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Abstract— Network reconstruction has become particularly
important in systems biology, and is now expected to deliver
information on causality. Systems in nature are inherently non-
linear. However, for nonlinear dynamical systems with hidden
states, how to give a useful definition of dynamic networks is
still an open question. This paper presents a useful definition
of Boolean dynamic networks for a large class of nonlinear
systems. Moreover, a robust inference method is provided. The
well-known Millar-10 model in systems biology is used as a
numerical example, which provides the ground truth of causal
networks for key mRNAs involved in eukaryotic circadian
clocks. In addition, as second contribution of this paper, we
suggest definitions of linear network identifiability, which helps
to unify the available work on network identifiability.

I. INTRODUCTION

Network reconstruction is becoming increasingly impor-
tant in systems biomedicine. With time series data available
via gene expression microarrays, RNA sequencing, etc., it
is expected that network reconstruction methods will help
to deliver information about causality relationships, e.g. the
identification of critical genes or pathways that are respon-
sible for diseases. However, there are still many hurdles on
the path of establishing such relationships, e.g. large systems
dimensions, nonlinearity, low sampling rates, etc.

In regard to causality, Granger causality has to be men-
tioned. It is known that it can be used for nonlinear sys-
tems, however, it is not clear that what class of nonlinear
systems it can be effectively applied to. Enlightened by
the equivalence (under certain mild conditions [1]) between
Granger causality and vector autoregression models [2],
the systematic approach employed in the systems control
community provides a way to revisit the Granger causality
digraphs and extend their range of applications to a broader
class of dynamical systems. The dynamical structure function
(DSF) is an example [3], so is the similar model introduced
in [4]. Both of them generalize the network representation
to cover a larger class of the Linear Time-Invariant (LTI)
systems. Moreover, system identification provides more effi-
cient methods to perform network reconstructions (e.g. [5],
[6]) than combinatorial pair-wise statistical tests.

For nonlinear dynamical systems there is a lack of pow-
erful network representations/definitions that are equivalent
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or similar to the DSF-like ones for LTI systems1 to react to
demands in biological applications. For the case of full-state
measurements, i.e. when the entire state vector is measured,
the definition of Boolean networks is straightforward via
nonlinear state-space representations. This perspective has
been used in [8], [9]. However, in the presence of hidden
states, i.e. states that are not directly measured, the problem
becomes particularly hard to tackle. This paper aims to
give a useful definition of Boolean dynamic networks for
nonlinear dynamical systems, which motivates us to propose
an inference method that requires no a priori knowledge of
nonlinear basis functions, and uses output measurements.

This paper generalizes the DSF [3] to a large class
of nonlinear dynamical systems allowing the existence of
hidden states. The nonlinear systems are on the form

ẋ = F (x) +Bu+Re, (1a)
y = [I 0]x, (1b)

where the state variable x is defined on M that is an open
subset of Rn, F is a smooth vector field defined on M ,
B ∈ Rn×m, R ∈ Rn×p, y is of dimension p (p ≤ n),
u is the control input of dimension m, and e is p-variate
unknown white noise with covariance E[e(t)eT (τ)] = Iδ(t−
τ). Here, by slight abuse of notation, we use the model of
white noise commonly used in the field of engineering to
simplify the DSF notation (2). To be strict, (1) should be
described with respect to Brownian motion, and its meaning
is assigned by stochastic integrals [10]. Let x , [yT zT ]T

be the state variables in (1), where the elements in y are
the output variables and those in z are the hidden states (or
latent variables).

II. DIVING INTO LINEAR DYNAMIC NETWORKS

A. Review of linear network models

Considering a continuous-time LTI system, we have the
following general form of DSF [3], [11]

y(t) = Q(q)y(t) + P (q)u(t) +H(q)e(t), (2)

where

Q(q) = [Qij(q)]p×p, Qii(q) = 0, ∀i,
P (q) = [Pij(q)]p×m, H(q) = [Hii(q)]p×p,

1This concept may be understood by analogy to the DSF or Granger
Causality digraphs for LTI systems. The network considered in this paper
is required to deliver direct causality. For instance, if mixing direct and
indirect causality (many of the articles on “nonlinear networks” actually
study such cases), the causal network of mRNAs in the circadian clock
model [7] would be a complete digraph, which is no longer useful.
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and Qij(q), Pij(q), Hii(q) are single-input-single-output
(SISO) transfer functions, q is the differential operator, i.e.
qy(t) = dy(t)/dt. For simplicity, we also refer to (Q,P,H)
as the DSF (2). Furthermore, the linear dynamic network
N = (G, f) is defined from the DSF (2) according to [6,
Def. 1], where f is the capacity function of N , and G
the underlying digraph, which is also called linear Boolean
(dynamic) network due to the legacy of terminology in
biology.

Consider the network model (2), which yields its input-
output form y(t) =

(
I − Q

)−1
Pu(t) +

(
I − Q

)−1
He(t).

Referring to [12, chap. 4], we derive the network predictor
model as follows (see e.g. [6] or [13]).

Definition 1. A network predictor model of an LTI system
is a stable filter W (q) that defines a predictor ŷ(t|t −
1) = W (q)r(t), where r(t) = [u(t)T y(t)T ]T ,W (q) =
[Wu(q)Wy(q)], and

Wu(q) = H−1(q)P (q),
Wy(q) = H−1 [Q(q) +H(q)− I] . (3)

B. Linear network identifiability
There have been several studies on linear dynamic network

identifiability, e.g. [3], [11], [14], covering different aspects
of this concept. However, no literature explicitly gives a
strict mathematical definition. We felt obliged to unify the
definition, which can summarize the available results in a
common language.

Definition 2. A network model set M∗ and network predic-
tor model set M∗Pred are defined as follows

M∗ =
{(
Q(q), P (q), H(q)

)
ι
: ι ∈ I

}
, (4a)

M∗Pred = {Wι(q) : ι ∈ I} , (4b)

whereM∗Pred is a set of W (q)’s defined in (3), and I denotes
the general index set, which is not necessarily finite nor
countable.

Definition 3. A network model structure M and a network
predictor model structureMPred are differentiable maps from
a connected open subset DM ⊆ Rd to model sets

M : DM → M∗
θ 7→

(
Q(q, θ), P (q, θ), H(q, θ)

)
,

(5a)

MPred : DM → M∗Pred
θ 7→ W (q, θ),

(5b)

such that the gradient of the predictor model is stable
(see [12, p. 108] for this concept), i.e. for any given
z ∈ C, |z| ≥ 1, the gradient of W (z, θ) over θ ex-
ists and is stable for θ ∈ DM, where W (z, θ) =[
H−1(z, θ)P (z, θ) H−1(z, θ)

[
Q(z, θ) +H(z, θ)− I

]]
.

Now we present the definitions of network identifiability.
Due to space limitations, we omit the “local” versions of the
definitions, which can be defined similarly as [12, p. 113].

Definition 4 (network identifiability). A network model
structure M is globally identifiable at θ∗ (θ∗ ∈ DM) if

MPred(θ) =MPred(θ
∗), θ ∈ DM ⇒ θ = θ∗. (6)

Moreover, M is globally identifiable if it is globally identi-
fiable at almost all θ∗ ∈ DM, i.e. the set of θ at which M
is not globally identifiable has Lebesgue measure zero.

To put other available perspectives on network identifi-
ability [3], [14] in a unified language, we introduce two
more definitions by modifying (6) in Definition 4 with the
following two statements, respectively,

[S1] (network identifiability with known structure)

M(θ) =M(θ∗), θ ∈ DM ⇒ θ = θ∗; (7)

[S2] (unique factorization from predictor models)

MPred(θ) =MPred(θ
∗), θ ∈ DM ⇒ N (θ) = N (θ∗), (8)

where N (θ) denotes such an N that is determined from
[Q(θ), P (θ), H(θ)] by [6, Def. 1].

Remark 1. Note that N (θ) = N (θ∗) is equivalent to
M(θ) = M(θ∗). This implies [S2] and [S1] together are
Definition 4. We use N in (8) so as to make it share a
unified notation with Definition 5 below.

Compared to the definition of input-output system iden-
tifiability [12, p. 112,114], one may notice that [S1] is
obtained by replacing the transfer function model set2 in [12,
p. 114] by the network model set. The condition [S1] can
be interpreted as a definition of networks identifiability with
known structures (i.e. the Boolean networks are known). The
difference between (7) and (6) has to be emphasized. The
model structures MPred and M are not equivalent. It is due
to the fact that we need additional conditions to guarantee
the unique factorization of (Q(q, θ), P (q, θ), H(q, θ)) from
W (q, θ), which is formularized in mathematics as [S2]. This
is the essential challenge in network reconstruction and has
been used as the “definition” of network identifiability in [3],
[11], [14]). In most applications we are particularly interested
in the conditions that guarantee the unique identification of
N from data (even if the exactly same N can be determined
by different parameters θ’s). See [13, Sec. II] for more
comments on the study of network identifiability in [3],
which considers a fairly general model parametrization.

When considering Boolean dynamic networks, it is likely
that multiple θ’s lead to the same Boolean structure. How-
ever, the essence is to guarantee unique Boolean structures
from data. Therefore, the definition follows by replacing the
dynamic network N in (8) with its digraph G.

Definition 5 (Boolean network identifiability). The Boolean
structure G of a dynamic network with model structure M
is globally identifiable at θ∗ (θ∗ ∈ DM) if

MPred(θ) =MPred(θ
∗), θ ∈ DM ⇒ G(θ) = G(θ∗). (9)

Moreover, the Boolean network is globally identifiable if it
is globally identifiable at almost all θ∗ ∈ DM.

2Here we consider the model set as a family of (G(q), H(q))’s instead
of W (q)’s in [12, p. 107], by noticing that they are actually equivalent for
input-output models [12, p. 105].



III. NONLINEAR BOOLEAN DYNAMIC NETWORKS

A. Definition

Consider the dynamical system (1), where M is an open
subset of Rn and F : M → M a smooth map. For each
x ∈M we have the differential of F at x defined as a map
dFx : TxM → TF (x)M , where TxM is the tangent space to
M at x and TF (x)M is the tangent space of M at the point
F (x). Moreover, let TM denote the tangent bundle of M .
The notations comply with [15] and one may consult [15,
chap. 3] for more details. The matrix of dFx in terms of the
standard coordinate bases can be computed, denoted by Ax,
which is irrelevant to the specific choice of coordinate charts.
In particular, M is an open subset of Euclidean spaces, thus
Ax is the Jacobian matrix of F at x.

Now, at x ∈ M , we have the dynamical system locally
defined by the linear state-space representation (Ax, B,R).
Following the standard definition of DSF for LTI systems
(see [3]), we have the dynamic network model defined locally
as (Qx(q), Px(q), Hx(q)). Therefore, at x ∈ M , we have a
Boolean dynamic network Glocx defined as a digraph from
(Qx(q), Px(q), Hx(q)) (see [6, Def. 1]). Now the definition
of nonlinear Boolean dynamic network naturally follows

Definition 6. A nonlinear Boolean dynamic network G of
the nonlinear dynamic system (1) is defined as follows:

V (G) := V (Glocx ), ∀x ∈M, E(G) :=
⋃
x∈M

E(Glocx ), (10)

where V (G) and E(G) denote the vertex and edge sets of G.

TxM M

TM
def. DSF

differential

point-wise union

GlobalLocal

F (x), B, RdFx, B, R

Q�, P �, H�Qx, Px, Hx

Fig. 1: A diagram illustrating the procedure of Definition 6. The
nonlinear Boolean dynamic network G can be equivalently denoted
by (Q◦, P ◦, H◦), where Q◦ :=

∨
xQ

◦
x, P

◦ :=
∨
x P

◦
x , H

◦ :=∨
xH

◦
x ,

∨
denotes the element-wise logical disjunction operator,

and the logical matrix C◦ of C(q) is defined as: C◦
ij = 0 if

Cij(q) = 0, otherwise 1.

B. Additional Issues in Network Reconstruction

Definition 6 is based on M , which needs to be forward
invariant under a specific class of input signals. However,
during the process of network inference from data, only the
outputs are accessible, which comprise a subset of the state
trajectories. This issue, which indeed deserves more studies,
is bypassed here by the following assumption and the,
subsequently introduced, simplified definition of nonlinear
network identifiability.

Assumption 1. The interconnection structure between state
variables in dynamical systems is independent from the
initial conditions and the inputs.

Let C denote the signal of state variables when the dy-
namical system evolves through time. Assumption 1 implies
that E(G) = E(G|C), where G|C denote the Boolean network
defined on C, i.e. E(G|C) =

⋃
x∈C E(Glocx ). Therefore, even

if the total information M in Definition 6 cannot be accessed
in practice, G is still possible to be inferred via G|C .

The other issue is that, in most cases, the output mea-
surement is available rather than full-state measurements,
which leads to the typical problem of network identifiability.
A straightforward definition of identifiability of nonlinear
Boolean dynamic network follows from Definition 5 and
6, where we verify linear network identifiability in a point-
wise manner. Section III-A tells that the nonlinear Boolean
dynamic network is defined on {Qx(q), Px(q), Hx(q)}x∈M ,
whose model structures can be denoted by {Mx(θ)}x∈M .
The ground truth value of θ may be different at each x ∈M ,
which is denoted by θ∗(x).

Definition 7. Given the model structures Mx(θ) for each
point x ∈ M , the nonlinear Boolean dynamic network is
globally (or locally) identifiable at θ∗(x) if, for any x∗ ∈
M , each linear Boolean dynamic network with Mx(θ) is
globally (or locally) identifiable at θ∗(x∗).

This definition helps us to take advantage of well-known
results on network identifiability. For example, if we apply
ARX models for x ∈ C, and each x has a corresponding
quadratic program, we know the nonlinear Boolean network
is identifiable by definition, if the ground truth appears in
the model set.

IV. APPROXIMATED RECONSTRUCTION METHODS

According to Definition 6, the exact inference should
be done by inferring (Qxt

, Pxt
, Hxt

) by using the input-
output measurement in a “small enough” neighborhood of
xt, and then taking union of their corresponding Boolean
networks. However, this is not possible in practice due to
two major issues: 1) no enough data for locally defined
dynamic networks at each value of state variables; 2) not
robust in the presence of noise. With regard to the first
issue, we divide the whole time series into several segments,
each of which is used for an approximated inference of a
Boolean network at a specific point xtk . The second issue is
addressed by adopting a technique dealing with heterogeneity
[6] to guarantee the robustness by inferring all local networks
(Qxt

, Pxt
, Hxt

) together. Now this suggested treatment leads
to an approximated inference procedure in general.

Consider a time series {y(ti) : i ∈ N} from equidis-
tant sampling. Suppose that we divide it into K segments{
{y(tj)}sk−1≤j≤sk : k = 1, . . . ,K; sk−1 ≤ sk ∈ N

}
, each

of which corresponds to a neighborhood of x∗tk (of which we
may not know the value) and may not have the same length.
Let (Qx∗

tk
, Px∗

tk
, Hx∗

tk
) denote the DSF locally defined for

the segment
(
y(tsk−1

), y(tsk)
)
. For simplicity, we denote this



as (Qk, Pk, Hk) instead. As presented in [6], in the sense
of Prediction Error Minimization (PEM), the inference of
linear dynamic network can be formulated as p independent
pseudo-linear regression problems. Once we solve these p
regression problems, we obtain the DSF (Q,P,H) and thus
N . See [6] for details on how the regressor and parameter
variables are constructed from network model structures (i.e.
the parametrization of DSF, e.g. ARX, ARMAX, etc.). In the
following we will manifest how to integrate multiple linear
network inference problems into one regression problem so
as to improve robustness.

Without loss of generality3, we address the subproblem
corresponding to the i-th output variable yi. Let y[k] denote
the vector of one-step predictions of yi at time instants from
tsk−1

to tsk , and w[k] be the parameters of the approximated
linear model at x∗tk . The pseudo-linear regression equation
follows (see [6])

ŷ[k] = A[k](w[k])w[k], k = 1, . . . ,K, (11)

which can be rewritten into block matrices according to the
“physical” meaning of each sub-vector of w[k]

A[k] ,
[
A

[k]
:,1 A

[k]
:,2 · · · A

[k]
:,N

]
,

w[k] ,
[(
w

[k]
1

)T (
w

[k]
2

)T · · ·
(
w

[k]
N

)T ]T
,

(12)

where p and m are the dimensions of output and input
variables respectively, and N is the number of blocks. By
optimizing minw[k] ‖y[k] − ŷ[k]‖ (or including penalty of
network sparsity), we get an estimate of w[k] in the sense of
PEM, which yields the linear dynamic network (Qk, Pk, Hk)
defined at x∗tk . It is not recommended to solve the same
problem for each segment and then take union due to the
algorithmic robustness in the presence of process noise.

Now consider improving the algorithmic robustness by
inferring all local networks simultaneously to take advantage
of the whole dataset. Let

wk ,


w

[1]
k
...

w
[K]
k

 , w ,

 w1

...
wN


and integrate all segments by stacking (11) of each segment
and rearranging blocks of matrices, yielding (13), and use
ŷ = A(w)w to denote (13b). Furthermore, we introduce
two terms of group sparsity

wE :=
[
‖w[1]

1 ‖2, · · · , ‖w
[K]
1 ‖2 · · · , ‖w

[1]
N ‖2, · · · , ‖w

[K]
N ‖2

]T
,

wS :=
[
‖w1‖2, · · · , ‖wN‖2

]T
,

(14)
in which wE ∈ RKN ,wS ∈ RN , ‖ · ‖2 is the l2-
norm of vectors. One may have noticed that minw ‖y −
ŷ‖2 + λ‖wE‖0 (λ ∈ R+ is the regularization parameter)
is almost equivalent to infer sparse local dynamic networks
(Qk, Pk, Hk) (k = 1, . . . ,K) separately. Furthermore, as
studied in [6], the estimates via minw ‖y − ŷ‖2 + λ‖wS‖0

3The whole network inference problem is solved by repeating the
following operations on each element of the output variable y.

guarantees both network sparsity and consistent network
topology for all datasets (i.e. K segments), where the latter
means G(Qk, Pk, Hk) ≡ G0,∀k, in which G(Qk, Pk, Hk)
denotes the Boolean network determined from (Qk, Pk, Hk)
and G0 denotes any fixed Boolean network. However, Defini-
tion 6 implies (Qk, Pk, Hk) could have the different network
topology. Thus, we combined these two penalty terms to
allow both multiple network topology and algorithmic ro-
bustness

minimize
w

‖y −A(w)w‖22 + λ1‖wE‖0 + λ2‖wS‖0, (15)

where λ1, λ2 ∈ R+ are the regularization parameters. There
is a trade-off between the two penalty terms: λ1‖wE‖0
promotes different sparse networks; λ2‖wS‖0 promotes
(Qk, Pk, Hk) (k = 1, . . . ,K) to have the same network
topology. Assuming that the networks (Qk, Pk, Hk), k =
1, . . . ,K share most arcs in common, the algorithmic ro-
bustness can be understood in the following sense: due to
λ2‖wS‖0, the additional arcs of (Qk, Pk, Hk) are included in
the result only if it significantly contributes to decreasing the
prediction error. This is also the reason why we emphasize
that the presented approach is an approximated method. We
increase the algorithmic robustness to noise by increasing
the risk of missing arcs, which are not “significant” in the
sense of predictability.

V. ALGORITHMS

This section provides specific numerical algorithms to
solve (15). We use the ARX parametrization as an example,
in which A does not depend on w in (15). There are mul-
tiple way to heuristically solve convex-cardinality problems,
e.g. l1-norm heuristic approaches, sparse Bayesian learning.
Here we give a solution using the classical l1-heuristic
treatment, which leads to the group LASSO problem [16]. To
enhance sparsity further , one may use Iterative Reweighted
l1 Method (see [17]), which is presented as follows

wl+1 = argmin
w
‖y −Aw‖22 + λ1

∑N
i=1

∑K
j=1 µ

l
i,j

√
ρEi,j

‖w[j]
i ‖2 + λ2

∑N
i=1 ν

l
i

√
ρSi ‖wi‖2,

(16)
where ρEi,j denotes the dimension of w

[j]
i , ρSi denotes the

dimension of wi, l is the index of iterations,

µli,j =
[
‖
(
w

[j]
i

)l‖2 + εl
]−1

, νli =
[
‖wl

i‖2 + εl
]−1

,

and {εl} is a sequence converging to zero (see [17]), e.g.
εl ∈ (0, 1) is reduced by a factor of 10 until reaching the
minimum of 10−12.

For large-dimensional problems of (16), in the l-th it-
eration, we present algorithms using Proximal Operators
and ADMM. Let k denote the inner-loop iteration index for
numerical optimization. Consider (16) as minimizew f(w)+
g(w), where f(w) , (1/2)‖y −Aw‖22 and g(w) denotes
the rest. Here we add 1/2 term in f(w) to simplify cal-
culations, where the values of λ1, λ2 are adjusted corre-
spondingly. Given ∇f(w) = AT (Aw − y), the Proximal
Gradient Method is to update w by wk+1 = proxγg(w

k −



 ŷ[1]

...
ŷ[K]

 =


A

[1]
:,1 . . . A

[1]
:,N

. . .
A

[K]
:,1 . . . A

[K]
:,N


︸ ︷︷ ︸

K Blocks

 w[1]

...
w[K]

 (13a)

=


A

[1]
:,1 A

[1]
:,N

. . . · · ·
. . .

A
[K]
:,1 A

[K]
:,N


︸ ︷︷ ︸

N Blocks

 w1

...
wN

 (13b)

γ∇f(wk)), γ ∈ R+, where k denotes the iteration index
in proximal methods. Thus, the key step is to calculate
the proximal operator proxγg(v). It is easy to see that
g(w) =

∑N
i=1 gi(wi), where gi(wi) , gEi (wi)+g

S
i (wi) :=

λ1
∑K
j=1 µ

l
i,j

√
ρEi,j‖w

[j]
i ‖2 + λ2ν

l
i

√
ρSi ‖wi‖2. Therefore,

proxγg(v) =
[
proxγg1(v1)

T · · · proxγgN (vN )T
]T
,

where v is partitioned in the same way as w in terms
of wi, i = 1, . . . , N . However, it is difficult to calculate
proxγgi(vi) analytically. The Dykstra-like Proximal Algo-
rithm in [18] presents a numerical way to calculate this
proximal operator, as shown in Algorithm 1. The proximal

Algorithm 1 Dykstra-like proximal algorithm for proxγgi(vi)

1: input: vi
2: output: wi = proxγgi(vi)

3: parameters: λ1, λ2, γ, ρ
S
i , ρ

E
i,j , j = 1, . . . ,K

4: given initial values: w0
i = vi, r0 = 0, z0 = 0

5: repeat
6: sk ← proxγgSi

(wk
i + rk)

7: rk+1 ← wk
i + rk − sk

8: wk+1
i ← proxγgEi

(sk + zk)

9: zk+1 ← sk + zk −wk+1
i

10: until wi converges

operators in line 6 & 8 in Algorithm 1 can be calculated by
block soft thresholding [19], shown as follows

proxγgSi (x) =
(
1− γνiλ2

√
ρSi /‖x‖2

)
+
x ,

proxγgEi (x) =
[
proxγgEij (x1)

T . . . proxγgEij (xK)T
]T
,

proxγgEij (xj) =
(
1− γλ1µi,j

√
ρEij/‖xj‖2

)
+
xj ,

(17)
where (·)+ replaces each negative elements with 0, and x

is partitioned in the same way as wi in terms of w
[j]
i , j =

1, . . . ,K. Now we have got proxγg(w) to run (Accelerated)
Proximal Gradient Method (see [6] or [19]).

To implement ADMM, the proximal operator of f(w)
needs to be calculated as

proxγf (v) = (I + γATA)−1(γATy + v). (18)

Given the proximal operators of f(w) and g(w), the ADMM
algorithm is presented in Algorithm 2 (one may choose γ by
line search methods for proximal gradient methods [19]).

Algorithm 2 ADMM method

1: Precompute ATA and ATy
2: given an initial value w0,v0,u0, γ0 = 1, β = 1/2
3: repeat
4: Let γ ← γk

5: repeat
6: ŵ← proxγf (v

k − uk) using (18)
7: break if f(ŵ) ≤ f(wk) + ∇f(wk)T (ŵ − wk) +

(1/2γ)‖ŵ −wk‖22
8: γ ← βγ
9: until ;

10: wk+1 ← ŵ, γk+1 ← γ
11: ∗Compute proxγgi(w

k+1
i +uki ) using Algorithm 1 for all

i = 1, . . . , N
12: vk+1 ← proxγg(w

k+1 + uk)

13: uk+1 ← uk +wk+1 − vk+1

14: until any standard stopping criteria
. ∗Step 11 should be implemented in parallel if possible.

VI. NUMERICAL EXAMPLES

This section uses the Millar-10 model as an example
to perform the proposed method. The complete nonlinear
ordinary differential equations have 19 state variables (mR-
NAs and proteins), of which 8 mRNAs and 1 protein are
output variables (LHY, TOC1, Y, PPR9, PPR7, NI, GI,
ZTL), which can be measured in biological experiments
(see the supplement of [7] for details). The model simulates
the behaviors of eukaryotic circadian clocks, whose outputs
are sampled by 30 min, plotted in Figure 2. The light is
controlled as follows: -48h∼0h is two cycles of light-dark,
each of which lasts for 12 hours; 0h∼48h is always in light,
illustrated as a square wave in Figure 2. The ground truth of
interaction path diagram of key mRNAs for circadian clocks
is illustrated in Figure 3a.

-48 -36 -24 -12 0 12 24 36 48
time (hour)

0

0.5

1
LHY
TOC1
Y
PPR9
PPR7
NI
GI
ZTL
Light

Fig. 2: This simulation uses the Millar-10 model to simulate the
measurements of key mRNAs for eukaryotic circadian clocks in
experiments.



The proposed method is used to perform network re-
construction. The whole time series is divided equidistantly
into 1 (i.e. applying linear approach), 2, 3, 4 segments, i.e
K = 1, 2, 3, 4. The results of K = 1, 2, 3 is shown in
Figure 3. To determine whether an edge exists or not, we
check the 2-norm of all parameters in its associated transfer
function. Note that our approach has enhanced sparsity, and
thus it is no longer an issue as other methods to select the
threshold of 2-norm4 to determine whether an edge should
exist or not, e.g. most methods reviewed in [20]. Follow-
ing the conventions on comparing different algorithms, the
performance curves of the algorithm are given in Figure 4.
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(a) ground truth
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(b) linear
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(c) nonlinear: K = 2
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  Y
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  ZTL

(d) nonlinear: K = 3

Fig. 3: Examples of network inference results.

One problem deserving to be explained is why there
are still several links missed. These links are introduced
by the nonlinear terms combining x and u, i.e. nonlinear
terms as f(..., xk, ...;u), which has not been included in our
extension. The bottom of this issue is how to extend the DSF
to include the bilinear terms of x and u.

0 0.2 0.4 0.6 0.8 1
Recall = TP/(TP+FN)

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on
 =

 T
P

/(
T

P
+

F
P

)

Linear
Nonlinear, K = 2
Nonlinear, K = 3
Nonlinear, K = 4
y=1-x

(a) P-R curve

0 0.2 0.4 0.6 0.8 1
FPR = FP/(FP+TN)

0

0.2

0.4

0.6

0.8

1

T
P

R
 =

 T
P

/(
T

P
+

F
N

)

Linear
Nonlinear, K = 2
Nonlinear, K = 3
Nonlinear, K = 4
y=x

(b) ROC curve

Fig. 4: Performance curves: the precision-recall and the ROC curve.
They are obtained by setting different model orders (ranging from 1
to 48), counting how many times each edge appears in all inference
results and then choosing different thresholds of frequencies of
edges appearing in total.

4Here we use 1e-6. The threshold 1e-8 or even 1e-10 gives almost the
same results.

VII. CONCLUSIONS

The paper provides a way to define Boolean dynamic
networks for a certain class of nonlinear dynamical systems.
Based on this definition, an inference method was intro-
duced with great practical applicability. To handle large-scale
problems, an ADMM algorithm is presented. The Millar-10
model in systems biology is used as an numerical example
in network reconstruction. Besides the Boolean dynamic net-
works for nonlinear systems, we also provide a definition of
linear network identifiability to unify different perspectives
on network identifiability used in available literature.
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