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Foreword 

Regulation (EU) 2016/427 (first regulatory package of the Real-Driving Emissions 

regulation, RDE1) introduced on-road testing with Portable Emissions Measurement 

Systems (PEMS) to complement the laboratory Type I test for the type approval of light-

duty vehicles in the European Union (EU). Subsequently, Regulation (EU) 2016/646 

(RDE2) introduced Real Driving Emissions (RDE) conformity factors for nitrogen oxides 

(NOx) emissions in two steps. Both regulations were consolidated in the World 

Harmonized Light Duty test Procedure (WLTP) Regulation (EU) 2017/1151 and further 

developed by Regulation (EU) 2017/1154 (RDE3), which also introduced an RDE 

conformity factor for the on-road test of ultrafine particle emissions. For the sake of 

simplicity, in the report whatever applies to the original RDE regulations applies also for 

their transposition into WLTP. 

A temporary conformity factor of 2.1 for NOx tailpipe emissions may apply from 

September 2017 upon the request of the manufacturer. In a second step, a conformity 

factor of 1.5 will apply for all manufacturers from January 2020. This conformity factor 

requires full compliance with the Euro 6 limit (i.e., a conformity factor of 1), but allows a 

margin of 0.5 to account for the additional measurement uncertainty of PEMS relative to 

standard laboratory equipment. The recitals in the RDE regulations oblige the 

Commission to review the appropriate level of the final conformity factor in light of 

technical progress, a task that was undertaken by the European Commission's Joint 

Research Centre (JRC). 

The objective of this report is to:  

 Document review activities in 2015/2016 that led to an amendment of the RDE 

Regulation regarding the measurement performance of NOx analysers. 

 Document review activities in 2017 regarding the PEMS measurement uncertainty 

for NOx. 

 Outline the framework for the systematic review and revision of PEMS 

measurement uncertainties in the future. 
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Abstract 

Regulation 2016/427 introduced on-road testing with Portable Emissions Measurement 

Systems (PEMS) to complement the laboratory Type I test for the type approval of light-

duty vehicles in the European Union. A NOx conformity factor of 1.5 will apply from 

January 2020/2021. This conformity factor includes a margin of 0.5 to account for the 

additional measurement uncertainty of PEMS relative to standard laboratory equipment. 

Said margin (and also the PN margin, initially set at 0.5 by Regulation (EU) 2017/1154 

(RDE3), has to be reviewed annually (Recital 10 of Regulation 2016/646). This report 

summarizes the first review of the NOx margin and lays out the framework for future 

margin reviews. Since the PN margin was first set in 2017, it was not included in the 

2017 review exercise. 

Based on experimental data received by the stakeholders, technical improvements of 

PEMS and assumptions of possible zero drift during the tests, a NOx margin of 0.24 to 

0.43 was calculated. 
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1 Introduction 

1.1 Overview of technical requirements for PEMS 

A Portable Emission Measurement System (PEMS) generally consists of 1) pollutant 

analysers, 2) an exhaust flow measurement (EFM) device, 3) a positioning system, 4) 

auxiliary sensors (ambient temperature and pressure etc.), and 5) a power supply. 

The distance specific emissions are calculated based on the signals from the analyser, the 

exhaust flow meter and the positioning system (with distance being derived from an 

instantaneous velocity signal). Regulation 2016/427 describes the technical requirements 

for PEMS measuring devices. These requirements result in a theoretical measurement 

uncertainty (more details will be given in Chapter 4). Details of the technical 

specifications can be found in the RDE Regulation or in the Annex.  

The most important requirements prescribed in the RDE regulation for the analysers 

and the EFM that have direct impact on the PEMS measurement uncertainty are: 

 Accuracy (at a specific concentration). For NOx (concentration measured by the 

analyser) and EFMs (concentration measured by the analyser) is set at 2% of the 

reading. 

 Non-Linearity (differences at low – high concentrations): The permissible 

variability expressed as standard error of estimate (SEE) is set at 1% for NOx and 

at 2% for EFMs. 

 Drift over time for zero and maximum concentration (span). For NOx, the 

permissible zero and span drift is set at 5 ppm and 2% of reading respectively. 

For EFMs it is set at 1%. 

The comparison of the PEMS with the laboratory equipment on a chassis dynamometer is 

a check of the functionality of the complete PEMS once it is fully installed in the vehicle. 

In the context of RDE measurements, is called a “validation of PEMS” and is not meant 

to compare the respective measurement performance of the laboratory and the PEMS 

test principles. Such a validation test only ensures that the PEMS is correctly installed 

and functioning when its emissions over a WLTC are found to be within a reasonable 

range around the ones given by the CVS. The permissible tolerances of this validation are 

given in the RDE Regulation. For example, for NOx, the limits are set to ±15% or 15 

mg/km, whichever is larger. 

The scope of this review includes an investigation to confirm that these requirements are 

satisfactory - achieved by current PEMS equipment, and otherwise, whether some of 

them need to be revisited to reflect the level of performance of the instruments.  

1.2 Rationale for the definition of the NOx conformity factor  

Following Recital 10 of Regulation 2016/646, the final NOx conformity factor of 1.5 takes 

into account the additional measurement uncertainty related to the application of PEMS. 

The additional uncertainty introduced by the use of portable equipment should be 

evaluated relative to standard laboratory equipment at the level of the emission limit, i.e. 

at 80 mg/km for the case of NOx. To obtain a quantitative estimate of this additional 

measurement uncertainty, the JRC conducted in 2015 an assessment of PEMS and 

laboratory equipment based on the technical performance requirements laid down 

respectively for PEMS and laboratory equipment in the RDE Regulation 2016/427 and in 

UNECE Regulation 83. This assessment was complemented by a scenario analysis based 

on emission measurements conducted with 4 vehicles, ranging in engine displacement 

from 1.2 to 3.0 litres. The results that were presented to the RDE working group in 

October 2015 suggested that PEMS equipment might be subject to up to 30% higher 

measurement uncertainty than laboratory equipment (i.e., an uncertainty margin of 0.3), 

broken down as follows: 
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 10% (margin 0.1) additional uncertainty resulting from the performance 

requirements for PEMS analysers, exhaust flow meter, and the vehicle speed 

signals. 

 20% (margin 0.2) additional uncertainty resulting from possible analyser drift 

affecting the second-by-second measurement of NOx concentrations during an 

on-road test.  

This first assessment of the PEMs uncertainty margin for NOx was however limited to 

vehicles with 1.2 to 3.0 litre engines, and it assumed a gradual (linear) drift over the 

test. This meant that assuming a worst-case scenario for the drift (maximum allowable 

drift occurring from the beginning of the test) and taking into account the increased 

effect of drift (in mg/km terms) for engines with displacement above 3.0 litres, the 

uncertainty margins could, in some cases, exceed those quantified initially by the JRC. 

Taking these observations into account, the finally established NOx conformity factor of 

1.5 can be regarded as a conservative estimate of the additional uncertainty of NOx 

emissions measured with PEMS for a very broad range of engine displacements. In any 

case, an annual review clause was introduced in the legislation in order to allow for 

further improvements and analysis. 

Note: Analyser drift is virtually negligible in the laboratory, as the NOx (and rest 

pollutants) concentration in the sampling bags is determined once at the end of a test, 

before the measurement of the bag that collected the exhaust gas, rather than over 

longer periods on an instantaneous basis (typically at a frequency of 1 Hz) as it is done 

with PEMS. 

1.3 Review activities and amendments implemented in 2016 

The Commission organized in 2016 two stakeholder meetings dedicated on the issue of 

uncertainty of PEMS measurements in 2016: one on 8 January with all major PEMS 

manufacturers and a second one on 29 February with all interested RDE stakeholders. In 

these meetings, PEMS manufacturers expressed their support to reduce the maximum 

allowable zero drift for NOx analysers by 50% through a revision of Table 2, Point 6.1 of 

Appendix 1 of Regulation 2016/427. This table specified that the zero and span drift over 

a test had to be within 5 ppm or 2% of the reading. The provision used to apply 

individually to NO2 and NO/NOx measurements. As NOx is calculated as the sum of the 

measured NO2 and NO concentrations, the allowable NOx zero drift was thus 10 ppm. 

The revised provisions in Regulation 2017/1154 (RDE3) clarify that NOx concentrations 

are to be determined within a zero drift of 5 ppm. The amendment thereby lowers the 

permissible drift for NOx measurements by 50% compared to the original requirements 

in Regulation 2016/427 427 (in line with the recommendations of PEMS manufacturers), 

which in turn provides the scope for revising the PEMS uncertainty margin for NOx. 

Based on the uncertainty assessment conducted by the JRC, the margin of 0.5 (or 50%) 

of the final NOx conformity factor consisted of the following components:  

 Performance requirements as defined in Regulation 2016/427 (0.1 or 10%), 

 Analyser drift as quantified by JRC (0.2 or 20%), and  

 Worst-case drift effects (0.2 or 20%).  

With the lowering of the permissible drift in half in RDE3, the analyser drift as quantified 

by JRC decreases theoretically to 0.2*50%=0.1 (or 10%). Likewise, the component of 

the margin that accounts for worst-case drift effects would decrease to 0.2*50%=0.1 (or 

10%). However, experimental data are necessary to support the reduction of the margin 

due to the revised worst-case drift assumptions, and this was one of the objectives of the 

review activities that took place in 2017.  
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1.4 Review activities in 2017 

The RDE Regulation obliges the European Commission to “keep under annual review the 

appropriate level of the final conformity factor in light of technical progress”. To this end, 

“appropriate level” should be understood as the level of conformity factor that can be 

justified given the additional measurement uncertainty of PEMS which comply with the 

performance requirements of the RDE regulation, relative to the laboratory equipment. 

The term “technical progress” should be understood as improved PEMS measurement 

performance achieved in real-world use, and/or prescribed by more stringent regulatory 

RDE requirements.  

The review of the PEMS measurement uncertainty should therefore focus on quantifiable 

error sources resulting from the technical performance requirements defined in the RDE 

regulation (e.g., for NOx analyser drift, specifically the footnote to Table 2 in Point 6.1 of 

Appendix 1 to Regulation 2016/427, accuracy of analysers and exhaust flow meters, or 

efficiency requirements for PN analysers). The variability of measured results related to 

RDE trip design, vehicle operating conditions, and data evaluation remain outside of the 

uncertainty margin and thus outside of the scope of the review. 

In the context of the review of PEMS uncertainty margins, the following meetings took 

place in 2017: 

 2017-05-03: Teleconference of the margins sub-group (data input discussion) 

 2017-05-31: RDE meeting Brussels 

 2017-07-19: RDE meeting Brussels 

 2017-09-26: Teleconference of the margins sub-group (PEMS certification) 

 2017-11-08: RDE meeting Brussels (final presentation) 

The 2017 review process followed 4 steps:  

(i) Identification of the technical provisions in Appendices 1 and 2 of Regulation 

2016/427 that are most relevant for the PEMS measurement uncertainty. 

(ii) Evaluation of experimental data on how existing PEMS fulfil the technical 

requirements identified in (i) in laboratory and/or real-driving conditions. 

(iii) Revision of selected performance requirements according to (ii). 

(iv) Amendment of relevant RDE performance requirements for PEMS equipment 

according to (ii) and calculation of revised PEMS uncertainty margin for NOx.  

Due to the recent introduction of Particle Number (PN) in RDE regulation (2017/1154 

published in June 2017) and relatively recent introduction of commercial PN-PEMS, there 

was no evidence that the PEMS uncertainty margin for PN has changed since its initial 

determination. Therefore, the 2017 review of the PEMS uncertainty margin only 

addresses NOx measurements. 
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2 Experimental data 

2.1 Overview of data 

The official request for data from the RDE-LDV group participants took place on the 24th 

of March 2017. Data was received until the 26th of May 2017. Mid of September data 

from the RDE monitoring phase were also included in the JRC analysis, which was 

presented in May at the RDE group.  

In the meantime, KIT (Karlsruher Institut für Technologie) launched a parallel 

independent study funded by the VDA (German Association of the Automotive Industry), 

which was originally planned to be finalized in August. KIT shared only a partial analysis 

and no data until the end of September 2017, so their results could not be used fully in 

this report. Nevertheless, the preliminary KIT results (and from others that gave detailed 

presentations like ACEA and JAMA) are compared to this analysis in Chapter 4. 

The data used in the study came from 2 main sources: 

 Voluntary submissions under the margins sub-group; 

 Data from the RDE reporting and monitoring exercise. 

2.1.1 Stakeholder-contributed data (margins sub-group) 

The data received included (Table 2-1): 

 14 laboratories: consisting of 7 institutes, 2 instrument manufacturers, ACEA (4 

OEMs), and JAMA (1 OEM). The data from another 2 labs were non usable (no 

comparisons with other instruments). 

 4 PEMS models/manufacturers: However, the majority of data produced by PEMS 

was from 2 manufacturers. 

 162 tests for zero/span drift evaluation.  

 162 cycles (>300 with sub-phases) from 101 vehicles for the validation tests. 

No data from JRC was used in the analysis as it was desirable to base the 2017 analysis 

on others’ experiences and at the same time see how far or close the 2015 estimations 

were. All received data was taken into account. No data was rejected. It was assumed 

that all tests were conducted under best engineering practice and there were no error or 

warning alarms from the instruments. 

2.1.2 Monitoring data 

The Commission also requested Member States (MS) Type Approval Authorities to 

provide the data collected during the monitoring period of RDE (Appendix 6 to Annex I to 

Regulation (EC) No 692/2008, Table 1). Data from 9 Member States were screened for 

data that could be used for the evaluation of the PEMS uncertainty margins (i.e. data that 

included a comparison with a reference laboratory system) (Table 2-2). From 415 RDE 

tests, 227 were usable for the drift evaluation. The data included also 66 “validations of 

PEMS” tests. 

Some of the monitoring data were rejected for the following reasons: 

 Drift values were exactly 0 or higher than the span value. This indicates that it is 

likely that no drift measurement took place (recorded values would be 

default/placeholders). 

 Drifts were identical to those of previous measurements: This indicates that the 

same validation was used for a series of RDE tests (recorded values were carried 

over from a previous measurement). 

Note: The PEMS manufacturers that were included in the studies are (alphabetically) AVL, 

HORIBA, MAHA, Sensors. 
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Table 2-1: Data received from the Margins sub-group.  

Source  Drift Validation EFM PEMS Vehicles 

ACEA 4 member OEMs 35 40 30 3 (unknown) 40 

ADAC Car club 1   1 1 

AECC/Ricardo Catalyst assoc.  26 2 1 2 

AVL Instr. manuf. Yes  1 1 0 

Bosch Not usable*      

IFA  82 1  1 >1 

IDIADA Technical service 19 17  1 17 

JAMA 1 member OEM  22 4 1 2 

KTI Not usable**      

Sensors Instr. manuf.   44   

TUG University  8 Yes 1 1 

UK Member state  38  1 38 

* Data in presentation form and was asked not to be used 

** Comparison data not available 

Table 2-2: Data from the Monitoring phase. Some vehicles were tested in different configurations 

and for this reason the symbol “>” is used. 

Source Tests Drift Valid. EFM PEMS Vehicles Comment 

Belgium 3 Yes Yes -  >2  

Czechia 63 Yes Yes - 2 >2  

France 155 Yes No - 1 >9  

Germany 114 Yes Yes - 2 >6  

Ireland 18 Yes No - 2 >1  

Italy*       Not usable 

Netherlands*       Not usable 

Spain 25 Yes Yes  3 >4  

UK 37 Yes Yes  2 >5 Diff. than Table 2-1 

Total 415 227 66  4   

* Folders empty 
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3 Results 

3.1 Validation 

The comparison test between PEMS and chassis dynamometer laboratory (typically using 

the WLTC cycle) is called “validation” and the applicable rules are laid down in 

regulation 2016/427. It is recommended to validate the installed PEMS once for each 

PEMS-vehicle combination before or after the on-road test. For instance, the differences 

for NOx should be within 15% or 15 mg/km (whatever is larger).  

3.1.1 Received data 

For the validation comparisons the following data was used: 

 10 labs: 5 + ACEA (4 OEMs) + JAMA (1 OEM). 

 152 (302 with sub-phases) validation tests. 

 

 

Figure 3-1: Validation test results for stakeholder-contributed data. The subplots cover a) all data 

(top) and b) tests where the manufacturer of the PEMS was reported (known) (bottom). Different 
symbols indicate different sources of data. The dotted lines mark the permissible difference of 15% 

or 15 mg/km between PEMS and CVS (bag results). 
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The results are presented in Figure 3-1a for all data and Figure 3-1b for tests where the 

model/manufacturer of the PEMS was reported (known) (two different manufacturers).  

The results show that the majority of the data fall within the permissible range, but 

nevertheless, there are cases that exceed the permissible limits. The statistics will be 

discussed in the following paragraphs. 

3.1.2 Monitoring data 

The monitoring data included: 

 Data from 7 Member States at more than 8 locations. 

 4 PEMS manufacturers. 

Figure 3-2 presents the results. Only one test was outside the permissible tolerance.  

 

Figure 3-2: Validation test results included in the monitoring data. The dotted lines mark the 

permissible difference of 15% or 15 mg/km between PEMS and CVS (bag results). 

 

3.1.3 Summary 

All previous results and the statistics (pass/fail) are summarized in Table 3-1. The 

pass/fail was based on the permissible tolerance of 15 mg/km or 15% (whichever is 

larger) from the legislation and thus the uncertainty of the CVS measurement is also 

included. 

The results indicate that for NOx approximately 95% of the validation tests are within the 

permissible requirements (i.e. they are below 15 mg/km or 15% whichever is larger from 

the reference laboratory NOx result). The results during the monitoring phase exhibit 

excellent compliance with the requirements of the validation test, i.e. the difference when 

measuring simultaneously PEMS and laboratory equipment. Therefore, the uncertainties 

in a laboratory testing environment between PEMS and laboratory equipment is 

adequately covered by the requirements of the validation test when measuring at the 

EURO 6 limit. The validation test does not include the uncertainty related to the distance, 

because this is taken from the dynamometer. 
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Table 3-1: Validation tests (pass/fail results). 

 Stakeholder contributed Monitoring 

 Cycles Sub-phases Cycles 

All (with unknown equipment) 152 302  

Outside permissible tolerance 9 26  

Not valid tests percentage 6.3% 8.6%  

All (with known equipment) 112 142 66 

Outside permissible tolerance 6 9 1 

Percentage of invalid tests  5.4% 6.3% 1.5% 

Analysing separately the sub-phases of the test cycles showed only slightly higher 

percentages of tests exceeding the permissible levels (which currently apply for the 

whole cycle). Dedicated tests contributed by members of JAMA and ACEA showed 

however that low speed (exhaust flow) sub-phases may be more often outside the 

permissible limits (50% of the failed tests), which could indicate the presence of technical 

issues (e.g. non-linearity, lower accuracy of the EFM at low flow rates) of the PEMS and 

even the CVS. Checking separately each phase of the laboratory test cycle during the 

validation test might capture PEMS issues at very low or high flowrates or speeds. Figure 

3-3 shows as an example the results of PEMS validation tests for different WLTC sub-

phases. 

 

 

Figure 3-3: Differences of PEMS to CVS for different cycle phases. From ACEA presentation to the 
RDE group (31st of May, Brussels). Phases 1-4 stand for the WLTC sub-phases. The yellow 

rectangle is the area of the Euro 6 limit. The red rectangle is the area of very low NOx emissions. 
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3.2 NOx analyser zero drift  

3.2.1 Regulation requirements 

According to Regulation 2016/427 (RDE1) the permissible zero drift was set to 5 ppm for 

NO and 5 ppm for NO2. In Regulation 2017/1154 (RDE3), based on the first review of the 

margins that took place in 2016, the requirements were changed and the permissible 

zero drift was set to 5 ppm for NOx (NO+NO2). Thus the permissible zero drift was 

therefore effectively reduced by 50% with RDE3. 

3.2.2 Zero drift evaluation 

The actual drift based on experimental data was evaluated using the received data and 

the monitoring data. Three cases were examined for the NOx zero drift (NO+NO2): 

i) after the validation test in the laboratory at 23°C,  

ii) after the real driving emissions test on the road, and  

iii) after tests under environmental conditions outside the normal conditions 

(extended conditions).  

Table 3-2 summarizes the number of tests, the sources and the statistics (mean, 

median, minimum and maximum values). 

 

Table 3-2: Zero drift results from the margins sub-group or the monitoring phase at the 
laboratory, after an RDE test or at extended conditions. The results are sub-divided in all received 
results or results with reported PEMS model (known). Extended conditions are temperatures <0°C, 
or >30°C, or pressures changes greater than ±200 mbar. 

 Received (margins sub-group) Monitoring 

ZERO Laboratory 

(validation) 

RDE Extended RDE 

 All Known All Known All Known Known 

Labs [#] 1+ACEA 1 3+ACEA 3 1 1 11 

Tests [#] 36 1 119 89 1 1 228 

PEMS [#] 3 1 4 3 1 1 4 

Mean [ppm] -2.9 -0.6 0.2 0.3 0.4 0.4 0.2 

Median [ppm] -0.1 -0.6 0.2 0.3 0.4 0.4 0.0 

Min [ppm] -28.1*1 -0.6 -7.3 -7.3 0.4 0.4 -5 

Max [ppm] 2.5 -0.6 4.7 4.7 0.4 0.4 8 

Failed [#] 6 0 1 1 0 0 2 

Failed [%] 16.7% 0% 1.1% 0.8% 0% 0% 0.9% 

*1 indicates not enough warm-up time or other PEMS preparation procedure 
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One important point to note is that the mean zero drift is almost 0 (except the 

problematic case of laboratory validation with all PEMS equipment, where the mean is -

2.9 ppm), indicating no systematic drift, and that probably the ±5 ppm scatter is due to 

random variation between various instruments. This was valid for all tests and those with 

known PEMS equipment. The worst zero drift results were observed in the monitoring 

data and was between -5 ppm to +8 ppm for RDE tests (only 2 tests outside the 5 ppm 

limit). Figure 3-4 shows all data dividing them for tests with and without unknown PEMS 

equipment. 

 

Figure 3-4: Zero drift results after tests in the laboratory, after RDE tests and at extended 
conditions (Ext.). In this graph extended conditions are temperatures below 0°C, or higher than 

30°C, or pressures changes greater than ±200 mbar. Dotted lines show a 5 ppm drift. 

 

3.2.3 Implication of 5 ppm zero drift 

Comparing the zero drift before and after the test did not allow knowing how much it 

influences the uncertainty of the measurement, because it is not known when this drift 

built up over the test. Therefore, and to be able to assess this aspect, two scenarios of 

the zero drift were analysed: 

A. A drift of 5 ppm happening immediately at the beginning of the test (t=0 sec) and 

remained constant for the whole test. A real time example is presented in Figure 

3-5a. This scenario is called “step zero drift” and it represents an extreme 

assumption. 

B. A drift happening linearly from the beginning of the cycle and reached 5 ppm at 

the end of the test (in this example after 1800 s, end of the WLTC) (Figure 3-5b). 

This scenario is called “linear zero drift” (as in the JRC 2015 study). 

The two scenarios, for this example of Figure 3-5, were found to lead to an 

overestimation of the ‘true’ emissions (in the absence of drift) by 13 mg/km and 7.4 

mg/km (respectively for step and linear drift) for a test in the laboratory of 30 minutes 

duration. 
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Figure 3-5: Real time example of a 5 ppm NOx zero drift a) drift over time b) NOx emissions and 
“step zero drift” (step increase of 5 ppm) c) NOx emissions and “linear zero drift” (linear increase 

up to 5 ppm). 
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A second influence that needs to be estimated is what happens when this drift happens 

for longer or shorter cycles and for different engine capacities. At a next step the drift 

effect was simulated for different driving cycles (NEDC, WLTC and RDE cycles) and 

different typical vehicles technologies (diesel or gasoline) with different engine capacities 

ranging from 1.4L to 3L. The exhaust flow rates were taken from actual vehicles. 

Figure 3-6a shows the simulation results (additional NOx emissions) for a step increase 

of 5 ppm from time t=0 sec. The results are plotted in function of the mean exhaust flow 

rate. The arrows show the urban part of the respective cycles (e.g. UDC for NEDC, Low 

part for WLTC). 

 

 

 

Figure 3-6: Effect of zero drift on final NOx emissions for different cycles and vehicles in function 

of the mean exhaust flow of the specific test: a) 5 ppm step increase from t=0 sec b) linear 
increase to reach 5 ppm at the end of the cycle. The arrows show the urban (low) part of the 

specific test cycles. 

 

 

 



 

16 

The results show: 

 Larger engines have higher mean exhaust flow rates over a cycle and the 5 ppm 

drift results in a larger increase in NOx emissions in mg/km. 

 For most cases the maximum 5 ppm zero step drift translates to <15 mg/km NOx 

emissions over typical cycles. 

 A worst case “step zero drift” for the largest engines and/or urban conditions 

(where the mean speed/distance is low) could translate to 20-25 mg/km NOx, i.e. 

another 5-10 mg/km NOx with respect to the typical <15 mg/km NOx 

contribution of drift. 

Figure 3-6b shows the simulation results for a linear increase of drift reaching 5 at the 

end of the cycle (i.e., t=1180 sec for NEDC, t=1800 s for WLTC or t>5000 sec for RDE). 

The results show: 

 For all cases the linear 5 ppm drift translates to an increase of NOx emissions <10 

mg/km. 

 A worst case drift for the largest engines and/or urban conditions (where the 

mean speed and urban distance is low) was not observed. The drift effect at the 

urban part is negligible because the zero drift is very low at the beginning of the 

cycle under this scenario. 

Assuming the worst-case “step zero drift” scenario A, zero drift has a contribution to the 

overall uncertainty of <15 mg/km for RDE trips in most situations. An additional 

contribution to the uncertainty in the range of 5-10 mg/km is observed for the largest 

engines and/or urban conditions.  

Assuming the “linear zero drift” scenario B, zero drift has a contribution to overall 

uncertainty of <10 mg/km, and no extra uncertainty contribution is observed for the 

largest engines and/or urban conditions. 

 

3.3 NOx analyser span drift 

3.3.1 Regulation requirements 

In Regulation 2016/427 (RDE1) the permissible span drift was set to 2% for NO and 2% 

for NO2. In Regulation 2017/1154 (RDE3), based on the technical input provided by 

instrument manufacturers, the specifications were tightened to 2% for NOx (NO+NO2). 

The two analysers (for NO and NO2) are typically calibrated at different concentration 

levels (NO with >2000 ppm and NO2 with <500 ppm span gases). Therefore, the 

measurement uncertainty contribution due to span drift is determined in practice by the 

NO analyser, and the modification of the specifications does not significantly affect the 

measurement uncertainty. 

3.3.2 Span drift evaluation 

The actual span drift was evaluated using the received experimental data from the 

margins sub-group and the monitoring data. Three cases were examined for the span 

NOx drift (NO+NO2): 

i) after the validation test in the laboratory at 23°C,  

ii) after the real driving emissions test on the road, and  

iii) after changing the environmental conditions outside the normal conditions 

(extended conditions).  
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Table 3-3 summarizes the number of tests, the sources and the statistics (mean, median, 

minimum and maximum values). Figure 3-7 presents all data and distinguishes the tests 

with known or unknown PEMS equipment.  

Table 3-3: Span drift results. 

 Received (margins sub-group) Monitoring 

SPAN Laboratory 

(validation) 

RDE Extended RDE 

 All Known All Known All Known Known 

Labs [#] 1+ACEA 1 3+ACEA 3 2 1 11 

Tests [#] 36 1 119 89 31 12 227 

PEMS [#] 3 1 4 3 2 1 4 

Mean [%] 0.0% 0.3% -0.1% 0.1% -0.2% 0.0% -0.3% 

Median [%] 0.1% 0.3% 0.1% 0.1% -0.2% 0.0% 0.0% 

Min [%] -7.0% 0.3% -5.0% -0.7% -8.9% -0.3% -9.3% 

Max [%] 5.1% 0.3% 3.1% 0.9% 11.7% 1.5% 3.3% 

Failed [#] 9 0 5 0 12 0 24 

Failed [%] 25% 0% 4.2% 0% 39% 0% 10.5% 

 

Figure 3-7: Span drift results after tests in the laboratory, after RDE tests and at extended 
conditions (Ext.). In this graph, extended conditions are temperatures below 0°C or higher than 
30°C, or pressures changes greater than ±200 mbar. Dotted lines show approximately 2% drift 

(span gas 2000 ppm); the exact level depends on the span gas concentration. Each symbol refers 
to a different PEMS model. Symbols “+” and “-“ are unknown PEMS. 
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The tests failed in the laboratory represent in general a high percentage of the tests 

(25%). However, the failed tests during the RDE tests was much lower (4.2%) indicating 

that there were issues with the PEMS in the laboratory (e.g. not enough stabilization 

time). The failed span checks during the monitoring phase were 10.5%. This percentage 

is relatively high, however 8.3% of the fails come from one specific manufacturer, thus 

indicating that some improvements are still necessary (and that such improvements are 

technically possible, since some other manufacturers show 0% failed tests). The failed 

tests were mainly due to high NO drift (span gas around 2200 ppm). 

3.3.3 Implication of span drift 

The effect of the span drift was examined with two extreme cases of 2% drift at 2500 

ppm. The drift was assumed to be linear with values 0% at 0 ppm and 2% at 2500 ppm, 

but constant over time.  

CASE L (Figure 3-8a) represents a case where the NOx emission spread during the whole 

cycle and, thus the low NOx concentrations relatively to the 2500 span concentration 

result in an overestimation of only 0.1% relative to the span drift. 

    

 

Figure 3-8: Real time examples of a 2% NOx span drift: a) NOx emissions during the whole test, 
b) high NOx emission events concentrated at the beginning of the test.  

Case L 

Case H 
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CASE H (Figure 3-8b) represents a case where high NOx emission events exceeding the 

span concentration occur at the beginning of the cycle. Even with some peaks with 3% 

error of the NOx concentration, the final overestimation of the emissions is 1.8%, lower 

than the permissible span drift (2%). Thus, the 2% permitted drift will result in <2% 

underestimation of the NOx emissions. However, one should note that the second 

scenario is based on a vehicle that would significantly exceed the EURO 6 emission limit.  

The main conclusion of the span drift requirements is that the uncertainty coming from 

this component is small and the contribution less than the actual drift (<2%). 

 

3.4 Exhaust flow measurement 

Due to their principle of operation, EFMs have increased uncertainty when operating at 

low flow rates and highly dynamic flows. These conditions are characteristic of car 

exhaust. The exhaust flow is estimated by the EFM using differential pressure sensors 

corrected for density using the static pressure and temperature in the exhaust line. It is 

difficult to accurately estimate the exhaust density because of the rapid temperature 

changes observed in the exhaust. Additionally, the measured dynamic pressure must be 

correlated with exhaust flow using a correction factor K as part of the Bernoulli equation 

that the flow measurement principle is based on. This K constant is a function of 

Reynolds number (Re). The biggest difficulty is the small pressure difference at low flow 

rates that results in high uncertainty. Pressure pulsations can also have a significant 

effect upon the measurement quality at low flow rates. 

One instrument manufacturer sent data on 44 light duty EFMS as received after more 

than 1 year of use, and compared them to a traceable standard (i.e. air measured with 

flow meters) (Figure 3-9). The results were within the regulation requirements, and 

indicated minimal (if any) drift even after 1 year. 

 

 

Figure 3-9: Checks of EFMs against a traceable standard at the instrument manufacturer’s site 
after 1 year of use. 

 

At idle the uncertainty was high in relative terms (>10%), but low in absolute values. For 

urban, rural conditions (flow rates <1 m3/min) the uncertainty was less than 4%. For 

higher flowrates the uncertainty was <3% (compare this to the 3% currently specified in 
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the RDE regulation from the linearity slope). In all cases, the standard error of estimate 

(SEE) was <0.5% of the maximum value (2% allowed in the regulation). 

The received EFM evaluation data from the margin sub-group included comparisons with 

other EFMs, CVS estimated exhaust mass flow or engine intake air. These methods have 

an uncertainty at the same level as the examined EFMs, and cannot be considered 

traceable calibration data. Thus, these results are only indications of EFM uncertainty. 

Table 3-4 summarizes the number of tests, the sources and the statistics (mean, median, 

minimum and maximum values). The differences ranged from approximately -30% to 

+20%. The mean differences were ±2%. 

Figure 3-10 graphically shows all data points. In general, the differences were within 

10%. Only at lower flowrates higher differences, as also mentioned above, can be seen. 

This could be due to EFM or reference instrument calibration errors and uncertainties at 

low flowrates. 

 

 

Figure 3-10: Comparison of EFMs with other EFMs or CVS estimated flows. a) all data, b) focus on 
flows <1 m3/min. Green circles are results from one OEM/EFM. 

 



 

21 

For example, the CVS estimated flow is typically calculated from the difference of two 

flow rates which have an uncertainty of 2%. Assuming 10 m3/min total flow rate 

(uncertainty 0.2 m3/min) and 9 m3/min dilution air flow rate (0.18 m3/min), the 

calculated 1 m3/min flow rate has an uncertainty of 0.27 m3/min or 27%. Thus the high 

uncertainty of the EFM could be due to the high uncertainty of the other "reference" 

instrument used (e.g. other EFMs, CVS estimated exhaust mass flow or engine intake 

air). 

Nevertheless, these data show that even though all market EFMs today fulfil the (static) 

legislation requirements, in real life transient operation the uncertainty could be higher 

(around 10%) than the previously estimated 4% uncertainty. 

 

Table 3-4: EFM evaluation received data. 

 All Known 

Labs 3+ACEA+JAMA 3+JAMA 

PEMS 2+ACEA 2 

 Cycles Sub-phases Cycles Sub-phases 

Tests 48 175 20 37 

Mean 1.8% 2.4% -2% -4.6% 

Median 2.0% 2.3% 1.8% -1.8% 

Min -32.6% -32.6% -32.8% -32.8% 

Max 21.7% 47.6% 17.4% 17.4% 

 



 

22 

4 Uncertainty calculations 

4.1 Uncertainty equations 

The emissions of a pollutant in the RDE regulation, e.g. NOx, ENOx, are calculated from 

the following equation: 

     Eq. 4-1 

Where 

uNOx  is the ratio of the density of NOx and the overall density of the exhaust (constant) 

cNOx,i  is the NOx instantaneous measured concentration in the exhaust at time i [ppm] 

qmew,i  is the measured instantaneous exhaust mass flow rate at time i [kg/s] 

d  is the distance of the test [km] 

For the estimation of the ENOx uncertainty (εE,NOx) (in %), the error propagation rule for 

multiplication and division was used. This assumes random and uncorrelated to each 

other errors, which is a valid assumption (e.g. the error of the positioning system is not 

correlated to the NOx analyser). The constant uNOx doesn’t contribute to the relative 

uncertainty. 

   Eq. 4-2 

Where 

εqmew is the relative uncertainty of the exhaust mass flow rate [%] 

εcNOx is the relative uncertainty of the NOx concentration [%] 

εd is the relative uncertainty of the distance [%] 

In order to find the uncertainty of each component of the equation, the technical 

specifications in the RDE regulation and experimental data were taken into account. For 

example, the uncertainty of the analyser and the EFM is determined by the accuracy, 

linearity (standard error requirement), the zero and span drift requirements (Figure 4-1).  

The zero drift of the analyser (δdrift) was analysed separately due to its significant effect 

on low level emissions. Note that this uncertainty is expressed in [mg/km] because the 

evaluation was in [mg/km]. The (absolute) uncertainty symbol is δ. Some additional 

uncertainties were also considered, such as time mis-alignment (εt), and effect of 

boundary conditions on instrumentation accuracy (εB). 

All these additional uncertainties were added to the uncertainty estimation in order to 

find the maximum uncertainty. The reason is that there was no input regarding their 

contribution in real operation (e.g. how the drift evolves). 

Finally the uncertainty of the CVS bag measurement was subtracted (δCVS), as the margin 

should cover the additional uncertainty of PEMS. 

The final uncertainty δF,E,NOx [mg/km] for an emission level L [mg/km] is calculated: 

δF,E,NOx = [ εΕ,NOx + εt + εB ] L + δdrift - δCVS     Eq. 4-3 

Extending this equation to different emission levels assumes that the uncertainties 

(relative or absolute) remain constant. This will be discussed in a next section. 

A simplified schematic of the uncertainties considered is shown in Figure 4-1. 
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Figure 4-1: Uncertainties calculation scheme. Symbols (+) or (-) indicate that the errors are 
simply added or subtracted, without using the error propagation rule. 

 

4.2 Sources of uncertainty 

The uncertainty values are summarized in Table 4-1. The values were taken from the 

RDE regulation or experimental data. For definitions and details see Annex. 

 

4.3 Uncertainty value 

The uncertainties were expressed in both relative [%] and absolute levels [mg/km], 

because the analysis included components that the uncertainty was expressed in relative 

and absolute terms. 

4.3.1 JRC 2015 study 

Figure 4-2 shows the 2015 study graphically. The zero drift was assumed to be linear and 

was based on analysis of 1.2-3L engines. The higher than specified analyser uncertainty 

was based on real time comparisons of PEMS with modal analysers in the laboratory.  

4.3.2 Review 2017 

For 2017, based on the analysis of Chapter 3, the following two cases are based on: 

 STEP increase of the zero drift (Figure 4-3), or  

 LINEAR increase of the zero drift (Figure 4-4) (as in the JRC 2015 study).  

The EFM uncertainty was increased from 4% to 10% to take into account the differences 

between EFMs in the market today and the difficulties checking them in practice. This 

was based on Figure 3-9. With more comparisons in the future this number could 

decrease to the theoretically expected value of 4%. 
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The EFM drift was probably negligible after one year of testing as shown in Figure 3-8. 

Nevertheless, the permitted 2% was kept in the calculations. 

The EFM non-linearity uncertainty was estimated by the standard error of estimate 

(SEE). In all cases it was <0.5% from calibration max value; much lower than the 

maximum allowed of 2%, which was also considered in the uncertainty calculation. 

The analysers' uncertainty was assumed to be the one estimated by the RDE accuracy 

limits (around 5%). This is slightly lower than the 2015 JRC study (8%), nevertheless it 

is in agreement with the data received in 2017. For example, JAMA compared PEMS with 

laboratory grade equipment (Figure 4-5a). The differences were on the order of <2% (at 

final emission level of 200 mg/km) to <10% (at final emission level of 10 mg/km), 

although second by second higher differences were observed (see Figure 4-5b, c). Thus 

at a level of 80 mg/km an uncertainty of 4.5% would correspond.  

KIT did also a similar comparison in the laboratory and found differences on the order of 

5-7% (effect on the final result <0.5 mg/km). It should be noted though that higher 

differences were found when PEMS were compared to each other: 16% for NO2, 20-40% 

for NO. The effect on the final emissions were 10-11 mg/km, which could reflect the 

plus-minus range of uncertainty. Thus a 5% uncertainty for the NOx analysers (around 4 

mg/km at levels of 80 mg/km) reflects the real time behaviour of the NOx analysers in 

the market. 

Additionally a 1% non-linearity uncertainty for the gas analysers was considered (based 

on the SEE requirement of RDE). 

The span drift was kept 2% (as required in RDE) because higher values that were 

determined in the received data would result in invalid tests. 

The uncertainty of the gas used for calibrations was assumed to be 2%, as required in 

RDE. Discussions with gas cylinder producers confirmed that this uncertainty is <1.5%.  

The distance uncertainty was kept 4% as in 2015 (no analysis in 2017), a value 

prescribed in the RDE (maximum allowed difference of the methods used to determine 

the distance). 

The time alignment/dynamics uncertainty was kept 3%. Similar values were found from 

the limited number of real time data received in 2017 (all were laboratory tests, no tests 

from the road) (no figure shown). 

The contribution of the boundary conditions (low or high temperatures and pressures) 

was considered negligible, based on the results received from one instrument 

manufacturer. A second instrument manufacturer had issues at different temperature 

and pressure conditions, but later resolved the issue.  

In all cases a 3% uncertainty of the CVS laboratory measurements was subtracted as 

was also done on the 2015 analysis. This uncertainty was theoretically evaluated in the 

Annex and was found slightly higher. As no data were received for this topic it was 

decided to leave it 3% in 2017. 

The two scenarios give an uncertainty of 24-43%. This uncertainty is split to the 

proportional PEMS uncertainty (15% or 12 mg/km) and the constant zero drift 

uncertainty (10 mg/km to 25 mg/km). The above analysis shows that the bigger 

influence on the uncertainty is the zero drift and whether one assumes that it happens in 

a step change at the beginning of the test (worst case) or gradually during the test. 

However there is lack of data proving whether any of the two scenarios is more plausible. 
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Figure 4-2: Margin as estimated in the JRC 2015 study. 

 

Figure 4-3: Scenario a: STEP increase of zero drift 

 

Figure 4-4: Scenario b: LINEAR increase of zero drift. 

final used values

Distance 4.0% 4.0%

EFM accuracy 3.0% 4.1% 4.1% 10.0% NOx emissions uncertainty

EFM drift 2.0%

Linearity 2.0% 3%   Time alignment/dynamics

13%

(RDE 2%) 0%   Boundary conditions

Analyzer 5.0% 5.8%

Gas accuracy 2.0% 8.2% 8.2% 80 Diesel

Span drift 2.0% two analyzers (NO+NO2) 10.4 mg/km mg/km Limit

Linearity 1.0% 16 mg/km Zero drift 20.0%

16 mg/km Worst drift 20.0%

input 2.5 mg/km CVS 3.1%

calculated 40.0

emission limit 50%

final used values

Distance 4.0% 4.0%

EFM accuracy 9.6% 10.0% 10.0% 11.9% NOx emissions uncertainty

EFM drift 2.0%

Linearity 2.0% 3%   Time alignment/dynamics

15%

0%   Boundary conditions

Analyzer 2.0% 3.6% Gasoline

Gas accuracy 2.0% 5.1% 5.1% 60 80 Diesel

Span drift 2.0% two analyzers (NO+NO2) 9.0 11.9 mg/km mg/km Limit

Linearity 1.0% 15 mg/km Zero drift 18.8%

10 mg/km Worst drift 12.5%

input 2.5 mg/km CVS 3.1%

calculated Margin 31.5 34.5

emission limit Final 52% 43%

final used values

Distance 4.0% 4.0%

EFM accuracy 9.6% 10.0% 10.0% 11.9% NOx emissions uncertainty

EFM drift 2.0%

Linearity 2.0% 3%   Time alignment/dynamics

15%

0%   Boundary conditions

Analyzer 2.0% 3.6% Gasoline

Gas accuracy 2.0% 5.1% 5.1% 60 80 Diesel

Span drift 2.0% two analyzers (NO+NO2) 9.0 11.9 mg/km mg/km Limit

Linearity 1.0% 10 mg/km Zero drift 12.5%

0 mg/km Worst drift 0.0%

input 2.5 mg/km CVS 3.1%

calculated Margin 16.5 19.5

emission limit Final 27% 24%
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Figure 4-5: Comparison of PEMS with laboratory grade analysers: a) linear regression b) detail for 

vehicle 1 (low emissions), c) detail for vehicle 2 (high emissions). From JAMA input. 
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4.4 Margin at other emission levels. 

The previous uncertainty estimations were based on values close to the emission limit. 

Extending the equation to lower levels is valid only if the values remain the same. The 

validity of this assumption is investigated in this section. 

From all the components of Eq. 4-3 and Table 4-1, the only ones that could be variable 

are the EFM, the NOx analysers and the CVS. 

Figure 4-6 shows the NOx analysers (in particular NO) measurement uncertainty based 

on the calibration certificates from 4 PEMS manufacturers. The uncertainty is well within 

2% down to approximately 100 ppm and then gradually increases to approximately 5% 

at 10 ppm level. Based on Figure 3-8a, for emission levels of 80 mg/km, the NOx spikes 

are between 50 and 250 ppm. For 20 mg/km, the expected spikes would be between 10 

and 60 ppm. In this case the NOx uncertainty would be on the order of 10% (and not 

2%). 

 

Figure 4-6: Measurement uncertainty of PEMS NOx analysers (data from 4 different PEMS 

manufacturers). 

 

The EFM uncertainty was discussed in Figure 3-9. For high flowrates the uncertainty is 2-

3%, increases at 4% for rural conditions (flow rates <1 m3/min) and reaches 10% at idle 

conditions. However, the uncertainty should be independent of the emission levels as 

long as the vehicle’s exhaust flow rate does not change. 

The CVS uncertainty is discussed in the Annex. For 80 mg/km the uncertainty is 4-8% 

and at 20 mg/km increases to 13-32%. 

Thus, it can be assumed that the relation of the additional PEMS uncertainty (compared 

to the CVS) at low emission levels remains at the same levels as at the current emission 

limit of 80 mg/km. 

Based on this assumption, as the emission levels decrease below the limit value, such as 

when manufacturers may decide to declare a lower RDEmax in the certificate of 

conformity, the result of the PEMS will have higher relative uncertainty (expressed in %), 

but lower absolute uncertainty (expressed in mg/km). Figure 4-7 presents the 

uncertainty both in absolute and relative terms for different emission levels for the two 

scenarios. 

In simple terms if one would measure a level of emissions of 20 mg/km with PEMS, the 

added margin would be 127% or 28 mg/km for scenario a (Step drift) or 52% or 13 
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mg/km for scenario b (Linear drift). In other words the possible PEMS measurement 

could be up to 48 or 33 mg/km for the two scenarios respectively.  

 

 

 

Figure 4-7: Relative and absolute uncertainty for different emission limits. 
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Table 4-1: Sources (components) of PEMS uncertainty, the technical requirements (RDE), uncertainties of the 2015 study and the error margin found 

experimentally in the 2017 review (Experimental). With bold the values used in the further analysis. In brackets uncertainty components not investigated 
in 2017. 

Name Symbol RDE 2015 Experimental Comment 

EXHAUST FLOW METER (EFM) 

EFM accuracy εqmew,acc 3% 2% 10% Figures 3-10 (compared to non-traceable references) 

EFM drift εdrift,qmew 2% 2% 2% No drift after one year: Figure 3-9 

EFM linearity εqmew,lin 2% 2% 2% Based on EFMs data SEE<0.5%max (Figure 3-9) 

GAS ANALYSER 

Analyser accuracy εC,acc 2% 5% 2% Based on real time comparisons (Figure 4-5) 

Analyser linearity εC,lin 1% 1% 1% Based on a few calibration certificates received 

Span drift εspan 2% 2% ≤5% Figure 3-7. Values >2% result in invalid test 

Gas accuracy εgas 2% 2% (2%) Based on gas cylinder manufacturers <1.5% 

OTHER 

Distance εd 4% 4% (4%) Max difference between distance methods 

Dynamics εt time aligned 3% 3% Based on JRC 2015 study. Confirmed with laboratory data. 

Boundary conditions εΒ 0% 0% 0% Based on one PEMS manuf. data (Figures 3-4 and 3-7) 

Analyser zero drift δdrift 5 ppm 16 mg/km 10-15 mg/km Numbers show: Linear – Step drift (Figure 3-6) 

Worst case drift δdrift,2 - 16 mg/km 0-10 mg/km Numbers show: Linear – Step drift (Figure 3-6) 
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5 Next steps 

5.1 PEMS additional technical requirements 

All analysis conducted so far assumed that the PEMS operate with similar uncertainty 

even under extended conditions (boundary conditions uncertainty was assumed 0%). In 

order to confirm that the measurement uncertainty and the relative margins correspond 

to the PEMS in the market, the margins sub-group is currently working on standardizing 

the required additional tests (e.g. changes of temperatures, pressures, vibrations) to 

prove compliance of the instruments also in extended conditions. 

5.2 Review procedure in the following years 

In the following years the review procedure shall follow a similar procedure: 

 Collection of new data from all commercially available equipment and/or creation 

of other data through dedicated experimental campaigns (for Table 4-1).  

 Confirmation with experimental data that the technical requirements are fulfilled 

both in laboratory and on the road. 

 Assessment of each uncertainty according to the framework described in Figure 

4.1. Adjustment of the framework if necessary. 

 Identification of technical requirements that could be improved in legislation. 

 Amendment of relevant RDE performance requirements for PEMS equipment and 

adapting the NOx conformity factor. 

5.3 Further margins reduction 

Reduction in the following years of the measurement uncertainty could be achieved by 

the following ways: 

 Modification of technical requirements. For example, one possible is to reduce the 

accuracy requirement of the gas cylinders (from 2% to 1%) as required in WLTP. 

Another example would be to further reduce the permitted zero drift, or find data 

on when this zero drift actually happens, i.e. at the beginning of the test or 

gradually during the test.  

 Better analysis of CVS uncertainty with experimental data. 

 All campaigns showed mean values of drift of 0 ppm, indicating that there is no 

actual drift but any final zero check result is due to random variation. The current 

situation of the market instruments means that the drift will not be any more 

necessary to be added, but it could be taken into account with the typical 

uncertainty equations.  
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6 Conclusions 

For the 2017 NOx margin evaluation, data were received from the margins sub-group 

and the monitoring phase.  

From the 218 validation tests, 1.5-5.5% were outside the permissible tolerance of the 

regulation (15 mg/km or 15%, whatever is larger). 

From the 384 zero drift tests, 2.1% were outside the permissible tolerance of 5 ppm. The 

mean and median values were <0.5 ppm indicating that there is no systematic error of 

the analysers.  

The 5 ppm drift was simulated as a step drift of 5 ppm at t=0 or as a linear drift reaching 

5 ppm at the end of the cycle. The simulations with engines of 1.4L to 3.0L engine 

displacement showed an overestimation of the emissions of approximately 10-25 mg/km, 

depending on the engine, cycle and drift pattern. Assuming a linear zero drift, the 

overestimation of the NOx emissions was <10 mg/km. 

From the 413 span drift tests, 12.1% were outside the permissible tolerance of 2%. The 

majority of them failed 1) in the laboratory indicating improper usage of the PEMS, and 

2) at extended conditions indicating that some instruments were not ready for low 

ambient temperatures (this issue was later corrected). Simulation of different tests 

showed that the span drift has a small effect on the final result (<2%).  

Data from one instrument manufacturer showed that exhaust flow meters (EFMs) even 

after one year of use remain within the regulation requirements (3%). At low flow rates 

this uncertainty is around 4%. Other comparisons of EFMs with other EFMS or indirectly 

determined exhaust flows (e.g. from the dilution tunnel) gave differences on the order of 

10% or even higher in a few cases, but since these other measurements contain 

uncertainties and are not traceable standards, this 10% is a probably an overestimation 

of the EFM uncertainty. 

Based on the experimentally determined data and a theoretical analysis of the 

uncertainty, a total margin of 0.24-0.43 was calculated for emission level of 80 mg/km 

depending on whether one the zero drift happens gradually or with a step function at the 

beginning of the tests.  

As the emission levels decrease, the result of the PEMS will have higher relative 

uncertainty, but lower absolute uncertainty.  
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Annex 

Technical requirements in Regulations EU 2017/1151 and 2017/1154 

Definitions 

“Accuracy” means the deviation between a measured or calculated value and a traceable 

reference value 

“Noise” means two times the root mean square of ten standard deviations, each 

calculated from the zero responses measured at a constant recording frequency of at 

least 1,0 Hz during a period of 30 seconds. 

“Precision” means 2,5 times the standard deviation of 10 repetitive responses to a given 

traceable standard value. 

“Span” means the calibration of an analyser, flow-measuring instrument, or sensor so 

that it gives an accurate response to a standard that matches as closely as possible the 

maximum value expected to occur during the actual emissions test. 

“Span response” means the mean response to a span signal over a time interval of at 

least 30 seconds. 

“Span response drift” means the difference between the mean response to a span signal 

and the actual span signal that is measured at a defined time period after an analyser, 

flow-measuring instrument or sensor was accurately spanned. 

“Validation” means the process of evaluating the correct installation and functionality of a 

Portable Emissions Measurement System and the correctness of exhaust mass flow rate 

measurements as obtained from one or multiple non-traceable exhaust mass flow meters 

or as calculated from sensors or ECU signals. 

“Zero” means the calibration of an analyser, flow-measuring instrument or sensor so that 

it gives an accurate response to a zero signal. 

“Zero response” means the mean response to a zero signal over a time interval of at 

least 30 seconds. 

“Zero response drift” means the difference between the mean response to a zero signal 

and the actual zero signal that is measured over a defined time period after an analyser, 

flow-measuring instrument or sensor has been accurately zero calibrated. 

“Linearity” means the verification of an instrument at ≥10, approximately equally spaced 

and valid, reference values (including zero). 

Exhaust mass flow rate [kg/s] (≥1 Hz) 

 - Linearity (slope within 1.00 ± 0.03 over a stationary test, standard error ≤2% of max) 

 - Accuracy (within 2% of reading, 0.5% of full scale, or 1% of maximum calibrated flow) 

 - Precision (within 1% of maximum calibrated flow) 

 - Noise (within 2% of maximum calibrated flow)  

 - Zero and span drift (within 2% of the maximum value of the primary pressure signal 

over 4h) 

 - Rise time (<1 s) 

 - Response time (<3 s) 

 - Possible exclusion of data due to system maintenance (<1%) 

 - If calculated from air and fuel flow rate, the following requirements apply:  

   - Linearity (slope within 1.00 ± 0.02 for air and fuel flow rate and 1.00 ± 0.03 for the 

calculated exhaust mass flow rate over a stationary test) 
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   - Accuracy for air and fuel flow rate (within 2% and 0.02% for reading) 

Worst case scenario: Accuracy 0.5% full scale for an EFM calibrated up to 5 m3/min, 

translates to uncertainty of 0.025 m3/min or 2% of reading. For 0.4 m3/min the 

uncertainty is 6% and for 0.2 m3/min is 12%. 

Drift 2% pressure sensor means additional 2% uncertainty. 

Pollutant concentration [ppm] (≥1 Hz)  

 - Error (Regulation 83): Less than 2% plus uncertainty of calibration gas 

 - Calibration gas uncertainty (Regulation 83): 2% (1% in WLTP) 

 - Linearity (slope within 1.00 ± 0.01 over a stationary test) 

 - Accuracy (within 2% of reading or 0.3% full scale) 

 - Precision (within 2% below 155ppm and 1% equal or above 155ppm) 

 - Noise (within 2% of full scale) 

 - Zero and span drift (analyser-dependent margins for compliance in the laboratory over 

4h and on the road over the duration of a test) for NOx 5 ppm (zero) and 2% for span 

 - Rise time (≤3 s) 

 - Response time (≤12 s) 

   - Efficiency of NOx converters 

   - CO2 and water quench of CLD (≤2% full scale) 

   - Quench of NDUV analyser (5% of maximum test concentration; sample dryer to 

remove less than 5% of the original NO2) 

   - Accuracy of gas and gas divider (within 2% of reading) 

u value [kg/g] (tabulated) 

Vehicle speed [km/h] (≥1 Hz) 

 - Accuracy (total trip distance determined via GPS, sensor, or ECU within 4%) 

 - Accuracy sensor (within 1% of reading) 

 - Accuracy ECU (distance of the validation test to deviate by <250 m when measured 

with ECU and roller bench) 

General 

 - Leakage in the sampling line (≤0.5%) 

 - Calibration (1% of measurements may exceed the calibration range) 

 - Possible exclusion of data due to system maintenance (<1%) 

Additional sources of uncertainty: 

- Temperature measurements (accuracy within 2K absolute for T≤600 K or within 0.4% 

of reading if T>600K) 

- Relative humidity (accuracy within 5% absolute) 

- Absolute humidity (accuracy within 10% of reading or 1 gH2O/kg dry air, whichever is 

larger) 

- Ambient pressure (accuracy within 0.2 kPa absolute) 
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- Intrusivity (e.g., backpressure introduced by measuring exhaust mass flow rate and 

component concentrations) 

- Changes in the exhaust composition within the sampling lines 

- Miscellaneous error sources (electro-magnetic interferences, shocks, vibration, 

variability in ambient conditions, dust, external contamination)  

- Malfunctioning of equipment under on-road test conditions  

CVS uncertainty 

The theoretical uncertainty of the gaseous pollutants bag result can be estimated by the 

formulas used to calculate the pollutants and the reported calibration uncertainties (or 

manufacturers specifications). The mass concentration of a gas pollutant Mi [g/km] is 

calculated as (UNECE Regulation 83 or WLTP Regulation 2017/1151): 

 

        Eq. A1 

 

Symbol Units*1 Explanation Uncertainty 

Vmix  [l] volume of the diluted exhaust gas  0.5% (Annex 4a, App. 2, 2.2.11) 

Qi  [g/l] density of the pollutant i  negligible 

kh  [-] humidity correction factor (NOx) <2%*2 

Ci  [ppm] concentration of the pollutant i  2 ppm or 2%*3 

d  [km] distance  1% (Annex 4a, App. 1, 1.2.6) 

*1 All volumes refer to normal conditions 273.2 K and 101.33 kPa.  

*2 The correction is based on the measurement of humidity, pressure etc. 

*3 The concentration of the pollutant in the diluted exhaust gas is corrected by the 

amount of the pollutant i contained in the dilution air, thus the uncertainty is the 

combination of the two uncertainties (each 2% or 2 ppm for C<100 ppm) (Annex 4a, 

App. 3, 1.3.8). 

For 80 mg/km NOx emission levels, around 9 ppm are expected to be measured in the 

bag. With a 2 ppm gas analyser measurement uncertainty the total uncertainty of the 

NOx emission measurements is 32% (26 mg/km). With current technology analysers a 

0.2-0.5 ppm uncertainty is reasonable resulting in 4-8.5% uncertainty (3-7 mg/km). 

At 20 mg/km NOx emission levels, the CVS uncertainty increases to 13-32% (2.5-6.5 

mg/km).     
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