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Finite-time attitude synchronization
with distributed discontinuous protocols

Jieqiang Wei, Silun Zhang, Antonio Adaldo, Johan Thunberg, Xiaoming Hu, Karl H. Johansson

Abstract— The finite-time attitude synchronization problem is
considered in this paper, where the rotation of each rigid body is
expressed using the axis-angle representation. Two discontinuous
and distributed controllers using the vectorized signum function
are proposed, which guarantee almost global and local conver-
gence, respectively. Filippov solutions and non-smooth analysis
techniques are adopted to handle the discontinuities. Sufficient
conditions are provided to guarantee finite-time convergence and
boundedness of the solutions. Simulation examples are provided
to verify the performances of the control protocols designed in
this paper.

Index Terms—Agents and autonomous systems, Finite-time at-
titude synchronization, Network Analysis and Control, Nonlinear
systems

I. INTRODUCTION

Originally motivated by aerospace developments in the
middle of the last century [5], [15], the rigid body attitude
control problem has continued to attract attention with many
applications such as aircraft attitude control [2], [32], spacial
grabbing technology of manipulators [21], target surveillance
by unmanned vehicles [24], and camera calibration in com-
puter vision [20]. Furthermore, the configuration space of
rigid-body attitudes is the compact non-Euclidean manifold
SO(3), which poses theoretical challenges for attitude control
[3].

Here we review some related existing work. As attitude
systems evolves on SO(3)—a compact manifold without
a boundary—there exists no continuous control law that
achieves global asymptotic stability [6]. Hence one has to
resort to some hybrid or discontinuous approaches. In [17],
exponential stability is guaranteed for the tracking problem
for a single attitude. The coordination of multiple attitudes
is of high interest both in academic and industrial research,
e.g., [11], [26], [29]. In [18] the authors considered the
synchronization problem of attitudes under a leader-follower
architecture. In [23], the authors provided a local result on
attitude synchronization. Based on a passivity approach, [25]
proposed a consensus control protocol for multiple rigid bodies
with attitudes represented by modified Rodrigues parameters.
In [31], the authors provided a control protocol in discrete time
that achieves almost global synchronization, but it requires
global knowledge of the graph topology. Although there exists
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no continuous control law that achieves global asymptotic
stability, a methodology based on the axis-angle representation
obtains almost global stability for attitude synchronization
under directed and switching interconnection topologies is
proposed in [30]. These control laws were later generalized
to include various types of vector representations including
the Rodrigues Parameters and Unit Quaternions [29]. Besides
these agreement results, [16], [28], [34] provided distributed
schemes for more general formation control of attitude in
space SO(3).

Among all the properties of attitude synchronization
schemes, the finite-time convergence is an important one,
because in practice it is desired that the system reaches the
target configuration within a certain time-interval; consider, for
instance, satellites in space that shall face a certain direction
as they move in their orbits, or cameras that shall reach a
certain formation to quickly follow an object. So far, finite-
time attitude control problems are studied in different settings,
e.g., [12], [35]. In [12], finite-time attitude synchronization
was investigated in a leader-follower architecture, namely all
the followers tracking the attitude of the leader. In [35],
quaternion representation was employed for finite-time attitude
synchronization. Both works used continuous control protocols
with high-gain.

In this paper, we shall focus on the finite-time attitude syn-
chronization problem, based on the axis-angle representations
of the rotations without a leader-follower architecture, using
discontinuous control laws. Two intuitive control schemes are
proposed. The first scheme employs a direction-preserving
sign function to guarantee finite-time synchronization almost
globally, namely, the convergence holds for almost all the
initial conditions. The other scheme, motivated by binary
controllers for scalar multi-agent systems, e.g., [7], [19], [9],
[14], uses the component-wise sign function. Compared to
the first scheme, the second one is more coarse, in the sense
that only finite number of control outputs are employed, and
guarantees finite-time convergence locally. Since these control
schemes are discontinuous, nonsmooth analysis is employed
throughout the paper.

The structure of the paper is as follows. In Section II,
we review some results for the axis-angle representation for
rotations in SO(3) and introduce some terminologies and
notations in the context of graph theory and discontinuous dy-
namical systems. Section III presents the problem formulation
of the finite-time attitude synchronization problem. The main
results of the stability analysis of the finite-time convergence
are presented in Section IV, where an almost global and local
stability are given in Subsection IV-A and IV-B respectively.
Then, in Section V, the paper is concluded.

Notation. With R−,R+,R>0 and R60 we denote the sets
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of negative, positive, non-negative, non-positive real numbers,
respectively. The rotation group SO(3) = {R ∈ R3×3 :
RR> = I, detR = 1}. The vector space of real n by n
skew symmetric matrices is denoted as so(3). ‖ · ‖p denotes
the `p-norm and the `2-norm is denoted simply as ‖·‖ without
a subscript.

II. PRELIMINARIES

In this section, we briefly review some essentials about rigid
body attitudes [27], graph theory [4], and give some definitions
for Filippov solutions [13].

Next lemma follows from Euler’s Rotation Theorem.

Lemma 1. The exponential map

exp : so(3)→ SO(3) (1)

is surjective.

For any p = [p1, p2, p3]> ∈ R3 and p̂ ∈ so(3) given as

p̂ :=

 0 −p3 p2

p3 0 −p1

−p2 p1 0

 , (2)

Rodrigues’ formula is the right-hand side of

exp(p̂) = I3 +
sin(θ)

θ
p̂+

1− cos(θ)

θ2
(p̂)2, (3)

where θ = ‖p‖ and exp(p̂) is the rotation matrix through an
angle θ anticlockwise about the axis p. For R ∈ SO(3) where
R is not symmetric, we define the inverse of exp as

log(R) =
θ

2 sin(θ)
(R−R>), (4)

where θ = arccos( trace(R)−1
2 ). We define log(I3) as the zero

matrix in R3×3. Note that (4) is not defined for θ = π. The
Riemannian metric for SO(3) is defined as dR(R1, R2) =
1√
2
‖ log(R−1

1 R2)‖F where ‖ · ‖F is the Frobenius norm.
One important relation between SO(3) and R3 is that the

open ball Bπ(I) in SO(3) with radius π around the identity,
which is almost the whole SO(3), is diffeomorphic to the open
ball Bπ(0) in R3 via the logarithmic and the exponential map
defined in (4) and (3).

An undirected graph G = (I, E) consists of a finite set of
nodes I = {1, 2, . . . , n} and a set of edges E ∈ I × I of
unordered pairs of I. To each edge (i, j) ∈ E , we associate a
weight wij > 0. The weighted adjacency matrix A = [aij ] ∈
Rn×n is defined by aij = aji = wij if (i, j) ∈ E and aji = 0
otherwise. Note that A = A> and that aii = 0 as no self-loops
are allowed. For each node i ∈ I, its degree di is defined as
di =

∑n
j=1 aij . The graph Laplacian L is defined as L =

∆− A where ∆ is a diagonal matrix such that ∆ii = di. As
a result, L1 = 0. We denote the set of neighbors of node
i as Ni = {j ∈ I | wij > 0}. If the edges are ordered
pairs of I, the graph G is called a directed graph, or digraph
for short. An edge of a digraph G is denoted by (i, j) (with
i 6= j) representing the tail vertex i and the head vertex j of
this edge. A digraph with unit weights is completely specified
by its incidence matrix B ∈ Rn×m, where |E| = m, with Bij

equal to −1 if the jth edge is towards vertex i, and equal to 1 if
the jth edge is originating from vertex i, and 0 otherwise. The
incidence matrix for undirected graphs is defined by adding
arbitrary orientations to the edges of the graph. Finally, we
say that a graph G is connected if, for any two nodes i and j,
there exists a sequence of edges that connects them. In order
to simplify the notation in the proofs, we set the weight wij
to be one. All the results in this paper hold for the general
case where the wij’s are elements in R+.

In the remainder of this section, we discuss Filippov solu-
tions. Let f be a map from Rm to Rn and let 2R

n

denote the
collection of all subsets of Rn. The Filippov set-valued map
of f , denoted F [f ] : Rm → 2R

n

, is defined as

F [f ](x) :=
⋂
δ>0

⋂
µ(S)=0

co
{
f(B(x, δ)\S)

}
,

where S is a subset of Rm, µ denotes the Lebesgue measure,
B(x, δ) is the ball centered at x with radius δ and co{X}
denotes the convex closure of a set X . If f is continuous at
x, then F [f ](x) contains only the point f(x).

A Filippov solution of the differential equation ẋ(t) =
f(x(t)) on [0, T ] ⊂ R is an absolutely continuous function
x : [0, T ]→ Rn that satisfies the differential inclusion

ẋ(t) ∈ F [f ](x(t)) (5)

for almost all t ∈ [0, T ]. A Filippov solution is maximal if it
cannot be extended forward in time, that is, if it is not the result
of the truncation of another solution with a larger interval of
definition. Next, we introduce invariant sets, which will play a
key part further on. Since Filippov solutions are not necessarily
unique, we need to specify two types of invariant sets. A set
R ⊂ Rn is called weakly invariant if, for each x0 ∈ R, at
least one maximal solution of (5) with initial condition x0 is
contained in R. Similarly, R ⊂ Rn is called strongly invariant
if, for each x0 ∈ R, every maximal solution of (5) with initial
condition x0 is contained in R. For more details, see [10],
[13]. We use the same definition of regular function as in [8]
and recall that any convex function is regular.

For V : Rn → R locally Lipschitz, the generalized gradient
∂V : Rn → 2R

n

is defined by

∂V (x) := co
{

lim
i→∞

∇V (xi) | xi → x, xi /∈ S ∪ Ωf

}
, (6)

where ∇ is the gradient operator, Ωf ⊂ Rn is the set of
points where V fails to be differentiable and S ⊂ Rn is a set
of measure zero that can be arbitrarily chosen to simplify the
computation, since the resulting set ∂V (x) is independent of
the choice of S [8].

Given a set-valued map T : Rn → 2R
n

, the set-valued Lie
derivative LT V : Rn → 2R

n

of a locally Lipschitz function
V : Rn → R with respect to T at x is defined as

LT V (x) :=
{
a ∈ R | ∃ν ∈ T (x) such that

ζT ν = a, ∀ζ ∈ ∂V (x)
}
.

(7)

If T (x) is convex and compact ∀x ∈ Rn, then LT V (x) is a
compact interval in R, possibly empty.

The ith row of a matrix M is denoted as Mi. For any
matrix M , we denote M ⊗ I3 as M̂ and Mi ⊗ I as M̂i. A
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positive definite and semidefinite (symmetric) matrix M is
denoted as M > 0 and M > 0, respectively. The vectors
e1, e2, . . . , en denote the canonical basis of Rn. The vectors
1n and 0n represents a n-dimensional column vector with
each entry being 1 and 0, respectively. In this paper, we define
the direction-preserving signum as

sign(w) =

{
w
‖w‖ if w 6= 0,

0 if w = 0,
(8)

for w ∈ Rk. The component-wise signum is denoted as

signc(w) = [sign(w1), . . . , sign(wk)]>, (9)

where w = [w1, w2, . . . , wk]>. Notice that for scalars, these
two signum functions coincide. Furthermore, component-wise
signum is coarser than direction-preserving in the sense that
there is only a finite number of elements in the range for a
fixed dimension k.

III. PROBLEM FORMULATION

We consider a system of n agents (rigid bodies). We denote
the world frame as Fw and the instantaneous body frame of
agent i as Fi where i ∈ I = {1, . . . , n}. Let Ri(t) ∈ SO(3)
be the attitude of Fi relative to Fw at time t, and, when
Ri(t) ∈ Bπ(I), the corresponding axis-angle representation
xi(t) ∈ R3 be given by

x̂i(t) = log(Ri(t)). (10)

The kinematics of xi is given by [27]

ẋi = Lxiωi, i ∈ I (11)

where ωi is the control signal corresponding to the instanta-
neous angular velocity of Fi relative to Fw expressed in the
frame Fi, and the transition matrix Lxi is defined as

Lxi =I3 +
x̂i
2

+

(
1− sinc(‖xi‖)

sinc2(‖xi‖
2 )

)( x̂i
‖xi‖

)2

=
sinc(‖xi‖)
sinc2(‖xi‖

2 )
I3 +

(
1− sinc(‖xi‖)

sinc2(‖xi‖
2 )

)
xix
>
i

‖xi‖2
+
x̂i
2

=:L1
xi

+
x̂i
2
, (12)

where sinc(α) is defined as α sinc(α) = sin(α) for all α 6= 0
and sinc(0) = 1, see [27]. Note that for ‖xi‖ ∈ [0, π],
the function sinc(‖xi‖)

sinc2(
‖xi‖

2 )
is concave and belongs to [0, 1].

Then the symmetric part of Lxi , denoted by L1
xi

, is positive
semidefinite. More precisely, L1

xi
> 0 if ‖xi‖ ∈ [0, 2π).

Moreover, Lxi
is Lipschitz on Br(0) for any 0 < r < π

(see [30]).
The system (11) can be written in a compact form as

ẋ = Lxω (13)

where
x = [x>1 , . . . , x

>
n ]>,

Lx = blockdiag (Lx1
, . . . , Lxn

),

ω = [ω>1 , . . . , ω
>
n ]>.

(14)

For the multi-agent system (13), we assume that the agents
can communicate with each other about the state variables xi
via an undirected connected graph G. The aim is to design
control protocols for ω such that the absolute rotations of all
agents converge to a common rotation in the world frame Fw
in finite time, i.e.,

∃T > 0, R̄ ∈ SO(3) s.t. Ri → R̄,∀i ∈ I, as t→ T. (15)

This is equivalent to that x converges to the consensus space

C = {x ∈ R3n | ∃x̄ ∈ R3 such that x = 1n ⊗ x̄} (16)

in finite time. We shall propose two distributed controllers that
achieve this goal.

IV. MAIN RESULT

In this section, we shall first present a control law that
guarantees that the rotations of all the rigid bodies converge to
a common rotation for any initial condition Ri(0) ∈ Bπ(I) ⊂
SO(3) for all i ∈ I. Note that this initial condition in SO(3) is
equivalent to ‖xi(0)‖ < π under the axis-angle representation.
In order to avoid the singularity of the logarithmic map (4), the
control law makes sure that the constraint ‖xi(t)‖ < π is met
for all i ∈ I and for all time t > 0. We consider controllers
of the following form

ωi = fi
( ∑
j∈Ni

(xj − xi)
)
, i ∈ I, (17)

with maps fi : R3 → R3 and the elements in the set Ni are
the neighbors of agent i. Now the closed-loop system can be
written in a compact form as

ẋ = Lxf
(
− L̂x

)
(18)

where f(y) = [f>1 (y1), . . . , f>n (yn)]>, L̂ = L ⊗ I3 and
L is the Laplacian of the graph. Our control design is
based on the signum function. More precisely, we consider
the case when some of the functions fi are sign or signc,
while the others satisfy certain continuity assumptions to be
defined in the following subsections. We propose two control
protocols which guarantee almost global, in the sense of
Ri(0) ∈ Bπ(I) ⊂ SO(3), and local convergence, respectively.
As discontinuities are introduced into (18) by the signum
functions, we shall understand the trajectories in the sense
of Filippov, namely an absolutely continuous function x(t)
satisfying the differential inclusion

ẋ ∈ F [Lxf
(
− L̂x

)
](x)

= LxF [f
(
− L̂x

)
](x)

=: F1(x)

(19)

for almost all time, where we used Theorem 1(5) in [22].

A. Control law for global convergence

In this subsection, we shall design a controller such that
finite-time synchronization is achieved for any initial condition
Ri(0) ∈ Bπ(I) ⊂ SO(3) by using the direction preserving
sign defined in (8). It might seem natural to let fi = sign
for all i ∈ I. However, the following example shows that this
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simple controller does not guarantee ‖xi(t)‖ < π,∀t > 0 for
all Filippov solutions.

Example 1. Consider the system

ẋ1 = Lx1
sign(x2 + x3 − 2x1)

ẋ2 = Lx2
sign(x1 + x3 − 2x2)

ẋ3 = Lx3
sign(x2 + x1 − 2x3)

defined on a complete graph. We show that for t0 such
that x(t0) ∈ C, the trajectories can violate the constraints
‖xi(t)‖ < π, i ∈ I, for some t > t0.

First, by Theorem 1(1) in [22], we have for any x ∈ C,
there exists an ε, independent of x, such that the ball Bε(0) ⊂
F [sign(−L̂x)](x) ⊂ R9. Second, suppose x(t0) = 1 ⊗ x̄ for
some x̄ ∈ R3. Then there exists 0 < ε1 < ε such that the
vector ε11⊗ x̄

‖x̄‖ ∈ Bε(0). Hence,

x(t) = 1⊗ ((t− t0)ε1
x̄

‖x̄‖
+ x̄), t > t0

is a Filippov solution. Indeed,

ẋ(t) = ε11⊗
x̄

‖x̄‖

= Lx(t)ε11⊗
x̄

‖x̄‖
∈ Lx(t)F [sign(−L̂x)](x(t))

where the second equality follows from

Lx(t)ε11⊗
x̄

‖x̄‖
= Lx(t)x(t)

ε1

‖x̄‖+ (t− t0)ε1

= x(t)
ε1

‖x̄‖+ (t− t0)ε1

= ε11⊗
x̄

‖x̄‖
.

Here we used the fact that Lx(t)x(t) = x(t). Then for large
enough t, ‖xi(t)‖ can be larger than π. The solutions of the
type 1⊗η(t) with η(t) a non-constant function is called sliding
consensus.

The previous example motivates us to consider the following
assumption.

Assumption 1. For some set Ic ⊂ I, the function f in (18)
satisfies the following conditions:

(i) For i ∈ Ic, fi : Rk → Rk is locally Lipschitz continuous
and satisfies fi(0) = 0 and fi(y)>y = ‖fi(y)‖‖y‖ 6= 0
for all y 6= 0;

(ii) For i ∈ I\Ic, the function fi = sign.

Note that Condition (i) in Assumption 1 corresponds to that
fi is direction preserving.

Before showing the result for finite-time convergence, we
formulate a condition for the controller (17) satisfying As-
sumption 1 such that the set {x | ‖xi‖ < π} is strongly
invariant for the dynamics (18).

Lemma 2. Consider the differential inclusion (19) satisfying
Assumption 1. If one of the following two conditions is satisfied

(i) |I| = 2 and |Ic| = 0;
(ii) |I| > 2 and |Ic| > 1,

then the set S1(C) := {x ∈ R3n | ‖xi‖ 6 C, i ∈ I}, where
C < π is a constant, is strongly invariant. This implies that
Bπ(I)n is strongly invariant.

Proof. We use a Lyapunov-like argument to prove that for any
initial condition in S1(C), all the solutions of (19) will remain
within the set.

Consider the Lyapunov function candidate V (x) =
maxi∈I ‖xi‖2. Notice that V is convex, hence regular. Let

α(x) =
{
i ∈ I | ‖xi‖22 = V (x)

}
. (20)

The generalized gradient of V is given as

∂V (x) = co{ei ⊗ xi | i ∈ α(x)}. (21)

Next, let Ψ be defined as

Ψ =
{
t > 0 | both ẋ(t) and d

dtV (x(t)) exist
}
. (22)

Since x is absolutely continuous (by definition of Filippov
solutions) and V is locally Lipschitz, by Lemma 1 in [1] it
follows that Ψ = R>0 \ Ψ̄ for a set Ψ̄ of measure zero and
that

d

dt
V (x(t)) ∈ LF1V (x(t)) (23)

for all t ∈ Ψ, so that the set LF1V (x(t)) is nonempty.
For t ∈ Ψ̄, we have that LF1

V (x(t)) is empty, and hence
maxLF1

V (x(t)) = −∞ < 0 by definition. Therefore, we
only consider t ∈ Ψ in the rest of the proof.

By using Theorem 1(4) and (5) in [22], the differential
inclusion can be enlarged as follows

ẋ ∈ F1(x)

⊂
n

×
i=1

F [Lxi
fi(−L̂ix)](x)

=
n

×
i=1

LxiF [fi(−L̂ix)](x)

=
n

×
i=1

Lxi
F [fi](−L̂ix)

=: F2(x),

(24)

where the first equality follows from Assumption 1 and the fact
that Lxi

is continuous for xi with ‖xi‖ < 2π, thus we can use
Theorem 1(5) in [22]. Moreover, we obtain that LF1

V (x(t)) ⊂
LF2

V (x(t)) for all t > 0. For the rest of the proof, we shall
show LF2V (x(t)) ⊂ R60 by considering two cases.
Case 1: For x ∈ C, i.e., α(x) = I, the following two subcases
can be distinguished.

(i) |I| > 2 and |Ic| > 1. There is i ∈ I such that fi
is locally Lipschitz and direction preserving. Then, by
using the definition of the Filippov set-valued map, one
can show that νi = 03 for all ν = [ν1, . . . , νn] ∈ F2(x)
(recall that x ∈ C). As LF2

V (x(t)) is nonempty (by
considering t ∈ Ψ), there exists a ∈ LF2V (x(t)) such
that a = ζ>ν for all ζ ∈ ∂V (x(t)), see the definition
(7). By choosing ζ = ei⊗xi(t), it follows that a = (ei⊗
xi)
>νi = 0, which implies that maxLF2

V (x(t)) 6 0.
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(ii) |I| = 2 and |Ic| = 0. In the following, we consider the
Filippov solution of system (19), which can be written
as

ẋ1 = Lx1

x2 − x1

‖x2 − x1‖
,

ẋ2 = Lx2

x1 − x2

‖x1 − x2‖
.

(25)

Then it can be shown that, for x1 = x2 (i.e., x ∈ C), any
element ν in the Filippov set-valued map of (25) satisfies
ν1 = −ν2. Stated differently, the following implication
holds for ν = [ν>1 , ν

>
2 ]>:

ν ∈ F [h](x), x ∈ C ⇒ ν1 = −ν2. (26)

Next, by recalling that α(x) = I, it follows that

∂V (x) = co
{
e1 ⊗ x1, e2 ⊗ x2

}
(27)

with x1 = x2. Now, following a similar reasoning as in
item (i) on the basis of the definition of the set-valued
Lie derivative in (7), it can be concluded that a = ζ>ν =
0, so that maxLF1V (x(t)) = 0 for all x ∈ C.

Case 2: For x /∈ C, take an index i ∈ α(x) such that L̂ix 6= 03.
Note that such i indeed exists. Namely, assume in order to
establish a contradiction that L̂ix = 03 for all i ∈ α(x).
Then, it holds that

0 = x>i L̂ix =
∑
j∈Ni

x>i (xi − xj). (28)

Since ‖xi‖ > ‖xj‖, it follows from (28) that xj = xi for
all j ∈ Ni. By repeating this argument and recalling that the
interconnection topology is connected, it follows that xj = xi
for all j ∈ I, i.e., x ∈ C. This is a contradiction to x /∈ C.

For the index i ∈ α(x) satisfying L̂ix 6= 03, it follows from
Assumption 1 that there exists γi > 0 such that

F [fi]
(
− L̂ix

)
= −γiL̂ix, (29)

i.e., for any ν ∈ F2(x) it holds that νi = −γiLxi
L̂ix. Note

that this is a result of the direction-preserving property of
either the vectorized signum function (for nonzero argument,
then γi = 1) or the Lipschitz continuous function (by As-
sumption 1). Then, choosing ζ ∈ ∂V (x) as ζ = ei⊗xi (recall
that i ∈ α(x)), it follows that for any ν ∈ F2(x) we have

ζ>ν =− γix>i LxiL̂ix

=− γix>i L̂ix
<0, (30)

where the second equality is based on Lxixi = xi.
Summarizing the results of the two cases leads to

maxLF2
V (x) 6 0 (31)

if ‖xi‖ < 2π for all i ∈ I. Since the trajectory x(t) is
absolutely continuous, we have that if ‖xi(0)‖ 6 C < π for
all i ∈ I, all the trajectories remain within the set S1(C).

Remark 1. As indicated in Example 1, sliding consensus can
happen when Ic = ∅ and |I| > 2. This will violate the strong
invariance of the set S1(C) with C < π, which will introduce
singularity for the axis-angle representation for rotations.

Before we prove the finite-time convergence, we provide
a sufficient condition for that all Filippov solutions of (19)
converge to consensus asymptotically.

Lemma 3. Under the same assumptions of Lemma 2, all
Filippov solutions of (19) asymptotically converge to static
consensus.

Proof. Similar to the proof of Lemma 2, we shall prove that
the conclusion holds for the bigger inclusion given by (24).
In this proof cases (i) and (ii) can be handled with the same
arguments.

Consider the Lyapunov function candidate V (x) =√
x>L̂x, which is convex, hence regular. The generalized

gradient of V is given as follows:

∂V (x) =


L̂x√
x>L̂x

if x /∈ C,

co
{

limy→x
L̂y√
y>L̂y

: y /∈ C
}

if x ∈ C.
(32)

Next we shall calculate the Lie derivative of V by consid-
ering two cases.

(i) If x /∈ C, the Lie derivative is given as

LF2
V (x) =

x>L̂√
x>L̂x

F2

=

∑
i∈I x

>L̂>i LxiF [fi](−L̂ix)√
x>L̂x

.

(33)

Here we have (L̂ix)>Lxi
F [fi](L̂ix) > 0 for i ∈ I.

Indeed, it is because: (1), the conditions that the matrix
L1
xi
> 0 for xi satisfying ‖xi‖ < π; (2), Assumption 1

about direction preservation, and (3), the set S1(C) is
strongly invariant for C < π. Moreover, if L̂ix 6= 03, the
set (L̂ix)>Lxi

F [fi](L̂ix) ⊂ R>0. Hence LF2
V ⊂ R<0.

(ii) If x ∈ C, it can be seen that ζ ∈ ∂V (x) implies −ζ ∈
∂V (x). Hence if LF2

V 6= ∅, it has to be {0}. In fact,
by taking 0 ∈ F2, we have that 0 ∈ LF2V .

Next, by Theorem 3 in [9], it holds that all Filippov
solutions of (24) converge to the set ZF2,V asymptotically. The
remaining task is to characterize the set ZF2,V . So far we have
shown that x /∈ ZF2,V ∀x /∈ C, which implies that ZF2,V ⊂ C.
By the fact that C is closed, we have ZF2,V ⊂ C. Moreover,
when x ∈ C, ẋi = 0 where i ∈ Ic, which implies that xi
remains constant. In conclusion, asymptotic convergence to
static consensus is guaranteed.

Now we are ready for the main result of this section.

Theorem 4. Assume that Ri(0) ∈ Bπ(I) ⊂ SO(3) for
all i ∈ I and that the graph G is connected. Consider
the multi-agent system (18) satisfying Assumption 1 and the
corresponding differential inclusion (19). Then, all Filippov
solutions converge to consensus in finite time if one of the
following conditions holds:
(i) |I| > 2 and |Ic| = 1;

(ii) |I| = 2 and |Ic| 6 1.

Proof. The proof is separated into two parts, one for each of
the conditions.
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(i) Without loss of generality, we assume that f1 satisfies
the condition (i) in Assumption 1 while f2, . . . , fn are sign.
Similar to Lemma 2, instead of proving the conclusion for the
differential inclusion (19), we shall show that it holds for the
bigger inclusion given by (24).

Consider the Lyapunov function candidate V (x) =√
x>L̂x. We shall show that there exists c such that

maxLF2
V < c < 0 for any initial condition S1(C) \ C with

C < π.
In the proof of Lemma 3, we have shown that for x /∈ C,

the Lie derivative is given by (33). By the fact that L1
xi
> 0

with ‖xi‖ < π and fi is direction preserving, we have

LF2
V 6

∑n
i=2 x

>L̂>i Lxi
F [sign](−L̂ix)√

x>L̂x
. (34)

Furthermore, the Filippov set-valued map

F [sign](−L̂ix) =

{
{ −L̂ix

‖L̂ix‖
} if ‖L̂ix‖ 6= 0,

{v | ‖v‖ 6 1} if ‖L̂ix‖ = 0,
(35)

which implies that

x>L̂>i Lxi
F [sign](−L̂ix)

=

{
{−x

>L̂>
i Lxi

L̂ix

‖L̂ix‖
} if ‖L̂ix‖ 6= 0,

{‖L̂ix‖} if ‖L̂ix‖ = 0.

(36)

Note that, for any x satisfying ‖xi‖ < π for all i ∈ I, there
exists c1 ∈ (0, 1), which only depends on maxi ‖xi(0)‖, such
that Lxi

− c1I > 0 for all i ∈ I. This implies that

x>L̂>i LxiF [sign](−L̂ix) ⊂ (−∞,−c1‖L̂ix‖]. (37)

So far we have shown that, for any a ∈ LF2V (x), it holds
that

a 6 −c1
∑n
i=2 ‖L̂ix‖√
x>L̂x

. (38)

Furthermore, by using that L̂1x = −
∑n
i=2 L̂ix, which is

based on the connectivity of the graph G, we have

‖L̂1x‖ =

∥∥∥∥∥
n∑
i=2

L̂ix

∥∥∥∥∥ 6
n∑
i=2

∥∥L̂ix∥∥, (39)

where the triangle inequality is used. Then, the use of (39) in
(38) yields

a 6 −c1
2

1√
x>L̂x

(
n∑
i=1

‖Lix‖

)
. (40)

By exploiting the observation that L is a graph Laplacian, it
holds that

L = U>ΛU, L>L = U>Λ2U, (41)

where Λ = diag{0, λ2, . . . , λn} is a diagonal matrix with
real-valued eigenvalues satisfying 0 < λ2 and λj 6 λj+1

for j = 2, . . . , n. The matrix U collects the corresponding
right-eigenvectors. From (41), it can be seen that

L>L− cL > 0 (42)

for any c ∈ [0, λ2]. Consequently, using L̂ = L⊗ I , it follows
that (

n∑
i=1

‖L̂ix‖

)2

= x>L̂>L̂x > cx>L̂x. (43)

After taking the square root (note that x>Lx > 0 for all x /∈ C)
in (43) and substituting the result in (40), the result

a 6 −c1
√
c

2

√
x>L̂x√
x>L̂x

= −c1
√
c

2
(44)

follows, which proves finite-time convergence to consensus by
Proposition 4 in [9] and Lemma 3.

(ii) By using a similar reasoning, we have that for any
a ∈ LF [ĥ]V (x), it satisfies that a 6 −c1 where c1 satisfying
Lxi − c1I > 0 for all i ∈ I. This again implies finite time
convergence.

Remark 2. Theorem 4 provides sufficient conditions for finite-
time convergence of the protocol (17) satisfying Assumption
1. However, we conjecture these sufficient conditions to be
necessary as well. Namely, for the case |I| > 2, we expect
that all the Filippov solutions of (19) converge to consensus
in finite time if and only if |Ic| = 1; and for the case |I| = 2,
we expect that the finite-time synchronization is achieved if
and only if |Ic| 6 1. We show that the latter statement holds
according to the following argument.

If |I| = 2 and |Ic| > 1, then I = Ic. In this case, we
can only have asymptotic convergence if I = Ic. Indeed,
the right-hand side of (18) is Lipschitz; therefore, finite-time
convergence to an equilibrium can not occur.

Unfortunately, for the case |I| > 2, we can not prove the
necessity, which leaves it as an open question.

We close this subsection by demonstrating the result in
Theorem 4 and conjecture in Remark 2 by an example.

Example 2. Consider the three-agent system

ẋ1 = Lx1(x2 − x1)

ẋ2 = Lx2 sign(x1 + x3 − 2x2) (45)
ẋ3 = Lx3 sign(x2 − x3),

defined on a line graph with. Notice that this system meets
condition (i) in Theorem 4. A phase portrait and trajectory
of this system are depicted in Fig. 1. There, we can see that
finite-time consensus is achieved.

Next, modify the system to

ẋ1 = Lx1(x2 − x1)

ẋ2 = Lx2 sign(x1 + x3 − 2x2) (46)
ẋ3 = Lx3(x2 − x3).

Notice that Ic = {1, 3}, hence the conditions (i) and (ii)
in Theorem 4 are not satisfied. As stated in Remark 2,
we expect there are some trajectories that only converge to
consensus asymptotically, but not in finite time. In fact, we
construct such a solution as follows. For the initial condi-
tion satisfying x1(0) + x3(0) = x2(0) = 0, the trajectory
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Finite-time consensus is achieved.

Fig. 1: The simulation of Example 2.

x1(t) = x1(0)e−t, x2(t) = 0, x3(t) = x3(0)e−t is a Filippov
solution of (46). Indeed, the trajectory obeys the dynamicẋ1

ẋ2

ẋ3

 =

−x1

0
−x3

 ∈ F
 Lx1(x2 − x1)

Lx2
sign(x1 + x3 − 2x2)
Lx3

(x2 − x3)

 (x)

where we used that Lx2
= I, Lxi

xi = xi, and 0 ∈ F [sign](0).
Hence we have a trajectory converging to consensus only
asymptotically.

B. Control law for local convergence

In this subsection, we consider another type of controller to
achieve finite-time synchronization. The controller has a finite
number of control actions. However, differently than controller
(17), the controller in this subsection only guarantees local
convergence.

We consider the discontinuous control protocol

ωi =
∑
j∈Ni

signc(xj − xi) (47)

where signc is defined in (9). Notice that each ωi only takes
a finite number of values. Now the closed-loop dynamic is

ẋi = Lxi

∑
j∈Ni

signc(xj − xi). (48)

The compact version of the system (48) can be written as

ẋ = −LxB̂ signc
(
B̂>x

)
, (49)

where B is the incidence matrix of the underlying graph and
B̂ = B⊗I3. Similar to the previous subsection, we understand
the solution of (49) in the sense of Filippov, namely solutions
of the following differential inclusion:

ẋ ∈ F [−LxB̂ signc
(
B̂>x

)
](x)

= −LxB̂F [signc(B̂
>x)](x)

=: F3(x),

(50)

where the first equality is based on Theorem 1(5) in [22] and
the fact that Lxi is continuous for ‖xi‖ ∈ [0, π). By using
Theorem 1 [22], we can enlarge the differential inclusion F3

as follows:

F3(x) ⊂ −LxB̂
3n

×
i=1

F [signc]((B̂
>)ix)

=: F4(x), (51)

where (B̂>)i is the ith row of B̂> and the set-valued function
F [signc] is defined as

F [signc](x) =


1 if x > 0,

[−1, 1] if x = 0,

−1 if x < 0.

(52)

Before we show the main result, we present a compact
strongly invariant set.

Lemma 5. The set S2(C) = {x ∈ R3n|
∑n
i=1 ‖xi‖22 < C}

with C < 4π2 is strongly invariant for the differential inclu-
sion (50). Moreover, all the solutions of system (50) converge
to consensus asymptotically.

Proof. Consider the Lyapunov function candidate V (x) =
1
2x
>x = 1

2

∑n
i=1 x

>
i xi. We shall show that the conclusion

holds for the bigger inclusion F4 defined in (51).
Since V is smooth, the set-valued Lie-derivative LF4V (x)

is given as

LF4V (x) = x>F4(x)

= −x>B̂
3n

×
i=1

F [signc]((B̂
>)ix),

(53)

where the last equality is implied by that Lxi is well-defined
when ‖xi‖ < 2π, which is satisfied by the elements in S2(C),
and x>i Lxi

= x>i . Furthermore, note that

− x>B̂
3n

×
i=1

F [signc]((B̂
>)ix)

= −
∑

(i,j)∈E

(xi − xj)T
3

×
k=1

F [signc](xik − xjk)

⊂ R60,

(54)

which indicates that V (x(t)) is not increasing along the
trajectories when C < 4π2. Hence the set S2(C) is strongly
invariant. Notice that the boundedness of the trajectories is
also guaranteed.

Finally, by Theorem 3 in [9], we have that the Filippov
solution of system (50) will asymptotically converge to the
set

Ω =
{
x ∈ R3n

∣∣ 0 ∈ LF4
V (x)

}
. (55)



8

By (54) it is straightforward to verify that Ω = C. Then the
conclusion follows.

From the previous lemma, we note that the continuity
assumption, i.e., Assumption 1 (i), is not needed for controller
(47). However, the control law (47) can only guarantee local
convergence as indicated in the following Theorem and the
complete proof can be found in [33].

Theorem 6. Assume that the initial rotations of the agents
satisfy

∑n
i=1 d

2
R(I,Ri(0)) < π2 and the underlying graph

G is connected. Consider the multi-agent system (49) and
the corresponding differential inclusion (50). Then, attitude
synchronization is achieved in finite time.

V. CONCLUSION

In this paper, we considered the finite-time attitude syn-
chronization problem of multi-agent systems. Two finite-time
consensus control protocols were proposed. The first protocol
guaranteed global convergence in the sense that the initial
rotation of each agent can be arbitrary in an open ball of
radius π, which contains all but a set of measure zero of the
rotations in SO(3). In addition, we proposed a second protocol
based on binary control, which achieves local convergence to
the consensus subspace, in the sense that the initial rotations
have to be close enough to the origin in SO(3). For these two
controllers, sufficient conditions were presented to guarantee
finite-time convergence and boundedness of the solutions.
Future studies include further investigation on the necessity of
these conditions. Furthermore, the results in this paper based
on absolute rotation measurements of the agents, hence finite-
time synchronization protocols using relative measurements is
another future topic.
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