Noname manuscript No.
(will be inserted by the editor)

Effective Fault Localization of Automotive Simulink Models:
Achieving the Trade-Off between Test Oracle Effort and
Fault Localization Accuracy

Bing Liu - Shiva Nejati - Lucia - Lionel C.
Briand

Received: date / Accepted: date

Abstract One promising way to improve the accuracy of fault localization based on
statistical debugging is to increase diversity among test cases in the underlying test
suite. In many practical situations, adding test cases is not a cost-free option because
test oracles are developed manually or running test cases is expensive. Hence, we
require to have test suites that are both diverse and small to improve debugging. In
this paper, we focus on improving fault localization of Simulink models by generating
test cases. We identify four test objectives that aim to increase test suite diversity. We
use four objectives in a search-based algorithm to generate diversified but small test
suites. To further minimize test suite sizes, we develop a prediction model to stop
test generation when adding test cases is unlikely to improve fault localization. We
evaluate our approach using three industrial subjects. Our results show (1) expanding
test suites used for fault localization using any of our four test objectives, even when
the expansion is small, can significantly improve the accuracy of fault localization,
(2) varying test objectives used to generate the initial test suites for fault localization
does not have a significant impact on the fault localization results obtained based on
those test suites, and (3) we identify an optimal configuration for prediction models
to help stop test generation when it is unlikely to be beneficial. We further show that
our optimal prediction model is able to maintain almost the same fault localization
accuracy while reducing the average number of newly generated test cases by more
than half.

Keywords Fault localization - Simulink models - search-based testing - test suite
diversity - supervised learning

1 Introduction

The embedded software industry increasingly relies on model-based development
methods to develop software components [69]. These components are largely de-

B. Liu, S. Nejati, Lucia, L. Briand
SnT Centre, University of Luxembourg, Luxembourg
E-mail: liu@svv.lu, nejati @svv.lu, lucia.lucia@uni.lu, briand @svv.lu

2 Bing Liu et al.

veloped in the Matlab/Simulink language [50]. An important reason for increasing
adoption of Simulink in embedded domain is that Simulink models are executable
and facilitate model testing or simulation, (i.e., design time testing based on sys-
tem models) [15, 79]. To be able to identify early design errors through Simulink
model testing, engineers require effective debugging and fault localization strategies
for Simulink models.

Statistical debugging (also known as statistical fault localization) is a lightweight
and well-studied debugging technique [1, 34, 39, 44, 62, 64,75, 76]. Statistical de-
bugging localizes faults by ranking program elements based on their suspiciousness
scores. These scores capture faultiness likelihood for each element and are computed
based on statistical formulas applied to sequences of executed program elements (i.e.,
spectra) obtained from testing. Developers use such ranked program elements to lo-
calize faults in their code.

In our previous work [42], we extended statistical debugging to Simulink models
and evaluated the effectiveness of statistical debugging to localize faults in Simulink
models. Our approach builds on a combination of statistical debugging and dynamic
slicing of Simulink models. We showed that the accuracy of our approach, when
applied to Simulink models from the automotive industry, is comparable to the ac-
curacy of statistical debugging applied to source code [42]. We further extended our
approach to handle fault localization for Simulink models with multiple faults [41].

Since statistical debugging is essentially heuristic, despite various research ad-
vancements, it still remains largely unpredictable [17]. In practice, it is likely that
several elements have the same suspiciousness score as that of the faulty one, and
hence, be assigned the same rank. Engineers will then need to inspect all the ele-
ments in the same rank group to identify the faulty element. Given the way statistical
debugging works, if every test case in the test suite used for debugging executes ei-
ther both or neither of a pair of elements, then those elements will have the same
suspiciousness scores (i.e., they will be put in the same rank group). One promising
strategy to improve precision of statistical debugging is to use an existing ranking to
generate additional test cases that help refine the ranking by reducing the size of rank
groups in the ranking [8,11,17,63].

In situations where test oracles are developed manually or when running test
cases is expensive, adding test cases is not a zero-cost activity. Therefore, an impor-
tant question, which is less studied in the literature, is how we can refine statistical
rankings by generating a small number of additional test cases? In this paper, we
aim to answer this question for fault localization of Simulink models. While our ap-
proach is not particularly tied to any modeling or programming language, we apply
our work to Simulink since, in most domains (e.g., automotive), it is expensive to ex-
ecute Simulink models and to characterize their expected behaviour [54, 79]. This is
because Simulink models include computationally expensive physical models [12],
and their outputs are complex continuous signals [54]. We identify four alternative
test objectives that aim to generate test cases exercising diverse parts of the underly-
ing code and adapt these objectives to Simulink models [5, 11, 17,32]. We use these
objectives to develop a search-based test generation algorithm, which builds on the
whole test suite generation algorithm [23], to extend an existing test suite with a small
number of test cases. In our work, we opt for single-state search algorithms as op-

Effective Fault Localization of Automotive Simulink Models 3

posed to population-based ones. This is because population-based search algorithms
have to execute a set of candidate test cases (a population) at each iteration [46].
Hence, they are less likely to scale when running test cases is expensive.

Given the heuristic nature of statistical debugging, adding test cases may not nec-
essarily improve fault localization accuracy. Hence, we use the following two-step
strategy to stop test generation when it is unlikely to be beneficial: First, we identify
Simulink super blocks through static analysis of Simulink models. Given a Simulink
model M, a super block is a set B of blocks of M such that any test case tc executes
either all or none of the blocks in B. That is, there is no test case that executes a
subset (and not all) of the blocks in a super block. Statistical debugging, by defini-
tion, always ranks the blocks inside a super block together in the same rank group.
Thus, when elements in a rank group are all from a super block, the rank group
cannot be further refined through statistical debugging, and hence, test generation is
not beneficial. Second, we develop a prediction model based on supervised learning
techniques, specifically decision trees [14] using historical data obtained from pre-
vious applications of statistical debugging. Our prediction model effectively learns
rules that relate improvements in fault localization accuracies to changes in statistical
rankings obtained before and after adding test cases. Having these rules and having
a pair of statistical rankings from before and after adding some test cases, we can
predict whether test generation should be stopped or continued. Our Contributions
include:

- We develop a search-based testing technique for Simulink models that uses the
existing alternative test objectives [5, 11, 17, 32] to generate small and diverse test
suites that can help improve fault localization accuracy.

- We develop a strategy to stop test generation when test generation is unlikely to
improve fault localization. Our strategy builds on static analysis of Simulink models
and prediction models built based on supervised learning.

- We have evaluated our approach using three industrial subjects. Our experi-
ments show that: (i) The four alternative test objectives are almost equally capable
of improving the accuracy of fault localization for Simulink models and with small
test suite sizes, and they are able to produce an accuracy improvement that is signif-
icantly higher than the improvement obtained by random test generation (baseline).
(ii) Varying test generation techniques used to build a (small) initial test suite for
fault localization does not have a significant impact on the fault localization results.
In particular, we experimented with three test generation techniques (i.e., adaptive
random, coverage-based and output diversity) to build test suites to generate initial
statistical rankings based on which the initial test suites can be expanded. Our ex-
periments show that the fault localization accuracy results corresponding to these
three techniques were almost identical. (iii) Our strategy based on static analysis and
supervised learning is able to stop generating test cases that are not beneficial for
fault localization. Specifically, we configured an optimal prediction model by exper-
imenting with different input features for supervised learning and different threshold
values for labeling the training data. Our results show that using our optimal predic-
tion model, on average, by generating only 11 test cases, we are able to obtain an
accuracy improvement close to that obtained by 25 test cases when our strategy to
stop test generation is not used.

4 Bing Liu et al.

This paper extends a previous conference paper [43] published at the 24th IEEE
International Conference on Software Analysis, Evolution and Reengineering (SANER
2017). This paper offers major extensions over our previous paper in the following
areas: (1) We consider a new test objective, output diversity [53], and study its effec-
tiveness for fault localization. We further compare output diversity with the three test
objectives (i.e., coverage dissimilarity, coverage density and number of dynamic basic
blocks) discussed in our previous paper [43]. Our results do not indicate a significant
difference in fault localization accuracy results obtained based on output diversity
compared to the accuracy results obtained based on the test objectives discussed in
our previous work. (2) We evaluate the impact of varying test generation techniques
used for building initial test suites on fault localization accuracy. Our experiments
do not show any significant differences among fault localization accuracies obtained
based on different initial test suites generated using different test generation tech-
niques. (3) To build prediction models, we propose a new feature, RankCorrelation,
defined over statistical rankings. We consider seven different feature combinations
consisting of RankCorrelation and the three features (i.e., Round, SetDistance, Or-
deringDistance) discussed in our previous paper [43]. Among these seven feature
combinations, the best performing combination is the one consisting of Round, Set-
Distance and OrderingDistance. (4) We study the impact of changing the threshold
value used to label training data for prediction models on the trade-off between fault
localization accuracy and the number of new test cases. Based on our results, we
provide recommended threshold values that lead to high fault localization accuracies
obtained based on a small number of new test cases, hence requiring low effort to
develop new test oracles. (5) We present the tool we have implemented to support
different parts of our approach. (6) Finally, compared to our previous paper, we have
expanded the related work and threats to validity discussions.

This paper is organized as follows: In Section 2, we provide some background
on Simulink models and fix our notation. In Section 3, we present our approach for
improving fault localization in Simulink models by generating new test cases. In
Section 4, we evaluate our work and discuss our experiment results. In Section 5, we
briefly introduce the tool support for our approach. In Section 6, we discuss the main
threats to validity of our experiments. We then compare our work with the related
work in Section 7. We conclude the paper and discuss our future work in Section 8.

2 Background and Notation

In this section, we provide some background and fix our formal notation.

Simulink model. Fig. 1 shows an example of a Simulink model. This model takes
five input signals and produces two output signals. It contains 21 Simulink (atomic)
blocks. Simulink blocks are connected via lines that indicate data flow connections.
Formally, a Simulink model is a tuple (Nodes, Inputs, Outputs, Links) where Nodes
is a set of Simulink blocks, Inputs is a set of input ports, Outputs is a set of output
ports, and Links C (Nodes x Nodes) U (Inputs x Nodes) U (Nodes x Outputs) is
a set of links between the blocks, the input ports and the blocks, and the blocks and
the output ports.

Effective Fault Localization of Automotive Simulink Models 5

1-DT(u)
e ‘
gp
NMOT
BN
Seg 1-DT(u) DecrPress—p»| 2o
O— X} e
Clutch adjPress PressRatioSpd —
T
e »| X ; o~
>
IncrPress| ‘_' >0 —>®
@ > > pOut
Bypass -
e m FlaplsClosed SC_Active
FlapPosThreshold
«s o) | [
pin m pA;just B‘) { TScaler
Rati
pComp -273 pRatio PLGOKUD 1—\
(5 } oc » + — >100 @
Tin " T ok o CalcT TOut
- IncrT

Fig. 1 A Simulink model example where pRatio is faulty.

Test Input. Engineers execute (simulate) Simulink models by providing input sig-
nals, i.e., functions over time. The simulation length is chosen to be large enough
to let the output signals stabilize. In theory, input signals can have any shape. In the
automotive domain, however, engineers mostly test Simulink models using constant
input signals or step functions (i.e., sequences of input signals). This is because de-
veloping test oracles and predicting expected outputs for arbitrary input signals is
complex and sometimes infeasible. In this paper, we consider constant input signals
only because the subject models used in our evaluation (Section 4) are physical plant
models. According to our domain experts, constant input signals are typically suffi-
cient for testing such models. Figure 2(a) shows an input signal example applied to
the input pIn.

a) input b) output
4 (3)inp ‘ 100.P) outp
80
c 5
— 980 o660
o =
40
30
979 20 :
103 102 _ 10" 0% 10" 10% 102107 100 10!
Time(s) Time(s)

Fig. 2 Example of an input (a) and an output (b) signal.

Test Output. Each test case execution (simulation) of a Simulink model results in an
individual output signal for each output port of that model. Engineers evaluate each
output signal independently. To determine whether an output passes or fails a test
case, engineers check the value at which the output signal stabilizes (if it stabilizes).
For example, Figure 2(b) shows an example output signal of TOut. As shown in the
figure, the output signal stabilizes after 1 sec of simulation. The output values are the

6 Bing Liu et al.

final (stabilized) values of each output signal collected at the end of simulation (e.g.,
30 for the signal shown in Figure 2(b)).

Simulink slicing and Fault Localization. In our previous work [42], we have shown
how statistical debugging can be extended and adapted to Simulink models. Here,
we briefly summarize our previous work and present some basic concepts required to
defining Statistical debugging for Simulink models. Note that all these concepts have
been previously introduced in detail in our previous extended journal article [42]. We
further note that, due to a limitation of our slicing approach [42], our fault localization
approach is applicable to Simulink models that do not contain any Stateflow (i.e.,
state machine). This limitation remains valid in our current paper, and hence, we use
Simulink models in our evaluation that do not include any Stateflows.

Statistical debugging utilizes an abstraction of program behavior, also known
as spectra, (e.g., sequences of executed statements) obtained from testing. Since
Simulink models have multiple outputs, we relate each individual Simulink model
spectrum to a test case and an output. We refer to each Simulink model spectrum
as a test execution slice. A test execution slice is a set of (atomic) blocks that were
executed by a test case to generate each output [42].

Let TS be a test suite. Given each test case t¢ € TS and each output o €
Outputs, we refer to the set of Simulink blocks executed by tc to compute o as a
test execution slice and denote it by tes;. . Formally, we define tes;. , as follows:

tesic,o = {n | n € static_slice(o) A tc executes n for o}

where static_slice(0) C Nodes is the static backward slice of output o and is equal to
the set of all nodes in Nodes that can reach output o via data or control dependencies.
We denote the set of all test execution slices obtained by a test suite 7°S by TES rg.
In [42], we provided a detailed discussion on how the static backward slices (i.e.,
static_slice(0)) and test execution slices (i.e., tesy. ,) can be computed for Simulink
models.

For example, suppose we seed a fault into the model example in Fig. 1. Specifi-
cally, we change the constant value used by the gain block (pRatio) from 0.65 to
0.5, i.e., the input of pRat io is multiplied by 0.5 instead of 0.65. Table 1 shows the
list of blocks in this model and eight test execution slices obtained from running four
test cases (i.e., tcy to tc;) on this model. In this example, each test case generates two
execution slices (one for each model output). We specify the blocks that are included
in each test execution slice using a v'. The last row of Table 1 shows whether each
individual test execution slice passes (P) or fails (F).

After obtaining the test execution slices, we use a well-known statistical ranking
formula, i.e., Tarantula [33,34], to rank the Simulink blocks. Note that our compar-
ison [42] of alternative statistical formulas applied to Simulink models revealed no
significant difference among these formulas and Tarantula. However, we note that our
experiments, both in this paper and in our prior work [42], were performed under the
single fault assumption (i.e., none of the faulty models used in our experiments con-
tained more than one fault). If we use models with multiple faults in our experiments,
other statistical ranking formulas such as Ochiai [1] might perform better than Taran-
tula. A thorough comparison of the performance of statistical formulas when applied
to Simulink models with multiple faults requires further investigations and is left for

Effective Fault Localization of Automotive Simulink Models 7

Table 1 Test execution slices and ranking results for Simulink model in Fig. 1. * denotes the faulty block.

Block Name 2] to ! ¢ Score Rank
pOut| TOut| pOut| TOut| pOut| TOut| pOut| TOut (Min-Max)

SC_Active v v v v 0 -
FlaplsClosed v v v v 0 -
FlapPosThreshold | v v v v 0 -
LimitP v v 0 -
Seg v v 0 -
adjPress v v 0 -
Lookup v v 0 -
DecrPress v 0 -
pCons v 0 -
PressRatioSpd v 0 -
IncrPress NaN -
pGain NaN -
pRatio* v v v v 0.7 1-9
pLookup v v v v 0.7 1-9
pComp v v v v 0.7 1-9
pAdjust v v v v 0.7 1-9
CalcT v v v v 0.7 1-9
Tscaler v v v v 0.7 1-9
IncrT v v v v 0.7 1-9
T_C2K v v v v 0.7 1-9
0C v v v v 0.7 1-9
Pass(P)/Fail(F) P F P P P P P P

future work. Finally, we note that although we have used Tarantula in our experi-
ments, our approach is not tied to any specific statistical formula and our experiments
are not focusing on comparing such formulas.

Let b be a model block, and let passed(b) and failed(b), respectively, be the
number of passing and failing execution slices that execute b. Let totalpassed and
totalfailed represent the total number of passing and failing execution slices, respec-
tively. Below is the Tarantula formula for computing the suspiciousness score of b:

failed(b)

_ totalfailed
SCOTe(b) = Failed(b) , passed(b)
totalfailed T Totalpassed

Having computed the scores, we now rank the blocks based on these scores. The
ranking is done by putting the blocks with the same suspiciousness score in the same
rank group. For each rank group, we assign a “min rank” and a “max rank”. The
min (respectively, max) rank indicates the least (respectively, the greatest) numbers
of blocks that need to be inspected if the faulty block happens to be in this group.
For example, Table 1 shows the scores and the rank groups for our example in Fig. 1.
Based on this table, engineers may need to inspect at least one block and at most nine
blocks in order to locate the faulty block pRatio.

3 Test Generation for Fault Localization

In this section, we present our approach to improve statistical debugging for Simulink
by generating a small number of test cases. Our test generation aims to improve sta-
tistical ranking results by maximizing diversity among test cases. An overview of
our approach is illustrated by the algorithm in Fig. 3. As the algorithm shows, our ap-
proach uses two subroutines TESTGENERATION and STOPTESTGENERATION to im-
prove the standard fault localization based on statistical debugging

8 Bing Liu et al.

SIMULINKFAULTLOCALIZATION()
Input: - T'S: Aninitial test suite
- M : A Simulink model
- round: The number of test generation rounds
- k: The number of new test cases per round
Output: rankList: A statistical debugging ranking

1. rankList, TES s < STATISTICALDEBUGGING (M, TS)

2. initialList < rankList

3. forr <« 0,1,...,round — 1do

4 if STOPTESTGENERATION(round, M, initialList, rankList) then
5. break for-Loop

6. newTS < TESTGENERATION(TES 1, M, k)

7 TS + TS UnewTS

8 rankList, TES rs < STATISTICALDEBUGGING (M, T'S)

9. end

10. return rankList

Fig. 3 Overview of our Simulink fault localization approach.

(STATISTICALDEBUGGING). Engineers start with an initial test suite 7S to local-
ize faults in Simulink models (Lines 1-2). Since STATISTICALDEBUGGING requires
pass/fail information about individual test cases, engineers are expected to have de-
veloped test oracles for 7'S. Our approach then uses subroutine STOPTESTGENER-
ATION to determine whether adding more test cases to 7S can improve the exist-
ing ranking (Line 4). If so, then our approach generates a number of new test cases
newT'S using the TESTGENERATION subroutine (Line 6). The number of generated
test cases (i.e., k) is determined by engineers. The new test cases are then passed to
the standard statistical debugging to generate a new statistical ranking. Note that this
requires engineers to develop test oracle information for the new test cases (i.e., test
cases in newTS). The iterative process continues until a number of test generation
rounds as specified by the input round variable are performed, or the STOPTEST-
GENERATION subroutine decides to stop the test generation process. We present sub-
routines TESTGENERATION and STOPTESTGENERATION in Sections 3.1 and 3.2,
respectively.

3.1 Search-based Test Generation

We use search-based techniques [46] to generate test cases that improve statistical
debugging results. To guide the search algorithm, we define fitness functions that
aim to increase diversity of test cases. Our intuition is that diversified test cases are
likely to execute varying subsets of Simulink model blocks. As a result, Simulink
blocks are likely to take different scores, and hence, the resulting rank groups in the
statistical ranking are likely to be smaller. In this section, we first present the fitness
functions that are used to guide test generation, and then, we discuss the search-based
test generation algorithm. We describe four different alternative fitness functions re-
ferred to as coverage dissimilarity, coverage density, number of dynamic basic blocks
and output diversity. Coverage dissimilarity has previously been used for test priori-
tization [32], and is used in this paper for the first time to improve fault localization.
Output diversity has originally been proposed as an alternative to (white-box) struc-
tural coverage criteria to generate test suites with high fault revealing ability [5, 53].

Effective Fault Localization of Automotive Simulink Models 9

The two other alternatives, i.e., coverage density [17] and number of dynamic basic
blocks [11], have been previously used to improve source code fault localization.
Coverage Dissimilarity. Coverage dissimilarity aims to increase diversity between
test execution slices generated by test cases. We use a set-based distance metric
known as Jaccard distance [30] to define coverage dissimilarity. Given a pair tesy ,
and tes ;. o Of test execution slices, we denote their dissimilarity as d(tesic, o, t€Stcr or)
and define it as follows:

|teste,oNtes, s o |

d(t@stc,oa t@stc',o’) =1- 7|t€sm,outcsm/,o/|

The coverage dissimilarity fitness function, denoted by fit ., is the average of
pairwise dissimilarities between every pair of test execution slices in TES rg. Specif-
ically,

g QXZtestC.o,tesmy L ETES g d(tesic,o,tes er o)
fitpis(TS) = [TES rs[x (| TES 15]—1)

The larger the value of fitps(TS), the larger the dissimilarity among test execu-

tion slices generated by T'S. For example, the dissimilarity between test execution
slices tes, Tout and tesy, 7oy in Table 1 is 0.44. Also, for that example, the aver-
age pairwise dissimilarities fitp;s (TS) is 0.71.
Coverage Density. Campos et al [17] argue that the accuracy of statistical fault local-
ization relies on the density of test coverage results. They compute the test coverage
density as the average percentage of components covered by test cases over the to-
tal number of components in the underlying program. We adapt this computation to
Simulink, and compute the coverage density of a test suite 7.5, denoted by p(TS), as
follows:

[tesic,o|

P(TS) = [7Es75] Dotesin.oe TES 15 static shec(o)]

That is, our adaptation of coverage density to Simulink computes, for every output
o, the average size of test execution slices related to o over the static backward slice
of 0. Note that a test execution slice related to output o is always a subset of the static
backward slice of 0. Low values of p(T'S) (i.e., close to zero) indicate that test cases
cover small parts of the underlying model, and high values (i.e., close to one) indicate
that test cases tend to cover most parts of the model. According to Campos et al [17],
a test suite whose coverage density is equal to 0.5 (i.e., neither low nor high) is more
capable of generating accurate statistical ranking results. Similar to Campos et al [17],
we define the coverage density fitness function as fit ., (TS) = |0.5 — p(TS)| and
aim to minimize fit ., (7'S) to obtain more accurate ranking results.
Number of Dynamic Basic Blocks. Given a test suite TS for fault localization, a
Dynamic Basic Block (DBB) [11] is a subset of program statements such that for
every test case tc € TS, all the statements in DBB are either all executed together
by tc or none of them is executed by tc. According to [11], a test suite that can
partition the set of statements of the program under analysis into a large number of
dynamic basic blocks is likely to be more effective for statistical debugging. In our
work, we (re)define the notion of DBB for Simulink models based on test execution
slices. Formally, a set DBB is a dynamic basic block iff DBB C Nodes and for every
test execution slice tes € TES g, we have either DBB C tes or DBB N tes = ().
For a given set TES g of test execution slices obtained by test suite 7°S, we can

10 Bing Liu et al.

partition the set Nodes of Simulink model blocks into a number of disjoint dynamic
basic blocks DBB;, ..., DBDB;. Our third fitness function, which is defined based
on dynamic basic blocks and is denoted by fitqp,(7TS), is defined as the number
of dynamic basic blocks produced by a given test suite TS, i.e., fitqp(TS) = L.
The larger the number dynamic basic blocks, the better the quality of a test suite
TS for statistical debugging. For example, the test suite in Table 1 partitions the
model blocks in Fig. 1 into six DBBs. An example DBB for that model includes the
following blocks: CalcT, TScaler, IncrT, T_.C2K, 0 C.

Output Diversity. In our previous work [53], we proposed an approach to generate
tests for Simulink models based on the notion of output diversity. Output diversity
is a black-box method that aims to generate a test suite with maximum diversity
in its outputs. Our previous work showed that output diversity is effective to reveal
faults in Simulink models when test oracles are manual and hence, with test suites
of small size [53]. One question that arises here is whether generating test cases
based on output diversity can help improve fault localization results. Therefore, we
define a test objective to guide our search algorithms based on the notion of output
diversity. Simulink models typically contain more than one output (see Section 2). We
represent the output of Simulink models as a vector O = (v, ..., v,,) such that each v;
indicates the value of output o; of the model under test. We refer to the output vector
O generated by a test case tc as Oq.. Given two output vectors Oy, = (v1, ..., Vp)
and Oy, = (vll, ey v%} we define the normalized distance between these vectors as
follows:

diSt(Otc,:a Otc_,-) = Z;‘L:1 % (1
such that maz; (respectively min;) is the observed maximum (respectively min-
imum) value of the output o;. Given a test suite 7.5, suppose we intend to extend
TS with another test suite 7'S.,,4. The output diversity test objective, denoted by
fitoa (TS cana U TS), is defined as follows:
fitoa(TSecana U TS) = Min {dist(Oy, Ok,)}Vtc,,e TSeand AVte; € TSUTS cana Aj#i
That is, we compute the minimum distance among all the distances between pairs
tc; € TS cana and tc; € TS cqng U T'S. The larger the value of fit,q the further apart
the output signals produced by test cases in 1'S¢qnq and 71'S.
Test generation algorithm. Having defined the fitness functions, we now define our
search-based test generation algorithm (i.e., TESTGENERATION in Fig. 3). Two ver-
sions of the TESTGENERATION algorithms are shown in Fig. 4 and Fig. 5. The algo-
rithm in Fig. 4 generates test cases based on any of our three coverage-based test ob-
jectives, i.e., coverage dissimilarity, coverage density, and number of DBB. The one
in Fig. 5 is designed to utilize our fourth test objective, i.e., output diversity. These
algorithms adapt a single-state search optimizer [46]. In particular, they build on Hill-
Climbing with Random Restarts (HCRR) heuristics [46]. We chose HCRR because
in our previous work on testing Simulink models [52], HCRR was able to produce the
best-optimized test cases among other single-state optimization algorithms. Compu-
tation of all the four fitnesses we described earlier rely on either test execution slices
or generated output values. To obtain test execution slices or output values, we need

Effective Fault Localization of Automotive Simulink Models 11

to execute test cases on Simulink models. This makes our fitness computation expen-
sive. Hence, in this paper, we rely on single-state search optimizers as opposed to
population-based search techniques.

Algorithm. TESTGENERATION
Input: - TES 1g: The set of test execution slices
- M : The Simulink model
- k: The number of new test cases
Output: newT'S: A set of new test cases

1. TS ..~ < Generate k test cases tcq, . .., tcx (randomly)

2. TES .y < Generate the union of the test execution slices of
the k test cases in T'S ¢y

3. fit oy < ComputeFitness (TES curr U TES 75, M)

4. ﬁtbcs: — ﬁtum-r; TSbe.st «— TSCUTT

5. repeat

6. while (time = restartTime)

7. TS new < Mutate the k test cases in TS .,

8. TES ;e < Generate the union of the test execution slices of

the k test cases in T'S ey

9. fit e, < ComputeFitness (TES ey U TES 75, M)

10. if (fit,,,, is better than fit ..)

1. .ﬁtcuw A ﬁtnew; TScurr — TSnew

12. end

13. if (fit,,,, is better than fit, .,)

14. fitvest < fitcurrs TSpest < TS curr

15. TScurr < Generate k test cases tcq, . .., tcg (randomly)
16. until the time budget is reached

17. return TS

Fig. 4 Test case generation algorithm (Coverage Dissimilarity, Coverage Density, and DBB).

The algorithm in Fig. 4 receives as input the existing set of test execution slices
TES rg, a Simulink model M, and the number of new test cases that need to be
generated (k). The output is a test suite (newT'S) of k new test cases. The algorithm
starts by generating an initial randomly generated set of k test cases TS . (Line
1). Then, it computes the fitness of 7S .y, (Line 3) and sets 7T'S ., as the current
best solution (Line 4). The algorithm then searches for a best solution through two
nested loops: (1) The internal loop (Lines 6 to 12). This loop tries to find an optimized
solution by locally tweaking the existing solution. That is, the search in the inner loop
is exploitative. The mutation operator in the inner loop generates a new test suite by
tweaking the individual test cases in the current test suite and is similar to the tweak
operator used in our earlier work [53]. (2) The external loop (Lines 5 to 16). This
loop tries to find an optimized solution through random search. That is, the search in
the outer loop is explorative. More precisely, the algorithm combines an exploitative
search with an explorative search. After performing an exploitative search for a given
amount of time (i.e., restartTime), it restarts the search and moves to a randomly
selected point (Line 15) and resumes the exploitative search from the new randomly
selected point. The algorithm stops after it reaches a given time budget (Line 15).

The algorithm presented in Fig. 5 differs from the algorithm in Fig. 4 as follows:
since with our fourth test objective, i.e., output diversity, computation is based on

12 Bing Liu et al.

Algorithm. TESTGENERATION(OUTPUT DIVERSITY)

Input: - OUT pg: The set of output vectors for current test suite
- M : The Simulink model
- k: The number of new test cases

Output: newTS: A set of new test cases

—_

TS curr < Generate k test cases tcy, . .., tcy (randomly)
OUT .urr < Generate the set of the output vectors of
the k test cases in TS ¢y
fit gy < ComputeFitness (OUT ¢y, OUT 75, M)
.ﬁtbest A ﬁtcumr; TShest — TSCUTT
repeat
while (time != restartTime)
TS new < Mutate the k test cases in T'S cyyr
OUT e < Generate the set of the output vectors of
the k test cases in T'S ¢,

9. fitper < ComputeFitness (OUT ey, OUT 15, M)
lo' if (ﬁt'fle’u/ > ﬁtCU’V"I‘)
11. Jit curr < Jitnews TS curr < TSnew
12. end
130 3 (fitpyry > fily)
14. .ﬁtbest <~ .ﬁtcuw-; TSbcst <~ TScur'r
15. TScurr < Generate k test cases tcq, ..., tcy (randomly)
16. until the time budget is reached
17. return 7S s

N

PN kW

Fig. 5 Test case generation algorithm (Output Diversity).

the output vectors, we do not collect test execution slices. Instead, we gather output
vectors generated for each test case (i.e., OUT - and OUT).

We discuss two important points about our test generation algorithm: (1) Each
candidate solution in our search algorithm is a test suite of size k. This is similar to
the approach taken in the whole test suite generation algorithm proposed by Fraser
and Arcuri in [23]. The reason we use a whole test suite generation algorithm in-
stead of generating test cases individually is that computing fitnesses for one test
case and for several test cases takes almost the same amount of time. This is because,
in our work, the most time-consuming operation is to load a Simulink model. Once
the model is loaded, the time required to run several test cases versus one test case
is not very different. Hence, we decided to generate and mutate the k test cases at
the same time. (2) Our algorithm does not require test oracles to generate new test
cases. Note that computing fit ;. and fit ;;; only requires test execution slices with-
out any pass/fail information. To compute fit ;,.,,,, in addition to test execution slices,
we need static backward slices that can be obtained from Simulink models. The com-
putation of fit , requires output vectors instead of test execution slices. Test oracle
information for the k new test cases is only needed after test generation in subroutine
STATISTICALDEBUGGING (see Fig. 3) when a new statistical ranking is computed.
In the next section, we discuss the STOPTESTGENERATION subroutine (see Fig. 3)
that allows us to stop test generation before performing all the test generation rounds
when we can predict situations where test generation is unlikely to improve the fault
localization.

Effective Fault Localization of Automotive Simulink Models 13

STOPTESTGENERATION()
Input: - r: The index of the latest test generation round
- M: The underlying Simulink model
- initialList: A ranked list obtained using an initial test suite
- newList: A ranked list obtained at round r after some
test cases are added to the initial test suite
Output: result: Test generation should be stopped if result is true

Let gy, ..., rgy be the top N rank groups in newList
Identify Simuilnk superblocks Bj, ..., By, intheset rg; U...U gy
if for every rg; (1 <i < N) thereisa B;j (1 < j < m)s.t. rg; = B; then
return {rue
if 7 = 0 then
return false
my = ComputeSetDistance(initialList, newList)
my = ComputeOrderingDistance(initialList, newList)
ms = ComputeRankCorrelation(initialList, newList)
0. Build a prediction model based on a subset of {my,ma, mg,r}
and let result be the output of the prediction model.
11. return result

SN RN

Fig. 6 The STOPTESTGENERATION subroutine used in our approach (see Fig. 3).

3.2 Stopping Test Generation

As noted in the literature [17], adding test cases does not always improve statistical
debugging results. Given that in our context test oracles are expensive, we provide a
strategy to stop test generation when adding new test cases is unlikely to bring about
noticeable improvements in the fault localization results. Our STOPTESTGENERA-
TION subroutine is shown in Fig. 6. It has two main parts: In the first part (Lines
1-6), it tries to determine if the decision about stopping test generation can be made
only based on the characteristics of newList (i.e., the latest generated ranked list)
and static analysis of Simulink models. For this purpose, it computes Simulink super
blocks and compares the top ranked groups of newList with Simulink super blocks.
In the second part (Lines 7-11), our algorithm relies on a predictor model to make a
decision about further rounds of test generation. We build the predictor model using
supervised learning techniques (i.e., decision trees [14]) based on the following four
features: (1) the current test generation round, (2) the SetDistance between the lat-
est ranked list and the initial ranked list, (3) the OrderingDistance between the latest
ranked list and the initial ranked list, and (4) the RankCorrelation between the latest
ranked list and the initial ranked list. Below, we first introduce Simulink super blocks.
We will then introduce SetDistance, the OrderingDistance and the RankCorrelation
that are used as input features for our predictor model. After that, we describe how
we build and use our decision tree predictor model.

Super blocks. Given a Simulink model M = (Nodes, Links, Inputs, Outputs), we
define a super block as the largest set B C Nodes of (atomic) Simulink blocks such
that for every test case tc and every output o € Outputs, we have either B C tesy. ,
or BN teso, = 0. The definition of super block is very similar to the definition
of dynamic basic blocks (DBB) discussed in Section 3.1. The only difference is that
dynamic basic blocks are defined with respect to the test execution slices generated
by a given test suite, while super blocks are defined with respect to test execution
slices that can be generated by any potential test case. Hence, dynamic basic blocks

14 Bing Liu et al.

can be computed dynamically based on test execution slices obtained by the current
test suite, whereas super blocks are computed by static analysis of the structure of
Simulink models. In order to compute super blocks, we identify conditional (con-
trol) blocks in the given Simulink model. Each conditional block has an incoming
control link and a number of incoming data links. Corresponding to each conditional
block, we create some branches by matching each incoming data link with the condi-
tional branch link. We then remove the conditional block and replace it with the new
branches. This allows us to obtain a behaviorally equivalent Simulink model with
no conditional blocks. We further remove parallel branches by replacing them with
their equivalent sequential linearizations. We then use the resulting Simulink model
to partition the set Nodes into a number of disjoint super blocks By, ..., B;.

We briefly discuss the important characteristics of super blocks. Let rankList be
a ranked list obtained based on statistical debugging, and let rg be a ranked group in
rankList. Note that 7g is a set as the elements inside a ranked group are not ordered.
For any super block B, if BN rg # () then B C rg. That is, the blocks inside a super
block always appear in the same ranked group, and cannot be divided into two or
more ranked groups. Furthermore, if r¢ = B, we can conclude that the ranked group
rg cannot be decomposed into smaller ranked groups by adding more test cases to the
test suite used for statistical debugging.

Features for building our predictor model. We describe the four features used in
our predictor models. The first feature is the test generation round. As shown in Fig. 3,
we generate test cases in a number of consecutive rounds. Intuitively, adding test
cases at the earlier rounds is likely to improve statistical debugging more compared
to the later rounds. Our second, third and fourth features (i.e., SetDistance, Order-
ingDistance, and RankCorrelation) are similarity metrics comparing the latest gener-
ated rankings (at the current round) and the initial rankings. These three metrics are
formally defined below.

Let initialList be the ranking generated using an initial test suite, and let newList

be the latest generated ranking. Let rg7¢", . .., rg»*" be the ranked groups in newList,
and rginitial rgfﬁ}““l be the ranked groups in initialList. Our SetDistance fea-

ture computes the dissimilarity between the top-/V ranked groups of initialList and
newList using the intersection metric [22]. We focus on comparing the top /N ranked
groups because, in practice, the top ranked groups are primarily inspected by engi-
neers. We compute the SetDistance based on the average of the overlap between the
top-/V ranked groups of the two ranked lists. Formally, we define the SetDistance
between initialList and newList as follows.

IM (initialList, newList) = ﬁ Zszl :}82; :j:m;:m%{j ;ZZMZ{:

SetDistance(initialList, newList)=1 — IM (initialList, newList)

The larger the SetDistance, the more differences exist between the top-/N ranked
groups of initialList and newList.

Our third feature is OrderingDistance. Similar to SetDistance, the OrderingDis-
tance feature also attempts to compute the dissimilarity between the top-/N ranked
groups of initialList and newList. However, in contrast to SetDistance, OrderingDis-
tance focuses on identifying changes in pairwise orderings of blocks in the rankings.
In particular, we define OrderingDistance based on Kendall Tau Distance [36] that

Effective Fault Localization of Automotive Simulink Models 15

is a well-known measure for such comparisons. This measure computes the dissim-
ilarity between two rankings by counting the number of discordant pairs between
the rankings. A pair b and b’ is discordant if b is ranked higher than b’ in newList
(respectively, in initialList), but not in initialList (respectively, in newList). In
our work, in order to define the OrderingDistance metric, we first create two sets
initiall and newL based on initialList and newlList, respectively: initialL is the
same as initialList except that all the blocks that do not appear in the top-/N ranked
groups of neither initialList nor newList are removed. Similarly, newL is the same
as newList except that all the blocks that do not appear in the top-/V ranked groups
of neither newList nor initialList are removed. Note that newL and initialL have
the same number blocks. We then define the OrderingDistance metric as follows:

_ # of Discordant Pairs
~ (JnewL|x(|newL]—1))/2
The larger the OrderingDistance, the more differences exist between the top-N

ranked groups of initialList and newList.

OrderingDistance(newL, initialL)

Our fourth feature is RankCorrelation. Similar to OrderingDistance, RankCor-
relation aims to measure differences between the top-N ranked groups of initialList
and newList. However, OrderingDistance depends on the number of discordant pairs,
while RankCorrelation depends on degrees of ranking changes between initialList
and newList for individual elements. In particular, we define RankCorrelation based
on Spearman’s Rank Correlation Coefficient (Ties-corrected) [37,67] that is a well-
known metric for comparing ordered lists. In our work, to compute the correlation
between two rankings (initialList and newList), we first create a set unionSet based
on initialList and newList: unionSet contains all the elements that appear in the top-N
rank groups in both initialList and newList. Then, we compute two new lists initialL
and newL based on initialList and newList, respectively: initialL is the same as initial-
List except that all the blocks that do not appear in unionSet are removed. Similarly,
newlL is the same as newList except that all the blocks that do not appear in union-
Set are removed. Due to removal of elements from newlL and initialL, we adjust the
ranks for elements in initialL and newlL so that there is no gap between the rank val-
ues in these two lists. Then, for each element ¢; in unionSet, we define the distance
d; to be the difference between the rank of e; in initialL and the rank of e; in newlL.
Let the size of unionSet be n (i.e., |unionSet| = n). We define the RankCorrelation
metric as follows:

6(3 1, di+5CF)

i=1 %
n(n2—1)

RankCorrelation =1 —

In the above formula, CF is referred to as a correction factor. This factor is pro-

posed to adapt the original computation of Spearman correlation coefficient to situa-

tions, like our case, where rankings contain rank groups with multiple elements [37].

We denote by rg; (respectively, rg}) the ith rank group in initialL (respectively, newL).

We further denote by G (respectively, G') the total number of rank groups in initialL
(respectively, newL). Then, according to [37], CF is computed as follows:

! 2

2
CF =3 pcicalmail * (Irgil” — 1) + X i< rgj| * (|rgj|” — 1)

16 Bing Liu et al.

The value range of RankCorrelation is [—1, 1]. The larger the RankCorrelation,
the more similar the top-N ranked groups of initialList and newList are.

Prediction model. Our prediction model builds on an intuition that by comparing
statistical rankings obtained at the current and previous rounds of test generation, we
may be able to predict whether further rounds of test generation are useful or not.
We build a prediction model based on different combinations of the four features
discussed above (i.e., the current round, SetDistance, OrderingDistance, RankCorre-
lation). We use supervised learning methods, and in particular, decision trees [14].
The prediction model returns a binary answer indicating whether the test generation
should stop or not. To build the prediction model, we use historical data consist-
ing of statistical rankings obtained during a number of test generation rounds and
fault localization accuracy results corresponding to the statistical rankings. When
such historical data is not available the prediction model always recommends that
test generation should be continued. After applying our approach (Fig. 3) for a num-
ber of rounds, we gradually obtain the data that allows us to build a more effective
prediction model that can recommend to stop test generation as well. Specifically,
suppose rankList is a ranking obtained at round r of our approach (Fig. 3), and
suppose initList is a ranking obtained initially before generating test cases (Fig. 3).
The accuracy of fault localization for rankList is the maximum number of blocks
inspected to find a fault when engineers use rankList for inspection. To build our
decision tree, for each rankList computed by our approach in Fig. 3, we obtain a
tuple I consisting of a subset of our four features defined above. We then compute
the maximum fault localization accuracy improvement that we can achieve if we
proceed with test generation from round r (the current round) until the last round
of our algorithm in Fig. 3. We denote the maximum fault localization accuracy im-
provement by Maz_ACC,(rankList). We then label the tuple I with Continue,
indicating that test generation should continue, if Maxz_ACC . (rankList) is more
than a threshold (THR); and with St op, indicating that test generation should stop,
if Maz_ACC.(rankList) is less than the threshold (THR). Note that THR indicates
the minimum accuracy improvements that engineers expect to obtain to be willing to
undergo the overhead of generating new test cases.

<0.7746 >=0.7746 <0.4758

RankC >=0.4758

{ RankCorrelation J

>=0.61 <0.65 =0..
SetDistance RankCorrelation >=0.65
<0.

0.88 RankCorrelation

Stop
Continue/Stop
18%/82%

Stop
Continue/Stop
2.5%97.5%

Stop Stop
Conti Conti

Stop
Continue/Stop
24%/76%

7%I93% 0%/100%

Stop
33%/67%
Fig. 7 A snapshot example of a decision tree built based on the following input features: Round, SetDis-
tance, and RankCorrelation).

Having obtained tuples I labeled with Stop or Cont inue, we build our deci-
sion tree model (prediction model). Decision trees are composed of leaf nodes, which
represent partitions, and non-leaf nodes, which represent decision variables. A deci-

Effective Fault Localization of Automotive Simulink Models 17

sion tree model is built by partitioning the set of input tuples in a stepwise manner
aiming to create partitions with increasingly more homogeneous labels (i.e., parti-
tions in which the majority of tuples are labeled either by St op or by Continue).
The larger the difference between the number of tuples with St op and Cont inue in
a partition, the more homogeneous that partition is. Decision variables in our decision
tree model represent logical conditions on the input features r, SetDistance, Order-
ingDistance, or RankCorrelation. Fig. 7 shows a fragment of our decision tree model
built based on the features: Round, SetDistance and RankCorrelation. For example,
this model shows, among the tuples satisfying r = R1 and RankCorrelation < 0.7746
conditions, 67% are labeled with Stop and 33% are labeled with Continue. As
we will discuss in Section 4.2, we experiment with seven different combinations of
our four features to identify the most effective prediction model. In these combina-
tions, we do not select RankCorrelation and OrderingDistance together since these
two features represent two alternative ways measuring similarities of a pair of ordered
lists.

We stop splitting partitions in our decision tree model if the number of quadruples
in the partitions is smaller than «, or the percentage of the number of quadruples in
the partitions with the same label is higher than 3. In this work, we set « to 50 and 3
to 95%, i.e., we do not split a partition whose size is less than 50, or at least 95% of
its elements have the same label.

Stop Test Generation Algorithm. The STOPTESTGENERATION() algorithm starts
by identifying the super blocks in newlList, the latest generated ranking (Line 2).
If it happens that the top-N ranked groups in newList all comprise a single su-
per block, then test generation stops (Line 3-4), because such ranking cannot be
further refined by test generation. If we are in the first round (i.e., » = 0), the al-
gorithm returns false, meaning that test generation should continue. For all other
rounds, we use the decision tree prediction model. Specifically, we compute the Sez-
Distance,OrderingDistance and RankCorrelation features corresponding to newList.
We then build a prediction model based on a subset of these three features as well as
r (i.e., the round). The prediction model returns true, indicating that test generation
should be stopped, if the three input features satisfy a sequence of conditions leading
to a (leaf) partition where at least 95% of the elements in that partition are labeled
Stop. Otherwise, our prediction model returns false, indicating that test generation
should be continued. For example, assuming the decision tree in Fig. 7 is our predic-
tion model, we stop test generation only if we are not in round one, RankCorrelation
is greater than or equal to 0.88, and SetDistance is less than 0.61. This is because, in
Fig. 7, these conditions lead to the leaf partition with 100% stop-labeled elements.

4 Empirical Evaluation

In this section, we empirically evaluate our approach using experiments applied to
real-world Simulink models from the automotive domain.

18 Bing Liu et al.

4.1 Research Questions

RQ1. [Evaluating and comparing different test generation fitness heuristics]
How is the fault localization accuracy impacted when we apply our search-based
test generation algorithm in Fig. 4 with our four selected fitness functions (i.e., cov-
erage dissimilarity (f pis), coverage density (f pens), number of dynamic basic blocks
(faww)), and output diversity (f,q)? We report the fault localization accuracy of a
ranking generated by an initial test suite compared to that of a ranking generated by
a test suite extended using our algorithm in Fig. 4 with a small number of test cases.
We further compare the fault localization accuracy improvement when we use our
four alternative fitness functions, and when we use a random test generation strategy
not guided by any of these fitness functions.

RQ2. [Evaluating and comparing different generation methods for the initial
test suite] What is the impact of the technique used for generation of the initial test
suite on fault localization results? To answer this question, we compare three differ-
ent test generation techniques, namely Adaptive Random Testing, Coverage-based,
and Output Diversity. Adaptive Random Testing technique is a typical baseline test
generation technique that aims to increase the diversity of test cases by maximizing
distances between the test inputs. Coverage-based techniques attempt to generate test
suites that are able to achieve a high degree of structural coverage over Simulink mod-
els under tests [53]. Recall that Output Diversity is described in Section 3.1. Our goal
is to see if the generation methods employed to create initial test suites for debugging
our Simulink models have an impact on the effectiveness of our fault localization
results.

RQ3. [Evaluating impact of adding test cases] How does the fault localiza-
tion accuracy change when we apply our search-based test generation algorithm in
Fig. 4?7 We note that adding test cases does not always improve the fault localiza-
tion accuracy [17]. With this question, we investigate how often fault localization
accuracy improves after adding test cases. In particular, we apply our approach in
Fig. 3 without calling the STOPTESTGENERATION subroutine, and identify how of-
ten subsequent rounds of test generation do not lead to fault localization accuracy
improvement.

RQA4. [Effectiveness of our STOPTESTGENERATION subroutine] Among the
features introduced in Section 3.2, which feature combination yields the best re-
sults for our STOPTESTGENERATION subroutine? Does our STOPTESTGENERA-
TION subroutine, when used with the best performing feature combination, help stop
generating additional test cases that do not improve the fault localization accuracy?
We first compare the performance of alternative prediction models built based on
different feature combinations discussed in Section 3.2. Our goal is to identify the
feature combination that yields the best trade-off between fault localization accuracy
and the number of newly generated test cases. We then investigate whether the predic-
tor models built based on the best feature combination can stop test generation when
adding test cases is unlikely to improve the fault localization accuracy, or when the
improvement that the test cases bring about is small compared to the effort required
to develop their test oracles.

Effective Fault Localization of Automotive Simulink Models 19

RQS. [Impact of the threshold parameter on predictor models] Does the effec-
tiveness of the STOPTESTGENERATION subroutine depend on the threshold parame-
ter used to label the training data for the prediction models? How is the effectiveness
of our STOPTESTGENERATION subroutine affected when we vary the threshold val-
ues for labeling the training data? As discussed in Section 3.2, the THR value is a
key parameter for our prediction models and is used to label the training data. In this
question, we identify, for a fixed feature combination, the optimal values for THR
that yield the best trade-off between fault localization accuracy and the number of
newly generated test cases.

4.2 Experiment Settings

In this section, we describe the industrial subjects, test suites and test oracles used in
our experiments.

Industrial Subjects. In our experiment, we use three Simulink models referred
to as MA, MZ and MGL, and developed by Delphi Automotive Systems [21], our in-
dustrial partner. Table 2 shows the number of subsystems, atomic blocks, links, and
inputs and outputs of each model. Note that the models that we chose are representa-
tive in terms of size and complexity among the Simulink models developed at Delphi.
Further, these models include about ten times more blocks than the publicly available
Simulink models from the Mathworks model repository [51].

Table 2 Key information about industrial subjects.

Model Name | #Subsystem | #Blocks | #Links | #Inputs | #Outputs | #Faulty version
MA 37 680 663 12 8 20
MZ 65 833 806 13 7 20
MGL 33 742 730 19 9 20

We asked a senior Delphi test engineer to seed 20 realistic and typical faults into
each model. The seeded faults belonged to the following fault patterns:

— Wrong arithmetic operators, e.g., replacing a + operator with - or x.

— Wrong relational operators, e.g., replacing a < with >, or = #.

— Wrong constant values, e.g., replacing constant ¢ with ¢ — 1 or ¢ + 1.

— Variable Replacement, e.g., replacing a “double” variable with a “single” vari-
able.

— Incorrect connections, e.g., switching the input lines of the “Switch” block.

The above fault patterns represent the most common faults we observed in prac-
tice, and are also used in existing literature on mutation operators for Simulink mod-
els [16,24,28,78, 81]. In total, we generated 60 faulty versions (one fault per each
faulty version). The engineer seeded faults based on his past experience in Simulink
development and, to achieve diversity in terms of the location and types of faults,
we required faults of different types to be seeded in different parts of the models.

20 Bing Liu et al.

Table 3 shows the number of faulty versions related to each fault pattern in our ex-
periments. Finally, we have also provided detailed descriptions of the seeded faults
and all experiment data and scripts at [40].

Table 3 Number of Fault Patterns Applied to Each Industrial Subject

MA | MZ | MGL
of Faulty Version | 20 20 20

Wrong arithmetic operators | # of Faulty Version | 7 9 5
Wrong relational operators | # of Faulty Version 1 1 0
Wrong constant values # of Faulty Version 6 5 8
Variable Replacement # of Faulty Version 5 4 5
Incorrect connections # of Faulty Version 1 1 2

Finally, for each faulty model, we randomly generated a large number of input
signals, compared the outputs of the faulty model with those of the non-faulty model
to ensure that each faulty model exhibits some visible failure in some model output.
We further manually inspected each faulty model whose outputs deviated from some
outputs of the non-faulty model to convince ourselves that the two models are not
behaviorally equivalent, and that the seeded fault led to a visible failure in some
model output.

Initial Test Suites and Test Oracles. In our experiments, we use three different
test generation techniques, namely Adaptive Random Testing, Coverage-based, and
Output Diversity, to generate the initial test suites.

1. Adaptive Random Testing: Adaptive random testing [18] is a black box and
lightweight test generation strategy that distributes test cases evenly within valid
input ranges, and thus, helps ensure diversity among test inputs.

Algorithm. ADAPTIVE RANDOM TESTING

Input: - RG : valid value range of each input signal
- M : The Simulink model

Output: 7S: A set of test cases

1. TS={I}, where I is a randomly-generated test cases of M

2 for (¢ — 1 times) do:

3 MazxDist =0

4 Let C ={h, ..., I.} be a candidate set of random test cases of M
5. for each I; € C do:

6 Dist=MINv[/eT5dist([i, I/)

7 if (Dist > MaxDist)

8 MazxDist = Dist, J = I;,

9 TS=TSUJ

10. return TS

Fig. 8 Initial test suite generation (Adaptive Random Testing).

Fig. 8 shows the Adaptive Random Testing algorithm that, given a Simulink
model M and the valid signal range of each input, generates an initial test suite

Effective Fault Localization of Automotive Simulink Models 21

TS with size g. The algorithm first randomly generates a single test case and
stores it in 7°S (line 1). Then at each iteration, it randomly generates c candidates
test cases Iy, ..., I.. It computes the distance of each test case I; from the exist-
ing test suite 7S, and select the test case with the minimum distance between I;
and the test cases in 'S (line 6). Finally, the algorithm identifies and adds the
candidate test case with the maximum distance from C into TS (line 7-9).

2. Coverage-based: We consider a block coverage criterion for Simulink models
that is similar to statement coverage for programs [49] and state coverage for
Stateflow models [13]. Our coverage-based test generation algorithm is shown in
Fig. 9. In line 1, the algorithm selects a random test input I and adds the corre-
sponding model coverage to a set T'SCov. At each iteration, the algorithm gen-
erates c¢ candidate test cases and computes their corresponding model coverage
information in a set C'Cov. It then computes the additional coverage that each
one of the test cases in C' brings about compared to the coverage obtained by
the existing test suite 7'S (line 8). At the end of each iteration, the test case that
leads to the maximum additional coverage is selected and added into 7S (line
13). Note that if none of the ¢ candidates in C' yields an additional coverage, i.e.,

MaxAddCov is 0 at line 11, we pick a test case with the maximum coverage in
C (line 12).

Algorithm. COVERAGE-BASED

Input: - RG : valid value range of each input signal
- M : The Simulink model

Output: 7'S: A set of test cases

TS={I}, where I is a randomly-generated test cases of M
TSCov={Cov}, where Cov is the model coverage information of exeucting M with [
for (¢ — 1 times) do:
MazAddCov =0
Let C ={1, ..., I.} be a candidate set of random test cases of M
Let CCov = {Covy, ..., Cov.} be the coverage information of executing M with C
for each Cov; € CCov do:
AddCov=|Cov; — UgrerscovS'|
9. if (AddCov > MaxAddCov)
10. MazAddCov = AddCov, J = I;, P = Cov;
11. if (MazAddCov =0)
12. J =1, P = Cov; where Cov; € CCov and |Covj| = MAX cov'eccon|Cov'|
13. TS=TSUJ, TSCov = TSCovU P
14. return T'S

PNAN R LN

Fig. 9 Initial test suite generation (Coverage-based).

3. Output Diversity: To generate an initial test suite based on the notion of output
diversity, we use the algorithm shown in Fig. 5 by setting & to 1.

Given that in our work we assume test oracles are manual, we aim to generate test
suites that are not large. However, the test suites should be large enough to generate a
meaningful statistical ranking. Hence, at least some test cases in the test suite exhibit
failures. In our work, we chose to use initial test suites with size 10. Specifically,

22 Bing Liu et al.

we generate an initial test suite of size 10 for each of the test generation methods
discussed above. To enable the full automation of our experiments, we used the fault-
free versions of our industrial subjects as test oracles.

Experiment Design.

To answer RQ1 to RQS, we performed four experiments EXP-I to EXP-IV de-
scribed below:

EXP-I focuses on answering RQ1 and RQ3. Fig. 10(a) shows the overall struc-
ture of EXP-I. We refer to the test generation algorithm in Figs. 4 and 5 as HCRR
since they build on the HCRR search algorithm. We refer to HCRR when it is used
with test objectives fpis, fpens» fdvy, and foq as HCRR-Dissimilarity, HCRR-Density,
HCRR-DBB and HCRR-OD, respectively. We set both the number of new test cases
per round (i.e., k in Fig. 3), and the number of rounds (i.e., round in Fig. 3) to five.
That is, in total, we generate 25 new test cases by applying our approach. We ap-
ply our four alternative HCRR algorithms, as well as the Random test generation
algorithm, which is used as a baseline for our comparison, to our 60 faulty versions.
We ran each HCRR algorithm for 45 minutes with two restarts. To account for the
randomness of the search algorithms, we repeat our experiments for ten times (i.e.,
ten trials). Note that the initial test suite (i.e., 7'S in Fig. 3) contains ten test cases
generated by using Adaptive Random Testing technique.

EXP-II answers RQ2 and evaluates the impact of different initial test suites on
the fault localization accuracies. We use the best test objective (i.e., HCRR-DBB)
based on the comparison result of RQ1. Fig. 10(b) shows the overall structure of
EXP-II. To answer RQ2, we repeat the experiment EXP-I while we only use one
test objective (i.e., HCRR-DBB) with three different initial test suites generated by the
three different test generation techniques, i.e., Adaptive Random Testing, Coverage-
based, and Output Diversity, described earlier in this section.

EXP-III answers the research question RQ4 and evaluates the effectiveness of
our STOPTESTGENERATION subroutine. Fig. 10(c) shows the overall structure of
EXP-III. Based on the features we defined in Section 3.2, we built different combi-
nations of features for our prediction models. We identified, in total, the following
seven input feature sets:

FCy = {r, SetDistance, OrderingDistance}

FCy {r, SetDistance, RankCorrelation}

FC5 = {r, SetDistance}

FCy = {r, OrderingDistance}

FC5 = {r, RankCorrelation}

FCs = {SetDistance, OrderingDistance}

FC7 = {SetDistance, RankCorrelation}

We evaluate and compare different prediction models built based on these seven
input feature combinations. We set the THR parameter to 15. Recall from Section 3.2
that THR is the threshold parameter used to label the training data for creating pre-
diction models.

EXP-1V answers the research question RQS. Fig. 10(d) shows the overall struc-
ture of EXP-IV. In the EXP-IV, we repeat the experiment EXP-III by using the best
input feature set from RQ4 (i.e., FCy = {r, SetDistance, OrderingDistance}), but
we vary THR values by setting it to 5, 10, 15, 20, 25, 30, and 35, respectively.

Effective Fault Localization of Automotive Simulink Models 23

160 —

| { TS1to TSn

| Fault (size 25)

| aulty result

: Models DBE | Dis | Dens | 0D

| Test

| Generation e

| Initial Test Suite TS1to TSn

1 [Gensration _ fize 29

1 (size 10) Tresult

1 Random il

e _======= L _______

(b). EXP-Il (Answers RQ2)

e e e e e ~

| . ——|

,60 TS1to TSn Fout |

\ A (size 25) —> | Localization | || |

| Initial TS : ART |
Faulty —

| |

| Models —_—)

| TS1to TSn Fault |

' aul

) | (size25) | = | Localization | | [}

| Initial TS : Cov | |/ result \

| Initial Test Suite |
Generation) Y ——) |

| (size 10) TS1to TSn o |

I CART oD (size 25) T i |||}

: Initial TS: 0D | |1 result |

(c). EXP-IIl (Answers RQ4)

A e -~

I 60{ ------ .]

“ ~

! < THR = 15_“Feature Comb 1 TSs Fault !

| I S I N R S — = Localization | | ||

) Faulty DBB | Dis | Dens | OD| result |

| B _ I

| |

|) : |

| . . 1

! 2 ; !

| Feature Comb 7 TSs Fault |

[Y - & e = | Localization | | | |

| DBB | Dis | Dens | OD| | result |

< Feature Set 1>~ ‘ TSs Faul
-------- THR=5 — oc:iuz;ion
60{ — > L {L relsul:
THR =10
Faulty THR=15
Models =
Test
Generation

Initial Test Sufte DBB | Dis | Dens | OD THR=25
G ation
10)
—T— THR =30

THR =35 TSs { Fault m

— = | Localization
e o -

Fig. 10 Our experiment design: (a) EXP-I to answer RQ1. (b) EXP-II to answer RQ2. Test generation

algorithms are repeated for 10 times to account for their randomness for EXP-I and EXP-II. (c¢) EXP-IIT

to answer RQ4. (d) EXP-IV to answer RQS5.

|
|
]
[}
|
|
|
[}
—lTHR =20 |
|
]
[}
|
|
|
[}
|
|

We ran our experiments on a high performance computing platform [71] with
2 clusters, 280 nodes, and 3904 cores. Our experiments were executed on different
nodes of a cluster with Intel Xeon L5640@2.26GHz processor. In total, our experi-
ment (using a single node 4 cores) required 13500 hours. Most of the experiment time
was used to execute the generated test cases in Simulink. In total, we generated and
executed 299000, 290000, and 323000 test cases for MA MZ, and MGL, respectively.

24 Bing Liu et al.

Table 4 The wilcoxon test results (p-values) and the A1 effect size values comparing distributions in
Fig. 11(a).

A[:f:rB p-value Ajo
HCRR-DBB vs. Initial 0.00 0.73
HCRR-DBB vs. Random 0.00 0.65
HCRR-Density vs. Initial 0.00 0.72
HCRR-Density vs. Random 0.00 0.65

HCRR-Dissimilarity vs. Initial 0.00 0.73
HCRR-Dissimilarity vs. Random 0.00 0.66
HCRR-OD vs. Initial 0.00 0.7
HCRR-OD vs. Random 0.00 0.62

4.3 Evaluation Metrics

We evaluate the accuracy of the rankings generated at different rounds of our ap-
proach using the following metrics [20, 33, 44, 45, 57, 62]: the absolute number of
blocks inspected to find faults, and the proportion of faults localized when engineers
inspect fixed numbers of the top most suspicious blocks. The former was already dis-
cussed for prediction models in Section 3.2. The proportion of faults localized is the
proportion of localized faults over the total number of faults when engineers inspect
a fixed number of the top most suspicious blocks from a ranking.

4.4 Experiment Results

RQ1. [Evaluating and comparing different test generation fitness heuristics] To
answer this question, we performed EXP-I. Fig. 11 compares the fault localization
results after applying HCRR-DBB, HCRR-Density, HCRR-Dissimilarity and HCRR-
OD algorithms to generate 25 test cases (five test cases in five rounds) with the fault
localization results obtained before applying these algorithms (i.e., Initial) and with
the fault localization results obtained after generating 25 test cases randomly (i.e.,
Random). In particular, in Fig. 11(a), we compare the distributions of the maximum
number of blocks inspected to locate faults (i.e., accuracy) in our 60 faulty versions
when statistical rankings are generated based on the initial test suite (i.e., Initial),
or after using HCRR-DBB, HCRR-Density, HCRR-Dissimilarity, HCRR-OD and
Random test generation to add 25 test cases to the initial test suite. Each point in
Fig. 11(a) represents fault localization accuracy for one run of one faulty version.
According to Fig. 11(a), before applying our approach (i.e., Initial), engineers on
average need to inspect at most 76 blocks to locate faults. When in addition to the
initial test suite, we use 25 randomly generated test cases, the maximum number of
blocks inspected decreases to, on average, 62 blocks. Finally, engineers need to in-
spect, on average, 42.4, 44, 42.8 and 46.4 blocks if they use the rankings generated
by HCRR-DBB, HCRR-Density, HCRR-Dissimilarity and HCRR-OD, respectively.
We performed non-parametric pairwise Wilcoxon signed-rank test to check whether
the improvement on the number of blocks inspected is statistically significant. We
also computed Vargha and Delaney’s Az [70] to compare fault localization results

Effective Fault Localization of Automotive Simulink Models 25

(a)
260
2404
2204
—— . b
" 2001 ']] 1
% I ! '
5 ; : :
@ 1804 i . : .
Qo H
0 -
€ 160
0
=< 140
3]
o
om0
- ke —_ - — —_—
O100 { : H { |
** . i i i i !
> 80 H i 1 | i
S ' ‘ l [i [
= 60 | H i ‘ !
h b m M
40 : ‘
i '
20 ' H | 1
.
L
0
Initial T Random T HCRR-DBB | HCRR-Density 'HCRR-Dissimilarity =~ HCRR-OD
(b)
100%~ r r T
=== Initial):
90%|- |—=Random ,
---HCRR-DBB g /H
80%| -e-HCRR-D.ens.ily) B
- =%~ HCRR-Dissimlarity
g -4- HCRR-OD 7
£ 70%- - i
© 4 i
H H
o H
@ 0% JE—
© -~
W 50% R
- p
o Ry
c
S 40%|- & R
£
S 30%f |
2 E
o
20%! 4
10% 1
B a— .. g
e
10 20 70 80 >80

30 40 50 60
Max. # of Blocks Inspected(avg.)

Fig. 11 Comparing the number of blocks inspected (a) and the proportion of faults localized (b) before
and after applying HCRR-DBB, HCRR-Dissimilarity, HCRR-Density and HCRR-OD, and with Random
test generation (i.e., Random).

reported in Figure 11(a). The statistical test p-values and the effect size values com-
paring the distributions in Figure 11(a) are reported in Table 4. We note that each dis-
tribution in Figure 11(a) consists of 600 points (i.e, 60 faulty versions x 10 runs). The
results in Table 4 show that the fault localization accuracy distributions obtained by
HCRR-DBB, HCRR-Density, HCRR-Dissimilarity and HCRR-OD are significantly
lower (better) than those obtained by Random and Initial (with p-value<0.0001). As
for the effect size results, two algorithms are considered to be equivalent when the
value of Ay, is 0.5. The closer the effect size values to 1 for each comparison (Algo
A vs. Algo B) the better Algo A compared to Algo B.

26 Bing Liu et al.

Similarly, Fig. 11(b) shows the proportion of faults localized when engineers in-
spect a fixed number of blocks in the rankings generated by Initial, and after gener-
ating 25 test cases with HCRR-DBB, HCRR-Density, HCRR-Dissimilarity, HCRR-
OD, and Random. Specifically, the X-axis shows the number of top ranked blocks
(ranging from 10 to 80), and the Y-axis shows the proportion of faults among a fixed
number of top ranked blocks in the generated rankings. Note that, in Fig. 11(b), the
maximum number of blocks inspected (X-axis) is computed as an average over ten
trials for each faulty version. According to Fig. 11(b), engineers can locate faults in
13 out of 60 (21.67%) faulty versions when they inspect at most 10 blocks in the
rankings generated by three of our techniques i.e., HCRR-DBB, HCRR-Density and
HCRR-Dissimilarity, and 10 out of 60 (16.67%) faulty versions when they inspect at
most 10 blocks in the rankings generated by the fourth technique, i.e., HCRR-OD.
However, when test cases are generated randomly, by inspecting the top 10 blocks,
engineers can locate faults in only 3 out of 60 (5%) faulty versions. As for the rank-
ings generated by the initial test suite, no faults can be localized by inspecting the
top 10 blocks. Using HCRR-DBB, HCRR-Density, HCRR-Dissimilarity and HCRR-
OD, on average, engineers can locate 50% of the faults in the top 25 blocks of each
ranking. In contrast, when engineers use the initial test suite or a random test gener-
ation strategy, in order to find 50% of the faults, they need to inspect, on average, 50
blocks in each ranking.

In summary, the test cases generated by our approach are able to help signifi-
cantly improve the accuracy of fault localization results. In particular, by adding a
small number of test cases (i.e., only 25 test cases), we are able to reduce the av-
erage number of blocks that engineers need to inspect to find a fault from 76 to 44
blocks (i.e., 42.1% reduction). Further, we have shown that the fault localization ac-
curacy results obtained based on HCRR-DBB, HCRR-Density, HCRR-Dissimilarity
and HCRR-OD are significantly better than those obtained by a random test gener-
ation strategy. Specifically, with Random test generation, engineers need to inspect
an average of 62 blocks versus an average of 44 blocks when HCRR-DBB, HCRR-
Density, HCRR-Dissimilarity and HCRR-OD are used.

RQ2. [Evaluating and comparing different test generation methods for the
intitial test suite] To answer RQ2, we applied EXP-II and obtained the fault local-
ization results based on the initial test suites generated by Adaptive Random Testing
(ART), Coverage-based (Cov) and Output Diversity (OD) as well as the fault lo-
calization results after extending the initial test suites with new test cases using our
search-based test generation algorithm.

Figs. 12 (a) - (d) show the results of the EXP-II experiment. Figs. 12(a) and (c)
show the fault localization results obtained based on different initial test suites before
applying our search-based test generation technique, and Figs. 12(b) and (d) show the
fault localization results obtained based on different initial test suites after applying
our search-based test generation technique. Specifically, Figs. 12(a) and (b) show the
number of blocks needed to be inspected to identify the faulty blocks, and Figs. 12(c)
and (d) report the proportion of faults that can be localized when inspecting a fixed
number of blocks in rankings. Note that, in this experiment, we use HCRR-DBB to
generate additional test cases (i.e., the best test objective according to RQ1).

Effective Fault Localization of Automotive Simulink Models 27

(a) (b)
260+ : 2204 :

© 1 o

9 240 %200_ ' ! '
- !

8 2207] —— JE— 180 : i ;

Q. 200 1 % H

2 180- : 1607

— 1 140

o 160 0"

5 140 | . §120 -

S 120 3100—

m 4g0] 1

- 100+ o 80

O 80+ o

3# g 1% 607

é 40: 40—-

S 20 = 204
0

Proportion of Faults localized
g
=

Proportion of Faults localized

10%]

10 20 30 40 50 60 70 80 >80 10 20 30 40 50 60 70 80>80
Max. Number of Blocks Inspected(on average) Max. Number of Blocks Inspected(on average)

Fig. 12 Comparing the fault localization accuracy results obtained based on different initial test suites
generated by Adaptive Random Testing (ART), Coverage-based (Cov), and Output Diversity (OD): (a) the
number of blocks inspected before adding new test cases; (b) the number of blocks inspected after adding
new test cases; (c) the proportion of faults localized before adding new test cases; and (d) the proportion
of faults localized after adding new test cases.

According to Fig. 12(a), engineers on average need to inspect at most 76, 72, and
80 blocks to locate faults when they generate rankings using the initial test suites
generated by ART, Cov, and OD, respectively. As shown in Fig. 12(b), after adding
new test cases, on average, the numbers of blocks engineers need to inspect reduce
to 42.4, 47.2, and 43.2 for the initial test suites generated by ART, Cov, and OD,
respectively. As these diagrams show, the differences between the fault localization
results computed based on different initial test suites before and after applying our
search-based test generation algorithm are small. Similarly, as Figs. 12 (c) and (d)
show, the differences between the proportions of faults localized when a fixed number
of blocks are inspected are very close for different initial test suites and considering
results before and after applying test suite expansion.

We further applied the Wilcoxon test and computed the A1, effect size values to
statistically compare the effectiveness of our approach for different initial test suites.
The distributions that we statistically compare each have 600 points (i.e., each distri-
bution in Figs. 12(a) and (b) has 600 points). The p-values and the effect size values
are shown in Table 5. Specifically, the table shows the p-values (the Ao effect size
values resp.) obtained by comparing the pairs of distributions in Fig. 12 (a) together
(i.e., those obtained before test generation), and comparing the pairs of distributions

28 Bing Liu et al.

in Fig. 12 (b) together (i.e., those obtained after test generation). As shown in Ta-
ble 5, the differences between fault localization results obtained by different initial
test suites are not statistically significant, i.e., all p-values are higher than 1%, our
chosen level of significance («). Further, the effect size values are close to 0.5.

Table 5 The wilcoxon test results (p-values) and the Ao effect size values comparing pairs of distribu-
tions in Fig. 12. The cells show: (the p-value for before test generation results) / (the p-value for after test
generation results) or (the A2 effect size for before test generation results) / (the Aj2 effect size for after
test generation results).

Pair
Avs. B
ART vs.OD 0.58/0.06 0.53/0.49
ART vs. Cov 0.14/0.011 0.52/0.48

Covvs.OD 0.015/0.07 0.5/0.51

p-value Ais

In summary, among the three test generation techniques, Cov leads to the best
fault localization accuracy average before expanding initial test suites, and ART
yields the best fault localization accuracy average after adding new test cases. How-
ever, in general, the differences among fault localization accuracies obtained based
on different initial test suites are not statistically significant.

RQ3. [Evaluating impact of adding test cases] To answer this question, we
evaluate the fault localization accuracy of the ranking results obtained at each test
generation round. These results produced by performing EXP-I. In particular, we
computed the fault localization accuracy of rankings obtained by applying HCRR-
DBB, HCRR-Density, HCRR-Dissimilarity and HCRR-OD to our 60 faulty versions
from round one to five where at each round five new test cases are generated. Recall
that we have repeated 10 times each application of our technique to each faulty model.
That is, in total, we have 2400 trials (60 faulty versions x 4 algorithms x 10 runs).
Among these 2400 trials, we observed that, as we go from round one to round five, in
1376 cases (i.e., 57.3%), the fault localization accuracy improves at every round; in
952 cases (i.e., 39.7%), the accuracy improves at some (but not all) rounds; and in 72
cases (i.e., 3%), the accuracy never improves at any of the rounds from one to five.

To explain why adding new test cases does not always improve fault localization
accuracy, we investigate the notion of Coincidentally Correct Test cases (CCT) for
Simulink [42]. CCTs are test execution slices that execute faulty blocks but do not
result in failure. We note that as we add new test cases, the number of CCTs may
either stay the same or increase. In the former case, the fault localization accuracy
either stays the same or improves. However, in the latter case, the accuracy changes
will be unpredictable.

In summary, adding test cases may not always improve fault localization accuracy.
Hence, it is important to have mechanisms to help engineers stop test generation when
it is unlikely to be beneficial for fault localization.

RQ4. [Effectiveness of our STOPTESTGENERATION subroutine] To answer
this question, we performed EXP-III. In order to generate alternative prediction mod-
els for the STOPTESTGENERATION subroutine, we proposed four features and cre-

Effective Fault Localization of Automotive Simulink Models 29

(a)
2807 :
o 260 : :
2240— i i i 4 | s
8220— :
%zoo—
£ 180 !
) 1601 i
ﬁuo— ! ! ! !
guo- o - T T T . -
e 100 i
O 4
:“f 60+
5 [1 1 M 1] 1 1]
© 40
sall Uy yl
o T T T T
FC1 FC2 FC3 ' FC4 ' FC5 ' FC6 FC7
(b)
25 . —-— - - = -
S -
% 23
3
© 214
w 1 - L L 1
3 194
P/
O 474
"‘;" i
2 15
g 13-
c -
=R
'c - L L] L L
%]
-
O 7
H*
54 — L 4 L L L L
FC1 ' FC2 ' FC3 ' FC4 ' FC5 ' FC6 ' FC7

Fig. 13 Comparing the performance of STOPTESTGENERATION with predictor models built based on
different feature combinations F'C'y to F'C'7: (a) The maximum number of blocks inspected, and (b) the
number of new test cases added.

ated seven different input feature combinations (see Section 4.2 and Fig. 10 (c)) for
our prediction models. In this question, we consider all the statistical ranking results
obtained by applying the five rounds of test generation to the 60 faulty versions as
well as the corresponding accuracy results. For all of these rankings, we randomly di-
vide them into three sets and use one of these sets to build the decision tree prediction
model (i.e., as a training set). The other two sets are used to evaluate the decision tree
prediction model (i.e., as test sets). Following a standard cross-validation procedure,
we follow this process three times so that each set is used as the training set at least
once. To build these models, we set THR = 15 (i.e., the threshold used to determine
the Stop and the Continue labels in Section 3.2). That is, engineers are willing
to undergo the overhead of adding new test cases if the fault localization accuracy is
likely to improve by at least 15 blocks.

To answer which feature combination among the seven alternative combinations
performs the best, we build alternative prediction models based on seven different

30 Bing Liu et al.

feature combinations. Fig. 13 (a) shows the fault localization accuracy results (i.e.,
the maximum number of blocks inspected) obtained by our test generation algo-
rithms when the prediction model used in the STOPTESTGENERATION subroutine
is built based on the seven alternative feature combinations. Fig. 13 (b) shows the
number of new test cases generated by our search-based algorithm when we applied
the STOPTESTGENERATION subroutine using prediction models built based on the
seven feature combinations. Note that we generate 25 test cases if we do not use the
STOPTESTGENERATION subroutine at all.

Our goal is to identify the feature combination that yields the best fault localiza-
tion accuracy with the fewest number of newly generated test cases. Considering that
developing test oracles is expensive, and given that the fault localization accuracies
for the seven feature combinations are very close (see Fig. 13 (a)), the feature com-
bination FC; = {r, SetDistance, OrderingDistance} is the best performing one.
Specifically, #'C; achieves almost the same fault localization accuracy as the other
combinations, but leads to significantly fewer newly generated test cases (i.e., an av-
erage of 12.8 test cases).

We further computed the statistical test results and the A, effect size values
to compare different feature combinations with respect to the number of additional
test cases generated (i.e., comparing distributions in Fig. 13(b)). We note that each
distribution in Fig. 13(b) consists of 4800 points. The resulting p-values and effect
size values are reported in Table 6. Specifically, the table shows that the number of
new test cases generated by F'C is significantly less than those created by other
feature combinations with medium effect size values.

Table 6 The p-values and effect size values comparing the FC1 feature combination with other feature
combinations based on the distributions reported in Fig. 13 (b).

Pair

Avs.B
FC1 vs. FC2 0.00 0.41
FC1 vs. FC3 0.00 0.34
FC1 vs. FC4 0.00 0.35
FC1 vs. FC5 0.00 0.36
FC1 vs. FC6 0.00 0.46
FC1 vs. FC7 0.00 0.35

p-value Apo

We now show the degree of improvement that STOPTESTGENERATION subrou-
tine brings about when it uses a prediction model built based on feature combination
{r, SetDistance, OrderingDistance}.

Fig. 14(a) shows the fault localization accuracy results (i.e., the maximum number
of blocks inspected) obtained by our four test generation algorithms (HCRR-DBB,
HCRR-Density, HCRR-Dissimilarity and HCRR-OD) and when the STOPTESTGEN-
ERATION subroutine is used with the three decision tree prediction models gener-
ated by cross-validation. These results are shown in columns with with stop la-
bel. Fig. 14(a), further, shows the accuracy results obtained by applying the five
rounds without using STOPTESTGENERATION in columns labeled without stop.
In addition, Fig. 14(b) shows the number of new test cases generated by HCRR-

Effective Fault Localization of Automotive Simulink Models 31

(a)

260 - . '
240
2201
200 !
1804 i
160 :
140+
1204
100- : i

60, m_ m I
M ERERERN
0 without | v;t-h wi(-h;utl with [without T :ﬂ:h without T ;v;h

stop stop stop stop ! stop stop | stop stop
HCRR- HC HC HC

Max. # of Blocks inspected

DBB Dissimilarity Density oD

(b)

T 254 —— — - p——
P} .
T 2349
o .
© 214]
D 19
w -
C 174
(8] .
w154 1] -
(7] -
9 13-
1_5 11
c - -
O 9+
T 71
S .
5 . —J . —
m 1 1 1
Y HCRR- HCRR- HCRR- HCRR-
o DBB Dissimilarity = Density oD
3

Fig. 14 Comparing the performance of STOPTESTGENERATION applied with different test objectives
HCRR-DBB, HCRR-Density, HCRR-Dissimilarity and HCRR-OD, and with a predictor model built based
on the feature combination F'C'1: (a) The maximum number of blocks inspected, and (b) the number of
new test cases added.

DBB, HCRR-Density, HCRR-Dissimilarity and HCRR-OD when we applied the
STOPTESTGENERATION subroutine. Note that the results related to F'C'; in Fig. 13(b)
is the combined results obtained for all the four test generation methods, while in
Fig. 14(b), the same results are shown per each test generation method separately.
According to Fig. 14, we are able to obtain almost the same fault localization
accuracy with considerably fewer new test cases when we use STOPTESTGENER-
ATION subroutine compared to when we do not use it. In particular, on average,
when we use the STOPTESTGENERATION subroutine, the fault localization accu-

32 Bing Liu et al.

racies obtained for HCRR-DBB, HCRR-Dissimilarity, HCRR-Density and HCRR-
OD are 47.3, 47.9, 50.4 and 50.8, respectively. In contrast, without the STOPTEST-
GENERATION subroutine, the fault localization accuracies obtained for HCRR-DBB,
HCRR-Dissimilarity, HCRR-Density and HCRR-OD are 43, 43.4, 45.1 and 47, re-
spectively. We note that these accuracies are obtained by only generating, on average,
11 test cases for HCRR-DBB, 12 test cases for both HCRR-Density and HCRR-
Dissimilarity, and 16.7 test cases for HCRR-OD.

In summary, our approach identifies situations where adding new test cases does
not improve fault localization results, and helps stop generating additional test cases
in such situations. Our experiments show that, among the seven feature combina-
tions described in Section 4.2, a prediction model built based on the feature combi-
nation {r, SetDistance, OrderingDistance} yields the best trade-off between fault
localization accuracy and the number of newly generated test cases. Overall, when
engineers use the STOPTESTGENERATION subroutine with the feature combination
{r, SetDistance, OrderingDistance}, they need to inspect a few more blocks (i.e.,
around five blocks) on average, compared to not using the STOPTESTGENERATION
subroutine at all. But the number of test cases, and hence the test oracle cost, reduces
significantly (i.e., 33.6% to 56% fewer test cases).

RQS. [Impact of predictor model’s settings] To answer this question, we per-
formed EXP4 as described in Section 4.2 and Fig. 10(d). We evaluate the impact of
changing the STOP/CONTINUE threshold, i.e., THR, used in STOPTESTGENERA-
TION subroutine.

Fig. 15 shows the results of EXP4: In Fig. 15(a), we show the fault localization
accuracies (i.e., the maximum number of blocks inspected) obtained by our test gen-
eration algorithm when different THR values (i.e., THR =5, 10, 15, 20, 25, 30, 35)
are used to train the prediction models in the STOPTESTGENERATION subroutine.
Fig. 15(b) shows the number of newly generated test cases corresponding to different
THR values.

As shown in Fig. 15(a), the differences between the fault localization accuracy
averages for different THR values are not very large (i.e., less than 11 blocks). In
general, by increasing THR values, the number of blocks that needs to be inspected
by engineers increases, even though the increase is not very large. On the other hand
(as shown in Fig. 15(b)), as we increase T'HR values from 5 to 35, the average number
of newly generated test cases decreases from 19 to 10.

The trends shown in Figs. 15(a) and (b) match our intuition. Specifically, for
higher THR values, our STOPTESTGENERATION subroutine stops generating new
test cases more quickly. This is because for higher THR, this routine requires higher
predicted improvement in fault localization accuracy to permit test generation, and
hence, in general, it leads to the generation of fewer new test cases. Our results,
in addition, show that by increasing THR from 5 to 35, while the number of the
newly generated test cases decreases significantly (i.e., around nine fewer test cases
on average), the degradation in fault localization accuracy is relatively small (around
eleven more blocks to inspect on average).

We also computed p-values and effect size values to statistically compare the
results obtained by varying the threshold (T'HR) values. Tables 7 and 8 show the

Effective Fault Localization of Automotive Simulink Models 33

(a)
280
g 2604 ¢ : ' ' i '
SEL Ly
8 220
g 200
o 18
% 1607
O 140] i : A S S
E 120 T _ _ - |
O 1004
oo
é o oo mem H
404
i I
O T o0 T a5 T =20 T =25 T =30 | =35
THR values
(b)

o} [l H
11 U I_I
9_
74
5 = - - —_—
T T T T T T
=5 =10 =15 =20 =25 =30 =35

THR values

f additional test cases added

#o

Fig. 15 Comparing the performance of STOPTESTGENERATION when we vary the THR value from 5 to
35: (a) the maximum number of blocks inspected, and (b) the number of new test cases added.

results comparing the distributions in Figs. 15(a) and (b), respectively. We note that
distributions in Figs. 15(a) and (b) each contain 4800 points.

In summary, increasing the parameter THR from 5 to 35 reduces both the fault lo-
calization accuracy and the number of newly generated test cases significantly. Based
on our experiment results, we conclude that an optimal value for THR is between
25 to 30. Compared to THR = 5, with a THR value between 25 to 30, engineers
need to inspect four to five more blocks on average, while, on average, are required
to develop test oracles for eight to nine fewer test cases.

5 Tool Support

We have implemented our fault localization approach in a tool called Simulink Fault
Localization tool (SimFL). Below, we discuss the working of the tool as well as some
information about the implementation of the tool.

Fig. 16 shows an overview of SimFL. SimFL essentially implements the algo-
rithm of Fig. 3. Specifically, SimFL has three main steps: Statistical Debugging,

34 Bing Liu et al.

Table 7 The wilcoxon test results (p-values) and the A1 effect size values comparing distributions in
Fig. 15 (a) (i.e., comparing the impact of threshold values on the number of blocks inspected).

Pair

Avs.B
THRS vs. THR10 0.02 0.50
THRS vs. THR15 0.00 0.48
THRS vs. THR20 0.00 0.49
THRS vs. THR25 0.00 047
THRS vs. THR30 0.00 0.42
THRS vs. THR35 0.00 0.4
THR10 vs. THR15 0.00 0.49
THR10 vs. THR20 0.00 0.49
THRI10 vs. THR25 0.00 0.47
THR10 vs. THR30 0.00 0.42
THR10 vs. THR35 0.00 0.41
THRI15 vs. THR20 0.32 0.50
THRI15 vs. THR25 0.01 0.49
THRI1S5 vs. THR30 0.00 0.43
THRI15 vs. THR35 0.00 0.42
THR20 vs. THR25 0.00 0.48
THR20 vs. THR30 0.00 043
THR20 vs. THR35 0.00 0.42
THR2S vs. THR30 0.00 0.44
THR2S5 vs. THR35 0.00 0.43
THR30 vs. THR35 0.00 0.48

p-value Ajo

Stop Test Generation and Test Generation. These three steps, respectively, match the
three subroutines shown in the algorithm of Fig. 3 (i.e., STATISTICALDEBUGGING,
STOPTESTGENERATION and TESTGENERATION). We describe the implementation
of each of these steps in the SimFL tool below.

The Statistical Debugging step consists of the following three modules: test case
execution, fault localization and super block computation. The test case execution
module always precedes the fault localization module. The super block computation
module is optional (as indicated by dashed lines in Figure 16). But if this module
is activated, it executes before the fault localization module. In the test case execu-
tion module, SimFL directly invokes Matlab/Simulink to execute the input Simulink
model based on the input test suite. The tool then collects test coverage information
to compute test execution slices for each individual model output and each test case
(i.e., the TES rg set in Fig. 3). The fault localization module receives as input the
TES 75 set as well as the pass/fail information (oracle) corresponding to each out-
put and each test case. SimFL then generates a ranked list using a desired statistical
debugging formula specified by the user. Currently, SimFL supports two statistical
ranking formulas: Tarantula [34] and Ochiai [1]. When the super block computation
module is not activated by the user, the ranked list generated by SimFL consists of
Simulink atomic blocks. Otherwise, if the super block computation module is acti-
vated, Simulink super blocks are computed (as discussed in Section 3.2) and are pro-
vided as an additional input to the fault localization module. In this case, the ranked
list generated by SimFL consists of Simulink super blocks.

SimFL uses the user interface shown in Fig. 17 to visualize the ranked lists gen-
erated by the statistical debugging step and to let users inspect the blocks (or super

Effective Fault Localization of Automotive Simulink Models

35

Test Suite

— 1

Super Block
Computation |
|

—————————

Test Case Execution

New Pass/Fail info

D7

Engineers

Fault Localization New test cases

Pass/Fail Info

Stop Test Generation

Need more test cases?

@
.

Test
I) Search-based Test
Generation
Model Input Info
Fig. 16 Workflow of SimFL
Ranking List Information
v Ranking *
v RankGroup1 Blockiianes ez
SID31 s
Block Type: um
SID32 e
SID33 Highlight in the model
SID34
v RankGroup2 Debug Suggestions:
sID17
The suggestions are:
SIiD8 1. Please check the function is correctly defined?
sID9 2. Please check the number of inputs is correct or not?
3. Please check the output connect correctly or not?

SID41
SiD44
SID42 Pass/Fail Info:
SID43
SID35

66%
SID6

33%
SID19
SID29
SID30
SID28 Vi

Fig. 17 The debug window of SimFL

36 Bing Liu et al.

Table 8 The wilcoxon test results (p-values) and the A1 effect size values comparing distributions in
Fig. 15 (b) (i.e., comparing the impact of threshold values on the number of additional test cases generated).

Pair

Avs.B
THRS vs. THR10 0.00 0.58
THRS vs. THR15 0.00 0.76
THRS vs. THR20 0.00 0.76
THRS vs. THR25 0.00 0.83
THRS vs. THR30 0.00 0.77
THRS vs. THR35 0.00 0.78
THR10 vs. THR15 0.00 0.68
THR10 vs. THR20 0.00 0.68
THRI10 vs. THR25 0.00 0.75
THR10 vs. THR30 0.00 0.71
THR10 vs. THR35 0.00 0.72
THRI15 vs. THR20 0.48 0.51
THRI15 vs. THR25 0.00 0.60
THRI1S5 vs. THR30 0.00 0.57
THRI15 vs. THR35 0.00 0.59
THR20 vs. THR25 0.00 0.60
THR20 vs. THR30 0.00 0.57
THR20 vs. THR35 0.00 0.58
THR2S vs. THR30 0.00 0.48
THR2S5 vs. THR35 0.00 0.50
THR30 vs. THR35 0.00 0.51

p-value Ajo

blocks) in the generated ranked lists. The window in Fig. 17 is divided into two parts:
on the left side, SimFL presents the generated ranked list in a hierarchical form. At
the first hierarchy level, rank groups are shown in the list. Users can expand each rank
group to browse and inspect the blocks in each rank group. Recall that the blocks in
the same rank group have the same suspiciousness score. When the super block com-
putation module is activated, the ranked list has three hierarchy levels: The first level
shows the rank groups, the second level shows the super blocks in each rank group,
and the third level shows the atomic blocks inside each super block. The atomic
blocks in the rank list are identified based on their unique Simulink ID values (i.e.,
Simulink SID). By clicking on each atomic block in the ranked list, the right side of
the window in Fig. 17 is automatically populated with some information about the
selected block in the ranked list. In particular, the right part of the window shows
the block name, the block type (e.g., constant, arithmetic operation, relation, switch),
some bug fixing suggestions and a pie chart illustrating the percentages of pass and
failed test cases that have executed the selected block. The bug fixing suggestions
are some informal hints describing in what ways a selected block might be faulty.
These suggestions depend on the Simulink block type. For example, Fig. 17 shows
the bug fixing suggestions related to the “Sum” block. Finally, in order to help users
quickly find the exact location of a selected block in the original model, SimFL pro-
vides a button (“Highlight in the model” button in Fig. 17) that when it is clicked,
the underlying Simulink model is opened and the selected Simulink atomic block is
highlighted in the model.

The user interface in Fig. 17 helps users browse the ranked list and inspect the
most suspicious blocks in the ranked list. The users may be able to identify the fault

Effective Fault Localization of Automotive Simulink Models 37

in their model at this step and stop debugging. Otherwise, in the stop test generation
step, they need to decide whether rankings are likely to be improved by generating
new test cases. This step currently implements the first part of the STOPTESTGEN-
ERATION algorithm in Figure 6 (i.e., lines 1 to 4). In particular, it computes the super
blocks in the underlying Simulink model, and checks if each of the top ranked groups
in the ranked list consists of a single super block. If so, there is no need to proceed
to the last step (i.e, the test generation step) since adding new test cases does not
improve the statistical ranking results. The SimFL tool currently does not implement
the part of the STOPTESTGENERATION algorithm that relies on historical data to
build prediction models. So in the stop test generation step of SimFL, users must de-
cide if they want to move to the last step unless the super block information suggests
otherwise.

In the test generation step, SimFL uses a search-based test generation algorithm to
generate a set number of new test cases. Users can choose the test generation objective
among the DBB, Dissimilarity and Density test objectives, and the search algorithm
between the HCRR and HC algorithms. They can also specify, based on their test
oracle budget, the number of new test cases that they wish to generate. Finally, users
should provide the value ranges of Simulink model inputs. Specifically, the value
ranges are provided in XML format and used by our test generation algorithms. Once
new test cases are generated, users need to provide the oracle information related to
the new test cases. They can then reiterate through the steps in Fig. 16 to generate new
statistical rankings and to debug their models. They may stop the debugging process
when they successfully find a fault in their model or when they run out of budget.

SimFL has been implemented as a standalone application in Java. The pre-requisites
of the tool are: (i) JDK version later than 1.7, and (ii) Matlab/Simulink version later
than 2012. SimFL can run in both MacOS and WindowsOS environments. The GUI
is implemented in JavaFX. We adopt a third-party Java API Matlab control [31]
to invoke execution of the Simulink model in our tool. The tool is available at:
http://sites.google.com/svv.lu/simfl

6 Threats to Validity

In this section we discuss the threats to validity based on the following four perspec-
tives of validity and threats:

Conclusion validity: The main threats to conclusion validity arise from not account-
ing for random variation and inappropriate use of statistics. We mitigate these threats
by running each different search algorithm ten times on sixty faulty versions obtained
from our three industry models. This led to a large number of observation points to
be used as a basis for our comparisons. Following existing guidelines [7], we used
non-parametric pairwise Wilcoxon signed-rank test, and Vargha and Delaney’s Aqs
for our statistical comparisons.

Internal validity: In our work, we evaluated our approach on faulty industrial Simulink
models where each faulty model contains only one fault. In practice, models may
have multiple faults that may impact one another in unknown ways. Hence, our ex-
periment results might be different when our approach is applied to Simulink models

38 Bing Liu et al.

with multiple faults. However, a large bulk of existing research on fault localization
is exclusively evaluated on software artifacts (i.e., typically programs) seeded with
single faults [11, 17]. To be able to compare our results with those reported in the
literature, we decided to be consistent with the existing experiment settings and eval-
uate our approach on models seeded with single faults.

The input signals used in our experiment are considered to be constant over time
(as discussed in Section 2). This is mainly because the subject models used in our
experiments are physical plant models that are mostly tested using constant signals
in practice. Other Simulink models may be tested using more complex input signals.
This however may come at the cost of requiring more time and effort to predict correct
signal outputs to determine pass/fail information for each test case.

Construct validity: The main threat to construct validity is posed by unsuitable or ill-
defined metrics. To this end, we note that we mainly used the following two standard
metrics used in the fault localization research to analyze our results: the absolute
number of blocks inspected to find faults, and the proportion of faults localized.
External validity: Our approach is focused on fault localization of Simulink mod-
els. Simulink is used by more than 60% of the engineers developing Cyber-Physical
Systems (CPSs) [83], and is the prevalent modeling language in the automotive do-
main [79]. In our experiments, we evaluated our approach using three representative
industrial subjects from our partner company, Delphi Automotive Systems. We asked
a senior Delphi test engineer to provide us with realistic faults for Simulink models.
We further ensured that the faults are of different types and are seeded into different
parts of the models. We have listed the faults used in our experiments in Section 4.2.
Further, the faults used in our work represent the most common faults observed in
practice and also used in the existing literature on mutation operators for Simulink
models [16, 24,28, 78, 81]. However, the three Simulink models used in this study
were used to model physical plants. It is yet to be seen if our results generalize to
Simulink models to capture other aspect of CPSs and Simulink models from other
domains, e.g., avionics.

Our approach is designed for situations where test oracles are developed manu-
ally. Based on our observations, this is a common situation in many companies in the
automotive domain. Other test generation methods [8,63] can be used in conjunction
with fault localization if test oracles can be automated.

To build prediction models utilized in the STOPTESTGENERATION subroutine,
our approach requires historical data containing statistical rankings and the position
of faulty blocks in those rankings. Such data may not always be available. In this
case, the STOPTESTGENERATION subroutine (lines 4 and 5) can be skipped in our
approach shown in Fig. 3.

7 Related Work

As noted earlier, this article is an extension of a previous conference paper [43]. In
this section, we discuss and compare with several other strands of related work in the
areas of automated test generation, model debugging and predicting fault localization
results.

Effective Fault Localization of Automotive Simulink Models 39

7.1 Automated test generation

Several techniques have been proposed to generate test cases for Simulink models.
Some of these techniques focus on generating test suites with high mutant-killing
capabilities [16,29, 81, 82]. A mutant is killed by a test case if the output yields de-
viations for some output when applied to both the mutant model and the original
model. These mutant-killing techniques assess the quality of test suites by measur-
ing the number/percentage of mutants that can be eliminated/identified by a given
test suite. Mutation-based techniques can be implemented either using search tech-
niques [81, 82] or behavioral analysis techniques [16,29].

Other test generation techniques focus on generating coverage-adequate test suites
for Simulink models. For example, search-based techniques have been applied to
minimize a fitness function that approximates how far a given test input is from cov-
ering a specific Simulink block or Stateflow state [73,74, 80]. Reachability analysis
is used to generate coverage-adequate test inputs by measuring unreachability of the
faulty model parts [27, 55, 65]. Recently some techniques generate test suites for
Simulink models aiming to maximize diversity of the generated test outputs [53,54].

Almost all test generation approaches discussed above aim to generate test suites
with high fault-revealing ability. In other words, the generated test suites are assessed
based on their ability to produce outputs differing from the expected results, hence re-
vealing failures. In our work, however, we assume some failures are already revealed
using an existing test suite. Our aim is to extend the test suite with new test cases to
improve the accuracy of statistical debugging.

A number of test generation techniques specifically focus on generating test cases
to improve fault localization [8, 11,32, 63]. All these techniques are targeted at and
evaluated on software code, and none have been applied to Simulink models. Among
these techniques, some [8, 63] rely on the presence of an automated test oracle to
generate test cases. Recall that one important requirement in our work is that the
pass/fail information for each candidate test input is not readily available. Hence, test
generation techniques that require such information to improve fault localization [8,
63] are not applicable since these techniques are feasible only when test oracles are
automatable.

The test generation techniques proposed by Baudry et. al. [11] and Campos et.
al. [17] do not rely on the presence of test oracle information to generate new test
cases for fault localization improvement. Both of these techniques attempt to generate
test cases that execute varying subsets of program statements. In particular, Baudry
et. al. [11] guide test generation by maximizing the number of Dynamic Basic Blocks
(i.e., program elements that are always executed together), and Campos et. al. [17]
attempt to generate test cases that yield an optimized value for their proposed notion
of coverage density. In our work, we adapt these two test generation algorithms to
Simulink models. In addition, we introduce a new test generation objective that has
previously been used for test prioritization [32] and use it to improve fault localization
for Simulink models. In contrast to the above-mentioned work [11,17,32], we assess
the capabilities of test generation techniques in improving Simulink fault localization
when the number of newly generated test cases is small. We, further, combine these

40 Bing Liu et al.

techniques with a predictor model that stops test generation when new test cases are
not likely to help improve fault localization accuracy.

Very recently, Perez et al. [S9] proposed a new test objective referred to as Density-
Diversity-Uniqueness (DDU) that combines the DBB [11] and Density [17] test ob-
jectives discussed in this paper as well as a third test objective defined based on cov-
erage diversity [35]. The DDU test objective aims to mitigate the limitations of these
individual test objectives to generate test cases that lead to improved statistical fault
localization results. Given that DDU does not require automated test oracles, we can
consider it as an alternative test objective in our work and assess its performance on
improving fault localization in Simulink models. We leave to future work integration
of DDU into our framework and comparing it with the test objectives studied in this

paper.

7.2 Model Debugging

There is a growing body of research on techniques to enable model debugging, most
particularly in the model-driven engineering community [9]. Some of these tech-
niques focus on providing tools and features to help with manual debugging of soft-
ware models (e.g. [9,56]). Automated approaches to fault localization and debugging
at the level of software models can be broadly divided into the following two cate-
gories [9]: First, techniques that enable model debugging at the level of simulation
models and rely on simulators or model interpreters. Such techniques complement
design-time simulation by helping identify and localize faults in early and executable
design models. Second, techniques that translate models into another language, typi-
cally a programing language, and largely rely on debuggers or analysis tools available
for that language.

Our previous work [42] as well as our current work is focused on applying and
improving statistical debugging at the level of Simulink models and fall in the first
category described above. To the best of our knowledge our approach is the first to
apply statistical debugging at the level of Simulink models to enable early stage and
design time analysis of these models.

A number of testing techniques for Simulink models translate Simulink models
into code and use existing code analysis tools to detect faults in the models [10, 58].
While these techniques are useful for testing late-stage Simulink models (i.e., code-
generation Simulink models [54]), they are not typically applicable to early-stage
Simulink models with continuous behavior (e.g., those containing plant models and
continuous controllers) [54]. Further, the testing results have to be translated back to
the level of Simulink models to be useful for any debugging task. None of the above
approaches provide a mechanism to translate the testing results obtained at the code
level into interpretable data at the level of the original Simulink models.

Our work relates to the work of Schneider [66] that proposes a technique for
tracking the root causes of defects in Simulink. In that technique, engineers identify
failures, typically run-time failures, at the level of code generated from Simulink
models. The program statement that exhibits the failure is then mapped to a Simulink
block, and all the paths leading to that block are collected and assigned weights based

Effective Fault Localization of Automotive Simulink Models 41

on some heuristic. The path with the highest weight is then reported to the engineer as
the root cause of the defects. This work focuses on runtime failures (e.g., division by
zero), while in our work, we consider a wider range of fault types for Simulink models
(see Section 4.2). Further, Schneider [66] does not provide any realistic evaluation
of the proposed approach. Also, as they do not report the number of blocks that
engineers need to eventually inspect, the expected debugging effort is not clear either.
Finally, Schneider [66] does not propose any mechanism to improve fault localization
accuracy when a debugging task turns out to be inconclusive for a given test suite.

7.3 Slicing and Analyzing Simulink models

In our previous work [42], we defined test execution slices for Simulink models to
support our statistical debugging approach. As noted there, our notion of test execu-
tion slice for Simulink models differs from the notion of execution slice defined by
Agrawal [2] for programs. Specifically, an execution slice is the set of basic blocks
or decisions that are executed by a test case to produce all outputs in programs [2].
However, test execution slices in our paper are defined per test case and per output.
In a similar vein, Approximate Dynamic Backward Slicing (ADBS) [47] bears some
similarities to our notion of test execution slice. To clarify the differences between
these two, we note that our notion of test execution slice accounts for the blocks that
are executed by a test case and affect a specific output generated by that test case.
However, ADBS contains program statements executed by a test case and appearing
in the backward static slice of a specific output, but these statements do not necessar-
ily affect the output generated by that test case. Finally, Reicherdt and Glesner [61]
proposed a slicing method for Simulink models where control dependencies are ob-
tained via Simulink Conditional Execution Contexts (CECs) and are used to create
static slices based on a set of blocks. In our work, we chose to use model execu-
tion information to identify control dependencies and compute slices since the static
slicing proposed by Reicherdt et al. [61] and Sridhar et al. [68] based on CECs may
provide over approximations that may not be sufficiently precise to determine control
dependencies. Moreover, the computation for CECs is more expensive than our test
execution slices computation.

We note that our notion of test execution slices is primarily meant to enable sta-
tistical debugging for Simulink models. Some recent approaches focus on developing
variant slicing and model exploration operators for Simulink models [25,56] as well
as tree-like models [26]. Comparing our slicing approach with these recent slicing
techniques and utilizing them in the context of statistical debugging is outside the
scope of this paper and left for future work.

7.4 Predicting Fault Localization Results

In this paper, we use two strategies to predict whether adding new test cases can
improve the fault localization accuracy: (1) super block computation, and (2) building
prediction models. Here, we discuss each strategy and contrast it with the relevant
related work.

42 Bing Liu et al.

7.4.1 Super Block Computation

As we discussed in Section 3.1, the concept of Dynamic Basic Block (DBB) proposed
by Baudry et al. [11] bears some similarities with our notion of super block. For a
given test suite, a DBB is a subset of statements such that any test case in the test suite
executes either all or none of these statements. In contrast, a super block is a subset of
Simulink atomic blocks such that any arbitrary test case executes either all or none
of the blocks in a super block. That is, super blocks are not tied to any specific test
suite and are computed purely based on static analysis of Simulink models. Due to
the definition of super blocks, when a ranked group consists of a super block only,
we can conclude that generating more test cases will not lead to partitioning that
rank group. Hence, super blocks can be used as heuristics to predict if new test cases
can improve the fault localization accuracy. However, DBBs cannot be used for this
purpose.

Our notion of super blocks bears some similarities with program basic blocks [3].
However, a program basic block is a maximal sequence of instructions executed to-
gether, while our notion of super block is a maximal set of blocks that are always
executed together, and the blocks in a super block do not have to form a sequence.
Moreover, super blocks differ from the notion of postdominance used in control flow
graphs [4]. In particular, postdominance is an asymmetric notion: A node d in a con-
trol flow graph post-dominates a node n if every path from n to the exit node passes
through d. This implies that any test case executing n will execute d as well, but there
might be test cases that execute d but not n. Based on our notion of super blocks,
however, nodes d and n are in a super block if and only if every test case executes
either both or neither of them.

Finally, as discussed in the background section (i.e., Section 2), in order to adapt
statistical debugging to Simulink models, we define the notion of test execution slice
over Simulink models. However, since the details of this adaptation as well as compu-
tation of test execution slices have been discussed in detail in our previous paper [42],
in this paper, we do not further discuss our slicing approach and do not compare it
with the related work on slicing Simulink models.

7.4.2 Building Prediction Models

Le and Lo [38] propose an approach to predict fault localization accuracy based on
features extracted from statistical rankings generated by a fixed and specific test suite.
Our predictor model instead is built based on features that compare statistical rank-
ings generated by a test suite and its extensions. Moreover, our predictor model is
used to help stop test generation and to ensure test suite minimality. Further investi-
gation is required to assess the effectiveness of the features proposed in [38] as a test
generation stopping criterion.

Xia et al. [77] select a subset of a given test suite such that the fault localization
accuracy achieved by the subset is the same as the accuracy achieved by the entire
test suite. Similar to our work, they create predictor models based on changes in
rankings as new test cases are added to the underlying test suite. However, they build
a predictor model for each program element as opposed to our work where we build

Effective Fault Localization of Automotive Simulink Models 43

one predictor model based on the changes in the top-N ranked groups. As discussed
earlier, since Simulink atomic blocks in the same super block always have the same
rank, creating separate predictors for each individual atomic blocks is too fine-grained
and redundant. Furthermore, at each round, in order to select a test case, Xia et al. [77]
need to compare the spectra of the candidate test case with those of all the remaining
test cases. This makes their approach computationally and memory intensive when
the test suite from which test cases are selected is large. In our work, however, we
extend an initial test suite using a search-based test generation technique guided by
objectives that aim to increase test suite diversity without any need to compare the
spectra of many test cases.

The predictability and accuracy of fault localization results might also be im-
pacted by the presence of coincidentally correct test cases (CCT), i.e., test cases that
execute a fault but are not able to reveal it, and hence, are counted as a passing test
case [72]. A recent study by Masri et al. [48] shows the prevalence of CCT in test
suites applied to programs for the purpose of testing or statistical debugging. Some
recent papers [6, 19] define information theoretic metrics to predict when an error at
an intermediate program statement may fail to propagate to final outputs, and hence,
potentially lead to CCT. Such metrics might help us improve fault localization accu-
racy by identifying and excluding test cases that are likely to be CCT when executed
on the underlying Simulink model. We leave investigating this line of research to
future work.

8 Conclusion

In this paper, we improve fault localization accuracy for Simulink models by extend-
ing an existing test suite with a small number of test cases. The latter requirements are
very important in contexts where running and analyzing test cases is expensive, such
as with embedded systems. Our approach has two components: (1) A search-based
test generation algorithm that aims to increase test suite diversity, and (2) a predictor
model that predicts if additional test cases are likely to help improve fault localization
accuracy. Our work is driven by an important consideration that in some situations,
test oracles are manual and hence expensive, or running test cases takes a long time.
As a result, we assess our test generation technique for small test suite sizes, and use
our predictor models to avoid generating additional test cases when they cannot lead
to substantial improvement justifying their incurred overhead. Our results show that
our test generation technique significantly improves the accuracy of fault localization
for small test suite sizes. We further show that varying test objectives used to gener-
ate the initial test suites does not have a significant impact on the fault localization
results obtained based on those test suites. We evaluate and compare the performance
of different prediction models built based on seven alternative feature combinations,
and identify the best-performing one. Based on our experiment, our best prediction
model is able to maintain a similar fault localization accuracy while reducing the
average number of newly generated test cases by more than half.

In future, we intend to propose and experiment with alternative test objectives
that aim to improve statistical debugging for Simulink models. We further plan to
study fault localization for evolving Simulink models. A recent study of industrial

44

Bing Liu et al.

Simulink models indicates a strong co-evolution relation between changes in models
and in their corresponding test suites [60]. We plan to investigate how such relations
can be used to generate test suites that lead to effective Simulink fault localization,
especially, when models are subject to frequent changes.

Acknowledgements We gratefully acknowledge funding from the European Research Council (ERC) un-
der the European Union’s Horizon 2020 research and innovation programme (grant agreement No 694277).

References

10.

11.

17.

18.

. Abreu, R., Zoeteweij, P., Van Gemund, A.J.: On the accuracy of spectrum-based fault localization.

In: Proceedings of Testing: Academic and Industrial Conference Practice and Research Techniques-
MUTATION, pp. 89-98. IEEE (2007)

Agrawal, H., Horgan, J.R.: Dynamic program slicing. ACM SIGPLAN Notices 25(6), 246-256 (1990)
Aho, A.V,, Sethi, R., Ullman, J.D.: Compilers: principles, techniques, and tools. Addison-Wesley
Reading (2007)

Allen, FE.: Control flow analysis. SIGPLAN Notices 5(7), 1-19 (1970)

Alshahwan, N., Harman, M.: Coverage and fault detection of the output-uniqueness test selection
criteria. In: Proceedings of the 23rd International Symposium on Software Testing and Analysis
(ISSTA’14), pp. 181-192. ACM (2014)

Androutsopoulos, K., Clark, D., Dan, H., Hierons, R.M., Harman, M.: An analysis of the relationship
between conditional entropy and failed error propagation in software testing. In: Proceedings of the
36th International Conference on Software Engineering (ICSE’14), pp. 573-583. ACM (2014)
Arcuri, A., Briand, L.: A hitchhiker’s guide to statistical tests for assessing randomized algorithms in
software engineering. Software Testing Verification and Reliability 24(3), 219-250 (2014)

Artzi, S., Dolby, J., Tip, F., Pistoia, M.: Directed test generation for effective fault localization. In:
Proceedings of the 19th International Symposium on Software Testing and Analysis (ISSTA’10), pp.
49-60. ACM (2010)

Bagherzadeh, M., Hili, N., Dingel, J.: Model-level, platform-independent debugging in the context
of the model-driven development of real-time systems. In: Proceedings of the 11th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE’17), pp. 419-430. ACM (2017)

Balasubramanian, D., Pasareanu, C.S., Whalen, M.W., Karsai, G., Lowry, M.: Polyglot: modeling and
analysis for multiple statechart formalisms. In: Proceedings of the 20th International Symposium on
Software Testing and Analysis (ISSTA’11), pp. 45-55. ACM (2011)

Baudry, B., Fleurey, F., Le Traon, Y.: Improving test suites for efficient fault localization. In: Pro-
ceedings of the 28th International Conference on Software Engineering (ICSE’06), pp. 82-91. ACM
(2006)

Ben Abdessalem, R., Nejati, S., Briand, L.C., Stifter, T.: Testing advanced driver assistance systems
using multi-objective search and neural networks. In: Proceedings of the 31st International Confer-
ence on Automated Software Engineering (ASE’16), pp. 63-74. ACM (2016)

. Binder, R.V.: Testing object-oriented systems: models, patterns, and tools. Addison-Wesley Profes-

sional (2000)

. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and regression trees. CRC press

(1984)

. Briand, L.C., Nejati, S., Sabetzadeh, M., Bianculli, D.: Testing the untestable: model testing of com-

plex software-intensive systems. In: Companion Proceedings of the 38th International Conference on
Software Engineering, (ICSE’16), pp. 789-792 (2016)

. Brillout, A., He, N., Mazzucchi, M., Kroening, D., Purandare, M., Riimmer, P., Weissenbacher, G.:

Mutation-based test case generation for simulink models. In: International Symposium on Formal
Methods for Components and Objects, pp. 208-227. Springer (2009)

Campos, J., Abreu, R., Fraser, G., d’ Amorim, M.: Entropy-based test generation for improved fault lo-
calization. In: Proceedings of the 28th International Conference on Automated Software Engineering
(ASE’13), pp. 257-267. IEEE (2013)

Chen, T.Y., Leung, H., Mak, I.: Adaptive random testing. In: Proceedings of the 9th Asian Computing
Science Conference, pp. 320-329 (2004)

Effective Fault Localization of Automotive Simulink Models 45

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.
36.
37.
38.
39.
40.
41.
42.

43.

44.

45.

Clark, D., Feldt, R., Poulding, S., Yoo, S.: Information transformation: An underpinning theory for
software engineering. In: Proceedings of the 37th International Conference on Software Engineering
(ICSE’15), vol. 2, pp. 599-602. IEEE (2015)

Cleve, H., Zeller, A.: Locating causes of program failures. In: Proceedings of the 27th International
Conference on Software Engineering (ICSE’05), pp. 342-351. ACM (2005)

Delphi ~ Automotive Luxembourg: http://www.delphi.com/about/locations/
luxembourg

Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. STAM Journal on Discrete Mathematics
17(1), 134-160 (2003)

Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Transactions on Software Engineering (TSE)
39(2), 276-291 (2013)

Gay, G., Rajan, A., Staats, M., Whalen, M.W., Heimdahl, M.P.E.: The effect of program and model
structure on the effectiveness of MC/DC test adequacy coverage. ACM Transactions on Software
Engineering Methodology (TOSEM) 25(3), 25:1-25:34 (2016)

Gerlitz, T., Kowalewski, S.: Flow sensitive slicing for MATLAB/Simulink models. In: Proceedings
of the13th Working IEEE/IFIP Conference on Software Architecture, pp. 81-90. IEEE (2016)

Gold, N.E., Binkley, D., Harman, M., Islam, S., Krinke, J., Yoo, S.: Generalized observational slicing
for tree-represented modelling languages. In: Proceedings of the 11th Joint Meeting on Foundations
of Software Engineering (ESEC/FSE’17), pp. 547-558 (2017)

Hamon, G.: Simulink Design Verifier-Applying automated formal methods to Simulink and State-
Flow. In: Proceedings of the 3rd Workshop on Automated Formal Methods (2008)

Hanh, L.T.M., Binh, N.T.: Mutation operators for Simulink models. In: Proceedings of the 4th Inter-
national Conference on Knowledge and Systems Engineering, pp. 54-59. IEEE (2012)

He, N., Riimmer, P., Kroening, D.: Test-case generation for embedded Simulink via formal concept
analysis. In: Proceedings of the 48th Design Automation Conference, pp. 224-229. ACM (2011)
Jaccard, P.: Etude comparative de la distribution florale dans une portion des Alpes et du Jura. Impr.
Corbaz (1901)

Java API for Matlab: https://code.google.com/archive/p/matlabcontrol/

Jiang, B., Zhang, Z., Chan, W.K., Tse, T.: Adaptive random test case prioritization. In: Proceedings of
the 24th International Conference on Automated Software Engineering (ASE’09), pp. 233-244. IEEE
(2009)

Jones, J.A., Harrold, M.J.: Empirical evaluation of the tarantula automatic fault-localization technique.
In: Proceedings of the 20th International Conference on Automated Software Engineering (ASE’05),
pp. 273-282. ACM (2005)

Jones, J.A., Harrold, M.J., Stasko, J.: Visualization of test information to assist fault localization. In:
Proceedings of the 24th International Conference on Software Engineering (ICSE’02), pp. 467—477.
ACM (2002)

Jost, L.: Entropy and diversity. Oikos 113(2), 363-375 (2006)

Kendall, M.G.: A new measure of rank correlation. Biometrika 30, 81-93 (1938)

Kendall, M.G.: Rank correlation methods. Griffin (1948)

Le, T.D.B., Lo, D.: Will fault localization work for these failures? an automated approach to pre-
dict effectiveness of fault localization tools. In: Proceeding of the 29th International Conference on
Software Maintenance (ICSM’13), pp. 310-319. IEEE (2013)

Liblit, B., Naik, M., Zheng, A.X., Aiken, A., Jordan, M.L.: Scalable statistical bug isolation. ACM
Special Interest Group on Programming Languages Notices 40(6), 15-26 (2005)

Liu, B.: Experiments Data. https://github.com/Avartar/TCGenForFL/

Liu, B., Lucia, Nejati, S., Briand, L., Bruckmann, T.: Localizing multiple faults in Simulink models.
In: Proceedings of the 23rd International Conference on Software Analysis, Evolution, and Reengi-
neering (SANER’16), pp. 146-156. IEEE (2016)

Liu, B., Lucia, Nejati, S., Briand, L., Bruckmann, T.: Simulink fault localization: an iterative statistical
debugging approach. Software Testing, Verification and Reliability Journal pp. 431-459 (2016)

Liu, B., Lucia, Nejati, S., Briand, L.C.: Improving fault localization for Simulink models using search-
based testing and prediction models. In: Proceedings of the 24th International Conference on Software
Analysis, Evolution and Reengineering (SANER’17), pp. 359-370. IEEE (2017)

Liu, C,, Yan, X, Fei, L., Han, J., Midkiff, S.P.: Sober: statistical model-based bug localization. ACM
SIGSOFT Software Engineering Notes 30(5), 286-295 (2005)

Lucia, Lo, D., Xia, X.: Fusion fault localizers. In: Proceedings of the 29th International Conference
on Automated Software Engineering (ASE’14), pp. 127-138. ACM (2014)

46

Bing Liu et al.

46.
47.
48.

49.
50.
S1.
52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

64.

65.

66.

67.

68.

69.

Luke, S.: Essentials of Metaheuristics, vol. 113. Lulu Raleigh (2009)

Mao, X., Lei, Y., Dai, Z., Qi, Y., Wang, C.: Slice-based statistical fault localization. Journal of Systems
and Software 89, 51-62 (2014)

Masri, W., Assi, R.A.: Prevalence of coincidental correctness and mitigation of its impact on fault
localization. ACM Transactions On Software Engineering and Methodology (TOSEM) 23(1), 8:1-
8:28 (2014)

Mathur, A.P.: Foundations of software testing. Copymat Services (2006)

MathWorks: Simulink. http://www.mathworks.nl/products/simulink/

MathWorks: StateFlow. http://www.mathworks.nl/products/stateflow/
Matinnejad, R., Nejati, S., Briand, L., Bruckmann, T., Poull, C.: Search-based automated testing of
continuous controllers: Framework, tool support, and case studies. Information and Software Tech-
nology Journal 57, 705-722 (2015)

Matinnejad, R., Nejati, S., Briand, L.C., Bruckmann, T.: Effective test suites for mixed discrete-
continuous StateFlow controllers. In: Proceedings of the 10th Joint Meeting on Foundations of Soft-
ware Engineering (ESEC/FSE’15), pp. 84-95. ACM (2015)

Matinnejad, R., Nejati, S., Briand, L.C., Bruckmann, T.: Automated test suite generation for time-
continuous Simulink models. In: Proceedings of the 38th International Conference on Software En-
gineering (ICSE’16), pp. 595-606. ACM (2016)

Mohalik, S., Gadkari, A.A., Yeolekar, A., Shashidhar, K., Ramesh, S.: Automatic test case generation
from Simulink/StateFlow models using model checking. Software Testing, Verification and Reliabil-
ity Journal 24(2), 155-180 (2014)

Pantelic, V., Postma, S.M., Lawford, M., Korobkine, A., Mackenzie, B., Ong, J., Bender, M.: A toolset
for Simulink - improving software engineering practices in development with Simulink. In: Proceed-
ings of the 3rd International Conference on Model-Driven Engineering and Software Development
(MODELS’15), pp. 50-61. SciTePress (2015)

Parnin, C., Orso, A.: Are automated debugging techniques actually helping programmers? In: Pro-
ceedings of the 20th International Symposium on Software Testing and Analysis (ISSTA'11), pp.
199-209. ACM (2011)

Pasareanu, C.S., Schumann, J., Mehlitz, P., Lowry, M., Karsai, G., Nine, H., Neema, S.: Model based
analysis and test generation for flight software. In: Proceedings of the 3rd International Conference
on Space Mission Challenges for Information Technology, pp. 83-90. IEEE (2009)

Perez, A., Abreu, R., van Deursen, A.: A test-suite diagnosability metric for spectrum-based fault lo-
calization approaches. In: Proceedings of the 39th International Conference on Software Engineering
(ICSE’17), pp. 654-664. IEEE (2017)

Rapos, E.J., Cordy, J.R.: Examining the co-evolution relationship between Simulink models and their
test cases. In: Proceedings of the 8th International Workshop on Modeling in Software Engineering,
pp. 34-40. ACM (2016)

Reicherdt, R., Glesner, S.: Slicing MATLAB Simulink models. In: Proceedings of the 34th Interna-
tional Conference on Software Engineering (ICSE’12), pp. 551-561 (2012)

Renieris, M., Reiss, S.P.: Fault localization with nearest neighbor queries. In: Proceedings of the 18th
International Conference on Automated Software Engineering (ASE’03), pp. 30-39. IEEE (2003)

. Roszler, J., Fraser, G., Zeller, A., Orso, A.: Isolating failure causes through test case generation. In:

Proceedings of the 21st International Symposium on Software Testing and Analysis (ISSTA’12), pp.
309-319. ACM (2012)

Santelices, R., Jones, J.A., Yu, Y., Harrold, M.J.: Lightweight fault-localization using multiple cover-
age types. In: Proceedings of the 31st International Conference on Software Engineering (ICSE’09),
pp. 56-66. IEEE (2009)

Satpathy, M., Yeolekar, A., Peranandam, P., Ramesh, S.: Efficient coverage of parallel and hierarchical
StateFlow models for test case generation. Software Testing, Verification and Reliability Journal
22(7), 457479 (2012)

Schneider, J.: Tracking down root causes of defects in Simulink models. In: Proceedings of the 29th
International Conference on Automated Software Engineering (ASE’14), pp. 599-604. ACM (2014)
Spearman, C.: The proof and measurement of association between two things. The American journal
of psychology 15(1), 72-101 (1904)

Sridhar, A., Srinivasulu, D.: Slicing MATLAB Simulink/StateFlow models. In: Intelligent Computing,
Networking, and Informatics, pp. 737-743. Springer (2014)

Thums, A., Quante, J.: Reengineering embedded automotive software. In: Proceedings of the 28th
International Conference on Software Maintenance (ICSM’12), pp. 493-502. IEEE (2012)

Effective Fault Localization of Automotive Simulink Models 47

70.

71.

72.

73.

74.

75.

76.

71.

78.

79.

80.

81.

82.

83.

Vargha, A., Delaney, H.D.: A critique and improvement of the CL common language effect size
statistics of McGraw and Wong. Journal of Educational and Behavioral Statistics 25(2), 101-132
(2000)

Varrette, S., Bouvry, P., Cartiaux, H., Georgatos, F.: Management of an Academic HPC Cluster: The
UL Experience. In: Proceedings of the International Conference on High Performance Computing &
Simulation, pp. 959-967. IEEE (2014)

Wang, X., Cheung, S.C., Chan, W.K., Zhang, Z.: Taming coincidental correctness: Coverage refine-
ment with context patterns to improve fault localization. In: Proceedings of the 31st International
Conference on Software Engineering (ICSE’09), pp. 45-55. IEEE Computer Society (2009)
Windisch, A.: Search-based testing of complex Simulink models containing StateFlow diagrams. In:
Proceeding of the 31st International Conference on Software Engineering-Companion, pp. 395-398.
IEEE (2009)

Windisch, A.: Search-based test data generation from StateFlow StateCharts. In: Proceedings of the
12th annual conference on Genetic and evolutionary computation, pp. 1349-1356. ACM (2010)
Wong, E., Debroy, V., Gao, R., Li, Y.: The DStar method for effective software fault localization.
IEEE Transactions on Reliability 63(1), 290-308 (2014)

Wong, E., Wei, T., Qi, Y., Zhao, L.: A crosstab-based statistical method for effective fault localization.
In: Proceedings of the 1st International Conference on Software Testing, Verification, and Validation
(ICST’08), pp. 42-51. IEEE (2008)

Xia, X., Gong, L., Le, T.D.B., Lo, D., Jiang, L., Zhang, H.: Diversity maximization speedup for
localizing faults in single-fault and multi-fault programs. Automated Software Engineering Journal
23(1), 43-75 (2016)

Yin, Y.F, Zhou, Y.B., Wang, Y.R.: Research and improvements on mutation operators for Simulink
models. In: Applied Mechanics and Materials, vol. 687, pp. 1389-1393. Trans Tech Publ (2014)
Zander, J., Schieferdecker, 1., Mosterman, P.J.: Model-based testing for embedded systems. CRC
press (2011)

Zhan, Y., Clark, J.: Search based automatic test-data generation at an architectural level. In: Proceed-
ings of the 6th Genetic and Evolutionary Computation Conference, pp. 1413—-1424. Springer (2004)
Zhan, Y., Clark, J.A.: Search-based mutation testing for Simulink models. In: Proceedings of the 7th
Genetic and Evolutionary Computation Conference, pp. 1061-1068. ACM (2005)

Zhan, Y., Clark, J.A.: A search-based framework for automatic testing of Matlab/Simulink models.
Journal of Systems and Software 81(2), 262-285 (2008)

Zheng, X., Julien, C., Kim, M., Khurshid, S.: Perceptions on the state of the art in verification and
validation in cyber-physical systems. IEEE Systems Journal 11, 2614-2627 (2017)

