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Abstract

We describe and evaluate a regression tree algorithm for finding subgroups with differential 

treatments effects in randomized trials with multivariate outcomes. The data may contain missing 

values in the outcomes and covariates, and the treatment variable is not limited to two levels. 

Simulation results show that the regression tree models have unbiased variable selection and the 

estimates of subgroup treatment effects are approximately unbiased. A bootstrap calibration 

technique is proposed for constructing confidence intervals for the treatment effects. The method 

is illustrated with data from a longitudinal study comparing two diabetes drugs and a 

mammography screening trial comparing two treatments and a control.
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1 Introduction

Interest in precision medicine (also known as personalized medicine and tailored 
therapeutics), where therapies are customized for individual patients based on their genetic 

and other characteristics, is drawing more attention to regression tree methods designed to 

identify subgroups with differential treatment effects from randomized trials. The Interaction 

Trees [1–3] method selects splits that minimize p-values of interaction terms in models fitted 

to the nodes of the trees. The Virtual Twins [4] method estimates the treatment effect of each 

subject using a random forest [5] model and then fits a CART [6] tree to the estimated 
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effects to obtain the subgroups. SIDES [7] finds multiple subgroups that optimize certain 

measures (such as p-values or treatment effect sizes). QUINT [8] searches for subgroups that 

balance effect size and subgroup size. Though obvious and seemingly natural, algorithms 

that search for splits that optimize one or more criteria have two undesirable consequences: 

biased variable selection (all things being equal, some variables are more likely than others 

to be selected to define the subgroups) and biased estimates of subgroup effects (estimated 

differences in treatment effects between subgroups are overly large). Loh et al. [9] extended 

the GUIDE [10–12] approach to find subgroups without these biases. Except for Su et al. 

[3], the methods are applicable to a single outcome variable only. The purpose of this article 

is to further extend the GUIDE subgroup identification approach to multivariate outcome 

variables.

To illustrate, consider a multi-center, randomized double-blind trial on the long-term 

efficacy and safety of Pioglitazone vs Gliclazide in patients with Type 2 diabetes mellitus 

that is inadequately controlled by diet alone [13]. Gliclazide increases the amount of insulin 

produced by the pancreas while Pioglitazone is an “insulin sensitizer”—it improves the 

ability of the body to use insulin. The trial consisted of 1249 subjects between 35 and 75 

years old with HbA1c between 7.5% and 11.0% and for whom diet was prescribed for at 

least 3 months. Each subject was randomized to a 52-week treatment period consisting of a 

16-week forced-titration period to a maximum dose and a 36-week maintenance period at 

the maximum tolerated dose of the drug. The treatments were 80mg Gliclazide (625 

subjects), 30mg Pioglitazone (114 subjects), and 45mg Pioglitazone (510 subjects). Twenty-

three baseline variables were measured for each subject. There are 9 outcome variables, 

namely, HbA1c at 0, 4, 8, 12, 16, 24, 32, 42, and 52 weeks. The primary efficacy endpoint is 

change from baseline HbA1c.

Combining the subjects given 30mg and 45mg Pioglitazone into one “Pioglitazone” group 

gives 747 subjects (383 and 364 in the Pioglitazone and Gliclazide groups, respectively) 

with complete HbA1c values at all time points. Table 1 gives the names, definitions and 

numbers of missing values of the predictor variables and Figure 1 plots the group mean 

HbA1c values over time. Gliclazide appears to be better, on average, than Pioglitazone in 

lowering HbA1c throughout. But is there a subgroup for which Pioglitazone might be better 

for at least some time points? Figure 2 shows one possible subgroup, defined by HOMA-B > 

23.90 and FastBG > 10.85, where Pioglitazone appears to control HbA1C better than 

Gliclazide after 25 weeks.

2 Method

GUIDE is a general classification and regression tree algorithm and Gi is an option for 

subgroup identification. We describe in this section how the Gi option is extended to obtain 

the tree in Figure 2. First we review the method for the case of one outcome variable, 

mentioning improvements since its introduction in Loh et al. [9].

2.1 One outcome variable

A unique feature of Gi is how it selects a split of the data in each node of a tree. Let Y 
denote the (single) outcome variable and Z a treatment variable taking G nominal values z = 
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1, 2, …, G. Let Xi be a predictor variable. At each node t of the tree, a lack-of-fit F test is 

used to select an Xi to split the data in t. If Xi is an ordinal variable, the test temporarily 

converts it into a two-group categorical variable Hi by splitting its values at the mean. If Xi is 

categorical, then Hi = Xi with each category forming a group. If there are missing values in 

Xi, a “missing” group is added. This allows observations with missing values to be included 

for variable selection at every node.

We fit the additive model  to the data in t and 

obtain its F-statistic Fi and p-value pi for the “pure error” lack-of-fit test [14, Sec. 4.3]. Our 

goal is to select the most significant Xi to split the data in the node. The value of pi can be 

tiny and hard to compute if Xi has a large interaction with Z. To avoid its computation in 

such situations, we transform the Fi statistics to 1-df chi-squared quantiles and select the Xi 

with the largest chi-squared instead. Let νi and μi be the numerator and denominator dfs of 

Fi and let φi and  denote the mean and variance, respectively, of the central F distribution 

with these dfs. Transformation of Fi to chi-squared is carried out in two parts.

1. If Fi is not extremely large (specifically, μi < 10 and Fi < 3000τi + φi or μi 

≥ 10 and Fi < 150τi + φi), compute pi directly from the F distribution and 

then compute the (1 − pi)-quantile  of the chi-squared distribution 

with 1 df.

2. Otherwise, use a two-step approximation:

a. Compute a = νiFi/3 and b = (2μi + a + νi − 2)/{2(μi + 2a)}. 

Then  is approximately the (1 − pi)-quantile of a 

chi-squared distribution with νi df [15].

b. Compute

Then  is approximately the (1 − pi)-quantile of a chi-

squared distribution with 1 df. The result is obtained by 

combining two approximations in Wilson and Hilferty [16] 
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[see 17, p. 427], If νi = 1, then  and 

and this step is not needed.

Part 2(b) improves upon a earlier approximation used in Loh [11] and Loh et al. [9].

Let X* be the variable with the largest value of . The data in t are partitioned into left 

and right child nodes by a split on X* of the form “X* ≤ c” if X* is ordinal or “X* ∈ C” 

where C is a subset of the values of X* if it is categorical. The best split is found by 

minimizing SL + SR, where SL and SR are the sums of the squared residuals of the 

treatment-only model EY = β0 + ∑z βzI(Z = z) fitted independently to the left and right child 

nodes. Only splits that yield child nodes with all treatment levels present are considered. The 

whole procedure is applied recursively at each node until the number of observations is 

below a threshold (e.g., 5% of the sample size). Then the tree is pruned using the CART 

method and ten-fold cross-validation (CV) is used to find the smallest CV mean squared 

error MSE0 among the subtrees. The smallest subtree with CV MSE within half a standard 

error of MSE0 is selected.

What happens if there are missing X* values in the training sample or in a future sample to 

be predicted? Following [9, 11], we send all missing X* values to the same child node. Let 

NA denote the missing value code and let tL denote the left child node of a split of t on X*. If 

X* is an ordinal variable, the minimization of SL + SR is over c for tL of the form (i) “X* = 

NA”, (ii) “X* ≤ c and X* = NA”, and (iii) “X* ≤ c and X* ≠ NA”. If X* is categorical, its 

missing values are treated as another category. Other algorithms use different methods to 

deal with missing values. CART uses surrogate splits but they do not give better predictions. 

Another approach is imputation of the missing values using, for example, regression of X* 

on the other X variables, but this may not work well if the other X variables have missing 

values too [18]. There is one aesthetic advantage to sending all missing values to one child 

node: the split can be displayed compactly in a tree diagram. To indicate that missing values 

go to the left child node in a split on an ordinal X, we add an asterisk subscript to the 

inequality sign, e.g., “X ≤* c”. If missing values go to the right child node, we denote the 

split simply as “X ≤ c”. See Figure 3 below for an example.

2.2 Multiple outcome variables

The method for one outcome can be extended to more than one outcome by applying it to 

one Yj at a time. For each Xi, we now have a Wilson-Hilferty 1-df chi-squared value, 

say, for each Yj. Let  be the sum of the chi-squared values over the outcomes. 

Let X* be the Xi for which qi is maximum. Then for each binary split of the data on X* in t, 
we fit the model

(1)

to the data in the two subnodes and choose the split that minimizes the total sum of the 

squared residuals, where the total is over the outcomes and the two subnodes. (We 
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considered using  in place of qi but the results are not as good. Besides, a sum 

of chi-squareds has advantages in importance scoring of variables, a topic not discussed 

here.)

The power and versatility of this approach can be improved with two additions:

Local linear transformations. One weakness of the technique is that it 

ignores correlations among the Yj. A standard solution is to transform (Y1, Y2, 

…) to another coordinate system using, e.g., principal component analysis 

(PCA) or linear discriminant analysis (LDA) with Z as the class variable. But 

this may be ineffective if the correlation structure is not constant over the 

predictor variable space. A better solution is to perform PCA or LDA 

independently at each node t. For PCA, this is achieved by replacing the Yj 

values with their principal components at the node in the computation of the 

lack-of-fit tests. The split on the selected variable X* is found as before, i.e., 

the sums of squared residuals are based on the untransformed Yj values. The 

procedure for LDA is the same, except that the Yj values are replaced by the 

canonical variates (discriminant coordinates) in the computation of the lack-of-

fit tests.

Weights. The Yj may be measured on different scales, they may not be equally 

important, or they may measure different outcomes (e.g., Y1 is a measure of 

efficacy and Y2 a measure of safety). If they are measured on different scales, 

they may be normalized to have equal sample variance prior to analysis. If they 

are not equally important or they measure different outcomes, a weighted total 

sum of squared residuals may be used to search for the best split on X*, with 

weights chosen by the user.

Algorithm 1 presents the basic procedure in pseudocode.

The result in Figure 2 is obtained with LDA transformation of the observed HbA1c values at 

each node. The corresponding results without any transformation and with PCA 

transformation are shown in Figures 3 and 4, respectively. The model with PCA is a subtree 

of the one with LDA. All three tree models split on HOMA-B at some point. Figure 2 is 

easiest to interpret based on our understanding of how the drugs work. HOMA-B is a 

measure of beta cell function which is the ability to produce insulin. Low values of HOMA-

B indicate worse beta cell function. Node 2 in Figure 2 contains subjects with poor beta cell 

function (less insulin production). Gliclazide works well for these patients because they are 

insulin deficient. Pioglitazone does not work as well because these patients do not have 

much insulin in their bodies; making them more sensitive to insulin may not be the best 

solution. Stimulation of the deteriorating beta cells to produce additional insulin may instead 

accelerate the decline of beta cell function. At intermediate node 3, where patients have 

relatively good beta cell function and often good amounts of insulin, Pioglitazone is 

expected to work better. The split there on FastBG is meaningful. Patients with high FastBG 

(node 7) often have more insulin in their body conditional on the same beta cell function. 

Pioglitazone seems to work better for them after 20 weeks. One may wonder why node 3 is 

split on FastBG instead of FastInsulin. The answer may be because high FastBG is 
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indicative of greater potential for decreasing blood glucose. Therefore FastBG is an 

excellent biomarker for high insulin as well as potential for improvement. Figure 5 shows a 

plot of FastBG versus HOMA-B for the whole data set.

It is less easy to explain why ALT is chosen to split the root node in Figure 3. The split is not 

counter intuitive, however, because ALT is a biomarker for liver function, with large values 

indicative of liver damage. Gastaldelli et al. [19] found that Pioglitazone works by reducing 

liver glucose synthesis and Harris [20] found that the latter is associated with ALT. Using 

ALT as a predictor, however, is complicated by the fact that males and females have 

different normal ranges (male < 43, female < 34) and by gender not being among the 

variables reported in the data.

Algorithm 1

GUIDE split selection method for multiple outcomes

Data: Xi is the ith predictor variable in node t. Yj is the jth outcome variable, jth  principal component in t, or jth linear 
discriminant variate in t. Z is the
  treatment variable taking values k = 1, 2, …, G.

Result: Split s* of node t

begin

foreach i with non-constant Xi do

if Xi is ordinal (continuous or discrete) then

divide its values into two groups at the node sample mean 
of Xi;

else

define the groups by the categorical values of Xi;

end

add a group for missing Xi values if there are any;

Hi ← factor variable created from the groups;

foreach Yj do

fit an additive model to Yj using only Hi and Z;

perform lack-of-fit test and find 1-df chi-squared statistic 

;

end

;

end

i* ← arg min qi;

foreach split s of t on Xi* do
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foreach Yj do

fit model  to each 
child node;

let uj be the total sum of squared residuals in the two child 
nodes of s;

end

υ(s) ← ∑j uj;

end

return s* ← arg min υ(s);

end

3 Simulation results on bias

A tree model needs three essential properties for interpretability: (i) unbiased variable 

selection, (ii) unbiased estimates of treatment means in the nodes, and (iii) confidence 

intervals for the treatment means. This section uses simulations to show that the proposed 

method has the first two properties. The third property is addressed in Section 4.

3.1 Bias in variable selection

A basic requirement for model interpretation is that the algorithm selects variables to split 

the nodes without bias. That is, if all the predictor variables are independent of the 

outcomes, each should be selected with equal probability. CART [6] and algorithms that 

adopt its paradigm are known to be biased in selecting variables that allow more splits [10, 

11, 21, 22]. There are two consequences to biased selection. One is increased likelihood that 

the subgroups are defined by less relevant variables, which undermines confidence in the 

conclusions. Another is that if splits on less relevant variables occur sufficiently often in a 

tree, pruning may remove many of the splits, which reduces the power of the procedure.

To see whether our method is unbiased, we carried out two simulation experiments where 

the predictor variables are independent of the longitudinal outcomes. Let M(m) denote the 

multinomial distribution with m equi-probable cells, U(c, d) the uniform distribution on the 

interval (c, d), E(θ) the exponential distribution with mean θ, and N(μ, σ2) the normal 

distribution with mean μ and variance σ2. Let X1, X2, …, X5 and Z be mutually independent 

predictor and treatment variables with distributions X1 ~ M(2), X2 ~ M(10), X3 ~ U(0, 1), 

X4 ~ E(1), X5 ~ N(0, 1), and Z ~ M(2). Let Yij denote the outcome for subject i at time j (j = 

1, 2, …, 10). The first experiment employs a linear mean function and the second a quadratic 

one that mimics the mean function of the diabetes data:

(2)

(3)
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Here b1i ~ U(3, 4), b2i ~ U(0, 1), and εij ~ N(0, 1) are mutually independent, representing 

random subject effects and measurement error, respectively.

Two hundred sample vectors (X1, X2, …, X5, Y, Z) were repeatedly simulated and the 

frequency that each X variable was selected to split the root node of the tree was recorded. 

The results in Table 2 show the average frequencies over 10000 simulation trials; all are 

within three simulation standard errors of 0.20, the target value if variable selection is 

unbiased.

3.2 Bias in treatment effects

It is equally important for the estimated treatment mean μt(z) for Z = z in the terminal nodes 

t be unbiased. Many algorithms, such as SIDES [7] and QUINT [8], search for split points 

that optimize treatment effects between nodes. As a result, they tend to yield overly 

optimistic estimates that require subsequent bias adjustment. The difficulty with evaluating 

the bias of the treatment means in a node t of a tree is that t is not fixed but is a function of 

the training sample. Loh et al. [9] instead estimate the average bias of the means, where the 

average is over all terminal nodes t. They show by simulation that the bias is remarkably 

small. Their results are, however, limited to a single outcome and categorical predictor 

variables with three categories each.

Given a node t in a tree T and Z = z, let μj(z, t) = EYj denote the mean of Yj for treatment z 
in t, and let μ̂j(z, t) be its estimate. Let T̃ denote the set of terminal nodes of T and |T̃| be its 

number of terminal nodes. Define the average error over t ∈ T̃ for outcome Yj and treatment 

level z as Dj(T, z) = |T̃|−1 ∑t∈T̃ {μ̂j(z, t) − μj(z, t)}. Similarly, define the average relative error 

Rj(T, z) = |T̃|−1 ∑t∈T̃ {μ̂j(z, t) − μj(z, t)}/μj(z, t).

The average bias is δj(z) = EDj(T, z) and average relative bias is ρj(z) = ERj(T, z). To see 

whether they are close to 0, we carried out the following simulation experiment modeled 

after the diabetes data. Set θ = 6 and σ = σ1 = 0.5. Let X = (X1, X2, …, X23) be the 

variables listed in Table 1, with X1 and X2 being HOMA-B and FastBG, respectively (see 

Figure 5 for their joint distribution). Let  = {X1, X2, …, Xn} denote the set of 1077 X 
vectors in the diabetes data with nonmissing HOMA-B (172 of the 1249 subjects are 

missing HOMA-B; none is missing FastBG; see Table 1). Using  as the simulation 

population, randomly draw vectors  from  with replacement. For each 

, simulate mutually independent Z* = 0, 1 with P(Z* = 1) = 0.50, 

, b2 ~ U(1.5, 2.5), b3 ~ U(0.1, 0.2), and εj ~ N(0, σ2) (j = 1, 2, …, 9). Compute

(4)

and its mean conditional on (X*, Z*):
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Let T* denote a tree built from , 

where  and let t* ∈ T̃*. Let  denote the sample mean of 

with Z* = z in * ∩ t*. The population mean of Yj for Z = z in t* is 

, where  is the set of Xi in  ∩ t*. The estimation error 

and relative error are  and , 

respectively. The corresponding average error and average relative error over t* ∈ T̃* are 

 and . Repeating the 

simulation many times and averaging the values of  and  over the number of 

trials gives estimates of the average bias δj(z) and average relative bias ρj(z). Tables 3 and 4 

give the results based on 1000 simulation trials for samples of size n = 100, 500, and 1000, 

with m additional independent U(0, 1) noise variables, for m = 0, 50 and 100 (the number of 

Xi without noise variables is 23). The bias and relative bias tend to decrease as sample size 

increases. For n = 1000, more than half are within three simulation standard errors of zero. 

Further, the results seem to be relatively unaffected by the number of noise variables.

4 Bootstrap calibrated intervals

Without confidence intervals to indicate the accuracy of the treatment means, graphs such as 

that in Figure 1 are not as informative as those in Figures 2—4. Construction of confidence 

intervals in the terminal nodes of a tree has been a challenging problem, however, since the 

first regression tree algorithm [23] appeared more than fifty years ago. The difficulty is agsin 

due to the terminal nodes being a function of the training data. As a result, the quantities 

being estimated, such as the node treatment effects, are random. In the context of genome-

wide association studies, the problem has been called “selective inference” [24]. Loh et al. 

[9] describe a method to obtain bootstrap confidence intervals for the case of a single 

outcome variable. It does so by estimating the standard error of the treatment effects with the 

standard errors of bootstrap estimates of the corresponding population parameters. Despite 

simulation results demonstrating its effectiveness, the procedure is unintuitive and lacks 

justification.

We propose a simpler and more intuitive method based on bootstrap calibration [25], which 

is briefly explained as follows. Suppose for the moment that there is only one outcome 

variable, no treatment variable, and t is pre-specified. Given a nominal α, a naïve 100(1 − α)

% interval for the mean outcome θt in t is the t-interval . Here 

y denotes a random sample of observations, ȳt, st and nt its sample mean, standard deviation 

and sample size in t, and ν = nt − 1. Let F denote the population from which the data are 

obtained and let γ(α, F, t) = PF {θt ∈ I (y, α, t)} denote the true coverage probability of the 

interval. Typically, γ(α, F, t) → 1 − α as nt increases if t is fixed. Bootstrap calibration 

attempts to increase the rate of convergence. Let F̂ denote the empirical distribution of y. 

Using a computer or otherwise, draw bootstrap samples of size nt from F̂. For each bootstrap 

sample y*, let  and  be its sample mean and standard deviation and construct the interval 

. The bootstrap estimate of the coverage probability of I(y, α, 

Loh et al. Page 9

Stat Med. Author manuscript; available in PMC 2017 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



t) is γ(α, F̂, t) = PF̂ {θ̂t ∈ I(y*, α, t)}, where θ̂t = ȳt. Given a target coverage probability 1 − 

α, find α̂ such that γ(α̂, F̂, t) = 1 − α. Then the 100(1 − α)% bootstrap calibrated interval 

for θt is . Loh [25, 26] showed that, under fairly weak 

conditions, the true coverage probability of I(y, α̂, t) converges to 1 − α an order of 

magnitude faster than the nominal interval I(y, α, t).

One modification is needed to extend this technique to the nodes of a tree model. Because 

the tree and its nodes vary from one sample to another, it is not possible to calibrate α for 

the coverage probability of one particular node. Instead, we calibrate α to improve the 

average coverage probability over all the nodes of a tree. Let γ̄(α, F) = E{|T̃|−1 ∑t∈T̃ γ(α, F, 
t)} denote the expected average coverage probability over the terminal nodes of a tree T. 

Draw bootstrap samples B times from F̂ as before to obtain the bootstrap estimate of average 

coverage probability γ̄(α, F̂). Do this for a grid of k values α1 < α2 < … < αk, with αk 

being the desired α level, getting γ̄i = γ̄(αi, F̂), i = 1, 2, …, k. (We use k = 5 in the examples 

and simulations.) Fit the least-squares line y = 1 − bx to the points {(α1, γ̄
1), …, (αk, γ̄k)} 

so that . The calibrated α̂ is the value such that γ̄(α̂, F̂) = 1 − 

α, i.e., α̂ = b−1α, and the bootstrap interval in each node is recalculated with α̂ in place of α. 

The pseudocode in Algorithm 2 finds one α̂ for all outcomes by averaging the coverage 

probabilities over the outcome variables and the terminal nodes. It can be modified to find a 

separate α̂ for each outcome.

To evaluate the accuracy of the bootstrap calibrated intervals, we carried out a simulation 

experiment using the setup in Section 3.2 as follows. Let  denote a random 

sample drawn with replacement from the diabetes data set , with X1 and X2 being HOMA-

B and FastBG, respectively. For each X*, simulate mutually independent Z* = 0, 1 with 

P(Z* = 1) = 0.50, , b2 ~ U(1.5, 2.5), b3 ~ U(0.1, 0.2), and  (j = 1, 2, 

…, 9), with σ = σ1 = 0.50. The simulated jth outcome is

and the mean of  conditional on X* = (x1, x2, …) and Z* = z is

Fit a tree model to each sample . Then construct a naïve (i.e., 

uncalibrated) and a bootstrap calibrated interval for the treatment mean in each node. See 

Algorithm 3 for the simulation details.

Table 5 gives the coverage probabilities of the 95% naïve and bootstrap intervals averaged 

over the nine outcomes for n = 100, 500, and 1000, with m = 0, 50, and 100 independent 

U(0, 1) noise variables added. The results are based on 1000 simulation trials with B = 25 
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bootstrap iterations per trial (the real data examples employ B = 100). The coverage 

probabilities of the bootstrap intervals are clearly much closer to the nominal value of 0.95.

5 Mammography screening

Algorithms for subgroup identification that depend on estimation of a treatment-covariate 

interaction are typically applicable to treatments with two levels only. Our next data set has 

two outcome variables and a three-level treatment variable. CAPE [27] is a randomized 

controlled trial designed to determine whether two interventions (DVD or Phone) are more 

efficacious than a control treatment at promoting mammography screening (1 = yes, 0 = no) 

at 6 and 21 months (Resp6 and Resp21, respectively) post-baseline among women 51–75 

years old who have not had a mammogram in the previous 15 months. There are 1638 

subjects in total, all with Resp6 but 145 without Resp21. Table 6 lists the variables and their 

numbers of missing values.

Logistic regression, applied to each outcome separately on the subjects with complete 

observations, finds no significant differences between DVD and control, or between phone 

and control, although there is a significant interaction for the 6-month screening outcome. 

For women in the low (≤30K) or middle (30–75K) income categories, DVD is significantly 

more efficacious than control, and for women in the highest income category (≥75K), DVD 

is significantly less efficacious than control. There are also some significant interactions 

between intervention groups and covariates, such as baseline belief scale scores, for the 21-

month outcome. These tests, however, are carried out by testing 2×2 interactions in logistic 

regression without controlling for multiplicity.

Algorithm 2

Bootstrap calibrated intervals

Data: Given α ∈ (0, 1), α1 < α2 < … < αK;  = {(Xi, Yi, Zi), i = 1, 2, …, n} with
  Zi taking values 1, 2, …, G; tree with nodes t1, t2, …, tL constructed from .

Result: (1 − α) confidence interval for μj(t, z) = E(Yj | t, z) for Z = z,
  t = t1, t2, …, tL, and j = 1, 2, …, J.

begin

Loh et al. Page 11

Stat Med. Author manuscript; available in PMC 2017 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



γk ← 0 for k = 1, 2, …, K; /* bootstrap 
coverage 

probabilities */

for b ← 1 to B do

bootstrap  from ;

construct tree from  with nodes ;

for z ← 1 to G do

for j ← 1 to J do

for l ← 1 to Lb do

;

;

for k ← 1 to K do

Ijklz ← nominal-(1 − αk) interval for ;

if  then

cjklz ← 1 ; /* interval 
contains mean */

else

cjklz ← 0 ; /* interval does 
not contain mean 

*/

end

end

end

end

end

for k ← 1 to K do

γk ← γk + (GJLb)−1 ∑j ∑l ∑z cjklz;

end

end

γk ← γk/B for k = 1, 2, …, K;

/* interpolate straight line through fixed 
point (α, γ) = (0, 1)

*/

s1 ← ∑k αk(1 − γk); ; α′ ← αs2/s1;

construct nominal (1 − α′) intervals for μj(tl , z), l = 1, 2, …, L;

end
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Algorithm 3

Estimating coverage of intervals from Algorithm 2

Data: Given J, K, σ2, , set G of levels of Z, and set
   = {Xi = (Xi1, Xi2, …), i = 1, 2, …, n} of design points.

Result: Average coverage probability p(z) of bootstrap intervals for each treatment
  level z.

begin

p(z) ← 0, z ∈ G;

for k ← 1 to K do

for i ← 1 to n do

Randomly draw  from ;

Simulate independent Bernoulli ,

b3i ~ U(0.1, 0.2), and ;

Generate  from equation (4);

end

Fit a tree T* to ;

Let the terminal nodes of T* be t1, t2, …, tL*;

Define ;

for z ∈ G do

h(z) ← 0;

for l ← 1 to L* do

, where Sl =  ∩ tl;

Use * and Algorithm 2 to find interval Ijl(z) for ηj(tl, z);

for j ← 1 to J do

if ηj(tl, z) ∈ Ijl(z) then

h(z) ← h(z) + 1;

end

end

end

end

p(z) ← p(z) + h(z)/(JL*);

end

p(z) ← p(z)/K;
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end

We first analyze the data using the subset of 1493 subjects with both 6- and 21-month 

outcomes. Figure 6 shows our regression tree model if the outcome variables are not 

transformed. The corresponding results with PCA and LDA transformations of the outcome 

variables at each node are shown in Figures 7 and 8, respectively. Variables sf12gh (general 

health score) and yearmam (number of years had a mammogram in past) appear in all three 

trees. Variable opt (optimism scale score) appears in the latter two trees, and fear (perceived 

fear scale score) appears in the first and third trees. The split points are similar across trees. 

Mean outcomes are clearly lower if the number of years a subject had a mammogram in the 

past is 0 or 1 (yearmam ≤ 1).

The subgroup {sf12gh > 72, fear ≤ 18, yearmam ≤ 1} in Figure 6 shows statistically 

significant differential treatment effects. Subjects in the DVD treatment group have the 

lowest average response rates and, according to the bootstrap confidence intervals, the rates 

are significantly lower than those for phone. But the rates for phone are not significantly 

higher than those for control. This subgroup is quite small, however, with 117 subjects.

The results are slightly different in Figure 7, where the subgroup showing statistically 

significant differential treatment effects is {opt > 13, sf12gh > 72, yearmam ≤ 1}. The 

DVD treatment group still has the lowest average response rates and they are significantly 

lower than those for phone. But the DVD rate at 21 months is also significantly lower than 

that for control. The subgroup sample size is 264.

The subgroup with statistically significant differential treatment effects in Figure 8 is {opt > 

13, sf12gh > 72, fear ≤ 21, yearmam ≤ 1}. It is a subset of the subgroup in Figure 7. Here 

the response rates for DVD are not significantly lower than those for control, but this may be 

due to the sample size being smaller at 143.

6 Missing outcomes

Although we have used only subjects with observations in all Yj variables so far, our method 

can include subjects who are missing some (but not all) Yj. Recall that split variable 

selection at each node is achieved by performing a lack-of-fit test on one Yj at a time. 

Therefore each test can utilize all subjects with nonmissing values in that Yj. And the same 

subjects can be used to fit model (1) in the child nodes for computation of the total sum of 

squared residuals. This extension can be used with weights as well, but it does not allow 

PCA and LDA transformations.

An interesting question is whether one should use this more general approach or restrict the 

models to subjects with complete outcomes. Certainly, restricting to completely observed 

outcomes makes implicit assumptions about the reasons for the outcomes being missing. If 

we use all 1249 subjects with at least one outcome in the diabetes data, the pruned tree has 

no splits. On the other hand, if we use all 1638 subjects with one or more outcomes in the 

mammography data, we obtain the tree in Figure 9. It is the same as the tree (Figure 6) based 
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on the subset of subjects with complete outcomes. The node treatment means differ slightly 

between the trees, due to different numbers of observations; compare, e.g., the treatment 

means at the node {sf12gh > 72, fear > 18}. Because the model is the same with and 

without excluding subjects with incomplete outcomes, the result seems to suggest that the 

outcomes are missing at random. These two examples show that it is useful in practice to 

analyze the data with and without the subjects with incomplete outcomes.

To our knowledge, the Interaction Trees (IT) approach [3] is currently the only other method 

that can deal with incomplete outcomes. It uses the CART paradigm, which searches all split 

points on all split variables at each node. For longitudinal outcomes with binary treatment Z 
= 0 or 1, IT fits a GEE [28] model with mean function

(5)

to the data in each node and each predictor Xk. Here Ak = (−∞, c] if Xk is ordinal and is a 

subset of the levels of Xk if it is categorical. The set Ak that minimizes the p-value of the test 

that β3 = 0 is selected to split the node. One advantage of this approach is that correlations 

between the Yj are easily incorporated through specification of a correlation matrix. Another 

advantage is that subjects can have incomplete outcomes. But it also has disadvantages. The 

most obvious is the computational cost of fitting many GEE models. An ordinal variable Xk 

with m unique values generates (m − 1) split sets Ak. A categorical variable Xk with m levels 

generates (2m−1 − 1) split sets. Therefore the number of GEE models to be fitted at each 

node is linear or exponential in m for each Xk. In practice, specification of the correlation 

matrix is nontrivial. Su et al. [3] use a matrix with constant correlation, but correlations 

between outcomes far apart in time may be weaker than those nearer together. And the 

correlations in one child node may differ from those in its sibling node. Further, equation (5) 

assumes that the interaction coefficient β3 is constant over j. This may not be realistic if the 

number of outcome variables is large. Finally, as with all algorithms that rely on direct 

optimization, the approach is susceptible to selection bias, because variables that allow more 

splits have an inherent advantage to be selected.

7 Concluding remarks

We have described a technique to fit regression tree models that identify subgroups with 

differential treatment effects from randomized trials with multivariate outcome variables. To 

our knowledge, it is the first (tree or non-tree) subgroup procedure to accept two or more 

outcomes simultaneously, to allow missing values in predictor and outcome variables, to 

allow treatments with more than two levels, and to possess unbiased variable selection and 

approximately unbiased estimates of treatment effects in the subgroups. Further, if outcomes 

are completely observed, it can take advantage of local dependencies among outcome 

variables by employing PCA or LDA transformations at each node of the tree. The examples 

indicate that either PCA or LDA may be better than no transformation, but the best solution 

is probably data dependent. In our experience, having more than one solution is often 

desirable in practice, because they allow the user to apply subject matter knowledge to 

compare them.
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The machine learning approach to subgroup identification typically treats the problem as 

optimization: search for the subgroups that have the greatest observed differential treatment 

effects. This necessarily produces biased estimates of the effects. Our two-step method 

escapes this consequence by taking a different tack. The first step ensures that, with high 

probability, the right variable is chosen to split the node without selection bias. The second 

step finds the split that fits the data in both subnodes best, without directly maximizing the 

observed treatment effect in one at the expense of the other. It is natural to wonder if 

intentionally avoiding the split that maximizes the observed differential treatment effect is 

the best strategy. The answer is certainly yes, if unbiased estimates are desired. But will this 

strategy find the correct subgroup? If the treatment effect is a smooth monotone function of 

a continuous variable X, then there is no subgroup that is “correct” without additional 

qualification. For example, suppose the true model producing the data is EY = β0 + f (X)I(Z 
= 1), where f (x) is strictly increasing in x. Then for any c, the subgroup {X > c} has a larger 

treatment effect than its complement {X ≤ c}. Larger values of c yield subgroups with larger 

treatment effects but they are correspondingly smaller in size. Given that no correct 

subgroup exists in this case, we are left with two choices: (i) find the subgroup with the 

maximum observed differential treatment effect and suffer the consequences of biased 

estimates or (ii) settle for a subgroup with observed treatment effects that may be less than 

maximal but that yields approximately unbiased effect estimates. Many methods take the 

first option; we take the second one here.

There are numerous “engineering choices” that can potentially affect the performance of our 

algorithm. One is the two-group conversion of an ordinal variable X into a categorical 

variable H in the lack-of-fit test. If the sample size at the node is large, this may cause some 

loss of power in selecting the best X. We could avoid this by converting X into three or more 

groups, but as sample size decreases with partitioning, the groups will quickly have too few 

observations. An alternative is to start with a larger number of groups at the top levels of the 

tree and reduce them at the lower levels. Recall, however, that H already has three groups 

with dichotomization of X if the latter has missing values. Loss of information from 

dichotomization is often more than offset by the increase in power from having a missing-

value group that admits all observations, especially if missingness is informative.

Our bootstrap calibration approach to confidence interval construction is independent of the 

subgroup identification algorithm. It can be used with any algorithm and applied to any 

naïve interval. There is no need to adjust or control for the multiplicity of tests in the search 

algorithm because all the steps are accounted for in the bootstrap procedure. If calibration is 

performed on the naïve t-interval, however, it is preferable for the effect estimates to be 

unbiased.

The tree algorithm discussed here is implemented in the GUIDE software available from 

www.stat.wisc.edu/~loh/guide.html. It also includes a parallel extension to multiple 

outcomes of the Gs option proposed in Loh et al. [9].
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Figure 1. 
HbA1c means for Pioglitazone and Gliclazide
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Figure 2. 
GUIDE tree for diabetes data with plots of mean HbA1C, using LDA. Error bars are 95% 

bootstrap confidence intervals. Sample sizes printed beneath nodes.
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Figure 3. 
GUIDE tree for diabetes data with plots of mean HbA1C, using neither PCA nor LDA. Error 

bars are 95% bootstrap confidence intervals. Sample sizes printed beneath nodes. The 

symbol ‘≤*’ stands for ‘≤ or missing’.
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Figure 4. 
GUIDE tree for diabetes data with plots of mean HbA1C, using PCA. Error bars are 95% 

bootstrap confidence intervals. Sample sizes printed beneath nodes.
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Figure 5. 
Plot of FastBG vs. HOMA-B
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Figure 6. 
Model based on subset of 1493 subjects without transformations. At each split, an 

observation goes to the left branch if and only if the condition is satisfied. Error bars are 

95% bootstrap confidence intervals. Sample sizes are below terminal nodes.
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Figure 7. 
Model based on subset of 1493 subjects with PCA transformations in each node. At each 

split, an observation goes to the left branch if and only if the condition is satisfied. Error bars 

are 95% bootstrap confidence intervals. Sample sizes are below terminal nodes.
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Figure 8. 
Model based on subset of 1493 subjects with LDA transformations in each node. At each 

split, an observation goes to the left branch if and only if the condition is satisfied. Error bars 

are 95% bootstrap confidence intervals. Sample sizes are below terminal nodes.
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Figure 9. 
Model based on all 1638 subjects without transformations. At each split, an observation goes 

to the left branch if and only if the condition is satisfied. Error bars are 95% bootstrap 

confidence intervals. Sample sizes are below terminal nodes.
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Table 6

CAPE variables and numbers of missing values among the 1493 subjects with complete outcomes and the full 

set of 1638 subjects

Name Definition #Missing

Resp6 mammography screening 6 months post baseline
(yes/no)

Resp21 mammography screening 21 months post baseline
(yes/no)

0 145

Treatment 1 = dvd, 2 = phone, 3 = control

age age 1 1

educyrs years of education

collegeormore four-year colleage or more (1=yes, 0=no) 5 5

caucasian Caucasian (1=yes, 0=no) 5 5

afram African American (1=yes, 0=no)

married married or in long term relationship (1=yes,
0=no)

income3 household income (1 = <30K, 2 = 30–75K, 3 =
>75K)

31 38

incle75k household income ≤ 75K (1=yes, 0=no) 31 38

workpay currently working for pay (1=yes, 0=no)

stgpca baseline stage of behavior change (pre-
contemplation/contemplation)

stage baseline stage of behavior change (pre-
contemplation, contemplation, relapse pre-
contemplation, relapse contemplation)

prepar baseline preparation (made appointment for
mammogram) (1=yes, 0=no)

mediasource number of 8 media sources exposed to

paper exposure to paper media (1=yes, 0=no)

tv exposure to TV media (1=yes, 0=no)

internet exposure to internet media (1=yes, 0=no)

hadmamm ever had a mammogram (1=yes, 0=no)

yearmam Number of years had a mammogram in past

doceversug doctor ever suggest you have a mammogram
(1=yes, 0=no)

docspoke doctor/nurse spoke to you last 2 years about
mammogram (1=yes, 0=no)

famhist family history of breast cancer (1=yes, 0=no)

hcremind Received reminders of mammogram from health
care facility (1=yes, 0=no)

opt baseline optimism scale score

sf12bp baseline SF12 bodily pain scale score

sf12gh baseline SF12 general health scale score

sf12mh baseline SF12 mental health scale score 1 1

sf12pf baseline SF12 physical functioning scale score

sf12re baseline SF12 role emotional scale score

sf12rp baseline SF12 role physical scale score 1 1
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Name Definition #Missing

sf12sf baseline SF12 social functioning scale score

sf12vt baseline SF12 vitality scale score 0 1

bar baseline perceived barriers scale score

ben baseline perceived benefits scale score

self baseline perceived self efficacy scale score

susc baseline perceived susceptibility scale score

fear baseline perceived fear scale score

fatal baseline perceived fatalism scale score

know baseline perceived knowledge scale score
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