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Abstract

 Background—The melanin synthesis enzyme dopachrome tautomerase (Dct) regulates 

intracellular Ca2+ in melanocytes. Homozygous Dct knock out (Dct−/−) adult mice are vulnerable 

to atrial arrhythmias (AA).
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 Objective—To determine if apamin-sensitive small conductance Ca2+ activated K+ currents 

(IKAS) are upregulated in Dct−/− mice and contribute to AA.

 Methods—Optical mapping was used to study the membrane potential of right atria (RA) in 

Langendorff perfused Dct−/− (N=9) and Dct+/− (N=9) mice.

 Results—Apamin prolonged action potential duration (APD) by 18.8 ms (95% confidence 

interval (CI), 13.4–24.1) in Dct−/− and by 11.5 ms (CI, 5.4–17.6) in Dct+/− mice at 150 ms PCL 

(p= 0.047). PCL threshold to induce APD alternans was 48 ms (CI, 34–62) for Dct−/− and 21 ms 

(CI, 12–29) for Dct+/− mice (p=0.002) at baseline, versus 35 ms (CI, 21–49) for Dct−/− and 22 ms 

(CI, 11–32) for Dct+/− mice (p=0.025) after apamin. Apamin prolonged post-burst pacing APD by 

8.9 ms (CI, 3.9–14.0) in Dct−/− and by 1.5 ms (CI, 0.7–2.3) in Dct+/− mice (p=0.005). Immunoblot 

and quantitative PCR analysis showed that protein and transcripts levels of SK1 and SK3 were 

increased in the RA of Dct−/− mice. AA inducibility (89% vs. 11%, p=0.003) and duration (281 

sec vs. 66 sec, p=0.008) were greater in Dct−/− than in Dct+/− mice at baseline, but not different 

(22% vs 11%, p=1.00) after apamin. Five of 8 (63%) induced AF episodes in Dct−/− mice had 

focal drivers.

 Conclusion—IKAS upregulation in Dct−/− mice plays an important role in the mechanism of 

AA.
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Atrial fibrillation (AF) is the most common cardiac arrhythmia in the United States. While 

our understanding of the cellular basis and factors that drive AF has grown in recent years, 

much remains unclear with regards to the mechanisms that initiate and drive this arrhythmia. 

Levin et al1 recently described a population of melanocyte-like cells that contribute to atrial 

arrhythmias in mice and are also expressed in the human atrium and pulmonary veins. 

Cardiac melanocytes in both mice and humans express the melanin synthesis enzyme 

dopachrome tautomerase (Dct).2, 3 Dct knock out (Dct−/−) adult mice have dysfunctional 

melanocyte-like cells in the atrium and pulmonary veins and increased vulnerability to atrial 

arrhythmias.1 Dct−/− cardiac melanocytes were shown to generate frequent Cai oscillations 

in the same study, which is likely the result of altered Cai release due to reactive species 

modification of calcium handling proteins. Hwang et al4 recently demonstrated that Dct−/− 

atria have increased oxidative modifications and fibrosis throughout both atria. These 

findings imply that Dct, which is only expressed by melanocyte-like cells in the atrium, 

affects the global balance of atrial reactive oxygen species in myocytes and other atrial cells 

that could also alter intracellular calcium handling. However, the mechanisms underlying 

atrial arrhythmias in Dct−/− mice remains incompletely understood. Apamin sensitive small 

conductance Ca2+ activated K+ (SK) current (IKAS) is known to play an important role in 

cardiac repolarization.5–7 Because SK channel trafficking is Cai dependent,8 Dct−/− mice 

may have upregulated IKAS and therefore may be more prone to develop atrial arrhythmias. 

To determine the role of IKAS on atrial arrhythmias in Dct−/− mice, we mapped the 

membrane potential (Vm) in the atrium of Dct−/− and Dct heterozygous knock out (Dct+/−) 

littermate mice before and after apamin administration. We also studied the inducibility and 
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mechanisms of atrial arrhythmia in these mice. These studies were designed to test the 

hypotheses that IKAS is upregulated in Dct−/− mice and plays an important role in atrial 

arrhythmogenesis.

 Methods

Detailed methods are included in an Online Supplement. The protocol was approved by the 

Institutional Animal Care and Use Committee. A total of 18 adult mice were studied, 

including 9 (5 males) Dct−/− mice1 with age of 28 (95% confidence interval (CI), 16–40) 

weeks and 9 (6 males) Dct+/− littermates with age of 21 (CI, 15–27) weeks (p=0.399). After 

euthanasia, the hearts were harvested through a thoracotomy and Langendorff perfused. A 

bipolar left atrial (LA) electrogram (LAE) and a pseudo-electrogram (p-ECG) were 

monitored.

Optical mapping techniques9 were used to study the Vm of intact right atrium (RA). The 

hearts were stained with 20 μL of the voltage-sensitive dye Di-4-ANEPPS (2 mmol/L) for 

Vm mapping. Optical signals were processed with both spatial (3×3 pixels Gaussian filter) 

and temporal (3 frames moving average) filtering. Phase mapping was performed to evaluate 

the location and evolution of phase singularity (PS) during atrial fibrillation (AF). Because 

the RA had a higher density of DCT-expressing melanocyte-like cells than the LA,1 we 

selectively mapped the RA in this study (Figure 1A). Optical recording was performed after 

100 beats of stable pacing at each pacing cycle length (PCL). The PCL was progressively 

shortened from 150 to 50 ms until there was loss of capture. Sinus node recovery time was 

measured after applying a 20-s RA pacing train at a basic cycle length of 100 ms. The 

difference between the first post-pacing cycle length and the baseline cycle length was used 

as the corrected sinus node recovery time (cSNRT). Action potential duration (APD) 

alternans was defined as the difference in APD measured at 80% repolarization (APD80) of 

2 consecutive beats of ≥4 ms. After 5 minutes of recovery, arrhythmia inducibility was 

evaluated by a S1–S2 protocol, consisting of a 20 beat train of S1 stimuli (150 ms) followed 

by an additional premature (S2) beat. Attempts were also made to induce AF using a 2-s 

burst of 20–40 ms cycle length (CL) pacing. AF episodes longer than 10 s were regarded as 

a successful AF induction. AF inducibility was evaluated before and after Apamin (100 

nmol/L) administration.

 Statistical Analysis

Normally distributed variables were summarized as mean ± standard deviation. For data not 

normally distributed, median with data range (minimum-maximum) are used. Variables are 

compared with Wilcoxon Signed Rank test or Mann-Whitney test for the data within and 

between groups, respectively. Categorical parameters are presented as percentage and 

compared with McNemar test or Fisher’s exact test for the data within and between groups, 

respectively. A 2-tailed P value of ≤0.05 was considered statistically significant.
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 Results

 PCL and APD Prolongation Induced by Apamin

The baseline APD80 was not different between Dct−/− and Dct+/− mice at all PCLs tested. 

Figure 1B and 1C shows examples of APD80 prolongation by apamin in Dct−/− and Dct+/− 

mice, respectively. Figures 1D and 1E show the effects of apamin administration on APD80 

at various PCLs. While apamin prolonged APD80 in both Dct−/− and Dct+/− mice, the 

magnitudes of APD80 prolongation was much greater in Dct−/− than in Dct+/− mice (Figure 

1F).

 Effects of apamin on Sinus Node Recovery Time

At baseline, cSNRT is 84 ms (CI, 25–144) for Dct−/− mice and 21 ms (CI, 4–37) for Dct+/− 

mice (p=0.054). Apamin prolonged cSNRT significantly in Dct−/− and Dct+/− mice (both 

p≤0.036). The Dct−/− mice have greater cSNRT prolongation (by 175 ms, CI, 26–376) 

compared to Dct+/− mice (28 ms, CI, 4–52, p=0.009) (Figure 2).

 Thresholds of APD Alternans

The PCL threshold to induce APD alternans was 48 ms (CI, 34–62) for Dct−/− and 21 ms 

(CI, 12–29) for Dct+/− mice (p=0.002) at baseline, and it was 35 ms (CI, 21–49) for Dct−/− 

and 22 ms (CI, 11–32) for Dct+/− mice (p=0.025) after apamin. The PCL threshold for APD 

alternans is non-significantly decreased (p=0.054) after apamin in Dct−/− mice (Figure 3).

 Post Burst Pacing APD80

A hallmark of IKAS upregulation is the shortening of APD after rapid pacing or tachycardia, 

probably due to the activation of IKAS by increased Cai.5 The post-burst pacing (PCL 40 ms) 

APD80 is 28 ± 5 ms for Dct−/− and 25 ± 4 ms for Dct+/− mice at baseline (p=0.122). Apamin 

prolonged the post-burst pacing APD80 in Dct−/− and Dct+/− mice (p≤0.018 for both), where 

apamin prolonged the post burst pacing APD80 by 9 ms (CI, 4–14) in Dct−/− mice and by 

only 1 ms (CI, 1–2) in Dct+/− mice (p=0.005) (Figure 4).

 Effects of Apamin on AF

Figure 5A shows continuous tracings of an episode of burst pacing (black arrow) induced 

atrial tachycardia (white arrowhead), AF (white arrows) and spontaneous termination of the 

atrial arrhythmias (black arrowhead). There are also several episodes of ventricular 

premature complexes (asterisk) in the p-ECG tracing. At baseline, AF was inducible in 8 of 

9 (89%) Dct−/− but in only 1 of 9 (11%) Dct+/− mice (p=0.003) (Figure 5B). The number of 

AF episodes inducible was 13 (1.4±1.2 episodes/mouse) in Dct−/− RA and 1 in Dct+/− RA. 

The average age of Dct−/− RA with inducible AF (N=8) was 26 (CI, 13–40) weeks while 

that of Dct+/− RA without AF inducible (N=8) was 21 (CI, 14–28) weeks (p=0.527). The AF 

duration was not normally distributed. Therefore, they are reported as median with data 

range (minimum–maximum). The AF duration was 171 s (0–960), respectively in Dct−/− and 

0 s (0–1335) in Dct+/− mice (p=0.009) (Figure 5C). Apamin reduced AF inducibility to 2 of 

9 (22%) in Dct−/− (p=0.031, compared with that before apamin) and in 1 of 9 (11%) Dct+/− 

mice (p=1.000); AF duration was 0 s (0–85) in Dct−/− and 0 s (0–773) in Dct+/− mice 
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(p=0.634). The number of inducible AF episodes was 3 and 4, respectively, in the two Dct−/− 

RA and only 1 in a Dct+/− RA. Five of 8 (63%) of AF induced in Dct−/− RA had rapid focal 

drivers. The only episode of AF induced in Dct+/− RA had reentry.

 Effect of Apamin on Phase Singularities

Consecutive phase maps sampled at 10-ms intervals for 500 ms during AF were analyzed for 

phase singularities (PSs). Figure 6A shows the local optical recording (asterisks) at baseline 

and after apamin administration in Dct−/− and Dct+/− RA. Figure 6B shows the consecutive 

phase maps with PSs (black arrows) at baseline and after apamin administration in Dct−/− 

and Dct+/− RA. The number of PSs was greater in Dct−/− (13, [0–61]) than in Dct+/− RA (0, 

[0–7]) at baseline (p=0.001), but no difference (0, [0–32] vs 0, [0–7], p=0.730) was found 

after apamin (Figure 6C).

 SK1 and SK3 are Increased in Dct−/− Atria

We sought to determine if the expression of the SK isoforms were increased in Dct−/− atria. 

For these experiments we used quantitative PCR to assess the relative expression of 

transcripts encoding kcnn1 (SK1), kcnn2 (SK2) and kcnn3 (SK3) in the RA, LA and brain 

of Dct−/− and Dct+/− mice. These results are summarized in Supplemental Table 1 and show 

that kcnn1 and kcnn3 are increased ~2.5 and 3.5-fold in the RA of Dct−/− mice, respectively, 

with no significant difference in kcnn2 transcript expression. The expression of Dct 

transcript is 2-fold higher in the RA compared to the LA of Dct+/−, which is consistent with 

the fact there are more Dct-positive melanocyte-like cells in the RA than the LA. In addition, 

we performed immunoblot analyses using lysates obtained from the RA and LA of Dct−/− 

and Dct+/− mice using antibodies specific for SK1, SK2 and SK3 (Supplemental Figure 1). 

These studies show that SK1 and SK3 expression is higher in the RA of Dct−/− mice and that 

SK2 expression is not different between the LA or RA of either Dct−/− or Dct+/− mice. These 

findings support the conclusion that increased expression of SK3 in the RA of Dct−/− mice 

promotes atrial arrhythmias that can be suppressed by apamin.

 Cytosolic Calcium and ROS are Increased in Dct−/− Atria

To determine if Dct in melanocyte-like cells regulates SK currents throughout the atrium by 

influencing myocardial cytosolic calcium, we examined atrial sections isolated from Dct−/− 

and wild-type mice loaded with Fluo-4. These studies showed that atrial sections from 

Dct−/− mice had higher diastolic levels of cytosolic calcium compared to those from wild-

type mice, both at baseline and after exposure to 10-μM hydrogen peroxide (Figure 7). 

Furthermore, we also used dihydroethidium staining to assess the amount of ROS in atrial 

sections from Dct−/− and wild-type atrial sections. These studies showed there are higher 

amounts of ROS expressed in atrial sections from Dct−/− mice compared to those from wild-

type mice (Figure 8).

 Discussion

We found that IKAS was upregulated in the RA of Dct−/− mice and played an important role 

in the initiation and maintenance of pacing-induced atrial arrhythmia. Apamin, which 
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specifically inhibits IKAS,10 eliminated the differences of AF inducibility between Dct−/− 

mice and Dct+/− mice.

 Melanocyte dysfunction and atrial arrhythmia

We previously showed that Dct−/− melanocyte-like cells contribute to atrial arrhythmias in 

mice.1 In this previous study we also showed by transmission electron microscopy there was 

mitochondrial swelling with loss of the mitochondrial matrix in atrial myocytes of Dct−/− 

mice, and not just cardiac melanocytes. These morphological changes are pathognomonic of 

mitochondrial damage from increased oxidative stress11 that is often driven by a rise in 

cytosolic [Ca2+].12, 13 On the other hand, we only found normal mitochondria in the atrial 

myocardium of Dct−/+ mice. These results support our theory that in the absence of Dct 

atrial myocytes themselves undergo changes consistent with increased oxidative stress and 

intracellular [Ca2+] that may also be responsible for increased IKAS in the atrium. 

Alterations in calcium dynamics can cause APD alternans and subsequent initiation of AF as 

previously reported.14, 15 In this study we found that the APD alternans threshold is higher 

in Dct−/− than Dct+/− mice, which may partially result from increased IKAS due to increased 

cytosolic calcium in Dct−/− melanocyte-like cells, as well as in the surrounding atrial 

myocytes. The fact that we found higher SK expression in the RA of Dct−/− mice compared 

to the RA of Dct+/− mice, suggests that the surrounding atrial myocytes are affected by the 

loss of Dct, and not just the cardiac melanocyte-like cells. Because atrial myocytes do not 

express Dct, any effects observed in the myocytes by the loss of Dct must be mediated by 

non-autonomous cellular mechanisms,

 IKAS in the Dct−/− and Dct+/− RA

SK channels are expressed in many tissues and play important roles in different 

physiological processes.16 Xu et al7 first demonstrated the presence of SK channel in human 

and mice cardiac myocytes. The same study reported that SK channels are more abundantly 

expressed in the atria than in the ventricles. However, in failing ventricles and in normal 

ventricles with atrioventricular block or hypokalemia, the IKAS are upregulated and became 

an important repolarization current.17–19 Consistent with the findings reported by Xu et al,17 

we found that apamin prolonged APD significantly in mouse atria. However, the magnitude 

of prolongation was much larger in Dct−/− than in Dct+/− mice. Both calcium oscillation in 

the dysfunctional melanocyte-like cell and the increased free calcium in atrial myocyte from 

an overall increase in reactive oxygen species in Dct−/− atria1 could upregulate the IKAS. 

While increased Cai in Dct−/− RA might activate INCX to prolong the APD, the baseline 

APD was similar to that of the Dct+/− RA because of a robust upregulation of IKAS. Also 

consistent with IKAS upregulation is the quantitative PCR results, which show that SK3 

mRNA is up-regulated 3-fold in Dct−/− RA. Our findings may be clinically relevant because 

mutations in KCNN3 have been associated with AF.20 We also found that IKAS blockage by 

apamin prolongs the cSNRT in both groups of mice and that cSNRT prolongation was larger 

in Dct−/− than Dct+/− mice. These finding support the importance of IKAS in regulating sinus 

node function, as reported in previous studies.6, 21
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 IKAS and atrial arrhythmogenesis

IKAS is important to the repolarization of the atria and the pulmonary veins.7, 22 SK2 null 

mutant mice have higher inducibility of AF than wild-type mice, suggesting that the IKAS is 

important in maintaining repolarization reserve and preventing AF.6 However, others find 

that SK currents may promote AF maintenance in a canine model23 and that SK current 

blockade reduces the duration of pacing-induced AF.24 Similar conflicting findings are also 

found in the ventricles. For example, apamin prevents spontaneous reinitiation of ventricular 

fibrillation by prolonging the postshock APD.5 However, when the repolarization reserve is 

reduced by atrioventricular block or hypokalemia, apamin was proarrhythmic.19, 25 These 

findings suggest that SK current blockade might be either antiarrhythmic or proarrhythmic, 

depending on the underlying mechanisms of arrhythmia.17

 Study Limitations

First, we only paced and mapped the RA in this study. Whether or not the same findings are 

applicable to other parts of the atria remain unknown. Second, rapid (burst) pacing was used 

to induce AF in our study. While these results may be important in understanding the role of 

SK current in atrial tachycardia to AF transition, it may not be applicable to other 

mechanisms of AF induction. We did not use Dct+/+ mice as control. However, because the 

enzymatic activity of Dct is likely lower in Dct−/+ atria than in Dct+/+ atria, the Dct−/+ atria 

was a more stringent control. Finally, no other SK channel blockers were used in the study. 

The sensitivity of SK1 is species specific, with the human isoform being blocked by apamin, 

whereas the rat is not.26 However, the murine SK1 is blocked by apamin with IC50 of 28 

nM. The IC50 for SK2 (~80 pM) and SK3 (1 nM) were much lower.27 Because we used 100 

nM of apamin in the present study, it should have blocked all 3 subtypes of SK currents in 

the murine atria.

 Conclusions

We conclude that IKAS upregulation in Dct−/− mice plays an important role in the 

mechanism underlying atrial arrhythmogenesis.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Action potential duration measured at 80% repolarization (APD80) before and after 
apamin administration
The black rectangle in Panel A shows the mapped region in the RA. Panels B and C show a 

typical APD80 map in Dct−/− and Dct+/− mice, respectively, at 3 different PCLs. The optical 

tracings recorded from the sites marked by black circles are shown in the bottom of these 

two panels. Panel D and E show the APD80 at different PCLs before and after apamin in 

Dct−/− and Dct+/− mice, respectively. Note that apamin significantly prolonged APD80 both 

in Dct−/− and Dct+/− mice at all PCLs. In longer PCLs (130 and 150ms), the delta APD80 

was significant larger in Dct−/− than Dct+/− mice (panel F). Dct indicates dopachrome 

tautomerase; LA, left atria; LV, left ventricle; RV, right ventricle. * p < 0.05 compared with 

baseline by Wilcoxon Signed Ranks test.
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Figure 2. Corrected sinus node recovery time (cSNRT) is prolonged by apamin administration in 
Dct−/− more than in Dct+/− mice
Panel A shows an example of cSNRT measured in the pseudo-electrogram (p-ECG) and left 

atrial electrogram (LAE) after 20-s pacing at 100 ms PCL in a Dct−/− mice). Note that both 

atrial (A) and ventricular (V) electrograms were observed in the LAE. Panel B shows that 

cSNRT was prolonged by apamin in both Dct−/− and Dct+/− mice, but the magnitudes of 

prolongation were significantly larger in Dct−/− than in Dct+/− mice. * p < 0.05 compared 

with baseline by Wilcoxon Signed Ranks test. † p< 0.05 compared with Dct+/− by Mann-

Whitney test.
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Figure 3. The PCL threshold of action potential duration (APD) alternans in Dct−/− and Dct+/− 

mice
Panel A shows an example of pacing induced APD alternans in Dct−/− but not in Dct+/− mice 

at 70-ms PCL. Panel B shows that the PCL threshold of APD alternans is higher in Dct−/− 

than in Dct+/− mice both at baseline (blue) and after apamin administration (red). * p< 0.05 

compared with Dct+/− by Mann-Whitney test.
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Figure 4. Apamin prolonged the post-burst pacing APD80
Panel A shows an example of post-burst APD80 prolongation in Dct−/− and Dct+/− mice, 

with blue showing baseline and red after apamin. Note that the APD alternans were induced 

by 40-ms burst pacing in Dct−/− but not Dct+/− mice after apamin. Panel B shows the post-

burst APD80 was prolonged after apamin administration in both Dct−/− and Dct+/− mice and 

that the magnitudes of prolongation of post-burst APD80 was larger in Dct−/− than in Dct+/− 

mice. * p < 0.05 compared with baseline by Wilcoxon Signed Ranks test. † p< 0.05 

compared with Dct+/− by Mann-Whitney test.
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Figure 5. Effects of apamin on pacing-induced AF
A (continuous tracing) shows an example of burst pacing (40 ms PCL) induced AF. A filled 

black arrow indicates the burst pacing. White arrowhead indicates the atrial tachycardia 

induced by burst pacing. The black asterisks indicate irregular ventricular conduction during 

AF. The white arrows indicate intermittent fractionated electrograms. The black arrowhead 

shows the spontaneous termination of AF and returning to sinus rhythm. B shows the higher 

AF inducibility in Dct−/− than Dct+/− mice at baseline. After apamin administration, the AF 

inducibility in Dct−/− mice significantly reduced and showed no difference compared with 

Dct+/− mice. C shows the longer AF duration in Dct−/− than in Dct+/− mice at baseline. The 

AF duration in Dct−/− mice significantly reduced and was not different than Dct+/− mice 

after apamin administration. * p < 0.05 compared with baseline by McNemar test in panel B 

and by Wilcoxon Signed Ranks test in panel C. † p< 0.05 compared with Dct+/− by Fisher’s 

exact test in panel B and by Mann-Whitney test in panel C.
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Figure 6. Effects of apamin on phase singularities (PSs) during pacing-induced AF
The PSs are quanti ed every 10 ms for a total of 500 ms. The APD tracings during AF in 

Dct−/− and Dct+/− mice at baseline and after apamin, respectively, are shown in A. B shows 

the representative PS maps during AF in Dct−/− and Dct+/− mice at baseline and after 

apamin, respectively. The black arrows indicate the PSs. The black asterisk indicate the 

recording sites of APD80. The scale bar shows the phase from minus π to plus π, where π is 

the ratio between the circumference and the diameter. Note that in contrast to Dct+/− mice, 

there the Dct−/− mice has more PSs at baseline. C shows that the number of PSs was larger 

in Dct−/− than Dct+/− mice at baseline. Apamin significantly reduced the number of PSs in 

Dct−/− mice to that of the Dct+/− mice. * p < 0.05 compared with baseline by Wilcoxon 

Signed Ranks test. † p< 0.05 compared with Dct+/− by Mann-Whitney test.
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Figure 7. Cytosolic calcium is increased in Dct−/− atria
Representative images of relative cytosolic calcium measured using Fluo-4 staining in atrial 

tissue sections from Dct+/+ mice (A–C); Dct+/+ mice after incubation with 10-μM hydrogen 

peroxide (D–F); Dct−/− mice (G–I) and Dct−/− mice after incubation with 10-μM hydrogen 

peroxide (J–L). 4′,6-diamidino-2-phenylindole (DAPI) stained images (blue) are shown in 

panels (A,D,G & J), Fluo-4 staining (green) are shown in panels (B,E,H & K) and merged 

images are shown in panels (C,F,I & L). Panel M shows relative fluorescence intensity of 

Fluo-4 staining from at least 20 sections. * p < 0.05.
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Figure 8. ROS is increased in Dct−/− atria
Representative images of relative reactive oxygen species (ROS) levels in atrial tissue 

sections assessed by dihydroethidium (DHE) staining in Dct+/+ mice (A–C); Dct+/+ mice 

after incubation with 10-μM hydrogen peroxide (D–F); Dct−/− mice (G–I) and Dct−/− mice 

after incubation with 10-μM hydrogen peroxide (J–L). DAPI stained images (blue) are 

shown in panels (A,D,G & J), DHE staining (red) are shown in panels (B,E,H & K) and 

merged images are shown in panels (C,F,I & L). Panel M shows relative fluorescence 

intensity of DHE staining from at least 20 sections. * p < 0.05.
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