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Abstract 

This report aims at summarizing the on-going research activity carried out by DG-JRC in 

the framework of the institutional project Authors and Victims Identification of Child Abuse 

on-line, concerning the use of microphone fingerprinting for source device classification. 

Starting from an exhaustive study of the State of Art regarding the matter, this report 

describes a feasibility study about the adoption of microphone fingerprinting for source 

identification of video recordings. A set of operational scenarios have been established in 

collaboration with EUROPOL law enforcers, according to investigators needs. A critical 

analysis of the obtained results has demonstrated the feasibility of microphone 

fingerprinting and it has suggested a set of recommendations, both in terms of usability 

and future researches in the field.    
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1 Introduction 

1.1 Background and purpose 

This document presents the first steps of a study carried out within JRC research activity 

on source device identification techniques using microphone fingerprint, as a possible 

support to strengthen European Law Enforcement bodies’ capabilities to fight against Child 

Abuse on-line. This activity has been conducted in the framework of the institutional project 

Authors and Victims Identification of Child Abuse On-line (560-AVICAO), started in 2014, 

and it has been accomplished in close and fruitful cooperation with EUROPOL’s European 

Cyber-Crime Centre (EC3). 

Briefly, as already shown and discussed in previous JRC activities [1][2], camera 

fingerprinting techniques allows to associate multimedia contents as pictures and/or video 

recordings to its source camera, namely the device that was used to capture them. From 

law enforcers’ point of view, the capability to recognize the source camera can enable 

linking across files coming from different cases or attributing untrusted unlawful material 

to its potential authors, and lead to an enhanced capability to identify perpetrators and 

victims of such crimes. 

During the previous activities carried out by JRC staff within the AVICAO project [1], Sensor 

Pattern Noise (SPN) was proved to be an effective tool for source camera identification 

from images and video recordings, despite some limitations about its usability. In 

particular, source identification from video recordings is still a challenging problem, due to 

the fact that videos have generally a resolution smaller than that of images, and the 

compression factor is usually higher, making SPN feature extraction and matching less 

reliable. Moreover, the majority of SPN-based methods suffers a scarce capability of scaling 

when large amount of data has to be analysed, classified or clustered. Nonetheless, the 

presence of audio track in a video recording provides a second potential source of 

information about the device, namely, the traces that microphone leaves in the audio. As 

well as for SPN, where the manufacturing process produces a non-uniform light response 

of each pixel, also for microphone the variable tolerances of each electric component make 

microphones respond to the sound in a different and, hopefully, unique way. 

After this brief foreword, this deliverable of the AVICAO project is pursuing the following 

goals: 

 To select a microphone fingerprinting technique, out of the ones present in the

scientific literature, suitable for source device identification from video recordings,

that can be complementary to the Sensor Pattern Noise and, last but not least, that

exhibits a level of maturity compatible with the requirements of law enforcers;

 To define a set of operational scenarios in which the chosen method would be

validated by EC3 investigators;

 To study the feasibility of the method and, in positive case, to develop a prototype

tool for law enforcers;

 To draw up conclusions and provide recommendations for further research activities

and practical usage of microphone fingerprinting.

The potentialities of the selected method are explored in different operational scenarios, 

according to the EC3 requirements. The scenarios are: 

 Device verification: Verify whether a given recording is taken with a given device

(1-to-1 comparison).

 Device classification/identification: assign a given video to the device that was

used to acquire it, in a close set of N known cameras (1-to-N comparison).
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 Content-based retrieval: retrieve all the video recordings taken with a given

recording.

 Clustering: cluster an unclassified set of video recordings into groups of recording

acquired with the same device.

For all the aforementioned scenarios, the experimental evaluation is carried out using a 

set of smartphones. This particular setting was chosen for the following motivations: 

 Smartphones are continuously spreading in present society, and a climbing

percentage of video contents are taken by means of such devices;

 Smartphones are the preferred way to produce video recording to be shared on-

line.

1.2 State of art 

Over the last years, the main approach followed by researchers for camera fingerprinting 

has been based on Sensor Pattern Noise. SPN is a noise that the camera sensor left within 

a multimedia content, either images or videos, due to the small differences in pixel light 

response. Since such uneven responses are due to the manufacturing process, they are 

unique and unrepeatable, so that they can be used as unique footprint to characterize a 

given source device. A great bibliography [3] and recent studies carried out by DG-JRC 

have shown promising result in the field in case of still images [1], whereas in case of video 

sequences, the performance is far from to be satisfying for an employment in real 

investigative workflow. This open issue is due to the fact that video frames are mainly 

provided in a strongly compressed format and some other processing might occur, as frame 

scaling and video stabilization, which affect the reliability of SPN extraction.  

Although this limitation seems still to be challenging in case of video recordings, a second 

information source is present within videos, namely the audio trace. From a different 

perspective, in order to generate a video sequence two different sensors are employed: 

the camera and the microphone. Similar to the strategy developed for camera in order to 

recognize the source device of a multimedia content, the microphone can be used for the 

same purpose. But, despite a vast variety of literature concerning automatic speech [4] 

and speaker [5] recognition has been produced so far, source microphone recognition 

seems to be still at its initial stage.  

From brand/model classification 

Over the last decade, a series of attempts to recognize the source of audio recordings have 

been made, for both landline and mobile phones. The pioneering work in the field is [6], 

wherein the authors proposed a set of audio steganalysis-based features to cluster (K-

means) or to predict (Naïve Bayes classifiers) both the microphone and the environment. 

The work has been extended in [7], wherein a first proof of concept concerning the usage 

of information fusion in microphone classification has been proposed, showing that 

combining statistical features (by means of supervised classification) and unweighted 

information fusion (at match, rank, and/or decision level) favourably affects classification 

results.  

Then, the same authors defined a context model for Microphone Forensics in a following 

work [8], which raised a set of points that are useful to be mentioned here. First, 

supervised classifier can reach 82.5% percent of accuracy, whereas unsupervised 

clustering method didn’t show significant results. Then, all the considered features 

(especially second derivatives of Mel Frequency Cepstral Coefficients, MFCCs) in the time, 

frequency and MFCC domains show good performance, even though Principal Component 

Analysis (PCA) shows that just 1/3 of the features are responsible of the 95% of sample 

variance. Interestingly, results show that the performance is quite independent from the 

microphone orientation, whereas the mounting strongly affects the results, because of its 

correlation with vibrations (due to the type of mounting) and environment reverberation. 
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Moreover, aging (at one-year distance it has been tested) seems to have no effect on the 

overall accuracy. 

In the meantime, in [9] authors tried to automatically identify the acquisition device (using 

two data sets of landline telephone handsets and professional microphones) from speech 

recordings. MFCCs and Linear Frequency Cepstral Coefficients (LFCCs) have been used to 

train Gaussian Mixture Models (GMMs) – Universal Background Model (UBM) and, at the 

end, to classify the acquisition device by means of Gaussian super-vectors and a Support 

Vector Machine (SVM). The method shows a high closed-set classification accuracy, 

exceeding 90% for model/brand classification, and suggest that MFCCs, as well as 

Gaussian super-vectors, are good candidates to model the microphone response. A similar 

approach has been presented in [10], wherein GMM-UBM models are employed as 

classifier, by maximizing a likelihood ratio function and stacking MFCCs with Power-

Normalized Cepstral Coefficients (PNCCs), reaching a model/brand classification accuracy 

of more than 97% on a limited set of 14 device models.  

Another work based on MFCC and SVM classifiers for closed-set classification of brand and 

models of cell-phones was presented in [11]. Differently from the previous one, also Vector 

Quantization (VQ) is employed for classification, in order to compare the performance of 

the two classification strategies. Both methods are able to reach a level of accuracy higher 

than 92% for brand/model identification.  

The aforementioned works use mainly speech as carrier signal to estimate how microphone 

impacts on the input signal. Other works used MFCCs of speech signals together with GMMs 

and the likelihood probability they provide [12] or to train a Radial Basis Function neural 

network classifier [13]. Both papers show a level of accuracy in closed-set classification 

higher than 90%, but in the former LPCCs outperform MFCCs. Kotropoulos and al.’s work 

[13] has been extended in [14] using sparse representation of spectral features sketches 

[15], wherein sparse spectral features are claimed to outperform MFCCs based approach. 

A further work based on sparse representation has been presented in [16] and [17], where 

authors employed Gaussian supervectors based on MFCCs that are extracted from speech 

recordings. For the sparse representation, both exemplar-based dictionary and K-SVD 

algorithm [18] have been employed for cell phone verification. 

To device level identification 

A limitation of the mentioned works is that most of them don’t assess the capabilities of 

their respective methods to deal with classification of cell-phone in case of several devices 

(either microphones or cell phones) of the same brand/model. Fortunately, in [19] it has 

been shown that microphone and loudspeakers fingerprinting is possible at device level by 

means of audio features and supervised machine learning techniques, such as k-Neural 

Network (k-NN) and GMMs. Also in this last work, among the analysed features, MFCCs 

are the best choice for microphone characterization. 

Beside speech-based microphone fingerprinting techniques, another research line explored 

the possibility of microphone fingerprinting by using no speech signals. In [20] Power 

Spectral Density (PSD) of speech-free audio recordings is used to train an SVM classifier 

for cell-phone microphone identification, whereas in [21] again MFCCs and LFCCs are 

employed in combination with SVM and GMMs (using likelihood ratios or mutual information 

criteria) to classify the source device. Although the method shows promising results, it 

seems to be extremely sensible to additive noise.  A similar approach is proposed in [22], 

wherein MFCCs entropy is explored together with several techniques of supervised and 

unsupervised Machine Learning techniques. Despite some quite outstanding results, the 

experimental evaluation protocol still remains limited and at laboratory level. Other 

methods based on MFCCs of non-speech signal and noise estimate are presented in [23] 

and [24], without introducing any significant improvement compared to the state-of-art. 

The works cited before extract microphone descriptive features, following a classic pattern 

recognition approach, without modelling a specific physical behaviour of microphone and/or 

audio propagation. Moreover, such features are classified only by means of supervised 

Machine Learning techniques, making their performance strongly dependent from the train 
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process and from the training data sets used. From another perspective, this lack of 

physical modelling makes the generalization to unsupervised problem, such as content-

based retrieval and clustering, a tough challenge and it represents a limitation in our study.  

To overcome these limitations, in [25], and then refined in following works [26][27], 

authors present methods for audio tampering detection and/or microphone classification 

based on blind channel estimation [28][29], wherein the feature they proposed is 

essentially derived by an estimate of the frequency response of microphone, which, in 

principle, can uniquely fingerprinting a microphone. Moreover, this feature appears suitable 

to be employed in unsupervised problems. Unfortunately, to the best of our knowledge, no 

evidence concerning the capability of identifying a single device instead of a class of device 

of the same manufacturer/model, is present in these works. Furthermore, the authors of 

[25] and [28] claim two apparently conflicting conclusions: whereas the first ones assume 

that the channel that shapes the signal is essentially the microphone response, for the 

second the channel is meant as the audio environment. However, it is worth to note that 

if the method in [25] has been tested on real recordings, the second one has been tested 

on synthetic data only.  

The first conclusion of such works is that the traces left by the microphone within the 

recorded signal are detectable in the frequency domain [30]. Starting from this result, new 

methods have been developed, mainly based on techniques borrowed from steganalysis, 

such as Random Spectral Features [31][32] and speech/speaker recognition, by extracting 

information from the Fourier domain and its more sophisticated representation such as 

MFCCs and LFCCs. Other approaches have been also investigated, also working in the 

Fourier domain, but focusing on the estimation of the transfer function of the microphone, 

which is modelled as a linear time invariant system that distort the audio signal. 

1.3 Challenges for microphone fingerprinting  

Although most of the works declare promising microphone identification accuracies higher 

than 90%, their outcomes need to be further studied, since some issues and questions 

have to be addressed to adopt microphone fingerprinting in a real investigation workflow, 

in terms of: 

 Features. Some works claim that MFCCs based methods outperforms LFCCs ones, 

whereas in other works the opposite seems true. In some early works, Random 

Spectral Features seems to outperform MFCCs, whereas following works refer 

MFCCs as the most promising technique. Moreover, MFCCs are recognized to be 

suitable to describe speech content, due to its own capability of modelling human 

voice, and even to recognize the source device. However, they perform well also 

when applied to non-speech segments to identify a microphone: this aspect should 

be investigated deeper.    

 Experimental setup. As it often happens, a fair comparison of the different works 

is hard to establish due to the non-homogeneous experimental protocols employed 

to assess methods performance. However, the general trend is to reproduce the 

same sounds and to record it with different devices. In most of the cases, it is not 

explicitly mentioned if the records have been acquired at the same time (unpractical 

solution) or at different times. Sometimes different environments, as small or large 

office, streets or countryside, have been chosen. The most used test sample has 

been the TIMIT database [33], well known in the field of speaker/speech 

recognition. This choice is quite standard, but in principle it is not a constraint. 

Other samples were music sounds, or natural sounds acquired in streets, places 

and countryside. So, the effects of the environmental noise and of the type of sound 

are not carefully evaluated and discussed. 

 Benchmark dataset. Some standard speech databases are used, but this choice 

is motivated by the need of having the same input signals for each device. In terms 

of devices corpus, the maximum number of devices used for an assessment is 

around 20 devices. However, rarely such corpus is composed of devices from the 
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same model, except for [19]. This fact limits a comprehensive understanding about 

the capability of fingerprinting a specific single device. 

 Operating scenarios. The most studied scenario is the microphone identification 

in a closed-set setting, whereas microphone verification has been investigated few 

times. Other scenarios haven’t been taken into account yet, or just marginally, such 

as content-based retrieval and unsupervised clustering.   

Starting from these considerations, some open questions still remain, and we intend to 

answer in this and futures reports: 

1. Is MFCC the best feature to model audio recordings for microphone recognition? 

Can we improve or target this or other features in case of a true investigation 

scenario? 

2. What is the impact of the type of input signals? Does the performance change in 

function of the sound? Is it preferable using speech or not speech segments to 

model microphone response? Can different sounds bring to different results? 

3. Are these features able to reliably characterize a single source device, or only a 

particular device model or brand? 

4. How does the environment, in terms of both propagation and noise, impact on the 

performance? 

5. How do these features perform in more complex operating scenario such as retrieval 

and clustering, which are highly desired functionalities for Law Enforcement 

investigation? 

6. Is the performance of this kind of fingerprinting techniques comparable to the SPN 

in case of video recordings?  

7. Can we combine together to reach a more reliable device identification? 

The above unanswered questions will drive the main JRC research actions in the field. 

 

1.4 Outline of the following Chapters 

The next Chapters are organized as follows. In Chapter 2, a technical insight about audio 

processing, and in particular about the method for microphone fingerprinting, is given. 

Then, in Chapter 3 the operational scenario considered in our analysis are described. The 

technical report carries on with an experimental evaluation of the method in Chapter 4. 

Finally, Chapter 5 conclude the report, providing recommendation and directions for further 

researches in the field.  
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2 Microphone fingerprinting 

In this Chapter we go through the technical details of the method we employed for 

microphone recognition from video sequences. The algorithm relies on the work in [26], 

where it has been used for audio tampering detection. Such an approach is based on blind 

channel magnitude estimation [28][29], wherein the term “channel” refers to the 

microphone frequency response in [25][27] and in our study, rather than the acoustic 

environment, as originally conceived. 

Starting from this brief forward, the recorded audio signal can be modelled in the time 

domain as follows: 

𝑥(𝑛) = 𝑠(𝑛) ∗ ℎ(𝑛) + 𝑣(𝑛) (1)                                                 

Where 𝑥(𝑛) is the recorded audio signal, 𝑠(𝑛) is the audio signal at the receiver (i.e 

microphone), ℎ(𝑛) is the impulse response of the microphone, 𝑣(𝑛) is a noise term 

introduced by the microphone and ∗ means the linear convolution. (1) can be expressed in 

the frequency domain by means of Short Term Fourier Transform (STFT) as: 

𝑋(𝑘, 𝑙) = 𝑆(𝑘, 𝑙)𝐻(𝑘, 𝑙) + 𝑉(𝑘, 𝑙) (2) 

for frequency 𝑘 and time frame 𝑙, where 𝑋(𝑘, 𝑙), 𝑆(𝑘, 𝑙), 𝐻(𝑘, 𝑙) and 𝑉(𝑘, 𝑙) are sequences of 

complex numbers. Then, assuming that the frame length of the STFT is large compared to 

the impulsive response, we make the following approximation: 

 
𝑋(𝑘, 𝑙) ≈ 𝑆(𝑘, 𝑙)𝐻(𝑘) + 𝑉(𝑘, 𝑙) (3) 

Wherein the microphone response 𝐻(𝑘) is constant over the time, meaning that microphone 

response varies more slowly than the speech. Furthermore, assuming to be in a noiseless 

case, i.e.  𝑉(𝑘, 𝑙) = 0, and passing to the magnitude of complex number we obtain: 

|𝑋(𝑘, 𝑙)|2 ≈ |𝑆(𝑘, 𝑙)|2|𝐻(𝑘)|2 (4) 

Then, passing to the logarithms: 

log|𝑋(𝑘, 𝑙)| ≈ log|𝑆(𝑘, 𝑙)| + log|𝐻(𝑘)| . (5) 

Let’s suppose now to know the log-spectrum log|𝑆(𝑘, 𝑙)| of the input signal, the microphone 

response could be estimated as: 

𝐻̂(𝑘) =
1

𝐿
∑ (𝑋(𝑘, 𝑙) − 𝑆(𝑘, 𝑙))

𝐿

𝑙=1

(6) 

Where 𝐴 = log (|𝐴|), 𝐴̂ is the estimate of 𝐴 and 𝐿 is the total number of time frames. 

In a forensic scenario, the original signal 𝑆(𝑘, 𝑙) is unknown, but we can think to estimate 

𝑆̂(𝑘, 𝑙) from the recorded signal 𝑋(𝑘, 𝑙). In a nutshell, the core of the method relies on finding 

a good estimation of the original signal, because this will affect the accuracy of the channel 

estimated.  

To obtain an estimation of 𝑆(𝑘, 𝑙), speaker recognition literature can help to cope with this 

problem. From now, we are focusing on speech as input signal 𝑆(𝑘, 𝑙). Concerning that, a 

vast literature has been produced so far, starting from [34] wherein RASTA-filtered Mel-

Frequency Cepstral Coefficients (RASTA-MFCC) have been successfully used to model 

human voice for speaker (and speech) identification. Beyond that, it is worth to note that 

such a feature has shown to be robust (i.e. independent) to the distortion introduced by 

the microphone. In [28], it is shown that combining RASTA-MFCC and Gaussian Mixture 

Models (GMM) allows to obtain a good estimation of the original (called “clean” hereafter) 

speech. Moreover, in [35] the first 15 MFCCs are proved to be robust against MP3 

compression. Because the audio trace of a video recording is generally encoded in a 

compressed format, this property will extremely be useful to define the number of MFCCs 

to be employed in the proposed framework, as it will be explained later.    
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In the following subsections, details about the adopted approach for clean speech 

estimation are shown.     

 

2.1 Training a Gaussian Mixture Model for Clean Speech 

Gaussian Mixture Models have been extensively used in audio analysis [36] because they 

are quite general, so that they are able to model a vast variety of phenomena. Moreover, 

the employment of Expectation-Maximization Algorithm [37] for GMM training make this 

process quite efficient. In our case, the GMM consists of M classes of average clean speech 

log-spectra. 

In order to reliably estimate the microphone frequency response, a M-components GMM 

has to be trained. This is an off-line process that has to be performed just one time, once 

all the parameters of the system are fixed (for further details we refer to the experimental 

evaluation Chapter).  

Given a training set of clean speeches s(n), this is split into overlapping windowed frames 

and the STFT is applied to obtain 𝑆(𝑘, 𝑙). Then, for each frame, a vector 𝒄𝑠(𝑙) =
[𝑐𝑠(1, 𝑙) 𝑐𝑠(2, 𝑙) … 𝑐𝑠(𝑁, 𝑙)] of N RASTA-MFCCs and the average log-spectrum 𝑆(𝑘, 𝑙) are 

calculated. Furthermore, the mean of the log-spectrum is subtracted as 

𝑆̃(𝑘, 𝑙) =  𝑆(𝑘, 𝑙) −
1

𝐾
∑ 𝑆(𝑘, 𝑙)

𝐾−1

𝑘=0

(7) 

Where 𝐾 defines the number of frequency points in the STFT domain. 

Once we have obtained RASTA-MFCC coefficients, they are used to train the GMM model, 

which is defined by the mean vector 𝜇𝑚, the covariance matrix Σ𝑚 (we assume diagonal 

covariance matrix) and the weights 𝜋𝑚 of each mixture. Then, the mixture probabilities 𝛾𝑙,𝑚 

are calculated as in [28]: 

𝛾𝑙,𝑚 =  
𝜋𝑚𝒩(𝒄𝑠(𝑙)|𝜇𝑚, Σ𝑚)

∑ 𝜋𝑗𝒩(𝒄𝑠(𝑙)|𝜇𝑗, Σ𝑗)𝑀
𝑗=1

(8) 

Where 𝒩(𝒄𝑠(𝑙)|𝜇𝑚, Σ𝑚) denote the probability density function of a multivariate Gaussian 

distribution.  

Finally, we combine 𝛾𝑙,𝑚 and 𝑆̃(𝑘, 𝑙) to obtain a weighted short-term log-spectra over all the 

available training set frames and thus to have the set M average clean speech log-spectra, 

as: 

𝑆𝑚̅(𝑘) =
∑ 𝛾𝑙,𝑚𝑆̃(𝑘, 𝑙)𝐿

𝑙=1

∑ 𝛾𝑙,𝑚
𝐿
𝑙=1

(9) 

The average spectra of each component  𝑆𝑚̅(𝑘) and the parameters 𝜇𝑚 , Σ𝑚 and 𝜋𝑚 of the 

M-components GMM will be used to estimate the microphone response in the following part 

of the algorithm.  

 

2.2 Blind channel estimation 

The clean speech model is then used to estimate the microphone response. Again, The 
STFT analysis is applied to the observed audio signal 𝑥(𝑛), obtaining an N-dimensional 

feature vector of RASTA-MFCC coefficients 𝒄𝑥(𝑙) = [𝑐𝑥(1, 𝑙) 𝑐𝑥(2, 𝑙) … 𝑐𝑥(𝑁, 𝑙)] and the 

corresponding average log-spectrum 𝑋̃(𝑘, 𝑙) for each frame 𝑙. Also here, the mean of log-

spectrum is subtracted.  

Now, we are ready to estimate the clean speech log-spectrum 𝑆̂(𝑘, 𝑙) by using the observed 

feature vectors 𝒄𝑥(𝑙) and the M-components GMM parameters (𝜇𝑚, Σ𝑚, 𝜋𝑚  ) obtained during 
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the training phase, as described in Section 2.1. The probabilities 𝛾′
𝑙,𝑚

 given by 𝒄𝑥(𝑙) from 

the GMM model are calculated as in Eq. (8), for each Gaussian component. These 

probabilities are used to estimate the average of clean speech log-spectrum for each frame 

as a weighted sum of clean speech log-spectrum of each Gaussian component. In formula: 

𝑆̂(𝑘, 𝑙) =  ∑ 𝛾′
𝑙,𝑚

𝑀

𝑚=1

𝑆𝑚̅(𝑘) (10) 

Finally, the microphone response is estimated assuming that 𝑆(𝑘, 𝑙) ≈  𝑆̂(𝑘, 𝑙) and applying 

Eq. (6). 

As suggested in [26], the estimate 𝐻̂(𝑘) of the microphone response bring just a portion of 

all the information available within the test audio sequence 𝑥(𝑛). To maximize the available 

information, three feature vectors is computed as follows: feature (1) contains all the 

information available from the microphone response estimation. Feature (2) describes the 

correlation between the microphone response estimation and the original log-spectra of 

the input audios, while feature (3) describes the properties of the input audio files.  

Let’s estimate the average power of the input signal 𝑥(𝑛) as: 

𝑝̂(𝑘) =  
1

𝐿𝑥

∑ 𝑋̃(𝑘, 𝑙)

𝐿𝑥

𝑙=1

(11) 

We also define (𝑣)̅̅ ̅̅  as the average value of a generic vector 𝑣.  

The feature (1), namely 𝑓1, is defined as: 

𝑓1 = [ℎ1, ℎ1
′ , ℎ1

′′], (12)  

with ℎ1 = 𝐻̂(𝑘) + (𝑝̂)̅̅ ̅̅   

where 𝑣′ and  𝑣′′ denote the first and second discrete derivatives, respectively. 

The feature (2), namely 𝑓2, is defined as: 

𝑓2 = [ℎ2, ℎ2
′ , ℎ2

′′], (13) 

with ℎ2 = 𝐻̂(𝑘)./ 𝑝̂(𝑘) 

where the operation (𝑎)./(𝑏) perform right-array division by dividing each element of 𝑎 by 

the corresponding element of 𝑏.  

The feature (3), namely 𝑓3, is calculated as follows: 

𝑓3 = [‖ℎ3‖[0,1], ‖ℎ3
′ ‖[0,1], ‖|ℎ3|‖[0,1] ] (14) 

with ℎ3 =  𝑝̂(𝑘) + (𝐻̂(𝑘))̅̅ ̅̅ ̅̅ ̅̅ ̅  

where ‖(∙)‖[0,1] is a normalization faction defined as: 

‖(∙)‖[0,1] =  
(∙) − min(∙)

max(∙) − min(∙)
(15) 

and |𝑣| provides the absolutes value of the coordinates of a given vector 𝑣. 

 

Finally, all these features are concatenated in a unique feature vector, as 

𝑓 = [𝑓1, 𝑓2, 𝑓3] (16) 

that represents the microphone descriptive feature we are using in our study. 
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2.3 Matching strategies 

Given two fingerprints 𝒇𝑥1 and 𝒇𝑥2 extracted from two general audio signals 𝑥1(𝑛) and 𝑥2(𝑛), 
the Pearson’s correlation, also known as Normalized Cross-Correlation (NCC), is employed 

as similarity measure, which is defined as  

𝜌(𝒇𝑥1, 𝒇𝑥2) =  
(𝒇𝑥1 − 𝒇̅𝑥1) ∙ (𝒇𝑥2 − 𝒇̅𝑥2)

‖𝒇𝑥1 − 𝒇̅𝑥1‖ ∙ ‖𝒇𝑥2 − 𝒇̅𝑥2‖
(17) 

where the operators (∙)̅̅ ̅ and ‖(∙)‖ are the mean and the L2-norm of a vector, respectively. 

Note that 𝜌(𝒇𝑥1, 𝒇𝑥2) is bounded in [-1,1]. 

It is worth to note here that when such a measure is referred as a score, we use 𝜌(𝒇𝑥1, 𝒇𝑥2) 
as it is. When such a measure is referred a “distance” metrics, the measure is 1 −  𝜌(𝒇𝑥1, 𝒇𝑥2), 

in such a way to satisfy the conditions for distance in a metric space.  

 

2.4 Limitations and possible solutions 

Although the method we described in the previous Sections has been successfully 

employed in scenario close to those that are considered here, it brings some limitations in 

terms of both modelling and robustness.  

Here, we provide a list of the intrinsic limitations of the model. 

 Signal model. The method relies mainly on a clean speech estimation process. In 

this sense, the features (RASTA-MFCCs) chosen to accomplish this task are optimal 

when speech is present in the analysed recording. When the speech is not present, 

the performance is at least sub-optimal, and also difficult to predict in case in which 

other types of sound are present. Then, because microphone responses are 

designed to be flat as much as possible on the voice waveband, in order to limit 

voice distortion, the likelihood is that the portion of spectrum related to the voice 

is not the most discriminative part of the audio spectrum, whereas the non-linear 

parts (above and below the voice spectrum) might well bring more information. 

Nevertheless, to the best of our knowledge, no significant works are present in 

literature exploring such properties. 

 Training. All the methods encountered in literature, both the ones based on blind 

channel estimation and those based on pure machine learning techniques, use audio 

traces where only a single language is present, i.e. English, both for training and 

testing samples. In order to move towards a practical use of them, this aspect 

should be further addressed. In particular, an evaluation of the impact of the use 

of a model trained on a specific language, and then applied to recordings containing 

other languages, would be extremely relevant.  

 Absence of a reference signal. To the best of our knowledge, there’s no evidence 

that suggests to use some specific sounds instead of others in order to reliably 

generate a reference signal identifying a single device, in a way similar to that 

employed for SPN (namely, flat images). However, looking at how the method 

works, it is highly recommended to employ a noiseless speech recording, as long 

as possible, with a controlled level of reverberation. Further analysis on this topic 

will be conducted in the course of future JRC researches. 

In addition to that, other elements can make less reliable the estimation of the microphone 

response, in particular: 

 Recording duration. From the state of art, 5-6 seconds are believed to be enough 

to reach a reliable estimation of the microphone response. It is likely that the 

analysis of shorter recordings can bring to misleading results. Some studies in this 

sense would be useful to clearly state the limits in which a certain level of 

performance is guaranteed. 
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 Compression. Most of the video recordings containing audio tracks can be re-

compressed for efficient storing and transmission (e.g. upload on Youtube re-

compresses video, and the audio as well). Lossy compression in general, the most 

used one for videos and audios, degrades microphone response estimation.  

 Noise. Some noises can heavily affect the reliability of clean speech estimation. 

Some of them are the Additive White Gaussian Noise (that models thermic noise in 

electronic components), reverberation (that depends on the acoustic environment) 

and blowing in the microphone, that might be due to the wind or the speaker itself. 

Other types of environmental noises, such as car engines in the streets, trains in a 

train station just to name a few, might affect the overall performance.  

 Audio editing. Some audio editing techniques can be applied to tamper an audio 

trace of a video recording. For example, the voice of the author of a crime present 

in the video, might be disguised to don’t allow to go back to him/her. Other common 

editing processes are trimming and/or insertion of other video/audio track. 

Some of these elements are already analysed in literature, even though a most 

comprehensive and systematic analysis is recommended for future works. 

 

2.5 Between intelligence and prosecution 

Considering the results collected so far from the state of the art analysis as well as during 

preliminary experiments, it would be at present probably still premature to consider 

microphone fingerprinting matching as a digital evidence to be used for prosecution. 

However, microphone fingerprinting can provide already valuable indications during the 

investigation phase, which precedes the production of evidences in a criminal case, 

especially in data analysis and investigative hypothesis formulation. 
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3 Operational scenarios 

As we already did for Sensor Pattern Noise based camera fingerprinting [1], we defined 4 

operational scenarios for the usage of microphone fingerprinting, following the advices and 

feedbacks that Europol’s EC3 provided to us, attempting to more strongly link the 

techniques with the real needs of investigators. Although the approach described in the 

previous Chapter is quite general, so that in principle it can be applied to whatever audio 

recordings, we focus on a specific application: the audio tracks come from video recordings 

and the final aim is to identify/classify in function of the source device.   

The scenarios we considered are: 

1. Device classification/identification; 

2. Device verification; 

3. Content-based retrieval; 

4. Device clustering. 

Compared to the SPN, in this study we collapse device-based and the utterance-based 

(corresponding to the picture-based retrieval scenario for SPN) in the same content-based 

retrieval scenario. This choice is motivated by the fact that, at this stage of the work, we 

cannot define a best practice to extract reference signal for audio when the device is 

available to the investigators, as already conceived for SPN reference. In other words, 

without the possibility of having such a strategy, it does not really make sense at this stage 

to distinguish between the case of in which the device is available to the investigators 

(device-based retrieval) and the case in which the device is not available (content-based 

retrieval). We leave to future researches the opportunity of distinguishing between the two 

operational scenarios.  

3.1 Device classification/identification 

This scenario simulates the case in which the analyst wants to identify what device, in a 

given closed-set of devices, has taken a certain audio/video recording, and has direct 

access to those devices (i.e. analyst can use them to extract the reference signal). In a 

more formal way, the task is to assign a given recording A (an offending audio/video 
content) to the camera which produce it, by choosing among a set of N devices 𝔻 =
{𝐷1, … , 𝐷𝑁}, known and available to the investigator.  

In detail, the procedure to perform this test is the following: 

 From a set of recordings that the investigator knows (or he/she can produce) to 
belong to the set of devices 𝔻, a reference fingerprint for each device is extracted 

as described in Chapter 2; 

 The fingerprint of the probe recording is extracted in the same way; 

 The probe fingerprinting is matched against all the reference fingerprints; 

 The resulting scores are ranked from the highest to the lowest value; 

 A is assigned to the device with the highest score. 

This scenario has two main constraints. The first is that the true device is supposed to be 
in the set 𝔻 of known devices. The second one, is that the investigator has access to all 

the devices, in order to produce some reference recordings, or at least, he/she has access 

to a set of recordings whose source device is known (e.g. from contextual information, 

investigative case etc.). 

Concerning the performance evaluation in terms of identification accuracy, Cumulative 

Matching Characteristics (CMC) curves, which measure the correct identification 

cumulative rate (or probability, using a frequentist approximation) of finding the correct 

match within a given number of ranks (from the 1st rank to the Nth rank). 



15 

Figure 1. Example of CMC curve 

 

In Figure 1 an example of Cumulative Matching Characteristics curves is shown.  

 

3.2 Device verification 

This scenario simulates the case in which the analyst wants to verify whether a given device 

has been used to take a given video recording, by analysing its audio trace, and has direct 

access to that device. In other words, the scenario is analogous to the task of one-vs-one 

(1-vs-1) comparison between a recordings and a device. The answer will be therefore 

binary (Yes/No). However, this scenario can involve more than one device. Here, the main 

difference with the previous scenario is that there’s no assumption about the presence of 
the source device within the set 𝔻 of analysed devices.  

Similar to the identification problem, it is highly advisable that the investigator can access 

to the devices used for testing, to produce reference fingerprints or at least be in possess 

of a set of recordings that he/she knows be taken from a given camera. 

In detail, the procedure to perform this test is the following: 

 Given a device belonging to 𝔻, a reference fingerprint is extracted as described in 

Chapter 2; 

 The fingerprint of the probe recording is extracted in the same way; 

 Probe fingerprinting is matched against the reference fingerprint of the device; 

 The score is compared to a decision threshold. If the score is above the threshold, 

the recording is verified to have been taken from that device, otherwise the test 

fails. 

The choice of the threshold is of primary importance because it has impact on the number 

of False Positives (FP, i.e. decision is Yes when the true answer is No) and False Negatives 

(FN, decision is NO whereas the true answer is Yes). To be independent from the threshold 

choice, the performance is evaluated by varying the threshold and evaluating the FP rate 

(FPR) and FN rate (FNR) for each threshold step. By plotting FPR against FNR we obtain 

the Receiver Operator Characteristics curve. An example is shown in Figure 2. Another 

useful representation is that shown in Figure 3, wherein both FPR and FNR are plot in the 

same graph in function of the threshold value. 
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Figure 2. Example of ROC curve 

 

 

Figure 3. Example of False Positive and False Negative curves 

 

 

It is worth to note that the final choice of the threshold can be done by applying different 

criteria. The most common one is the Equal Error Rate (ERR) criteria that means to choose 

the threshold for which the FPR is equal FNR. This criterion minimizes the overall error of 

the method. Other criteria can be to set a desired FPR or FNR, so that to retrieve the 

corresponding threshold and make the decision. 
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3.3 Content-based retrieval 

This scenario simulates the case when the analyst wants to retrieve all the audio/video 

recordings, in a given database, that have been captured with a certain device. Contrary 

to the scenarios conceived for SPN applications, here we don’t make distinction if the device 

is available or not to the investigator, as already explained in the introduction of this 

Chapter. 

In detail, the procedure to perform this test is the following: 

 Compare a reference fingerprint (provided by one or more recoding from the same 

camera) with those extracted from all audio/video in the database; 

 Rank the resulting scores; 

 Probe fingerprinting is matched against the reference fingerprint of the device; 

 The score is compared to a decision threshold. 

Performance can be measured in terms of ROC curve (described in the verification 

scenario), and in terms Precision-Recall curve, as shown in Figure 4. Precision is defined 

in as the expected fraction of relevant (true matches) audios contained in the retrieved 

list; recall is instead defined as the expected fraction of all true matches in the data base 

that has been retrieved in the list. Both error measures vary with respect to the threshold; 

therefore, similarly to the ROC, a curve can be plotted. If a scalar performance index is 

needed, given a decision threshold, 𝐹1 score can be adopted; it is defined as the harmonic 

mean of Precision and Recall. In formula: 

𝐹1 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

𝐹1 score values close to one mean high retrieval performance, while value close to zero 

means poor performance. 

Figure 4. Example of Precision-Recall curve. 

 

3.4 Clustering  

This scenario represents the case where an investigator has a set of video recordings, 

collected from an unknown number of different devices, personal computers or web 

servers, to give just some examples, and wants to classify or group them into clusters with 
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respect to the source device. It represents the most challenging operational scenario, 

because no (or limited) a-priori information is available to investigators. However, it is 

useful in a variety of practical cases, e.g., to discover how many devices have been used 

to produce a certain series of unlawful videos or to discover links between different criminal 

cases (same devices used across different cases), so that to drive law enforcers’ activities 

along new investigation lines. 

A second aspect is that clustering algorithms usually perform better, and more efficiently, 

when at least the number of cameras is known; the information that this number falls 

within a defined range can be also useful to limit errors. Unfortunately, these assumptions 

do not hold in the operational scenario at hand. Still, they can remain valid in certain 

situations, e.g., when a hard-drive containing videos has been seized, and investigators 

already known that such videos come from a definite number of devices. 

Stated that this scenario deserves a more thorough investment than the others, we leave 

its analysis, development and implementation to a dedicated research action of the AVICAO 

project. However, we have already considered some “probabilistic” clustering approach, 

such as Gaussian Mixture Model based clustering. This choice is motivated by the fact that 

in addition to a correct classification of data (which still remains the primary final goal, 

even though hard to be achieved always and everywhere), the degree of reliability (i.e. 

the probability) of a given device of belonging to a cluster is certainly relevant from the 

investigators’ point of view. This approach, in practice, may well help users to select the 

most trustworthy set of data, from which they can start their investigation on more solid 

and reliable data.  
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4 Feasibility study and experimental evaluation 

In this Chapter we evaluate the feasibility of the adoption of microphone fingerprinting for 

video recordings classification/verification/retrieval in all operational scenarios, except for 

the clustering, as introduced in the previous Chapter. 

Concerning the general conditions of the tests, we will focus on video recordings generated 

by smartphones, for the following reasons: 

1. Smartphones are a continuously growing phenomenon nowadays, and an increasing 

portion of contents, including illegal ones, is produced by using these devices; 

2. The majority of multimedia contents shared on-line are produced by smartphones. 

The Chapter carries on as follows. The benchmark data set is described in Section 4.1, the 

experimental protocols in Section 4.2, implementation details are also provided in Section 

4.3 and the results are shown in Section 4.4. Finally, Section 4.5 wraps around this Chapter 

with discussions and results analysis.  

  

4.1 Smartphones benchmark data set 

In order to reproduce the operational scenario adopted, a benchmark dataset of video 

containing audio traces has been produced. The dataset is composed of the raw data (i.e. 

video recordings) and the related ground-truth information (i.e. a device identifier). Forty-

two smartphones, comprising different brands and models, have been collected. It is worth 

to note that for some brand/models, more than one device is present in order to evaluate 

if the method is able to discriminate between two different devices of the same 

brand/model. In Table 1 the complete list of devices is shown. 

 

Table 1. List of devices 

 MICROPHONE CAMERA 

ID 
DEVICE 

Brand Model Operating 
System 

Sampling 
Rate 

Audio 
Compression 

Native 
Resolution 

 Video 
Resolution 

Video 
Compression  

1 Apple Iphone 4 IOS 44100 Hz MPEG - AAC 2592 x 
1936 

1280x720 H264 - MPEG4 

2 Apple Iphone 4 IOS 44100 Hz MPEG - AAC 2592 x 
1936 

1280x720 H264 - MPEG4 

3 Apple Iphone 6 IOS 44100 Hz MPEG - AAC 2592 x 
1936 

1280x720 H264 - MPEG4 

4 HTC One X Android 48000 Hz MPEG - AAC 3264x1840 1920x1080 H264 - MPEG4 

5 HTC One X Android 48000 Hz MPEG - AAC 3264x1840 1920x1080 H264 - MPEG4 

6 HTC One X Android 48000 Hz MPEG - AAC 3264x1840 1920x1080 H264 - MPEG4 

7 Sony Experia S Android 48000 Hz MPEG - AAC 4000x2250 1920x1080 H264 - MPEG4 

8 Sony Experia S Android 48000 Hz MPEG - AAC 4000x2250 1920x1080 H264 - MPEG4 

9 Sony Experia S Android 48000 Hz MPEG - AAC 4000x2250 1920x1080 H264 - MPEG4 

10 Samsung Galaxy Nexus I92 Android 48000 Hz MPEG - AAC 2592x1944 1280x738 H264 - MPEG4 

11 Samsung Galaxy Nexus I92 Android 48000 Hz MPEG - AAC 2592x1944 1280x738 H264 - MPEG4 
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12 Samsung Galaxy Nexus S android 32000 Hz MPEG - AAC 2560x1920 720x480 H264 - MPEG4 

13 Nokia Lumia 735 Microsoft 48000 Hz MPEG - AAC 3072x1728 1920x1080 H264 - MPEG4 

14 Nokia Lumia 735 Microsoft 48000 Hz MPEG - AAC 3072x1728 1920x1080 H264 - MPEG4 

15 Nokia Lumia 735 Microsoft 48000 Hz MPEG - AAC 3072x1728 1920x1080 H264 - MPEG4 

16 Samsung ACE GT-S5830 Android 48000 Hz MPEG - AAC 2560x1920 640x480 MPEG-4 

17 Samsung ACE GT-S5830 Android 48000 Hz MPEG - AAC 2560x1920 640x480 MPEG-4 

18 Samsung ACE GT-S5830 Android 48000 Hz MPEG - AAC 2560x1920 640x480 MPEG-4 

19 Samsung ACE GT-S5830 Android 48000 Hz MPEG - AAC 2560x1920 640x480 MPEG-4 

20 Samsung ACE GT-S5830 Android 48000 Hz MPEG - AAC 2560x1920 640x480 MPEG-4 

21 Samsung ACE GT-S5830 Android 48000 Hz MPEG - AAC 2560x1920 640x480 MPEG-4 

22 Samsung ACE GT-S5830 Android 48000 Hz MPEG - AAC 2560x1920 640x480 MPEG-4 

23 Samsung ACE GT-S5830 Android 48000 Hz MPEG - AAC 2560x1920 640x480 MPEG-4 

24 Samsung ACE GT-S5830 Android 48000 Hz MPEG - AAC 2560x1920 640x480 MPEG-4 

25 Samsung ACE GT-S5830 Android 48000 Hz MPEG - AAC 2560x1920 640x480 MPEG-4 

26 Samsung ACE GT-S5830 Android 48000 Hz MPEG - AAC 2560x1920 640x480 MPEG-4 

27 Samsung ACE GT-S5830 Android 48000 Hz MPEG - AAC 2560x1920 640x480 MPEG-4 

28 Samsung ACE GT-S5830 Android 48000 Hz MPEG - AAC 2560x1920 640x480 MPEG-4 

29 Samsung ACE GT-S5830 Android 48000 Hz MPEG - AAC 2560x1920 640x480 MPEG-4 

30 Samsung ACE GT-S5830 Android 48000 Hz MPEG - AAC 2560x1920 640x480 MPEG-4 

31 Samsung ACE GT-S5830 Android 48000 Hz MPEG - AAC 2560x1920 640x480 MPEG-4 

32 Samsung ACE GT-S5830 Android 48000 Hz MPEG - AAC 2560x1920 640x480 MPEG-4 

33 Samsung ACE GT-S5830 Android 48000 Hz MPEG - AAC 2560x1920 640x480 MPEG-4 

34 Samsung ACE GT-S5830 Android 48000 Hz MPEG - AAC 2560x1920 640x480 MPEG-4 

35 Samsung ACE GT-S5830 Android 48000 Hz MPEG - AAC 2560x1920 640x480 MPEG-4 

36 Samsung Galaxy S6 Android 48000 Hz MPEG - AAC 5312x2988 3840x2160 H264 - MPEG4 

37 Hero 4 Gopro GNU Linux 48000 Hz AAC 4000x3000 3480x2160 H263 - MPEG  

38 HTC ONE m9 Android 48000 Hz MPEG - AAC 5376x3024 3840x2160 H264 - MPEG4 

39 BlackBerry Torch 9800 BlackBerry 
OS 

32000 Hz MPEG - AAC 2592x1944 640x480 MPEG4 

40 BlackBerry 9900 Qwerty BlackBerry 
OS 

48000 Hz MPEG - AAC 2560x1920 1280x720 H264 - MPEG4 

41 BlackBerry 9900 Qwerty BlackBerry 
OS 

48000 Hz MPEG - AAC 2560x1920 1280x720 H264 - MPEG4 

42 Nokia Lumia 435 Microsoft 48000 Hz MPEG - AAC 1600x1200 880x448 H264 - MPEG4 
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By using each of the aforementioned devices, two types of data set are acquired in order 

to evaluate different aspects of the blind channel estimation-based method. 

Controlled set 

The first data set is acquired with the following protocol: 

 A suitable video sequence is reproduced by means of a LCD screen and 

loudspeakers for audio, and recaptured by means of the all the smartphones; 

 The smartphones are placed always in the same positions with respect both the 

room walls and the audio/visual sources; 

 A video sequence, whose duration is at least 3 minutes, is recaptured and then 

trimmed in subsequence of 6 seconds, for each device; 

 The source video sequence is composed of a set of video recordings from VIDTimit 

Audio-Video dataset [38][39]. Although the dataset was conceived for speaker and 

speech recognition from audio/visual features, it was suitable also as dataset for 

our purposes. This is composed of small sentences (~3 seconds each) in English, 

from people of different ages, with different accent and balanced in gender. We 

randomly select a subset of sentences, taking care of having no repetitions and a 

balance in gender speakers, to be concatenated in the source video. 

The aim of this first set of data is: 

 To verify that the method effectively estimates the microphone response instead of 

the environment; 

 To reduce as much as possible undesired noises in the recordings, that could have 

made the results analysis more difficult; 

 To make an analysis on a wider typology of speeches, in term of age, accent, 

gender, which is difficult to reach in practice with live recordings. 

Live recordings  

The second dataset is acquired with the following protocol: 

 Two video recordings of at least two minutes with at least one person speaking are 

recorded indoor (large offices) and outdoor, for each device. Two male and one 

female voices are randomly present in the recordings, speaking English; 

 Two video recordings of at least 1 minutes are recorded with no speech are acquired 

indoor and outdoor, for each device, so that the audio traces contain only 

environmental sounds; 

 The recordings are trimmed in sequences of duration 6 seconds.  

The aim of this second set of data is to simulates real recordings, wherein speech or simply 

environmental noise might occur.  

  

4.2 Experimental protocols 

Different experimental protocols have been defined for each operational scenario defined 

in Chapter 3. Such protocols are described in the following. Commonly to all protocols, the 

audio tracks are extracted from each 6s recordings by using FFMPEG1 in un uncompressed 

audio format (wav.). In case of stereo recordings, wherein two audio traces are present 

for a single video sequence, we considered only the left one by convention. In this way, 

we are still general, and we analysed the worst (and likely the most frequent) case (i.e. 

one audio trace is present). 

                                           
1 https://www.ffmpeg.org/ 
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Finally, the same protocols are applied to both controlled and live recordings datasets. 

 

4.2.1 Device identification/classification 

To assess the performance in this scenario, a template for each device is generated by: 

1. Extracting the audio fingerprint for each recoding of 6 seconds; 

2. For each device, 10 fingerprints are randomly selected to build a template for the 

related device; 

3. The remaining data are used as probe recordings; 

4. Each probe recording is matched against all the reference fingerprint of each device. 

Devices are finally ranked according to the obtained similarity measure; 

5. A CMC curve is computed to summarize the performance.  

The process is repeated 100 times, selecting a randomly the data used to build the 

reference fingerprint. This approach is known in Machine Learning field as cross validation. 

 

4.2.2 Device verification 

Similar to the device identification problem, we evaluate the performance in this 

operational scenario by: 

1. Extracting the audio fingerprint for each recoding of 6 seconds; 

2. For each device, 10 fingerprints are randomly selected to build a template for the 

related device; 

3. The remaining data are used as probe recordings; 

4. Each probe recording is matched against all the reference fingerprint of each device; 

5. The number of false positive and false negative are counted, by varying a threshold 

in the range [-1,1]; 

6. Two curves are finally obtained: 

o FPR-FNR graph is obtained by plotting the False Positive Rate and the False 

Negative Rate in the same graph, in function of the threshold. The advantage 

of using this graph is that keep information about the threshold, allowing to 

decide the threshold value in function of the desired error; 

o ROC curve, obtained by plotting FNR against FPR, allows to easy compare 

the performance of two methods applied to the same dataset; 

Again, the procedure is repeated 100 times to perform cross-validation. 

 

4.2.3 Content-based retrieval 

Also in this case, to assess the performance in this scenario, a template for each device is 

generated by: 

1. Extracting the audio fingerprint for each recoding; 

2. Selecting randomly 10 fingerprints for each device and averaging them; 

3. The remaining data are used as query recordings; 

4. For each query recording, a set of ranked devices is provided; 
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5. Precision and Recall curve and 𝐹1 score are computed to summarize the 

performance;  

The process is repeated 100 times for cross validation. 

 

4.3 Implementation details 

MATLAB2 has been used to implement the method described in Chapter 2. MATLAB 

functions such as audioread and audioinfo are used to read raw data file and file metadata, 

respectively. Then, PLP and RASTA-MFCC in MATLAB toolbox [40] is used for spectral 

analysis and MFCCs extraction. Then, MATLAB Statistics and Machine Learning Toolbox 

function fitgmdist is used to train the Gaussian Mixture Model, while posterior function is 

used to get the probabilities given a set of observed RASTA-MFCC coefficient and trained 

Gaussian Mixture Model. 

In order to train the GMM model, the VIDTimit Audio-Video dataset has been used. In 

particular, has been used all the recordings that has not been used to generate the source 

video for the controlled dataset. The same model has been used also for the live recordings 

dataset.  

Hereafter we list the several parameters that have been set, both for training and testing, 

to make the experimental evaluation and the concerning motivations. 

In the off-line training process, we set: 

 Sampling rate: 32000 Hz; 

 Number of FFT points: 1024; 

 Windows time: 25 milliseconds; 

 Step time: 120 milliseconds; 

 Windows: Hanning; 

 Number of Gaussian components: 64; 

 Number of RASTA-MFCC coefficients: 13; 

The choice of using a sampling rate of 32 kHz is due to the fact that this is the minimum 

frequency at which an audio is sampled in the overwhelming majority of smartphones. The 

choice of 64 components for the GMM has been suggested by literature, whereas the choice 

of the first 13 RASTA-MFCC is suggested as a trade of between computational complexity 

and robustness against compression [35], because compression is always present in case 

of audio extracted from video recording. 

The other parameters are chosen by comparing best practises from the state of art.  

In addition to these internal parameters, we set two parameters in our experiments: 

 Recording durations: 6 seconds 

 Reference recording durations: 60 seconds 

The recording duration has been decided as a trade-off between accuracy (most of the 

works in literature assume that such a duration is sufficient for reliably estimating the 

channel response) and number of samples for each experiment.  

Finally, the choice of the reference duration is quite arbitrary, but reasonable considering 

different factors, such as device storage capabilities and common usage. 

                                           
2 © 1994-2017 The MathWorks, Inc. 
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Further studies obtained by varying such parameters are left for future activities, once this 

technology will be quite mature to be used in real investigations, in order to clearly state 

the boundaries in which this technique can be validly used. 

 

4.4 Results 

Hereafter we present the results of the experimental evaluation. For each operational 

scenario, we analysed the performance of the method for each data set, controlled and live 

recordings ones, separately. An overall comparison is made in Section 4.5. 

 

4.4.1 Device classification/identification 

First, we analysed the performance of device classification/identification. The experiments 

are repeated 100 times (i.e. runs) by random sampling 10 sequences of 6 seconds to build 

the template of each microphone. Then, the scores are obtained by calculating NCC 

between the remaining recordings used as probe data, and then ordered in order to obtain 

a CMC curve for each run. To show 100 CMC curves in a single graph, we use boxplot 

representation, which allows to graphically represent the distribution of the probabilities of 

identifications within the k-th rank, for each considered rank.  On each box, the central red 

mark indicates the median, and the bottom and top edges of the box indicate the 25th and 

75th percentiles, respectively. The whiskers extend to the most extreme data points not 

considered outliers, and the outliers are plotted individually using the red '+' symbol. 

In Figure 5 the results on the controlled dataset are shown, whereas in Figure 6 the 

results are related to the live recordings dataset. 

  

Figure 5. Boxplots of CMC curves obtained by testing on the controlled dataset. 
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Figure 6. Boxplots of CMC curves obtained by testing on the live recordings dataset. 

 

In order to easily compare the two results, and to better explain the meaning of boxplot 

representation, we analysed the probability of identification at 3th rank. Results are 

compared in Table 2. 

 

Table 2. Comparison of identification performance at 3th rank between the controlled and live 
recordings datasets. 

 Minimum Median Maximum 

Controlled 0.73212 0.75369 0.79455 

Live recordings 0.67540 0.69841 0.73294 

 

Two main considerations need to be made. First, the method performs better on the 

controlled dataset compared to the live recordings dataset. This can be explained by the 

fact that in the second set of data there are sequence wherein no speech is present, whilst 

in first one a frame of speech is always present. This aspect will be addressed in Section 

4.5. Regarding the environment impact, this last element is out of the scope of this 

analysis, and will be addressed in future works.  

Second, as it can be easily verified for the other ranks, the probability of identification 

fluctuates in a small range of values (±4% of the median values) in the same way for both 

datasets, leading to the conclusion that the method is quite independent from the audio 

content in terms of speaker characteristics.   

 

4.4.2  Device verification 

The same cross-validation approach has been employed for 1-vs-1 device verification, by 

random sampling 10 sequences to build a template for each devices and the remaining 

data as probes. The process is then repeated 100 times as before. Hereafter we don’t use 

boxplot as done for CMC curves, but we follow a different procedure in order to make our 
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data analysis simpler. First, we evaluate the distribution of the ERR, meant as scalar 

performance index, over all experiments. Then, we show the FPR-FNR and ROC curves in 

the median case, for both the datasets. 

 

Figure 7. Distributions of EERs for controlled (a) and live recordings (b) datasets. 

 

(a) 

 

(b) 

The distributions of EERs for both datasets are shown in Figure 7. As immediately clear 

from the comparison of the histograms, the method works a little better on the controlled 

dataset (a), rather than on the live recordings (b) one. The motivations of this behaviour 

can be borrowed from the previous analysis. In (a) we observe a fluctuation with respect 

to the median value (14.05% of EER) of ±4.4%, while in (b) we observe a variation with 

the respect to the median value (15.82% of EER) of ±8.4%. 

Finally, the FPR-FNR curves and the ROC curve are shown in the median case. The choice 

of the median case rather than the mean case is due to two considerations. The median is 

an approximation of the mean for symmetric distribution more robust to outliers 

(extremely favourable/unfavourable cases) than sample mean and, at the same time, it 

allows us to directly go back from the EER score to the related curves.  
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Figure 8. False Positive and False Negative Ratios curves are presented in (a). In (b) the ROC 

curve. The curves are obtained using the controlled dataset. 

 

(a) 
 

(b) 

 

Figure 9. False Positive and False Negative Ratios curves are presented in (a). In (b) the ROC 
curve. The curves are obtained using the live recordings dataset. 

 

(a) 

 

(b) 

Figure 8 and Figure 9 show the performance in case of microphone verification for both 

datasets. It is worth to note here that in both cases the optimal threshold to minimize the 

total error according the EER criteria, is quite high (i.e. more than 0.995 against a 

maximum NCC value of 1). This behaviour suggests that, even though the method is 

sufficiently able to correctly classify the audio records, a considerable number of features 

coming from different devices shows a high correlation. This can be explained by 

considering the composition of the device set, wherein a great percentage of them are 

equal in terms of model/manufacturers.  

 



28 

4.4.3 Content-based retrieval 

An approach similar to that used in the previous scenario is adopted for content-based 
retrieval. 𝐹1 score is employed as scalar performance index to compare 100 experiment 

runs. This score is obtained by selecting the decision threshold in such a way that the 

classification error is minimized (i.e. to maximize 𝐹1 score), independently for each run. 

Then, we plot the Precision-Recall curve for the median case. 

 

Figure 10. Distributions of 𝐹1 scores for controlled (a) and live recordings (b) datasets. 

 

(a) 

 

(b) 

The distributions of 𝐹1 scores for both datasets are shown in Figure 10. As clear from the 

comparison of the histograms, also in this last scenario the method works slightly better 

on the controlled dataset (a), rather than on the live recordings (b) one. In (a) we observe 
a fluctuation with respect to the median value (0.4158 of 𝐹1 score) of ±5.6%, while in (b) 

we observe a variation with the respect to the median value (0.3208 of 𝐹1 score) of ±7.0%. 

 

Figure 11. Precision-Recall curves in the median case. The performance is evaluated using the 
controlled (a) and live recordings (b) datasets. 

 

(a) 

 

(b) 

Furthermore, Figure 11 show the performance in case of content-based retrieval for both 

datasets, respectively controlled (a) and live recordings (b). The main conclusion is that 
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by fixing a threshold in such a way to get a high recall, the precision decrease dramatically. 

This means that a considerable number of false positive are retrieved by querying a 

hypothetic audio/video database.  

 

 

4.5 Preliminary results and discussion 

The results shown in the previous subsections give us an overall picture about the capability 

of the method concerning the microphone identification. The use of the controlled dataset 

allows to evaluate algorithm outcomes by adding a good variability of the input signal in 

terms of gender, age and accent of the speakers and contents of speech (i.e. sentences). 

The limited fluctuations of the results tell us that the method is quite speech content 

independent, at least in the restricted condition in which GMM training and testing is applied 

to the same language (i.e. English in our case). Moreover, the fact that the controlled 

dataset is acquired under exactly the same sound propagation condition, confirm us that 

the method is able to fingerprint the microphone as matter of fact.  

The second dataset, namely live recordings, aims to add two other features to be explored: 

the first one is the variability of environments (indoor and outdoor), while the second one 

is the presence, or absence, of speech in the recorded audio. Our analysis is focused mainly 

on the second aspect, that is how the absence of speech impacts the performance, while 

the first aspect is left to future activities due to the complexity of the topic. 

To understand how absence of speech signal impacts the performance, we make a further 

analysis by respecting the following steps: 

 Recordings are split in non-speech and speech recordings; 

 Two device templates are built by using either speech or non-speech sequences, 

independently; 

 The results are evaluated on the probe sequences, divided in speech and non-

speech data. 

Hereafter the results for device classification/identification, verification and retrieval. 

4.5.1 Device classification/identification 

As scalar performance index we employ the probability of device identification at 3th rank. 

We evaluate such value for 100 experiments runs, and we show, for sake of shortness, the 

median value.  

 

Table 3. Comparison of outcomes for device identification in presence/absence of speech. 
Performance are shown as median value of probability of identification at rank 3th, over 100 of 

experiment runs. 

 Probes 

Speech Non-speech 

T
e
m

p
la

te
s
 Speech 77.91% 61.04% 

Non-speech 58.94% 75.75% 
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Compared to the overall performance (i.e. 69.84% of probability of identification at rank 

3th), it is clear that the absence of speech affects heavily the performance. Moreover, 

because the method shows close performance in case of speech-to-speech and non-speech 

to non-speech matching (i.e. 77.91% and 75.75% respectively), we can conclude that the 

channel estimation of our method is biased by the presence/absence of speech. In other 

words, the estimated channel response has different shapes whenever speech is absent. 

This is further confirmed by the fact that in the other cases, the performance dropped 

significantly.  

4.5.2 Device verification 

As scalar performance index we use the Equal Error Rate. We evaluate it for 100 

experiments and we show the median value.  

 

Table 4. Comparison of outcomes for device verification in presence/absence of speech. 
Performance are shown as median value of Equal Error Rate, over 100 experiment runs. 

 Probes 

Speech Non-speech 

T
e
m

p
la

te
s
 Speech 11.55% 23.18% 

Non-speech 21.77% 14.53% 

 

As already observed for device classification-identification scenario, the absence of speech 

affects the performance, which reaches its maximum when speech sequences are used to 

build a microphone template and probe audio sequences contain speech as well. 

4.5.3 Content-based Retrieval 

As scalar performance index we use the 𝐹1 score. We evaluate it for 100 experiments and 

we show the median value.  

 

Table 5. Comparison of outcomes for content-based retrieval in presence/absence of speech. 
Performance are evaluated as median value of 𝐹1 score, over 100 experiment runs. 

 Probes 

Speech Non-speech 

T
e
m

p
la

te
s
 Speech 42.12% 23.83% 

Non-speech 24.18% 35.85% 

 

The previous results are confirmed also in this last scenario. The presence of speech in 

both query and probe data represents the best case scenario. 

Finally, it is worth to note that if we limit our analysis to the data of live recordings dataset 

which contain speech, they generally show a higher performance (77.91% against 75.36% 
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for device identification, 11.55% against 15% for camera verification, 42.12% against 

41.58% for content-based retrieval) than the results obtained from the analysis of 

controlled dataset. This is unexpected results, indeed. Furthermore, looking closer at the 

results, the shape of the ROC curve in Figure 8 suggest us that something weird is 

happening, especially in the region of high False Positive Rate. It seems that even if the 

threshold value is low, the system is not able to correctly classify some of the genuine 

(true positive) scores. So, we perform a manual analysis of the controlled dataset and we 

found out that an audio trace has been badly recorded by its source device, so that most 

of the audio quality is compromised (almost 3% of overall data). This explain such 

surprising results, and the particular shape of the ROC curve on the controlled dataset 

compared to the one obtained by using the live recordings one. However, this accidental 

fact gave us the opportunity to come up with the idea that a preliminary fast data filtering, 

based on data quality/integrity, can be extremely useful in real investigation to limit 

processing to the most reliable data, especially in case of huge amount of data.     
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5 Conclusions 

The aim of this technical report, produced under the framework of the AVICAO institutional 

project, was to provide preliminary detailed results of the on-going research activity 

conducted by the DG-JRC on microphone fingerprinting as a tool for fighting against Child 

Abuse on-line, and to present subsequent R&D steps the project team will accomplish in a 

second phase. Briefly, we summarized the achieved results in the following: 

 A wide and deep study of the state of art has been made as starting point for the 

present and future activities; 

 A method based on blind microphone response estimation has been used for device 

fingerprinting; 

 A set of operational scenarios have been introduced according to investigators 

needs; 

 The performance of the method has been assessed in each operational scenario; 

 Two benchmark dataset of video recordings has been acquired to validate the 

method; 

 A critical analysis of the results has been made in order to demonstrate the 

feasibility of the method and, at the same time, to define the limit of applicability 

of the method, so that to drive future activities in the field. 

 A first insight concerning unsupervised data clustering is provided, and the related 

activities are currently going on. 

5.1 Results and recommendations 

The experimental evaluation carried out in Chapter 4 demonstrated the feasibility of 

microphone fingerprinting for video recordings. Moreover, the strength and the limitations 

of the actual method are presented. The method shows promising results in case of device 

identification/classification and verification scenarios, especially under the assumption that 

speech is present in a prominent part of the analysed audio recording. Content-based 

device retrieval is more challenging with respect the other scenarios, and a step further 

has to be accomplished to make the method usable in an investigation process. A rigorous 

procedure to have a reliable fingerprint estimation needs to be defined, in order to improve 

results in device identification and verification scenario, and so that to explore the method 

capabilities in the device-based retrieval scenario not explored yet. 

Future activities concerning unsupervised clustering are recommended to accomplish the 

latest operational scenario.    

 

5.2 Usage in investigation 

This first phase of this research has demonstrated that microphone fingerprinting can be a 

valuable source of information during the investigation phase, i.e., the step during which 

multiple hypotheses are formulated and validated. Supporting the digital forensics principle 

to not rely on a single element during investigations, microphone fingerprinting could be 

used with SPN to reach enhanced performance in case of video analysis. Moreover, it can 

be considered as a new and determinant tool that investigators will use for narrowing the 

set of suspect identities. 

 

5.3 From laboratory to field data set 

The results presented in Chapter 4 are a good indication of the expected performance on 

a real situation. However, one must not neglect the fact that tests have been conducted 
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with laboratory data, i.e., videos/audios not coming from real investigation cases. Tests 

conducted on real data would provide a better estimation of performance, and valuable 

indications on weak aspects of the algorithm and, consequently, on what improvements 

need to be realised in future. We’ll recall this aspect in Section 5.4. 

 

5.4 Future works 

Based on the results we obtained and discussed in this technical report, future research 

and development activities should focus on the following aspects: 

 Enhance the current baseline method in order to obtain more accurate results at feature 

level; 

 Explore other types of frequencies from the signal (e.g. ultrasound response) and 

use/combine them with the actual method, which is mainly based on voice; 

 Define a standard procedure to obtain a good microphone response estimation; this 

aspect is expected to improve the performance in all the operational scenario where 

the device is supposed to be available to the analyst; 

 Explore the possibility to use other training models, such as Deep Learning based 

techniques; 

 Evaluate the impact of training data, by using different languages, or speaker with 

different ages to demonstrate the portability of such an approach. This second aspect 

is particularly relevant in case of Child Abuse on-line; 

 Carry on tests on real world data; They can be borrowed from terrorism propaganda 

videos, or from Child Sex Abuse on-line cases. In both case, due to the legally restricted 

access to such sensible material, a convergence with the EVTECH-CSA project is 

desirable;  

 Robustness tests in terms of time duration, compression, sound propagation and noise 

are strongly requested in order to state usage limits of the method on real data; 

 Tackle with unsupervised clustering, with particular focus on “soft” (i.e. “probabilistic”) 

strategies; 

 Development of a prototype that EC3 law enforcers can use to evaluate the approach 

on the field; 

 Integration of the microphone-based fingerprinting techniques with other approaches, 

such as Sensor Pattern Noise, following a multimodal, or multi-clue, approach.  
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