminates; otherwise, A
should send the lower-layer hash values in its Merkle tree to
B for further checking. However, finding inconsistent data
objects in the above-mentioned way needs multiple rounds

Fig. 19: An example for the Merkle tree.

Fig. 20: Hashing of hashes for a data partition.

of data transmission. The cost of long round-trip time (RTT)
outweighs the benefits of reduced network traffic. Therefore,
LightSync discards the intermediate hash values but stores
only the root-layer hash values and the leaves of the Merkle
tree. Once the root-layer hash values do not match each
other, LightSync will directly compare the hash values in
the leaves of the Merkle tree.

Generation of the aggregated hash value. We now describe
how HoH generates the aggregated hash value that repre-
sents a given partition P . First, HoH extracts the hashes.pkl
file of P (i.e., the fingerprint of P). Then, HoH computes
the MD5 hash values of all the suffix hashes in P one by
one (as demonstrated in Fig. 20). This process constructs the
Merkle tree structure. Finally, HoH stores the aggregated
MD5 hash value, i.e., the root-layer hash value of the Merkle
tree, in a file named changed.pkl (also stored in the partition’s
directory). So far, when a storage node wants to send a sync
message (for a partition P) to another storage node, it only
needs to “envelop” a single hash value, i.e., the aggregated
hash value in changed.pkl, into each sync message.

Consistency checking. If an aggregated hash value of a
data partition is found inconsistent between two storage
nodes, the local node should first determine which suffix
directory is inconsistent and then which version of that
corresponding suffix directory is more up-to-date.

Firstly, the inconsistent suffix directory is sought out
by comparing the s leaf-layer hash values received with
the local ones within O(s) steps, where s is the number
of suffix directories in the corresponding data partition.
Once the inconsistent suffix directory is found, the local
node actively pushes the corresponding data chunks to the
remote node, which will later determine which version is
newer by checking timestamps recorded as file names of
data chunks. Finally, the stale data chunks will be deleted.

Compared with the original design of OpenStack Swift,
HoH uses a single but representative hash value to replace a

8

r1

r2

r3

r4

r5 r1

r2

r3

r4

r5 r1

r2

r3

r4

r5 r1

r2

r3

r4

r5 r1

r2

r3

r4

r5

Fig. 21: An example for a complete LightSync process. The five sub-processes run in parallel rather than in sequence.

0 10 20 30 40 50 60 70 80

Time (s)

0

2

4

6

8

10

12

14

N
u

m
b

e
r

o
f

E
x
c
e

p
ti
o

n
s =10ESL

= 60 secondsESI

Fig. 22: An exemplified procedure of
our failure detection mechanism.

r1

r2
r3
X r4

r5

r3
r4
r5
r1

r1

r2
r3
X r4

r5

r3
r4
r5
r1

Fig. 23: An example of how FNH
works.

Partition 3

r3

Partition 2

r1

Partition 1

r3

Partition 4

r4clockwise
neighbor

Sync Queue of r2 (Original)

Partition 2

r1

Partition 4

r4

Partition 3

r3

Partition 1

r3
clockwise
neighbor

Sorted Sync Queue of r2 (LightSync)

Head

Head

Fig. 24: An example for the sync
queue maintained by r2.

Algorithm 1: Circular Hash Checking
Input: A set RP containing all the replica nodes’ IDs

for a given data partition P ;
1 while RP 6= ∅ do
2 Randomly pick out a replica node’s ID from RP ;
3 rP ← the picked replica node’s ID;
4 Remove rP from RP ;
5 The replica node (with ID =) rP sends a sync

message to rP ’s clockwise neighbor;
6 if rP ’s version of P is different from the version held by

its clockwise neighbor then
7 rP pushes its hosted data of P at local version

to its clockwise neighbor;

large collection of hash values, thus effectively reducing the
size of each sync message by nearly h times.

5.3 Circular Hash Checking (CHC)

CHC is responsible for enabling different replicas of the
same partition to achieve consistency more efficiently.
Specifically, during a circular hash checking process, the
storage nodes hosting the r replicas of a given partition P
form a small logical ring, called the replica ring of P . This
small replica ring is easy to form as it already exists inside
the large object ring (refer to §2.3).

Suppose P has 5 replicas, and ri denotes the storage
node hosting the i-th replica for P . When a storage node
wants to check the consistency of P with the other replica
nodes, it only sends a sync message (generated by HoH)
to the successor node clockwise on the replica ring of P—
this successor replica node is referred to as its clockwise
neighbor. For example in Fig. 21, when r3 wants to check the
consistency of P , it only sends a sync message to r4 rather
than r1, r2, r4 and r5 (as in Fig. 18). After each replica node
finishes sending a sync message to its clockwise neighbor,
we say a CHC process (or a CHC sync round) is completed.
Formally, Algorithm 1 describes how CHC works.

TABLE 2: An example of the failure table maintained by r2.

Node ID nexception texception
r1 0 –
r3 10 5/5/2017 1:12:30 PM
r4 9 5/5/2017 1:12:29 PM
r5 0 5/5/2017 1:11:00 PM

5.4 Failed Neighbor Handling (FNH)
As illustrated in §3.6, node failures significantly degrade the
sync performance of OpenStack Swift. For LightSync, this
problem remains since neither HoH nor CHC could ever al-
leviate it (sometimes they can even aggravate the problem).
We therefore propose a mechanism called Failed Neighbor
Handling (abbreviated as FNH) to effectively address the
problem with moderate overhead. Specifically, our solution
consists of three successive procedures: failure detection
(§5.4.1), failure handling (§5.4.2) and failed node’s rejoining
(§5.4.3). We detail each of them as follows.

5.4.1 Failure Detection
In a distributed storage system like OpenStack Swift, the
failure of any node is a complicated phenomenon which
can hardly be accurately determined. On one hand, when a
node fails to send heartbeat messages in a heartbeat period
(referred to as an exception), we cannot simply determine
whether this node fails, because this exception might be
owing to a temporary network problem. In other words,
we should not determine a node’s failure in an aggressive
manner; otherwise, the overhead of failure handling would
be enormous and mostly unnecessary.

On the other hand, when a node has lost contact with
its neighbor(s) in a number of heartbeat periods, we have
to look these consecutive exceptions as a node failure and
then take efforts to handle the failure, rather than waiting
for the potential recovery to this node for infinite time. In
other words, we should not determine a node’s failure in
a conservative manner; otherwise, the working efficiency of
the system would be substantially impaired.

Guided by the above insights, we devise a practical fail-
ure detection procedure to reasonably determine a node’s

9

failure. First, we use a failure table for each storage node to
record the statistics of the other storage nodes’ exceptions,
as exemplified in Table 2. Each row of the failure table
corresponds to one of the other storage nodes and contains
two variables: nexception (i.e., the number of exceptions
that have occurred to that node) and texception (i.e., the
happening time of the last exception). When nexception

reaches a threshold error suppression limit (ESL), the
corresponding node is considered failed. Then, the current
node would stop syncing with the failed node for a specific
period of time error suppression interval (ESI). In our
implementation, ESL = 10 and ESI = 60 seconds; both
configurations are derived from OpenStack Swift statis-
tics [31]. After the ESI , nexception will be reset to 0. The
whole procedure is demonstrated in Fig. 22.

5.4.2 Failure Handling
The failure of a node would impair the clockwise propaga-
tion of latest data and state information along the replica
ring (constructed by CHC, refer to §5.3). In other words,
a failed node would make CHC inefficient or even inef-
fective, which would further undermine the whole object
sync process of LightSync. To this end, once a failed node is
detected, we leverage a simple yet practical mechanism to
handle the failure, which actively eliminates a failed node
from the current replica ring and reorganizes the healthy
nodes into a new replica ring. For example in Fig. 23, when
a healthy node r2 determines that its clockwise neighbor r3
has failed, it needs to skip r3 and connects to r3’s clockwise
neighbor r4 using its failure table. Likewise, if r4 has also
failed, r2 will skip both r3 and r4 and then connect to r5.
When the new replica ring is successfully formed, r2 needs
to send a notification message to all the other healthy nodes
(in the new replica ring) so that they can update their failure
tables into a consistent state.

5.4.3 Failed Nodes’ Rejoining
In practice, a failed node can be recovered in a certain
period of time, and then rejoin the system by merging into
its originally residential replica ring. A strawman solution
for a failed node’s rejoining process is: when an existing
node in the replica ring detects the recovery of the failed
node (now becoming a rejoining node), it will introduce the
rejoining node to all the other existing nodes. This process
can work in a reverse manner compared to failure handling.
Nevertheless, if there are data updates happening after
the failed node (temporarily) leaves the system and before
the failed node rejoins the system, the original rejoining
mechanism implemented by OpenStack Swift would incur
considerably longer delay and larger traffic overhead than
necessary. Specifically, once data inconsistency is detected,
the original rejoining mechanism lets each node push its
hosted data objects at their locally latest versions (which
might not be the globally latest ones) to the other node(s) in
the replica ring. Obviously, the network traffic caused by the
failed node’s pushing its obsolete data to the other node(s)
is unnecessary and introduces more delay.

In order to figure out how to reduce such a kind of
unnecessary data pushes, we first revisit the sync process
of OpenStack Swift. At first, a storage node adds its hosted
data partitions to a sync queue in a random order. During

a sync round, the current node extracts partitions from
the queue serially, generates their corresponding replica
rings (one for each partition , as described in §5.3), checks
their consistency with respective clockwise neighbors and
initiates data pushes if inconsistency is detected. The same
process is run by other storage nodes concurrently and
independently, so that some obsolete partitions in the local
sync queue will be updated by other storage nodes (i.e.,
inconsistency is eliminated) before the current node checks
their consistency.

Guided by the above insights, we optimize the original
rejoining mechanism of OpenStack Swift by dynamically
adjusting the order of partitions in the sync queue of
a healthy node. First, FNH synchronizes those partitions
whose replica rings use the rejoining nodes as the current
node’s clockwise neighbors. In this way, their corresponding
replicas on the rejoining nodes (which are likely to be
obsolete) can be updated earlier. For example in Fig. 24,
the current healthy node r2 maintains a sync queue of its
hosted data partitions and r3 is a rejoining node. Then,
FNH moves partitions whose replica rings use r3 as r2’s
clockwise neighbor to the head of the sync queue. Hence, the
corresponding replicas of the same partitions (i.e., Partition
1 and 3) on r3 are likely to be updated before r3 checks
their consistency. The same process will be done in parallel
by other healthy nodes (i.e., r1, r4, r5), which provides even
faster recovery of r3 with lower network overhead.

5.5 Implementation
We implement LightSync for OpenStack Swift (the Icehouse
version) in Python, without introducing any additional li-
brary. Specifically, we develop HoH + CHC + FNH by
adding, deleting, or modifying over 500 lines of Python
codes. We have published LightSync as an open-source
patch to benefit the community via the following link:
https://github.com/lightsync-swift/lightsync.

6 EVALUATION

In this section, we first analyze the theoretical network over-
head of LightSync in §6.1. Then, to evaluate the real-world
performance of LightSync, we conduct both lab-scale and
large-scale experiments on top of OpenStack Swift equipped
with LightSync. The lab-scale and large-scale experiment
results are presented in §6.2 and §6.3, respectively. The goal
of our evaluation is to explore how well LightSync improves
the object sync process of OpenStack Swift-like systems,
mainly in terms of sync delay and network overhead. Some
other performance metrics, including CPU usage, memory
usage are also examined during our evaluations.

6.1 Theoretical Analysis
Network overhead. By comparing Fig. 18 and Fig. 21, we
discover that for a given partition P , the total number of
sync messages exchanged during a sync round is reduced
from 2C2

r = r(r − 1) to r by CHC. Further, with respect to
each sync message, the number of its delivered hash values
is reduced from h to 1 by HoH. As one storage node can host
n
h partitions, the number of exchanged hash values by each
node is around n

h ×
r
r × 1 = n

h with LightSync. It is worth

10

 0

 10

 20

 30

 40

 50

 60

1K 10K 100K 1M 2M 3M 4M

S
y
n
c
 D

e
la

y
 (

m
in

u
te

)

Number of Objects (n)

Original, r = 5
Original, r = 4
Original, r = 3
Original, r = 2

LightSync, r = 5
LightSync, r = 4
LightSync, r = 3
LightSync, r = 2

Fig. 25: Sync delay of LightSync in a stable state in
lab-scale experiments. The sync delay with the original
design is also plotted for comparison.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1K 10K 100K 1M 2M 3M 4M

N
e
tw

o
rk

 O
v
e
rh

e
a
d
 (

M
B

)

Number of Objects (n)

Original, r = 5
Original, r = 4
Original, r = 3
Original, r = 2

LightSync, r = 5
LightSync, r = 4
LightSync, r = 3
LightSync, r = 2

Fig. 26: Network overhead of LightSync in a stable state
in lab-scale experiments. The network overhead with the
original design is also plotted for comparison.

 0

 5

 10

 15

 20

 25

 30

1K 10K 100K 1M 2M 3M 4M

C
P

U
 U

s
a
g
e
 (

%
)

Number of Objects (n)

r = 5
r = 4
r = 3
r = 2

Fig. 27: CPU usage of Light-
Sync in a stable state.

 0

 20

 40

 60

 80

 100

 120

 140

 160

1K 10K 100K 1M 2M 3M 4M

M
e
m

o
ry

 U
s
a
g
e
 (

M
B

)

Number of Objects (n)

r = 5
r = 4
r = 3
r = 2

Fig. 28: Memory usage of
LightSync in a stable state.

 0

 10

 20

 30

 40

 50

 60

1K 10K 100K 1M 2M 3M 4M

S
y
n
c
 D

e
la

y
 (

m
in

u
te

)

Number of Objects (n)

r = 5
r = 4
r = 3
r = 2

Fig. 29: Sync delay right af-
ter 10% object creations.

 0

 100

 200

 300

 400

 500

1K 10K 100K 1M 2M 3M 4M

N
e
tw

o
rk

 O
v
e
rh

e
a
d
 (

M
B

)

Number of Objects (n)

r = 5
r = 4
r = 3
r = 2

Fig. 30: Network overhead
after 10% object creations.

 0

 10

 20

 30

 40

 50

 60

1K 10K 100K 1M 2M 3M 4M

S
y
n
c
 D

e
la

y
 (

m
in

u
te

)

Number of Objects (n)

r = 5
r = 4
r = 3
r = 2

Fig. 31: Sync delay right af-
ter 10% object deletions.

 0

 100

 200

 300

 400

 500

1K 10K 100K 1M 2M 3M 4M

N
e
tw

o
rk

 O
v
e
rh

e
a
d
 (

M
B

)

Number of Objects (n)

r = 5
r = 4
r = 3
r = 2

Fig. 32: Network overhead
right after 10% object dele-
tions.

 0

 2

 4

 6

 8

 10

 12

 14

 16

1K 10K 100K 1M 2M 3M 4M

S
y
n
c
 D

e
la

y
 (

m
in

u
te

)

Number of Objects (n)

r = 5
r = 4
r = 3
r = 2

Fig. 33: Sync delay in the
presence of a node failure.

 0

 100

 200

 300

 400

 500

1K 10K 100K 1M 2M 3M 4M

N
e
tw

o
rk

 O
v
e
rh

e
a
d
 (

M
B

)

Number of Objects (n)

r = 5
r = 4
r = 3
r = 2

Fig. 34: Network overhead
in the presence of a node
failure.

mentioning that h dynamically changes with the system
scale and we have n

h = r×p
N , as described in §2.3. Finally,

taking the other involved network overhead into account,
we conclude that LightSync significantly reduces the per-
node per-round network overhead of OpenStack Swift from
Θ(n× r) to Θ(n

h).

Eventual Consistency guarantee. At each sync round,
replicas are updated by its anti-clockwise neighbor (refer
to §5.2). Let Ωi

t denote the replica’s timestamp of node i at
sync round t, then we have: Ωi

t+1 = max(Ω
(i−1)%r
t ,Ωi

t).
Applying this chain rule for multiple times, we have
Ωi

t+4 = max(Ω
(i−4)%r
t ,Ω

(i−3)%r
t ,Ω

(i−2)%r
t ,Ω

(i−1)%r
t ,Ωi

t)
Suppose there are five replicas configured. In the worst case,
if the updated version of data exists on only one of the five
replica nodes, the other four nodes can obtain the newest
version in no more than 1, 2, 3, 4 rounds, respectively. How-
ever, in our case where the quorum-based replica control
mechanism is enabled, a successful write requires that more
than half of replica nodes should have the updated version,
i.e., 3 if there are five replicas. On this condition, in no more
than 2 rounds (mostly 1 round is enough), all replica nodes

will have the updated version. Further experiments in §6.2
show that LightSync converges quickly.

6.2 Lab-scale Experiments
To comprehensively understand the performance of Light-
Sync, we still conduct experiments on our lab-scale
OpenStack Swift deployment (refer to §3.1 for details).
Sync delay and network overhead in a stable state. As in
Fig. 25, LightSync remarkably decreases the sync delay of
OpenStack Swift—the four curves of LightSync are almost
always below their counterparts of Original. Here “Origi-
nal” denotes the original object sync protocol. More impor-
tantly, it is validated that the sync delay with LightSync is
positively related to the number of partitions hosted by each
storage node (i.e., r×p

N). Owing to the notable power of CHC
and HoH in avoiding unnecessary sync messages, the sync
delay keeps stable (for a fixed r and N) when n ≥ 1M and p
reaches its maximum 262144. LightSync also effectively de-
creases the network overhead of OpenStack Swift, as shown
in Fig. 26. Note that the four curves of LightSync are below
their counterparts of Original, and the network overhead
with LightSync is basically consistent with the sync delay in

11

 0

 50

 100

 150

 200

1K 10K 100K 1M 2M 3M 4M

S
y
n
c
 D

e
la

y
 (

m
in

u
te

)

Number of Objects (n)

r = 5
r = 4
r = 3
r = 2

Fig. 35: Sync delay during a
failed node’s rejoining pro-
cess.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1K 10K 100K 1M 2M 3M 4M

N
e
tw

o
rk

 O
v
e
rh

e
a
d
 (

M
B

)

Number of Objects (n)

r = 5
r = 4
r = 3
r = 2

Fig. 36: Network overhead
in a failed node’s rejoining
process.

 0

 50

 100

 150

 200

 250

 300

1 2 3 4

S
y
n
c
 D

e
la

y
 (

m
in

u
te

)

Number of Sync Rounds

r = 5, n = 4M

Fig. 37: Sync delay in differ-
ent sync rounds during the
rejoining process.

 85

 90

 95

 100

 105

 110

0 1 2

C
o
n
s
is

te
n
t
S

u
ff
ix

 D
ir
e
c
to

ri
e
s
 (

%
)

Number of Sync Rounds

r = 5, n = 4M, 2 failed nodes
r = 5, n = 4M, 1 failed node

Fig. 38: Accuracy of CHC in
different sync rounds dur-
ing the rejoining process.

Fig. 25 in terms of variation trend. Quantitatively, LightSync
reduces the sync delay by 1.0 ∼ 4.09 (2.23 on average) times,
and the network overhead by 1.0 ∼ 7.26 (3.50 on average)
times. In particular, with regard to the largest configuration
(i.e., r = 5 and n = 4M), the sync delay is reduced from 58
to 14.18 minutes, and the network overhead is reduced from
3630 to 500 MB.

CPU and memory usages in a stable state. The CPU and
memory usages of LightSync (per storage server) in a stable
state are shown in Fig. 27 and Fig. 28. By comparing Fig. 27
with Fig. 5 and comparing Fig. 28 with Fig. 6, we observe
that the computation overhead of LightSync is comparable
to that of the original object sync protocol of OpenStack
Swift. Namely, although LightSync can significantly reduce
the sync delay and network overhead, it does not save on
computation resources.

Sync delay and network overhead in the presence of data
updates. Sync delay of LightSync right after 10% object
creations and deletions is presented in Fig. 29 and Fig. 31,
respectively. By comparing the two figures with Fig. 8 and
Fig. 10, we observe that LightSync greatly reduces the sync
delay of OpenStack Swift. For example, when r = 5 and
n = 4M , LightSync reduces the sync delay right after
10% object creations and deletions by around 27% and
35%, respectively. Accordingly, the network overhead of
LightSync right after 10% object creations and deletions is
shown in Fig. 30 and Fig. 32, respectively. By comparing the
two figures with Fig. 9 and Fig. 11, we find that LightSync
significantly reduces the network overhead of OpenStack
Swift. For example, when r = 5 and n = 4M , LightSync re-
duces the network overhead right after 10% object creations
and deletions by around 86% and 86.2%, respectively.

Sync delay and network overhead in the presence of a
node failure. When one of the five storage nodes fails
in the system, both the sync delay and network overhead
of LightSync are comparable to those in a stable state, as
indicated in Fig. 33 and Fig. 34. They consistently illustrate
the robustness of LightSync in the presence of a node
failure. On the contrary, the original object sync protocol of
OpenStack Swift does not function well in this situation (e.g.,
its sync delay reaches 220 hours when r = 5 and n = 4M).
When the failed node is recovered and then rejoins the
system, the sync delay and network overhead introduced
by the rejoining process are shown in Fig. 35 and Fig. 36,
respectively. By comparing the two figures with Fig. 14 and
Fig. 15, we find that the sync delay of LightSync is slightly
shorter than that of Original while the network overhead

is substantially reduced. For example, when r = 5 and
n = 4M , the sync delay of LightSync during a failed node’s
rejoining process is 205.89 minutes while that of Original is
230.31 minutes. However, the network overhead is greatly
reduced from 4811 MB to 1614 MB.
Convergence time of a failed node. We record sync delay
of a failed node in several sync rounds right after it rejoins
the system and find that LightSync also needs multiple sync
rounds to converge. However, each sync round takes less
time than that of Original and therefore a failed node can
get back to work sooner. For example in Fig. 37, the sync
delay of the second and third sync rounds is very close to
that in a stable state.
Accuracy of CHC. We define the accuracy of CHC as the
percentage of suffix directories in a storage node that are
consistent with the updates. we conduct experiments under
conditions where no more than half of the replica nodes fail.
As shown in Fig. 38, LightSync converges in no more than
two sync rounds (mostly a single sync round is enough).

6.3 VM-based Large-scale Experiments

To construct a large-scale experimental environment for the
performance evaluation of LightSync (as well as the original
design of OpenStack Swift), we launch 64 VMs on top of the
Aliyun.com ECS (Elastic Compute Service) platform. Each
VM is equipped with a 2-core Intel Xeon CPU@2.3 GHz, 4-
GB memory, and 600-GB disk storage. The operating system
of each VM is Ubuntu 14.04 LTS 64-bit. All these VMs are
connected by a local area network (LAN) or VLAN inside
the Aliyun.com ECS cloud.

In the large-scale deployment, we directly conduct our
experiment with the largest configuration r = 5 and
n = 4M , and the major performance results are listed in
TABLE 3. In a stable state, the sync delay is considerably
reduced by LightSync from 4.92 minutes to 1.19 minutes,
and the network overhead is substantially reduced from
1758 MB to 37 MB. Also, in the presence of data updates
and node failures, we observe obvious reductions in both
sync delay and network overhead brought by LightSync.
On the other hand, we notice that in most cases LightSync
incurs more CPU and memory usages, although both usages
are quite low and thus well affordable. To facilitate the
comparison of key performance in lab-scale and large-scale
experiments, we visualize them in Fig. 39, Fig. 40, Fig. 41
and Fig. 42. Surprisingly, we find that the sync performance
with many relatively weak VMs is considerably better than
that with 5 powerful physical servers. The reason can be

12

TABLE 3: Performance of large-scale experiments when r = 5 and n = 4M .

Experimental Scenario Sync Delay (minute) Network Overhead (MB) CPU (%) Memory (MB)

In a stable state Original: 4.92 Original: 1758 Original: 7.3 Original: 36.86
LightSync: 1.19 LightSync: 37 LightSync: 11.5 LightSync: 49.15

Right after 10% object creations Original: 96.20 Original: 1709 Original: 4.0 Original:33.8
LightSync: 68.95 LightSync: 38 LightSync: 6.1 LightSync: 49.1

Right after 10% object deletions Original: 90.2 Original: 1720 Original: 2.5 Original:33.8
LightSync: 76.53 LightSync: 40 LightSync: 3.1 LightSync: 49.1

In the presence of a node failure Original: 1680 (28 hours) Original: 1680 Original: 1 Original:41
LightSync: 2 LightSync: 34 LightSync: 10.4 LightSync: 41

During a failed node’s rejoining process Original: 47.62 Original: 2115 Original: 5.4 Original:41
LightSync: 30 LightSync: 153 LightSync: 9.3 LightSync: 41

Stable Creation Deletion Failure Recovery

S
y
n
c
 D

e
la

y
 (

m
in

u
te

)

Original Lab-Scale
LightSync Lab-Scale

58
77 81

220 hours

230

14

57 53

15

205

Fig. 39: Sync delay in lab-
scale experiments.

Stable Creation Deletion Failure Recovery

S
y
n
c
 D

e
la

y
 (

m
in

u
te

)

Original Large-Scale
LightSync Large-Scale

5

96 90

28 hours

47

1

68 76

2

30

Fig. 40: Sync delay in large-
scale experiments.

Stable Creation Deletion Failure Recovery

N
e
tw

o
rk

 O
v
e
rh

e
a
d
 (

M
B

)

Original Lab-Scale
LightSync Lab-Scale

3630 3630 3628

2206.33

4811

500 504 500 506

1614

Fig. 41: Network overhead
in lab-scale experiments.

Stable Creation Deletion Failure Recovery

N
e
tw

o
rk

 O
v
e
rh

e
a
d
 (

M
B

)

Original Large-Scale
LightSync Large-Scale

1758 1709 1720 1680

2115

37 38 40 34
153

Fig. 42: Network overhead
in large-scale experiments.

traced back to the composition of a data partition again
(similar to the reason in §3.2). Specifically, in the large-scale
deployment the number of partitions is p ≈ 262144. Com-
pared with the case of lab-scale deployment (when r = 5
and n = 4M), the same number (≈262144) of partitions
have to store much more (64/5 times) objects. Thus, the
size of each sync message is either enlarged (for the Original
object sync protocol) or unchanged (for LightSync), but the
number of sync messages exchanged per node (i.e., r×p

N)
definitely decreases.

6.4 Object Sync Protocols using Other Topologies

To conduct a proper and fair comparison between Light-
Sync and its counterparts, we first investigated existing
object sync protocols using other topologies (i.e., the Pri-
mary/Backup protocol [32] using the Star topology and the
Chain Replication protocol [33] using the Chain topology)
adopted by relevant distributed systems or storage systems
(e.g., Zookeeper [20], WheelFS [21], and Windows Azure
Storage [23]). Then, we re-implemented them in realistic
OpenStack Swift systems and compared them with our pro-
posed LightSync solution (using the Ring topology) in terms
of sync delay, network overhead, CPU usage, and memory
usage. The experiment results (Fig. 43, Fig. 44, Fig. 45 and
Fig. 46) show that LightSync essentially outperforms its
counterparts in terms of sync delay. Quantitatively, sync de-
lay of LightSync is obviously shorter by 2–8 times. Besides,
its CPU usage, memory usage and network overhead are
still affordable, though not always the most desirable.

7 RELATED WORK

In recent years, numerous cloud storage systems have been
designed and implemented with a variety of consistency
models and object sync protocols. For almost every imagin-
able combination of features, certain object-based or key-
value stores exist, and thus they occupy every point in

the space of consistency, reliability, availability, and perfor-
mance trade-offs. These stores include Amazon S3, Win-
dows Azure Storage [23], OpenStack Swift, Riak S2, Cas-
sandra, and so forth. In this paper, we focus on improving
the sync performance of achieving eventual consistency—
the most widely adopted consistency model at the moment,
based on a preliminary conference version [34].

Generally speaking, eventual consistency is a catch-all
phrase that covers any system where replicas may diverge
in short term as long as the divergence is eventually re-
paired [24]. In practice, systems that embrace eventual
consistency have their specific advantages and limitations.
Some systems aim to improve efficiency by waiving the
stable history properties, either by rolling back operations
and re-executing them in a different order at some of the
replicas [35], or by resorting to a last-writer-wins strategy
which often results in loss of concurrent updates [36]. Other
systems expose multiple values from divergent branches of
operation replicas either directly to the client [37] or to an
application-specific conflict resolution procedure [24].

Particularly, efforts have been made to improve the
working efficiency of OpenStack Swift’s object sync process,
e.g., by computing hash values of objects in real time and
deploying an agent to check the logs for PUT and DELETE
operations [38]. Compared with LightSync, they fail to
provide quantitative evaluation results in data-intensive de-
ployments. Besides, some other studies [39]–[44] reveal that
the node placement/organization strategy in object storage
services may lead to data availability bottlenecks, but they
do not dive deeper into the sync bottleneck problem.

8 CONCLUSION

OpenStack Swift-like cloud storage systems have been
widely used in recent years. In this paper, we study the ob-
ject sync protocol that is fundamental to their performance,
particularly the key parameters r (number of replicas for
each object) and n (number of objects hosted by each storage

13

 0

 20

 40

 60

 80

 100

 120

1K 10K 100K 1M 2M 3M 4M

S
y
n

c
 D

e
la

y
 (

m
in

u
te

)

Number of Objects (n)

Primary/Backup
Chain Replication

LightSync

Fig. 43: Sync delay of proto-
cols using different topolo-
gies.

 0

 200

 400

 600

 800

 1000

 1200

1K 10K 100K 1M 2M 3M 4M

N
e

tw
o

rk
 O

v
e

rh
e

a
d

 (
M

B
)

Number of Objects (n)

Primary/Backup
Chain Replication

LightSync

Fig. 44: Network overhead
of protocols using different
topologies.

 0

 5

 10

 15

 20

 25

 30

1K 10K 100K 1M 2M 3M 4M

C
P

U
 U

s
a

g
e

 (
%

)

Number of Objects (n)

Primary/Backup
Chain Replication

LightSync

Fig. 45: CPU usage of proto-
cols using different topolo-
gies.

 0

 20

 40

 60

 80

 100

 120

 140

 160

1K 10K 100K 1M 2M 3M 4M

M
e

m
o

ry
 U

s
a

g
e

 (
M

B
)

Number of Objects (n)

Primary/Backup
Chain Replication

LightSync

Fig. 46: Memory usage
of protocols using different
topologies.

node). Our measurement study reveals that the original
object sync protocol of OpenStack Swift is not well suited
to data-intensive scenarios. In particular, when r > 3 and
n � 1000, the object sync delay is unacceptably long
and the network overhead is unnecessarily high. This phe-
nomenon is called the sync bottleneck problem. In addition,
this problem is considerably aggravated in the presence
of data updates and node failures, and cannot be funda-
mentally solved by increasing the number of sync threads.
Guided by an in-depth investigation into the source code
of OpenStack Swift-like systems, we design and implement
a novel protocol, named LightSync, to practically solve the
sync bottleneck problem. Both theoretical analysis and real-
world experiments confirm the efficacy of LightSync.

ACKNOWLEDGMENTS

This work is supported by the High-Tech R&D Program
of China (“863–China Cloud” Major Program) under grant
2015AA01A201, and the NSFC under grants 61471217,
61432002, 61632020 and 61472337. Thierry Titcheu is sup-
ported by the AFR PhD Grant of the National Research
Fund, Luxembourg. Ennan Zhai is partly supported by the
NSF under grants CCF-1302327 and CCF-1715387.

REFERENCES

[1] N. Bonvin, T. G. Papaioannou, and K. Aberer, “A Self-organized,
Fault-tolerant and Scalable Replication Scheme for Cloud Stor-
age,” in Proc. of SoCC. ACM, 2010.

[2] I. Drago, M. Mellia, M. Munafò, A. Sperotto, R. Sadre, and
A. Pras, “Inside Dropbox: Understanding Personal Cloud Storage
Services,” in Proc. of IMC. ACM, 2012.

[3] I. Drago, E. Bocchi, M. Mellia, H. Slatman, and A. Pras, “Bench-
marking Personal Cloud Storage,” in Proc. of IMC. ACM, 2013.

[4] Z. Li, C. Wilson, Z. Jiang, Y. Liu, B. Zhao, C. Jin, Z.-L. Zhang, and
Y. Dai, “Efficient Batched Synchronization in Dropbox-like Cloud
Storage Services,” in Proc. of Middleware. ACM, 2013.

[5] Z. Li, Z.-L. Zhang, and Y. Dai, “Coarse-grained Cloud Synchro-
nization Mechanism Design May Lead to Severe Traffic Overuse,”
Journal of Tsinghua Science and Technology, vol. 18, no. 3, pp. 286–
297, 2013.

[6] Z. Li, C. Jin, T. Xu, C. Wilson, Y. Liu, L. Cheng, Y. Liu, Y. Dai, and
Z.-L. Zhang, “Towards Network-level Efficiency for Cloud Storage
Services,” in Proc. of IMC. ACM, 2014.

[7] Z. Li, X. Wang, N. Huang, M. A. Kaafar, Z. Li, J. Zhou, G. Xie,
and P. Steenkiste, “An Empirical Analysis of a Large-scale Mobile
Cloud Storage Service,” in Proc. of IMC. ACM, 2016.

[8] Q. Zhang, Z. Li, Z. Yang, S. Li, S. Li, Y. Guo, and Y. Dai, “DeltaCFS:
Boosting Delta Sync for Cloud Storage Services by Learning from
NFS,” in Proc. of ICDCS. IEEE, 2017.

[9] H. Xiao, Z. Li, E. Zhai, T. Xu, Y. Li, Y. Liu, Q. Zhang, and Y. Liu,
“Towards Web-based Delta Synchronization for Cloud Storage
Services,” in Proc. of FAST. USENIX, 2018.

[10] E. Jinlong, Y. Cui, P. Wang, Z. Li, and C. Zhang, “CoCloud:
Enabling Efficient Cross-Cloud File Collaboration based on In-
efficient Web APIs,” IEEE Transactions on Parallel and Distributed
Systems, vol. 29, no. 1, pp. 56–69, 2018.

[11] S. Gilbert and N. A. Lynch, “Brewer’s Conjecture and the Fea-
sibility of Consistent, Available, Partition-tolerant Web Services,”
SIGACT News, vol. 33, no. 2, pp. 51–59, 2002.

[12] “OpenStack Swift Tutorial SAIO - Swift All In One,” http://docs.
openstack.org/developer/swift/development saio.html.

[13] “OpenStack Storage Tutorial,” http://storageconference.us/2011/
Presentations/Tutorial/4.McKenty.pdf.

[14] “OpenStack Installation Guide for Ubuntu 14.04,” http://docs.
openstack.org/icehouse/install-guide/install/apt/content.

[15] “Storage Policies-SwiftStack Documentation,” https://www.
swiftstack.com/docs/admin/cluster management/policies.html.

[16] M. Zhong, K. Shen, and J. I. Seiferas, “Replication Degree Cus-
tomization for High Availability,” in Proc. of EuroSys. ACM, 2008.

[17] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong,
L. Barroso, C. Grimes, and S. Quinlan, “Availability in Globally
Distributed Storage Systems,” in Proc. of OSDI. USENIX, 2010.

[18] “The Active Anti-entropy Component of Riak,” http://docs.
basho.com/riak/latest/theory/concepts/aae.

[19] “The Anti-entropy Node Repair Component of Cassandra,”
http://docs.datastax.com/en/cassandra/2.1/cassandra/
operations/ops repair nodes c.html.

[20] F. J. Reed and Benjamin, ZooKeeper : Distributed Process Coordina-
tion. O’Reilly Media, Inc., 2013.

[21] J. Stribling, Y. Sovran, I. Zhang, X. Pretzer, J. Li, M. F. Kaashoek,
and R. Morris, “Flexible, Wide-Area Storage for Distributed Sys-
tems with WheelFS,” in Proc. of NSDI. USENIX, 2009.

[22] R. Guerraoui, D. Kostic, R. R. Levy, and V. Quema, “A High
Throughput Atomic Storage Algorithm,” in Proc. of ICDCS. IEEE,
2007.

[23] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. Mck-
elvie, Y. Xu, S. Srivastav, J. Wu, and H. Simitci, “Windows Azure
Storage: a Highly Available Cloud Storage Service with Strong
Consistency,” in Proc. of SOSP. ACM, 2011.

[24] D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spreitzer, and
C. Hauser, “Managing Update Conflicts in Bayou, a Weakly Con-
nected Replicated Storage System,” in Proc. of SOSP. ACM, 1995.

[25] D. K. Gifford, “Weighted Voting for Replicated Data,” in Proc. of
SOSP. ACM, 1979.

[26] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent Hashing and Random Trees: Distributed
Caching Protocols for Relieving Hot Spots on the World Wide
Web,” in Proc. of STOC. ACM, 1997.

[27] G. Chen and Z. Li, Peer-to-Peer Network: Structure, Application and
Design. Tsinghua University Press, 2007.

[28] “SwiftStack Benchmark Suite (ssbench) Project,” http://github.
com/swiftstack/ssbench.

[29] Y. Cheng, A. Gupta, and A. Butt, “An In-memory Object Caching
Framework with Adaptive Load Balancing,” in Proc. of EuroSys.
ACM, 2015.

[30] R. C. Merkle, “Protocols for Public Key Cryptosystems,” in Proc.
of S&P. IEEE, Apr. 1980.

[31] “Proxy Configuration,” https://docs.openstack.org/icehouse/
config-reference/content/proxy-server-configuration.html.

[32] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg, “Dis-
tributed Systems (2Nd Ed.).” ACM Press/Addison-Wesley Pub-
lishing Co., 1993, ch. The Primary-backup Approach, pp. 199–216.

[33] R. Van Renesse and F. B. Schneider, “Chain Replication for Sup-
porting High Throughput and Availability.” in Proc. of OSDI.
USENIX, 2004.

http://docs.openstack.org/developer/swift/development_saio.html
http://docs.openstack.org/developer/swift/development_saio.html
http://storageconference.us/2011/Presentations/Tutorial/4.McKenty.pdf
http://storageconference.us/2011/Presentations/Tutorial/4.McKenty.pdf
http://docs.openstack.org/icehouse/install-guide/install/apt/content
http://docs.openstack.org/icehouse/install-guide/install/apt/content
https://www.swiftstack.com/docs/admin/cluster_management/policies.html
https://www.swiftstack.com/docs/admin/cluster_management/policies.html
http://docs.basho.com/riak/latest/theory/concepts/aae
http://docs.basho.com/riak/latest/theory/concepts/aae
http://docs.datastax.com/en/cassandra/2.1/cassandra/operations/ops_repair_nodes_c.html
http://docs.datastax.com/en/cassandra/2.1/cassandra/operations/ops_repair_nodes_c.html
http://github.com/swiftstack/ssbench
http://github.com/swiftstack/ssbench
https://docs.openstack.org/icehouse/config-reference/content/proxy-server-configuration.html
https://docs.openstack.org/icehouse/config-reference/content/proxy-server-configuration.html

14

[34] T. T. Chekam, E. Zhai, Z. Li, Y. Cui, and K. Ren, “On the Syn-
chronization Bottleneck of OpenStack Swift-like Cloud Storage
Systems,” in Proc. of INFOCOM. IEEE, 2016.

[35] A. Singh, P. Fonseca, P. Kuznetsov, R. Rodrigues, and P. Maniatis,
“Zeno: Eventually Consistenct Byzantine-Fault Tolerance,” in Proc.
of NSDI. USENIX, 2009.

[36] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen,
“Don’t Settle for Eventual: Scalable Causal Consistency for Wide-
Area Storage with COPS,” in Proc. of SOSP. ACM, 2011.

[37] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin, and
M. Walfish, “Depot: Cloud Storage with Minimal Trust,” ACM
Transactions on Computer Systems, vol. 29, no. 4, p. 12, 2011.

[38] “OpenStack Swift Improved Object Replicator,” http://wiki.
openstack.org/wiki/Swift-Improved-Object-Replicator.

[39] A. Corradi, M. Fanelli, and L. Foschini, “VM Consolidation: A
Real Case based on OpenStack Cloud,” Future Generation Computer
Systems, vol. 32, pp. 118–127, 2014.

[40] E. Zhai, R. Chen, D. I. Wolinsky, and B. Ford, “Heading Off
Correlated Failures through Independence-as-a-Service,” in Proc.
of OSDI. USENIX, 2014.

[41] ——, “An Untold Story of Redundant Clouds: Making Your Ser-
vice Deployment Truly Reliable,” in Proc. of HotDep. ACM, 2013.

[42] Q. Zhang, S. Li, Z. Li, Y. Xing, Z. Yang, and Y. Dai, “CHARM:
A Cost-efficient Multi-cloud Data Hosting Scheme with High
Availability,” IEEE Transactions on Cloud Computing, vol. 3, no. 3,
pp. 372–386, 2015.

[43] Z. Lai, Y. Cui, M. Li, Z. Li, N. Dai, and Y. Chen, “TailCutter: Wisely
Cutting Tail Latency in Cloud CDN under Cost Constraints,” in
Proc. of INFOCOM. IEEE, 2016.

[44] G. Wu, F. Liu, H. Tang, K. Huang, Q. Zhang, Z. Li, B. Y. Zhao, and
H. Jin, “On the Performance of Cloud Storage Applications with
Global Measurement,” in Proc. of IWQoS. IEEE/ACM, 2016.

Mingkang Ruan is an M.Eng. student at the
School of Software, Tsinghua University, Beijing,
China. He received the B.Sc. degree in Soft-
ware Engineering from Sun Yat-sen University,
Guangzhou, China in 2014. His research ar-
eas mainly include cloud computing/storage, big
data analysis, and natural language processing.

Thierry Titcheu is a Ph.D. student at the Inter-
disciplinary Centre for Security, Reliability and
Trust, the University of Luxembourg. He received
the B.Sc. degree in Computer Science and Tech-
nology from the University of Science and Tech-
nology of China in 2013, and the M.Eng. degree
in Software Engineering from the School of Soft-
ware, Tsinghua University in 2015. His research
areas comprise cloud computing/storage, dis-
tributed systems, and so forth.

Ennan Zhai is currently an associate research
scientist at the Computer Science Department
of Yale University. He received the Ph.D. and
M.Phil. degrees from Yale University in 2015 and
2014. His research interests mainly include dis-
tributed system, applied cryptography, and soft-
ware verification.

Zhenhua Li is an assistant professor at the
School of Software, Tsinghua University. He re-
ceived the B.Sc. and M.Sc. degrees from Nan-
jing University in 2005 and 2008, and the Ph.D.
degree from Peking University in 2013, all in
computer science and technology. His research
areas cover cloud computing/storage/download,
big data analysis, content distribution, and mo-
bile Internet.

Yao Liu is an assistant professor at the Depart-
ment of Computer Science, Binghamton Univer-
sity. She received the B.S. degree in computer
science from Nanjing University and the Ph.D.
degree in computer science from George Ma-
son University. Her research areas include In-
ternet mobile streaming, multimedia computing,
Internet measurement and content delivery, and
cloud computing.

Jinlong E received the B.E. and M.Sc. degrees
in computer software from Nankai University,
Tianjin, China, in 2007 and 2011, respectively.
He is currently working towards the Ph.D. degree
in computer science and technology at Tsinghua
University. His current research interests include
cloud storage, content distribution, scheduling,
and mobile cloud computing.

Yong Cui is a professor at the Department of
Computer Science and Technology, Tsinghua
University. He received the B.Eng. and Ph.D. de-
grees both in Computer Science and Technology
from Tsinghua University, respectively in 1999
and 2004. He served or serves at the editorial
boards on IEEE TPDS, TCC, and Internet Com-
puting. His major research interests include mo-
bile cloud computing and network architecture.

Hong Xu is an assistant professor at the De-
partment of Computer Science, City University of
Hong Kong. He received the M.A.Sc. and Ph.D.
degrees from the Department of Electrical and
Computer Engineering, University of Toronto.
His research interests include data center net-
working, NFV, and cloud computing. He was the
recipient of an Early Career Scheme Grant from
Hong Kong Research Grants Council in 2014.

http://wiki.openstack.org/wiki/Swift-Improved-Object-Replicator
http://wiki.openstack.org/wiki/Swift-Improved-Object-Replicator

	Introduction
	Background
	Design Goals of OpenStack Swift
	OpenStack Swift Architecture
	Partition and Synchronization

	Case Study
	Experimental Setup
	Sync Delay black in a Stable State
	Network Overhead black in a Stable State
	CPU and Memory Usages in a Stable State
	Sync Performance in the Presence of Data Updates
	Sync Performance in the Presence of a Node Fault
	Using Multiple Sync Threads
	Summary: The Sync Bottleneck Problem

	Root Cause Analysis
	Object Sync Process in OpenStack Swift
	Network Overhead Analysis

	LightSync: Design and Implementation
	LightSync Overview
	Hashing of Hashes (HoH)
	Circular Hash Checking (CHC)
	black Failed Neighbor Handling (FNH)
	Failure Detection
	Failure Handling
	Failed Nodes' Rejoining

	Implementation

	Evaluation
	Theoretical Analysis
	Lab-scale Experiments
	VM-based Large-scale Experiments
	Object Sync Protocols using Other Topologies

	Related Work
	Conclusion
	References
	Biographies
	Mingkang Ruan
	Thierry Titcheu
	Ennan Zhai
	Zhenhua Li
	Yao Liu
	Jinlong E
	Yong Cui
	Hong Xu

