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ABSTRACT

Deep neural networks inherently have large representational
power for approximating complex target functions. However,
models based on rectified linear units can suffer reduction
in representation capacity due to dead units. Moreover, ap-
proximating very deep networks trained with dropout at test
time can be more inexact due to the several layers of non-
linearities. To address the aforementioned problems, we pro-
pose to learn the activation functions of hidden units for very
deep networks via maxout. However, maxout units increase
the model parameters, and therefore model may suffer from
overfitting; we alleviate this problem by employing elastic net
regularization. In this paper, we propose very deep networks
with maxout units and elastic net regularization and show that
the features learned are quite linearly separable. We perform
extensive experiments and reach state-of-the-art results on the
USPS and MNIST datasets. Particularly, we reach an error
rate of 2.19% on the USPS dataset, surpassing the human
performance error rate of 2.5% and all previously reported
results, including those that employed training data augmen-
tation. On the MNIST dataset, we reach an error rate of 0.36%
which is competitive with the state-of-the-art results.

Index Terms— Image classification, deep networks,
residual learning, neural networks

1. INTRODUCTION

Deep networks have become very useful for many computer
vision applications. Generally, deep learning relies on learn-
ing several levels of hierarchical representations for data; this
has been shown to encourage the disentanglement of factors
of variations in data [1]. In fact, at representation level, deep
neural networks have been shown to require fewer parame-
ters as against shallow models for learning some given target
functions [2]. In this work, for the sake of clarity, we con-
sider models with more than 10 hidden layers as very deep
networks. Some years back, neural network models of 3-5
hidden layers were considered deep [3][4]. However, many
works [5][2] have suggested the benefit of depth for learning
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highly varying functions. In recent times, neural network
models of 20-200 layers have been reported in some works
[6][7]1[8]; such models are now referred to as very deep mod-
els [8]. Training models with more than 15 hidden layers (i.e.
very deep networks) can result into difficulty in optimization
[7]. For example, [8] performed experiments to show that
even very deep networks trained with batch normalization
suffer optimization problems as the model depth grows; al-
beit, batch normalization is helpful when models have less
than 20 layers. In fact, going significantly deeper has not been
that successful until recently. In [6][7], training difficulty was
alleviated by employing network paths for which features
undergo no transformation over model layers and therefore
dilution. Interestingly, many works on very deep networks
[6][7] [9] [8] relied on rectified linear units (ReLLUs) for tack-
ling the problem of units saturation and vanishing gradients
in order to improve optimization.

Nevertheless, ReLUs can die out during learning, conse-
quently blocking error gradients and learning nothing [10].
As such, dead ReLUs impact the representation capacity of
very deep networks which rely on the backpropagation of
error gradients through several layers. In addition, approx-
imating model parameters at test time of very deep ReLUs
based networks trained with dropout can be quite inexact due
to several layers of nonlinearities [11]. Consequently, we pro-
pose to modify the learning of very deep networks such that
the model size truly reflects on representation capacity and
therefore improves performance. For the very deep networks
that we consider in this paper, we build on a previous work
[8] that employed residual learning with stochastic identity
shortcut connections for improving the implicit regularization
of very deep networks; the model proposed in the work was
referred to as a Stochastic Residual Network (S-ResNet). Our
contributions in this paper for improving very deep networks
trained with dropout are as follows:

1. Preserve the representation capacity of very deep net-
works due to dead ReLUs by learning the activation
functions of units via maxout [11]. Again, we leverage
maxout units to improve parameters approximation at
test time.

2. Learn features that are quite linearly separable such that



a linear SVM can successfully replace the fully con-
nected layers of the model.

3. Validate the proposed approach on experimental data
and demonstrate improved results in comparison to
[8]. Particularly, we surpass several state-of-the-art re-
sults on the USPS [12][13] and MNIST [11][7][14][15]
datasets.

The remainder of this paper is organized as follows. Section 2
gives the background on the very deep model that we build on
and the problem statement. In Section 3, we provide details
of the proposed approach. Section 4 reports our experiments.
Section 5 concludes the paper.

2. BACKGROUND AND PROBLEM STATEMENT

2.1. Background: Residual learning with stochastic input
shortcut connections

Residual learning has been used for training very deep net-
works [6], where identity shortcut connections are used for
bridging some specified blocks of layers; this allows the
learned transformations to stay close to the input data fea-
tures [16]. In [6], the output of layer [, H (sc)l is of the form

H(x)' = F'(H(z)'™ ") + H(z)'", (1

where H (z)!~1 is the output of layer /-1 feeding into a stack
with a specified number of hidden layers with output H (z)';
F' is the transformation learned at layer ;1 <I< L, H (:c)o
is the input data x, and L is the depth of the network.

In [8], a modified form of residual learning was proposed; the
constructed model was referred to as a Stochastic Residual
Network (S-ResNet); see Fig. 1. It employs additional iden-
tity shortcut connections for bridging the hidden layers with
input data features. Particularly, the additional shortcut con-
nections are stochastically removed during training to empha-
size stochasticity during optimization; that is, with such small
perturbations in the hidden layers, the model has a lower prob-
ability to converge to sharp minima that have been shown to
lead to poor model generalization [17]. As against the original
residual learning transformation in (1), the stochastic residual
learning transformation proposed in [8] is given as

Hz)' = F(H@)" Y)Y+ H@)!""'+Dxz, ()

where D € {0,1} and D ~ Bernoulli(p,) determines that x
(shortcut connection from input) is connected to the stack of
hidden layers [ with probability ps; that is, P(D = 1) = p;
and P(D = 0) = 1 —ps for 0 < ps < 1; and * defines
an operator that performs the shortcut connection, given the
value of D. The conventional dropout probability for hidden
units is denoted as py,.
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Fig. 1. Left: A hypothetical block of two hidden layers from
the S-ResNet. Right: The whole S-ResNet [8]

2.2. Problem statement

Very deep networks have large expressive power for repre-
senting complex and compositional target functions. How-
ever, very deep networks learned with ReL.Us can suffer re-
duction of representation capability as a result of dead ReLUs
that go into saturation and blocking error gradients for updat-
ing associated model parameters during training. As such,
these dead units fail to learn and therefore impact the learn-
ing capability of the model. This problem can be more severe
in very deep networks (i.e. over 20 layers) where layer units
much earlier in the model (i.e closer to the input) rely on the
back propagation of error gradients over several hidden layers
away. Furthermore, a deep network trained with dropout can
be seen as an implicit ensemble model with shared parame-
ters. At test time, model parameters are usually approximated
by scaling them [18]. In [11], such approximation was shown
to be more inexact for nonlinear networks. For very deep net-
works that compose ReLLUs and trained with dropout, implicit
model averaging is more significant and therefore the approx-
imation of model parameters at test time could be more inex-
act than in shallower networks. Consequently, the aforemen-
tioned problems can work together to hurt model performance
at test time.

3. PROPOSED: MAXOUT S-RESNET WITH
ELASTIC NET REGULARIZATION

In this section, we present the details of our proposal for ad-
dressing the problems mentioned in Section 2.2. Particularly,
our approach relies on learning maxout units, elastic net reg-
ularization and feature standardization as discussed below.

3.1. Learning units activation function via maxout

Conventional units in neural networks use ‘hand-crafted’ ac-
tivation functions such as the rectified linear function, log-
sigmoid function, tan-sigmoid, exponential linear function,
etc. Maxout is an approach proposed in [11], where units acti-



vation functions are learned via the combination of piecewise
linear functions. Moreover, [11] showed that maxout units
allow a better approximation at test time of weights learned
using the dropout technique [18], since model training with
dropout can be considered as some sort of ensemble model
that implicitly share model parameters. The output of a max-
out unit k at layer [, h(r)ﬁc, can be written as follows

h(z), = Jmax () 3)

where o(x)fC ; 1s the output of a linear regressor j at layer l
and c is the number of feature extractors or channels across
which we max pool.

3.2. Elastic Net Regularization (ENR)

Elastic Net Regulation (ENR) allows the explicit regular-
ization of neural network models by penalizing model pa-
rameters. The elastic net regularization can be seen as a
linear combination of L1-norm and L2-norm regularizations
[19]. While the L1-norm (or LASSO) regularization results
in strictly sparse solutions performing what can be seen as
feature selection, the L2-norm (weight decay) regularization
only encourages solutions with small values without indeed
setting them to zero. The L1-norm regularization has the
problem of discarding features when employed for correlated
features [19]; the ENR aims to overcome this shortcoming by
adding L2-norm to counteract the aforementioned problem
with L1-norm regularization. For training neural networks
with ENR, we can minimize the negative conditional log-
likelihood of data given the model parameters along with the
L1-norm and L2-norm penalties as follows

N
J(w) = —arg ngn Z log P(y™]z™; W) 4+ A |[W ||y
n=1

4)
where J(w) is the cost function, z € R? is the input data, y €
RF is the output, W € R** is the model parameter, 7 is the
index of training samples, A1 and A\ control the magnitude of
the L1-norm and the L2-norm penalties, respectively.

3.3. Feature standardization

Feature standardization (FS) (or Z-score normalization) in
machine learning has been shown to improve generalization
[20]. Features are rescaled to realize the characteristics of a
standard normal distribution; that is, centering data to have a
mean of zero and standard deviation of one. An explanation
for the impact of feature standardization is that all features are
transformed to the same scale such that features which vary
less are not dominated by features that vary more. Feature

Algorithm 1: ENR S-ResNet+FS+SVM

1. Set P, Pr, A1, A2, 17, o & N, using a validation set

2. Train S-ResNet via SGD+BN: feed data in mini-batches

3. If stopping condition for (2) is reached, discard the fully
connected layers and do (4), else do (2)

4. Save model parameters

5. Forward propagate input data through model

6. Standardize the features obtained from the model’s last layer
7. Train a linear SVM on the standardized features

standardization can be obtained by using

) (1) _ 7(9)
2@ = T2 5)
Var[z®]

where z(9) is an input data feature with index i, Z(") is the
mean and Var[z()] is the variance.

In this paper, we propose S-ResNet with maxout units for:
(1) preserving the representation capacity of the S-ResNet,
since ReLUs can die and learn nothing during training (2)
improving parameters approximation of dropout trained S-
ResNet at test time, since maxout units result in piecewise lin-
ear components for constructing units activation functions (3)
tackle model overfitting with ENR as a result of the increase
in model parameters introduced by the maxout units. Inter-
estingly, we show that the features learned by the modified
model using our training approach are very linearly separable
such that a linear support vector machine (SVM) can replace
the fully connected layers of the S-ResNet and achieve state-
of-the-art results. Finally, we are able to improve experiment
results by standardizing the features learned from the convo-
lution layers stage of the maxout S-ResNet for training the
linear SVM.

The training approach for the model that we propose in this
paper is given as algorithm 1, where Ps, Py, A1, A2, 1, &
and N, are the dropout rate for the identity stochastic input
shortcut connections, drop rate of hidden units, weight for
L1-norm penalty, weight for L2-norm penalty, learning rate,
momentum rate and maximum number of training epochs,
respectively; SGD is stochastic gradient descent and BN is
batch normalization. The aforementioned parameters are usu-
ally chosen using a validation set.

4. EXPERIMENTS

For the purpose of validating the proposed model, we use
the popular USPS! and MNIST? datasets; these datasets are
well known for benchmarking classification algorithms. The
USPS dataset contains handwritten digits (0-9); for training
and testing, there are 7,291 and 2,007 samples, respectively.
The MNIST dataset contains handwritten digits (0-9); for

Thttp://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
2http://yann.lecun.com/exdb/mnist/



training and testing, there are 60,000 and 10,000 samples, re-
spectively. The last 1,000 and 5,000 samples in the USPS and
MNIST datasets are used for obtaining the hyper-parameters
for the respective models. Since, we aim to demonstrate im-
proved results in comparison to the earlier work [8], we train
models of similar architectures in this paper. Particularly, we
train 54-hidden layer maxout S-ResNets on the USPS and
MNIST datasets using algorithm 1 presented in Section 3.
The training details for both datasets are given below.

For the USPS dataset, we use P, = 0.8, P, = 0.7, \; =
107°, XAy = 1073, 7 = 0.1, @ = 0.9 and N, = 100. The
learning rate was annealed from its initial value to the final
value of 5 x 10~° for the last 20 epochs. All convolutions
in the maxout S-ResNet are of size 3 x 3 with zero padding;
we applied max-pooling of size 2 x 2 twice. The model has
169K trainable parameters.

For the MNIST dataset, we use P, = 0.8, P, = 0.8,
A =105 X =10"% 79 =0.1,a = 0.9 and N, = 550; the
learning rate was annealed from its initial value to the final

Models Test

error
Invariant vector supports [21] 3.00
Neural network (LeNet) [12] 4.20
Neural network + boosting + data aug. [12] 2.60
Manifold constraint transfer (MCT) [22] 2.99
Evolutionary compact embedding (ECE) [23] 3.90
Polynomial kernel SVM [24] 3.20
Tangent distance + data aug. [13] 2.50
Human performance [13] 2.50
Nearest neighbour [25] 5.60
Residual network (ResNet) - 54 hidden layers [8] 3.34
Baseline: 54 hidden layers S-ResNet [8] 2.69
Ours: 54 layers Maxout S-ResNet+ENR+SVM 2.34

Ours: 54 layers Maxout S-ResNet+ENR+FS+SVM  2.19

Table 1. Error rate (%) on the USPS dataset

Models Test
error
Polynomial kernel SVM [24] 0.56
Highway net-32 [7] 0.45
Maxout net [11] 0.45
Deep fried convet [26] 0.71
PCANet [27] 0.62
Network in network (NIN) [14] 0.47
Deeply supervised Network (DSN) [28] 0.39
ConvNet + L-BFGS [29] 0.69
Neural network ensemble + DropConnect [4] 0.52
Neural network ensemble + DropConnect + data aug. [4] 0.21
Stochastic pooling [15] 0.47
Residual network (Resnet) - 54 hidden layers [8] 0.76
Baseline: 54 hidden layers S-ResNet [8] 0.52
Ours: 54 layers Maxout S-ResNet+ENR+SVM 0.40

Ours: 54 layers Maxout S-ResNet+ENR+FS+SVM 0.36

Table 2. Error rate (%) on the MNIST dataset
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Fig. 2. Confusion matrix (a) USPS dataset (b) MNIST dataset

value of 5 x 1075 for the last 270 epochs. All convolutions
in the S-ResNet are of size 5 x 5 with zero padding; we ap-
plied max-pooling of size 2 x 2 twice. The model has 527K
trainable parameters

Table 1 shows that our proposed maxout S-ResNet models
trained on the USPS dataset outperform all models reported
in earlier works. More interesting is that our proposed model
outperforms the human classification error of 2.5% [13] and
works that employed data augmentation (i.e. abbreviated as
“aug.”) for training. Furthermore, we observe that without
feature standardization, the obtained test error for the maxout
S-ResNet is 2.34%; this error rate is lower than the base-
line result of 2.69% [8] and several other results from earlier
works; see table 1. Table 2 shows the results for the trained
maxout S-ResNets on the MNIST dataset, along with the
state-of-the-art results. We note that [4] obtained an error rate
of 0.21% with data augmentation. Conversely, our proposed
models without data augmentation give very competitive re-
sults. Also, we observe that without feature standardization,
the obtained test error for the maxout S-ResNet is 0.4%.
Again, this error rate is lower than the baseline model result
of 0.52% and several results from earlier works; see table
2. The confusion matrices of the maxout S-ResNet models
reported in Table 1 and Table 2 are shown in Fig. 2(a) and
Fig. 2(b) for the USPS and MNIST datasets, respectively.

5. CONCLUSION

Very deep networks have large representational capacity;
hence, they require appropriate regularization to alleviate
overfitting the training data. We build on an earlier work
that employed residual learning with stochastic input short-
cut connections for improving generalization of very deep
networks (i.e. S-ResNet). In this paper, we propose to learn
the activation function of units in the S-ResNet via maxout
units since ReLU units can die out in training and impact
representation capacity of very deep networks. We employ
ENR for further regularization of the S-ResNet model due to
increased parameterization based on the maxout units. Our
experiments show that we outperform all earlier reported re-
sults, including human performance on the USPS dataset. On
the MNIST dataset, we obtain very competitive results.
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