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IMPORTANCE—Our previous studies demonstrated that tumors significantly decrease in size 

and metabolic activity after delivery of 45 Gy of fractionated radiatiotherapy (RT), and that 

metabolic shrinkage is greater than anatomic shrinkage. This study aimed to determine 

whether 18F-fludeoxyglucose–positron emission tomography/computed tomography (FDG-

PET/CT) acquired during the course of treatment provides an opportunity to deliver higher-dose 

radiation to the more aggressive areas of the tumor to improve local tumor control without 

increasing RT-induced lung toxicity (RILT), and possibly improve survival.

OBJECTIVE—To determine whether adaptive RT can target high-dose radiation to the FDG-avid 

tumor on midtreatment FDG-PET to improve local tumor control of locally advanced non–small-

cell lung cancer (NSCLC).

DESIGN, SETTING, AND PARTICIPANTS—A phase 2 clinical trial conducted at 2 academic 

medical centers with 42 patients who had inoperable or unresectable stage II to stage III NSCLC 

enrolled from November 2008, to May 2012. Patients with poor performance, more than 10% 

weight loss, poor lung function, and/or oxygen dependence were included, providing that the 

patients could tolerate the procedures of PET scanning and RT.

INTERVENTION—Conformal RT was individualized to a fixed risk of RILT (grade >2) and 

adaptively escalated to the residual tumor defined on midtreatment FDG-PET up to a total dose of 

86 Gy in 30 daily fractions. Medically fit patients received concurrent weekly carboplatin plus 

paclitaxel followed by 3 cycles of consolidation.

MAIN OUTCOMES AND MEASURES—The primary end point was local tumor control. The 

trial was designed to achieve a 20% improvement in 2-year control from 34% of our prior clinical 

trial experience with 63 to 69 Gy in a similar patient population.

RESULTS—The trial reached its accrual goal of 42 patients: median age, 63 years (range, 45–83 

years); male, 28 (67%); smoker or former smoker, 39 (93%); stage III, 38 (90%). Median tumor 

dose delivered was 83 Gy (range, 63–86 Gy) in 30 daily fractions. Median follow-up for surviving 

patients was 47 months. The 2-year rates of infield and overall local regional tumor controls (ie, 

including isolated nodal failure) were 82% (95% CI, 62%–92%) and 62% (95% CI, 43%–77%), 

respectively. Median overall survival was 25 months (95% CI, 12–32 months). The 2-year and 5-

year overall survival rates were 52% (95% CI, 36%–66%) and 30% (95% CI, 16%–45%), 

respectively.

CONCLUSIONS AND RELEVANCE—Adapting RT-escalated radiation dose to the FDG-avid 

tumor detected by midtreatment PET provided a favorable local-regional tumor control. The 

RTOG 1106 trial is an ongoing clinical trial to validate this finding in a randomized fashion.

TRIAL REGISTRATION—clinicaltrials.gov Identifier: NCT01190527

Lung cancer remains the leading cause of cancer-related death in the United States,1 and 

non–small-cell lung cancer (NSCLC) accounts for 80% to 85% of cases. Radio-therapy (RT) 

is the mainstay local treatment for patients with inoperable or unresectable stages I to III 

disease.2 Despite remarkable advancements in RT technology, tumor control remains 

suboptimal in locally advanced disease that is not suitable for stereotactic body RT.3,4 

Overall, most patients ultimately develop local-regional failure during their course of 

disease.4,5
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Evidence from institutional and old Radiation Therapy Oncology Group (RTOG) trials 

demonstrated: (1) high-dose radiation was associated with improved local-regional tumor 

control (LRTC) either alone or when combined with chemotherapy6–8; (2) limiting treatment 

duration to 6 weeks may improve tumor control9; (3) RT-induced lung toxicity (RILT) are a 

major factor limiting dose10,11; and (4) RILT may be predicted by lung normal tissue 

complication probability (NTCP) models, allowing restraints within tolerable limits.12 

However, it is often challenging to deliver an adequate RT dose without exceeding the 

normal tissue tolerances in locally advanced NSCLC. With concurrent chemoradiation, the 

maximum tolerated dose was reported to be less than 74 Gy in 2 Gy daily fractions,10–12 

which was tested in the experimental arm in RTOG 0617. In our prior (unpublished data) 

dose escalation study using a conventional approach in which lung NTCP was limited to 

15%, only about 40% of patients with stage III NSCLC could receive more than 66 Gy and 

the study was closed prematurely. Safe RT is limited by damage to centrally located 

critically structures11 and by large tumor volumes.

We previously demonstrated that tumors significantly decrease in size and metabolic activity 

after delivery of 45 Gy of fractionated RT, and that metabolic shrinkage is greater than 

anatomic shrinkage.13,14 Using 18F-fludeoxyglucose–positron emission tomography/

computed tomography (FDG-PET/CT) acquired during the course of treatment, we were 

able to escalate the tumor dose while keeping the lung NTCP unchanged.15 In this trial, we 

hypothesized that adapting the planning target volume to the responding tumor defined on 

midtreatment PET, while also limiting lung NTCP, would allow us to deliver higher-dose 

radiation to the more aggressive areas of the tumor to improve local tumor control without 

increasing RILT. We repeated CT simulation and FDG-PET/CT at 40 to 50 Gy and redefined 

the treatment target according to this midtreatment scan. The total dose was escalated to as 

high as 86 Gy in 30 daily fractions, while lung NTCP was kept lower than 17.2% 

(approximately equivalent to 20 Gy mean lung dose),16 and doses to other normal structures 

were confined to the limits of standard practice.

Methods

Study Population

Patients with inoperable or unresectable, stages I to III NSCLC requiring daily fractionated 

RT were eligible. The study was approved by the institutional review boards of the 

University of Michigan Hospitals and Ann Arbor Veterans Affairs Health System. Written 

informed consent was obtained from each patient, and they were not compensated for 

participating. The trial protocol is included in Supplement 1. Karnofsky performance status 

was required to be 70 or greater. There were no eligibility restrictions for weight loss, 

comorbidities, pulmonary function, or cardiac function. Pretreatment tests were per standard 

of care. All FDG-PET/CT scans were performed with the patient in the treatment position on 

a flat palette imaging couch within 2 weeks from radiation start and after 40 to 50 Gy had 

been delivered.
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Trial Design and Study Treatment

All patients received an RT dose individualized to an uninvolved lung NTCP up to 17.2% for 

grade 2 or greater pneumonitis (Figure 1) (corresponding to a mean lung dose of less than 20 

Gy, computed from lung dose distributions corrected to equieffective doses at 2 Gy per 

fraction [EQD2] using the linear-quadratic model and an α/β of 2.5 Gy and the Lyman-

Kutcher-Burman NTCP model)12 and practice limits of other organs, in compliance to 

NCCN recommendations. The RT was delivered in 30 daily fractions of 2.1 to 5.0 Gy: 2.1 to 

2.85 Gy fractions for the initial dose of approximately 50 Gy EQD2, 2.85 to 5.0 Gy for the 

adaptive phase of treatments up to a total RT dose of 86 Gy physical dose; equivalent to 

EQD2s of 102 Gy for RILT (α/β = 2.5 Gy); and EQD2s of 92 Gy and biological effective 

doses (BEDs) of 120 Gy for tumor (α/β = 10 Gy). The detailed fractionation schema is 

shown in eTable 1 in Supplement 2.

Patients with stage II or III disease, when medically fit, were given concurrent, weekly 

carboplatin AUC 2 plus paclitaxel, 40 mg/m2, for 6 weeks followed by consolidation 

carboplatin with an area under the curve (AUC) of 6 plus paclitaxel, 200 mg/m2, every 21 

days for 3 cycles starting 4 to 6 weeks after completion of RT, when acute toxic effects were 

not clinically significant.

All patients underwent CT and PET-based treatment planning at baseline and had CT 

resimulation and PET-CT in the original position after an EQD2 of 40 to 50 Gy to tumor 

was delivered. The first round of approximately 50 Gy EQD2 of radiation to the tumor was 

given based on targets defined by PET and CT acquired prior to treatment, and the 

remaining dose was delivered to the target defined by PET-CT acquired during the course of 

RT. In addition to keeping lung NTCP to 17.2% or less, the RT dose was prescribed such 

that (when normal tissue constraints permit) pre-RT PTV, pre-RT CTV, and during- RT 

CTPTV would receive tumor EQD2s of at least 50, 60, and 70 Gy (Figure 2), respectively.

Gross tumor volumes (GTV) were defined on simulating CT scans. Gross tumor volume was 

a composite volume of the primary tumor (GTVT) and nodal diseases (GTVN). The 

following guidelines were used to contour GTVs:

1. For free-breathing treatment with a 4D CT simulation, the GTVs were composite 

volumes from CT scans throughout the breathing phases, with inclusion of target 

motion.

2. For free-breathing treatment without 4D CT simulation, GTVs were composite 

volumes from inhale and exhale CT scans, with inclusion of target motion.

3. For motion-controlled treatments, the GTVs were generated from a contrast-

enhanced CT scan at the motion-controlled state. Active breathing control was 

used for such cases.

4. Whenever possible, a locally registered contrast-enhanced CT scan was 

recommended to aid in accurate GTV delineation.

Elective nodal irradiation was not intended. Delineation of GTVN followed the principles 

below:
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1. Lymph nodes 1 cm or larger in short axis on composite volumes of 4D CT or 

both exhale and inhale CT.

2. Lymph nodes that were growing or with abnormal structure.

3. Lymph nodes with abnormal FDG-avidity on PET scan or containing biopsy-

proven NSCLC.

4. Two or more lymph nodes that were visible and clustered in the high-risk nodal 

stations within the first echelon from the gross tumor.

5. Lymph nodes at the first echelon or within 1 cm of the primary tumor.

Metabolic tumor volumes (MTVs) were delineated from PET scans as previously 

prescribed.14 This same method was used for target delineation of midtreatment scans for 

adaptive planning.

The treatment technique and number of fields of initial and midtreatment FDG-PET/CT–

guided adaptive radiation (PART) plans were individually tailored for each patient. Dose-

volume histograms (DVHs) were evaluated to limit doses for normal organs and to provide 

objective criteria for the selection of an appropriate treatment plan. Suitable treatment plans 

were those that maximized target doses relative to constraining NTCP of 17.2% or more, 

and limiting doses to other critical organs at risk to the standard limits. Organs at risk, such 

as lung, heart, esophagus, spinal cord, and brachial plexus were contoured in the treatment 

planning system when they were included in the field of irradiation. If any of these tolerance 

doses could not be met, the prescription doses were decreased heterogeneously according to 

these limits.

Follow-up and Definition of Failure

Patients were followed with chest CT per standard of care. Both PET-CT and chest CT with 

intravenous contrast scans were required to document disease relapse or progression, with 

PET progression criteria described previously.13 Biopsy of the relapse or progression site 

was encouraged, and performed whenever possible. Progression was defined per RECIST 

1.0 criteria. Infield failure was defined as recurrent tumors mapped within dose escalated 

PTV, as previously described.17

Statistical Considerations

The primary study end point was LRTC. The study was designed to detect a 20% 

improvement in 2-year LRTC to 54%, from the 34% observed in our prior study 

(UMCC9204) in patients treated with 63 to 69 Gy,5 ie, the dose range of the standard of 

care. Forty-two patients yielded 80% power to detect such an improvement based on a 1-

sided .05 level test. Considering that the definition of local tumor control was not clearly 

defined in the literature including our previous trial, LRTC endpoint in this study was further 

characterized using infield LRTC and overall LRTC with inclusion of outfield nodal failure. 

The local-regional progression-free survival (LR-PFS) was also captured. Secondary 

endpoints included progression-free survival (PFS), overall survival, and severe lung or 

esophageal toxic effects. Kaplan-Meier curves were used to summarize survival endpoints 
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and to estimate their values at fixed time points, including 2 years. The statistical analyses 

were carried out using SAS statistical software (version 9.3, SAS Institute Inc).

Results

Patient Characteristics

The trial reached its accrual goal of 42 patients, with characteristics summarized in eTable 2 

in Supplement 2. The minimum and median follow-ups were 24 months and 47 months for 

surviving patients, respectively. Thirty-eight patients (90%) had stage III disease. The 

median (range) planning target volumes at pre-RT and during RT were 455 (53–1177) cm3 

and 231 (30–867) cm3, respectively. Median prescription dose was 83 Gy (63–86 Gy) in 2.1 

to 4.5 Gy daily fractions. Median (range) EQD2 and BED10 were 90 Gy (64–92 Gy) and 

107 Gy (76–110 Gy), respectively. Of 42 patients, 38 (94%) received more than 74 Gy 

EQD2. Of 42 patients, 39 (93%) received concurrent carboplatin and paclitaxel followed by 

consolidation chemotherapy. All patients received adaptive RT; 41 of 42 (98%) patients 

received dose-escalated RT (≥66 Gy). Figure 3 shows an example of an adaptive dose 

prescription.

Local-Regional Tumor Control and Overall Survival

Figure 4 shows infield LRTC, overall LRTC, LR-PFS, and overall survival. The accumulated 

rates of infield and overall LRTC at 2 years were 82% (95% CI, 62%–92%) and 62% (95% 

CI,43%–77%), respectively. Median LR-PFS was 14 months and the 2-year LR-PFS rate 

was 38% (95% CI, 24%–52%). Median PFS was 13 months and the 2-year PFS rate was 

31%. Overall, 18 patients (43%) developed disease progression and 20 patients (48%) had 

died at 2-year follow-up. Among the 18 participants who progressed, 8 (40%) received other 

regimens of chemotherapy, 5 (30%) local radiation to either chest or brain, and 5 (30%) 

received no treatment owing to poor performance and/or comorbidity. Median overall 

survival was 25 months (95% CI, 12%–32%), and the 2- and 5-year overall survival rates 

were 52% (95% CI, 36%–66%) and 30% (95% CI, 16%–45%), respectively. Tumor 

shrinkage may continue after 1 year posttreatment (eFigure 1 in Supplement 2).

Patterns of First Failure

The pattern of first failure is shown in Figure 5. Eighteen patients (43%) had progression of 

disease: 4 (22%) initially at local (primary tumor) progression alone,4(22%) regional (nodal) 

progression alone, 1 (6%) both local and regional progression, and 9 (50%) had distant 

disease as part of first evidence of progression. Ultimately, there were a total of 6 (14%) 

infield progressions and 11 (26%) distant failures.

Toxic Effects

Radiation-related adverse events are listed in eTable 3 in Supplement 2. The rates of grade 3 

radiation-induced esophagitis and pneumonitis were 5 (12%) and 3 (7%), respectively. One 

(2%) patient had grade 3 radiation-induced lung fibrosis. In addition, 2 (5%) had grade 3 or 

higher dyspnea without evidence of pneumonitis or fibrosis. Twelve (28%) had cardiac 

events, including 11 pericardial effusions (2 also with arrhythmia) and 1 grade 3 chronic 

heart failure. Four died from massive bleeding: 2 clearly from the lung, 1 during an upper 
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gastrointestinal tract endoscopic procedure for esophagitis, 1 unknown etiology (patient was 

found dead at home with blood around the house). All these 4 patients had T4 diseases with 

some degree of great vessel invasion.18

Discussion

This study demonstrated that midtreatment PART allows dose-escalated RT to persistent 

active tumor in most patients with locally advanced NSCLC. The trial achieved its primary 

goal to improve 2-year LRTC rates, with an infield tumor control rate of 82% and overall 

LRTC rate of 62%. To our knowledge, this is the first study that has adapted treatment to the 

individual patient’s PET response, a strategy that represents a novel and potentially useful 

approach in RT.

The infield LRTC of 82% is promising. An LRTC of 62% is remarkably better than our 

historical control of 34%, and considerably better than that of patients treated with standard 

RT under similar staging workup by the same physicians (unpublished data). This also 

seems to be better than those noted in several recently reported studies.3,4,8,11,19,20 For 

example, in a study of patients with stage III NSCLC treated with 64 Gy or less, the LRTC 

rate was 24%.7 The infield LRTC rates of RTOG 0617 were 69% and 61% at 2 years for the 

60 Gy and 74 Gy arms, respectively.21 The infield LRTC rates from a recently published 

PROCLAIM was 63% and 54% at 2 years for arms 1 and 2, respectively.22 The LRTC of 

patients treated with the adaptive treatment was also higher than that seen in the same stage 

patients treated with conventional RT (60–70 Gy) at our institutions during the same time 

period.23,24 Although not based on randomized data, this apparent improvement in local 

tumor control may be attributable to: (1) a higher dose of radiation being targeted to the 

more aggressive tumor area; (2) the treatment duration being constrained to within 30 

treatment days; and/or (3) larger tumors receiving an accelerated dose of adaptive RT, 

whereas smaller tumors did not. This study suggests that isotoxicity-based adaptive RT dose 

escalation may improve local tumor control in locally advanced NSCLC, as it does for those 

with early-stage disease.6–8

The results of this study differ from the recent report of RTOG 061721 in which high-dose 

RT resulted in poorer LRTC. The reason high-dose RT failed to improve tumor control in 

RTOG 0617 remains unclear and is under active investigation. However, a key difference 

between our study and RTOG 0617 is that the latter prescribed uniform tumor dose 

escalation whereas our approach directs the higher doses of RT only to the FDG–PET-avid 

regions of the tumor identified at midtreatment. In addition, our trial applied modern 

technology, such as 4-dimensional motion control and PET planning, which RTOG 0617 did 

not mandate. It is thus reasonable to hypothesize that high-dose RT can increase local tumor 

control if it is delivered precisely and adapted to the individual patient’s response using 

FDG-PET to identify residual active tumor. This hypothesis is now being tested in a 

randomized phase 2 multicenter trial (RTOG 1106).

The overall rate of distant failure (26%) in this study is similar to that reported from other 

studies,3,4,8,19 but the proportion of patients with distant failure (61%) relative to all 

progressions was higher than in prior studies owing to a reduction of local failure. For 
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example, RTOG9410 reported roughly equal proportions (45%–50%) of patients with local-

regional and distant failure.4 This change of failure pattern may be a reflection of improved 

local regional tumor control in the current study. It is also important to note that 3 patients 

(7%) had isolated nodal failure. All 3 of these patients had visible, but radiographically 

normal appearing lymph nodes on pretreatment imaging and 1 of them also had a negative 

lymph node biopsy result. Although this overall rate of isolated nodal failure is relatively 

low and consistent with previous studies,25 target delineation with more sensitive imaging or 

more aggressive mediastinal staging may help identify such high-risk cases. As infield 

LRTC improves with more conformal techniques, isolated regional failure may become a 

more important problem. Future studies to identify and avoid such failures may improve 

treatment outcomes.

The survival outcome of 5-year overall survival of 30% and median survival of 25 months is 

encouraging for this poor-prognosis population. This is remarkably better than that (5-year 

survival of 4% and median survival of 12 months) of our previous trial of similar patients 

who received 63 to 69 Gy.6 This favorable survival may be owing to improved local tumor 

control. However, although this median survival is better than that noted in the 74 Gy arm of 

RTOG 0617 (20 months), it is inferior to the median survival reported in the 60 Gy arm of 

RTOG 0617 (29 months). This is likely owing to a number of factors regarding patient and 

tumor selection. First, our study had more liberal eligibility criteria (eg, performance status, 

weight loss, cardiopulmonary function, comorbidities), which were meant to encourage 

enrollment of a population that would be more reflective of real-world practice. Twelve 

percent of patients had more than 20% weight loss, and an additional 12% had an ECOG 

performance status (PS) of 2. These more lenient criteria may explain the 20% of patients on 

the current trial who died of other diseases or unknown causes during the first year without 

evidence of tumor progression. The RTOG 0617 trial required patients to have an excellent 

PS of 0–1, weight loss of 10% or less, and a forced expiratory volume at the first second 

above 1.3 L, while the current study also enrolled patients using home oxygen therapy. 

Second, the current study has more patients with more stage IIIB disease (52%) than 

RTOG0617 (35%). In addition, our study also included patients with supraclavicular and 

lower cervical or contralateral hilar lymph node involvement (N3) or a separate nodule in a 

different ipsilateral lobe (T4) who were excluded from RTOG0617. However, comparison 

between studies can be difficult. The RTOG 1106 trial is ongoing to compare this PET-

adaptive RT approach with conventional uniform-dose of 60 Gy in a randomized fashion.

Limitations

This study is limited by the non randomized design and the relatively heterogeneous group 

of patients. Stricter eligibility criteria resulting in selection of a healthier patient population 

might have yielded more favorable survival outcomes, but would also have limited the 

generalizability of the results because most patients with locally advanced NSCLC have 

marginal performance status, impaired pulmonary function, and considerable comorbidities. 

It is unclear if the number of patients who died from noncancer- or treatment-related causes 

is higher than that seen with conventional radiation because such data are not commonly 

reported in the literature. While such mortality is likely owing to comorbid baseline 

conditions, studies are ongoing in our group to investigate whether some of these deaths 
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might be owing to unidentified treatment related toxic effects that may be avoidable with 

more advanced, personalized treatment planning.

Conclusions

This single arm phase 2 trial demonstrated that adaptive treatment with escalated radiation 

dose to the FDG-avid region according to mid-treatment PET scans achieved 82% local 

tumor control at 2 years and favorable survival in patients with high risk locally advanced 

non–small-cell lung cancer. This innovative adaptive regimen provides a promising approach 

for the new era of personalized dose-escalated RT to improve treatment outcomes in locally 

advanced locally advanced non–small-cell lung cancer. Results from RTOG1106, a 

randomized phase 2 study, are eagerly awaited. A phase 3 study is needed before this 

adaptive approach can be used routinely in the clinic.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key Points

Question

Can adaptive treatment target high-dose radiation to the residual tumor to improve local 

tumor control in locally advanced non–small-cell lung cancer (NSCLC)?

Findings

This phase 2 clinical trial, involving patients with stage II/III NSCLC from 2008 to 2012, 

demonstrated that adaptive radiotherapy-escalated radiation dose to the 18F-

fludeoxyglucose (FDG)-avid region detected by midtreatment positron emission 

tomography (PET) achieved 82% local tumor control at 2 years, with a reasonable rate of 

radiotherapy-induced toxicity.

Meaning

This innovative adaptive radiotherapy can deliver personalized dose-escalated treatment 

to the resistant active tumor detected by midtreatment FDG-PET to improve local tumor 

control in patients with locally advanced NSCLC.
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Figure 1. CONSORT Flow Diagram of Study Enrollment
IRB indicates institutional review board; PET/CT, positron emission tomography in 

conjunction with computed tomography.
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Figure 2. Radiation Dose Prescriptions
The dose was prescribed so that every patient had an opportunity of receiving a maximum 

dose of 86 Gy to during RT PET-PTV in 30 daily fractions of 2.1 to 3.8 Gy. Dose was also 

limited by tolerances of other organs at risk, such as heart, esophagus, and cord per standard 

practice. CT indicates computed tomography; CTV, clinical target volume; MLD, mean lung 

dose; NCTP, normal tissue complication probability; PET, positron emission tomography; 

PTV, planning target volume; RT, radiation therapy.
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Figure 3. Escalating Dose to Tumor Without Increasing Dose to Normal Tissues
Pretreatment and midtreatment PET/CT-guided RT planning in a patient who was oxygen 

dependent after a futile thoracotomy. Based on the midtreatment PET-CT, the patient 

received an added 11 Gy to the residual 18F-fludeoxyglucose–avid tumor while maintaining 

normal tissue toxicity probability (NTCP) of the lung at 17.2%. This patient remains alive 

and off oxygen therapy more than 4 years after treatment. In addition to dose-marked color 

lines, the purple line represents planning target volume or pretreatment, and the yellow line 

is the target volume during treatment planning. CT Indicates computed tomography; PET, 

positron emission tomography; RT, radiotherapy.
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Figure 4. Tumor Control and Survival After Adaptive Treatment
A, Local tumor control (corresponding to infield local-regional control). B, Overall local 

regional control. C, Local regional progression-free survival. D, Overall survival.
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Figure 5. Patterns of First Failure
Venn diagram with number and percentage of patients in each category.
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