
Optimal Design of Nonlinear Multimaterial
Structures for Crashworthiness Using Cluster

Analysis

Kai Liu
Ph.D. Candidate

School of Mechanical Engineering
Purdue University

West Lafayette, Indiana, USA
liu915@purdue.edu

Duane Detwiler
Honda R&D Americas, Inc.

Chief Engineer, Vehicle Research - CAE
Manager, Strategic Research Department 1 (SR1)

Raymond, Ohio, USA
ddetwiler@oh.hra.com

Andres Tovar∗
Associate Professor, Member of ASME
Department of Mechanical Engineering

Indiana University-Purdue University Indianapolis
Indianapolis, Indiana, USA

tovara@iupui.edu

This study presents an efficient multimaterial design op-
timization algorithm that is suitable for nonlinear struc-
tures. The proposed algorithm consists of three steps: con-
ceptual design generation, clustering, and metamodel-based
global optimization. The conceptual design is generated
using a structural optimization algorithm for linear mod-
els or a heuristic design algorithm for nonlinear models.
Then, the conceptual design is clustered into a predefined
number of clusters (materials) using a machine learning al-
gorithm. Finally, the global optimization problem aims to
find the optimal material parameters of the clustered design
using metamodels. The metamodels are built using sam-
pling and cross-validation, and sequentially updated using
an expected improvement function until convergence. The
proposed methodology is demonstrated using examples from
multiple physics and compared with traditional multimate-
rial topology optimization method. The proposed approach
is applied to nonlinear, multi-objective design problems for
crashworthiness.

∗Address all correspondence to this author.

1 Introduction
Multimaterial structural optimization has the potential

to synthesize structures of higher performance than the ones
obtained with traditional binary-phase (solid-void) topology
optimization methods. With the increasing availability of
multimaterial additive manufacturing technologies, multima-
terial topology optimization also becomes increasingly rele-
vant.

Most of the available multimaterial topology optimiza-
tion methods fall into one of the following classes: homog-
enization design method, density-based method, level set-
based method, phase field-based method, and heuristic meth-
ods. Homogenization design methods assume that the struc-
ture is composed of a periodically perforated microstructure,
so its bulk mechanical properties can be determined using
homogenization theory [1,2]. The main drawback of this ap-
proach is that the optimal microstructure, which may change
at every point within the structure, is not always known. This
can be alliviated by restricting the method to a subclass of
microstructure. This approach, referred to as partial relax-
ation, has been used to generate conceptual designs of three-
phase material composites with extremal thermal expansion
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[3], piezoelectricity [4], and bulk modulus [5]. An additional
problem with the homogenization methods is the manufac-
turability of the optimized structure. The microscopic holes
in the microstructure may be difficult or impossible to fabri-
cate.

Density-based methods are an alternative that avoids the
application of homogenization theory by using a continuous
density value without a microstructure. In a discretized de-
sign domain, the mechanical properties of the material ele-
ment (stiffness tensor coefficients) are determined according
to a rule of mixture between two phases using a power-law
interpolation function [6,7]. When only a two-phase material
design is considered, the power law may implicitly penalize
intermediate density values driving the structure towards a
binary configuration. The use of such a penalization proce-
dure is referred to as the Solid Isotropic Material with Pe-
nalization (SIMP) method [8]. For a three-phase material
design the rule of mixtures can be easily extended. Due to
its simplicity, the SIMP method has been extensively used
in multimaterial topology optimization [9–11]. The effective
use of the SIMP-based methods requires regularization pro-
cedures such as filters, which are purely heuristic and very
sensitive to changes.

Alternatives to the density-based methods are the level
set-based methods and the phase field-based methods. The
level set-based methods use implicit iso-contours of a level-
set function to define the boundaries between material
phases. In this sense, these are related to shape optimiza-
tion methods. These methods avoid the use of filters and
other regularization procedures used in density-based meth-
ods and have become popular in structural topology opti-
mization [12–14]. The level-set method has been extended
to multimaterial topology optimization following two main
approaches: the extended variational multilevel sets ap-
proach [15–19] and the extended piecewise-constant varia-
tional level set approach [20, 21]. Recently, Kriging meta-
models have been also incorporated in level set-based topol-
ogy optimization [22–24]. The automatic changes of the
topology through breaking and merging also require the
level-set function to be re-initialized during the update op-
eration in order to achieve appropriate numerical accuracy.
Although several attempts have been reported to address this
issue [25–28], the re-initialization operation still relies on
heuristics.

Phase field-based methods are free boundary tracking
methods that avoid the need for re-initialization [29–34].
These methods are capable of handling the motion caused by
domain states and the motion caused by the domain shape,
e.g., the temperature and the mean curvature motion, respec-
tively, so they are also related to shape optimization methods.
Unfortunately, these methods are not easily extended to non-
linear problems involving contact, large displacements, and
plasticity.

Outstanding heuristic approaches for multimaterial
topology optimization are the bi-directional evolutionary
structural optimization (BESO) method [35,36], the Discrete
Material Optimization (DMO) method [37, 38], and the Hy-
brid Cellular Automaton (HCA) method [39, 40]. For in-

stance, HCA can be efficient in problems involving a large
number of design variables in nonlinear multimaterial struc-
tures [41]; however, heuristic methods are not applicable to
general structural optimization problems.

Recently, clustering or related techniques have been ex-
plored in topology optimization to reduce the computational
cost of the optimization algorithm or to reduce the dimen-
sion of the design space. Using a modified P-norm distance,
stress functions have been grouped to reduce the number of
constraints in stress-constrained topology optimization [42].
A clustering method in a genetic algorithm is also being re-
ported for the design of rotor topologies [43, 44]. Cluster-
ing in topology optimization has been utilized by researchers
at the Honda Research Institute Europe GmbH to reduce
the dimension in a (multi-dimensional) local state features
space [45]. Finally, in our previous work [46], K-means
clustering is tailored to reduce the dimension of the design
space and allow the application of a heuristic multiobjective,
metamodel-based optimization algorithm. This approach has
been developed over the years and the current state is sum-
marized in this work.

Here, we propose a method for multimaterial structure
optimization that incorporates clustering and is suitable to
efficiently solve large-scale optimization problems involv-
ing nonlinear structures. The resulting structures are well-
defined multimaterial designs without artificial (intermedi-
ate) materials. The proposed design optimization algorithm
consists of three steps: conceptual design generation, de-
sign clustering, and metamodel-based global optimization.
During the first step, the conceptual design is generated us-
ing a structural optimization algorithm for linear models or
a heuristic design algorithm, such as HCA, for nonlinear
models. During the second step, the dimensionality of the
problem is reduced by clustering the continuous field vari-
able. To this end, unsupervised machine learning, i.e., K-
means clustering, is implemented to optimally group the
continuous field variable into a reduced number of clusters.
The number of clusters determines the number of materi-
als within the structure. During the third step, metamodels
are built using appropriate curve fitting or interpolation func-
tions, e.g., Kriging metamodels. Then, the metamodels are
sequentially updated using an expected improvement func-
tion. The global optimum, which corresponds to the present
best function value, is obtained once the expected improve-
ment reaches a sufficiently small value.

2 Conceptual Design
The first step of the proposed design strategy is to gen-

erate a conceptual multimaterial design of the structure. If
the structure’s finite element model is linear and numerically
tractable, a structural optimization algorithm can be used to
generate the conceptual design. Otherwise, a heuristic design
algorithm can be used instead. The heuristic design algo-
rithm used in this work is HCA [39]. HCA is commercially
available in LS-TaSC for LS-DYNA (LSTC, California). In
either case, the material property is characterized by the de-
sign variable xe ∈R, where 06 xe 6 1, for e= 1, . . . ,n, where



n is the number of finite elements in the structure’s finite el-
ement model. The conceptual design problem is to find the
distribution of all possible materials x∈Rn that minimize the
objective function f (x) :Rn→R subjected to a set of (equal-
ity and inequality) constraints. The optimization problem is
expressed as:

find x ∈ Rn

minimize f (x,U(x, t))
subject to h(x,U(x), t) = 0

g(x,U(x), t)6 0
0 6 xe 6 1, e = 1, . . . ,n,

(1)

satisfying the finite element equilibrium equations. If
the problem involves microstructured multi-phased isotropic
materials, then it must also consider limits such as the
Hashin-Shtrikman bounds [47]. It becomes apparent that
the mapping between the design variable xe and the mate-
rial property must be correctly selected in order to avoid a
non-physical distribution of artificial materials.

Representing the material property by a single scalar is
generally possible with the use of homogenization methods.
In that way, two or multiple phases are blended to form a new
(composite) material. To generate the conceptual design, this
work makes use of a linear interpolation:

Pe = Pmin +(P0−Pmin)xe, (2)

where Pe is the element material property tensor. The op-
timal material distribution (or an approximation) x∗ ∈ Rn

from Eq. (1) is used as the conceptual design. Generally,
the desired number of materials K in the final design is sig-
nificantly smaller than n—the value of n is in the order of 103

to 106. Therefore, the dimension of the problem is reduced
by mapping the n optimal values into K clusters as described
in Sec. 3.

3 Clustering
The dimension reduction problem consists on drawing

inferences from datasets consisting of input data without la-
beled responses. The solution to this problem, usually ad-
dressed by cluster analysis in unsupervised machine learn-
ing, leads to groups of observations in such a way that the
observations in the same group are more similar to each
other than to those in other groups. Cluster analysis has been
used in global optimization to identify promising design re-
gions [48] and eliminate near-duplicate designs [49]. In con-
trast to this prevailing use, this work applies cluster analysis
to downsize the dimension of the design space reducing the
number of the materials from the conceptual design.

Due to its effectiveness and simplicity, K-means is one
of the most popular and widely used cluster analysis algo-
rithms [50]. K-means cluster analysis is employed in this
work. The input to this cluster analysis algorithm is a set of

n observations and the desired number of clusters K, where
1 6 K 6 n; usually, K � n. In this application, an obser-
vation consists of a single attribute, namely, the normalized
material parameter xe, where 0 6 xe 6 1 and e = 1, . . . ,n. A
discussion on the optimal value of K can be found in [51].

To start the clustering process, the algorithm distributes
K cluster seeds within the set of all observations xe, where
e = 1, . . . ,n. According to the distance between the observa-
tions and each seed, the set is partitioned into Voronoi cells
(clusters) Sk, where k = 1, . . . ,K. From this point, the algo-
rithm finds the cluster centroid values µk that minimize the
within-cluster sum of squares. Mathematically, this problem
is expressed as follows:

find µµµ ∈ RK

minimize J(µµµ) =
K

∑
k=1

∑
xe∈Sk

(xe−µk)
2.

(3)

In order to solve the clustering problem in Eq. (3), an
iterative refinement algorithm is utilized [52] (Algorithm 1).
Due to the nonlinearity of the optimization problem, the final
clustering depends heavily on the initial cluster seed distri-
bution. While global optimization methods may be suitable,
this work addresses this limitation by using 1000 randomly-
generated initial seeds. After the clustering, the value of
xe ∈ Sk is replaced by µk. The result is a K-dimensional clus-
tered design suitable for building metamodels and perform-
ing global optimization. The computational cost of solving
Eq. (3) is usually a small fraction of the cost of a finite ele-
ment analysis.

Algorithm 1: Iterative K-means clustering algorithm:

1 Randomly initialize K cluster centroids, µ1, . . . ,µK ;
2 while stopping criterion has not been met do
3 for k : 1 to K do
4 Sk←{} ;
5 end
6 for e : 1 to n do
7 j← argmin j′ (xe−µ j′ )

2 ;
8 S j← S j ∪{xe} ;
9 end

10 for k : 1 to K do
11 µk← 1

|Sk| ∑xe∈Sk
xe ;

12 end
13 end

A rigorous method to find K has not yet found and,
therefore, a parametric study is utilized as shown in the nu-
merical examples (Secs. 6.3 and 6.4). The metamodel-based
global optimization strategy presented in this work consists
of two steps: generating initial metamodels via sampling and
cross-validation (Sec. 4), and finding the global optimum de-
sign via expected improvement maximization (Sec. 5).



4 Generation of the Initial Metamodels
Dynamic models involving geometric, material, and

contact nonlinearities are commonly found in crash simu-
lations [53]. For such models, the computational cost of a
function evaluation is considerably high and it is impracti-
cal to use traditional gradient-based optimization methods
due to the lack of reliable sensitivity coefficients. As an al-
ternative, metamodels can be derived by sampling the dy-
namic, nonlinear finite element model. The resulting meta-
models are numerically inexpensive and allow to find near-
optimal solutions through the use of global multi-objective
algorithms [51]. The key aspect to using metamodels for
global optimization lies in balancing between global explo-
ration and local exploitation. It is desirable to generate an
accurate metamodel that explores a large portion of the de-
sign space with a few sampling points.

Several metamodels have been evaluated for design
problems in crashworthiness including: polynomial response
surface, radial basis functions, and Kriging [51]. Based on
cross-validation errors, Kriging is the preferred metamodel
and it is used in this work. The general form of the Kriging
metamodel f̂ is of a function f is

f̂ (S) = E[ f̂ (S)]+
P

∑
p=1

ωp

{
f (S(p))−E[ f (S(p))]

}
(4)

where E[·] is the expected value (mean), S(p) are the pth
sampled designs, and ωp are the Kriging weights, which are
derived from a covariance function. This metamodel can be
found implemented in MATLAB [54]. One metamodel is
built for each function in the optimization problem.

4.1 Sampling
Computer design of experiments is the selection proce-

dure for finding the points in the design space that must be
simulated. Many strategies can be used to sample the design
points including factorial designs, D-optimal designs, and
Latin hypercube sampling (LHS) [55]. LHS is used in this
work to generate the initial metamodel. This provides de-
signs that are independent of the mathematical model of the
approximation and allow the estimation of the main effects
of all factors in the design in an unbiased manner. Another
advantage of LHS is the number of points to be evaluated can
be directly defined. For K clusters (design variables) and P
design points, the LHS provides a P×K matrix S that ran-
domly samples the entire design space broken down into P
equal-probability regions. The LHS matrix components are
defined as

Spk =
ηpk−0.5

P
, (5)

where η1k, . . . ,ηPk are uniform random permutations of the
integers 1 through P. However, the LHS design points gen-
erated using Eq. 5 might be highly correlated, which is un-
desirable (Fig. 1a). Approaches to avoid high correlation in-

cluding correlation minimization methods [56] and the max-
imization of the minimum inter-site distances [57]. The later
one is used in this work. In this approach, the inter-site dis-
tance between two samples S(r) and S(t) is the defined as

d
(

S(r),S(t)
)
=

[
K

∑
j=1

(Srk−Stk)
2

]1/2

, (6)

for r, t ∈ {1,2, . . . ,P}, where S(r) is the rth row of the sam-
pling matrix S, and Srk indicates the kth column of the row
vector S(r). Figure 1b shows an optimal LHS generated from
the use of the maximize the minimum inter-site distance cri-
terion.
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Fig. 1: Latin hypercube samplings with P = 5 and (a) high
correlation and (b) low correlation achieved using the maxi-
mization of the minimum inter-site distances.

4.2 Cross-validation
Despite the number and optimal distribution of the sam-

pled designs, the resulting metamodel may not be sufficiently
accurate to provide meaningful predictions. To estimate the
accuracy of the metamodel, this work uses the leave-one-
out cross-validation. In this cross-validation approach, one
design is left out from the P sampled designs; then, the
metamodel is re-generated using the remaining P−1 designs
(Fig. 2). If S(p) is the pth sampled design that has been left
out, f (S(p)) the function value, and f̂−p(S(p)) is the cross-
validated prediction of f (S(p)), then one can plot f̂−p(S(p))

against f (S(p)). If the metamodel fits perfectly, these points
should lie on the 45◦ line [58]. If this diagnostic plot looks
satisfactory, e.g., high coefficient of determination R2, then
the metamodel is also considered satisfactory; otherwise, the
metamodel is refit with a log or inverse transformation to the
dependent variable. If one of these transformations gives sat-
isfactory diagnostic plot, then this transformation function is
used in the rest of the analysis.

In addition, root-mean-square error (RMSE) from the
predicted residual error sum of squares (PRESS) vector can
be used to estimate the cross-validation error. Using the
leave-one-out cross-validation, the PRESS vector e is formed
with the errors ep = | f (S(p))− f̂−p(S(p))| obtained when the



pth sampled design is left out. Then, the RMSE from the
PRESS vector is given by [59]:

PRESSRMS =

√
1
P

eTe. (7)
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Fig. 2: Leave-one-out cross-validation at the second sampled
point exemplified by fitting a function with a Kriging meta-
model.

5 Metamodel-based Global Optimization
Once the initial metamodels are built, the global opti-

mization problem can be solved. The global optimization
problem is to find the material parameters that minimize the
objective function vector f(µµµ) : RK → Rn f , where n f is the
number of objective functions. The input to the metamodels
f̂ is the vector of clustered design variables µµµ. The output
is the predicted values of the finite element models f. The
optimal design can be found using the Efficient Global Op-
timization (EGO) algorithm [58, 60]. During the search for
the global optimum, the EGO algorithm balances between
global exploration and local exploitation.

5.1 Expected Improvement
The expected improvement function calculates the

amount of improvement one can expect at a given point S(p).
The expected improvement function is defined as

E[I(S(p))] = E
[
max( fpbs−F,0)

]
, (8)

where fpbs = min{ f (S(1)), . . . , f (S(p)), . . . , f (S(P))} is the
present best function value (pbs) and F is a normally dis-
tributed random variable with mean and standard deviation
defined by the Kriging metamodel. With F ∼N ( f̂ ,σ2), one
can express the expected improvement as follows [58]:

E[I(S(p))] =
(

fpbs− f̂
)

Φ(u)+σ(S(p))φ(u), (9)

where u =
(

fpbs− f̂
)
/σ, f̂ = f̂ (S(p)) is the predicted value

at point S(p), σ2(S(p)) is the variance of the Kriging predic-
tor, and Φ(·) and φ(·) are the cumulative density function
(CDF) and probability density function (PDF) of a normal
distribution, respectively.

For constrained problems, one must ensure the feasibil-
ity of the newly selected points S(p). If the finite element
model used to evaluate the constraint is computationally ex-
pensive, the constraint can be approximated using a meta-
model. In this case, the probability of feasibility needs to
be considered along with the expected improvement on the
objective function [60]. If the new point is not feasible, its
corresponding expected improvement must be zero.

The expected improvement function is maximized us-
ing an evolutionary algorithm or a branch-and-bound algo-
rithm. If the maximum expected improvement is less than
0.1% of the present best function value in two consecutive
iterations, then convergence is achieved and the metamodel
needs no further improvement; otherwise, the point where
the expected improvement is maximized is added to the sam-
pled set and the metamodel is updated. If no convergence is
achieved in 100 iterations, the algorithm is terminated.

5.2 Multi-objective Expected Improvement
For a multi-objective optimization problem, a multi-

objective expected improvement function needs to be de-
fined. Consider an optimization problem that minimizes two
objectives f1(x) and f2(x), with the set of m Pareto points

f∗1,2 =
{(

f ∗(1)1 , f ∗(1)2

)
, . . . ,

(
f ∗(m)
1 , f ∗(m)

2

)}
, (10)

where f ∗(i)j = f j

(
S∗(i)

)
and S∗(i) is a Pareto design. The ex-

pected improvement for this multi-objective problem is de-
fined as [60]:

E[I(S∗(p))] = P[I(S∗(p))] min{d1, . . . ,dm}, (11)

where P[I(S∗(p))] is the probability of improving both func-
tions f1 and f2 at the Pareto design S∗(p). The probability of
improvement is defined as:

P[I(S∗(p))] = Φ(u1
1)+

m−1

∑
i=1

[
Φ(ui+1

1 )−Φ(ui
1)
]

Φ(ui+1
2 )+

[1−Φ(um
1 )]Φ(um

2 ), (12)

where ui
j = ui

j(S∗(p)) =
(

f ∗(i)j − f̂ j(S∗(p))
)
/σ j(S∗(p)).

In Eq. (11), di for i= 1, . . . ,m is the distance between the
vectors (F̄1, F̄2) and

(
f ∗(i)1 , f ∗(i)2

)
, where (F̄1, F̄2) is the cen-



troid of the probability integral used to calculate E[I(S∗(p))]:

F̄1(S∗(p)) =
1

P[I(S∗(p))]

[
z1

1 +
m−1

∑
i=1

(
zi+1

1 − zi
1
)

Φ(ui+1
2 )+

zm
1 Φ(um

2 )] (13)

where zi
j = zi

j(S∗(p)) = f̂ j(S∗(p))Φ(ui
j) − σ j(S∗(p))φ(ui

j).
F̄2(S∗(p)) is defined similarly. Details on the derivation of the
multi-objective expected improvement formula can be found
in [60]. The use of the multi-objective expected improve-
ment is illustrated in Secs. 6.3 and 6.4.

6 Numerical Examples
Four examples with different physics are presented in

this section. The first two examples involve linear finite ele-
ment models under a static load and the evaluation of thermal
and mechanical compliance. The last two examples involve
nonlinear finite element models under a dynamic load (armor
plate and vehicle S-rail structure).

In the first two examples, the results are compared
with an alternative optimization method, i.e., the alternat-
ing active-phase multimaterial topology optimization algo-
rithm [61], which is available in MATLAB. In the last two
examples, a parametric study on the number of clusters is
included.

6.1 Thermal Compliance
The minimum thermal compliance example is adopted

from [61]. The design problem is illustrated in Fig. 3. Due
to the axis symmetry of the model, only a quarter of the de-
sign domain is considered. The reduced design domain is
discretized into 50×50 Q4 elements. The remainder of this
section follows the proposed three-step design optimization
approach (3SDO).

!!"#

!"#

!"#

!"#

Fig. 3: Thermal compliance problem—Design domain and
Dirichlet boundary condition: constant surface temperature
u = 0.

Step 1: Conceptual design Without a constraint in the
number of materials, the optimization problem is stated as
follows:

find x ∈ Rn

minimize f (x,U(x)) = FTU(x)

subject to h(x) =
1
n

n

∑
e=1

xe−m f = 0

0 6 xe 6 1, e = 1, . . . ,n,

(14)

where U(x) = K(x)−1F under plane stress. f is the thermal
compliance function, U(x) denotes the finite element global
nodal temperature vector, F denotes the global thermal load
vector, and K(x) denotes the global thermal conductivity ma-
trix. A relative thermal conductivity of 1.0 is defined for
the most dense material and 10−3 for the least dense mate-
rial. The element conductivity matrix is interpolated using
Eq.(2). The mass constraint limit (or mass fraction) is pre-
scribed to be m f = 0.4. The conceptual design is generated
using topology optimization and achieved in 20 iterations.
The convergence criterion is ‖xk−xk−1‖ ≤ 10−3, where k is
the iteration number. The corresponding objective value is
f = 1.94×106. The conceptual design is shown in Fig. 4.

Fig. 4: Thermal compliance problem—Conceptual design
with f = 1.94×106.

Step 2: Clustered design In this example, let us consider
four clusters, this is K = 4. The K-means clustering opti-
mization in Eq. (3) leads to the optimal material parameters
µk and corresponding volume fractions m f k summarized in
Table 1, for clusters k = 1, . . . ,4. The corresponding value
of the thermal compliance is f = 1.97× 106. The clustered
design is shown in Fig. 5.

Step 3: Metamodel-based global optimization Given the
initial material parameters µk, for k = 1, . . . ,4, the final opti-



Table 1: Thermal compliance problem—Optimal material
parameters of the clustered design.

k Color µk m f k

1 Red ( ) 0.98 0.19

2 Green ( ) 0.31 0.30

3 Blue ( ) 0.57 0.13

4 Black ( ) 0.13 0.38

Fig. 5: Thermal compliance problem—Clustered design
with f = 1.97×106.

mization problem is the following:

find µµµ ∈ RK(K = 4)

minimize f (x(µµµ)) = FTU(x(µµµ))

subject to h(x(µµµ)) =
1
n

K

∑
k=1

∑
xe∈Sk

µk−m f = 0

0.10 6 µk 6 1.00, k = 1, . . . ,4,

(15)

where xe = µk for all xe ∈ Sk. The mass function h is lin-
ear and no metamodel is required. A Kriging metamodel is
built only for the thermal compliance f using the method de-
scribed in Sec. 4. The Kriging metamodel is trained with 40
samples generated by an optimal Latin hypercube sampling.
In this initial metamodel, R2 = 0.98 and PRESSRMS = 0.078.
The constrained expected improvement function is used to
search for the global optimum using the EGO algorithm.
Converges is achieved in four iterations. In the final meta-
model, R2 = 0.99 and PRESSRMS = 0.054. The optimal
material parameters µ∗1 = 1.00, µ∗2 = 0.33, µ∗3 = 0.43, and
µ∗4 = 0.16 as summarized in Table 2. The objective value is
improved to f = 1.96×106.

For comparison, this problem is also solved using the
alternating active-phase multimaterial topology optimization
(MTOP) algorithm [61]. The MTOP algorithm consists of
outer and inner iterations. Each outer iteration involves the
solution of K(K− 1)/2 alternating active-phase inner itera-
tions, i.e., binary topology optimization subproblems. It also

requires the definition of the number of materials and their
corresponding material properties.

Table 2 summarizes the results obtained by the MTOP
algorithm and the proposed three-step design optimization
method (3SDO). Both results have the same material param-
eters µµµ∗k and mass fractions m∗µk. As stated in [61], the filter
is a key success of the optimization procedure and should
be gradually reduced during the multimaterial topology op-
timization; hence, the filter is applied and gradually reduced
in MTOP. A penalization power is also utilized. As it can
be seen in Table 2, although the solutions from two different
approaches have similar objective value, the structures are
quite different. Due to the use of alternative phases, design
space dimension R is considerable higher than the proposed
3SDO method.

Table 2: Thermal compliance problem—Comparison of the
final objective value.

f ∗ µ∗k m∗µk R

3SDO

1.96×106

1.00
0.33
0.43
0.16

0.19
0.30
0.13
0.38

4

MTOP

1.95×106 2672

Using the proposed 3SDO approach, the objective func-
tion is evaluated only at the conceptual design generation
and the metamode-based global optimizationl. The concep-
tual design is generated in 20 topology optimization iter-
ations. The metamodel is built with 40 training samples
initially, and converged in four iterations. On the other
hand, the MTOP converged in 156 outer iterations, which
requires 936 alternating active-phase (inner) iterations. Each
inner iteration evaluate the objective function twice. There-
fore, the total number of function evaluations for MTOP is
156×6×2 = 1872. Table. 3 summarizes the number of iter-
ations (# iter) and the computational cost in number of func-
tional evaluations (# feval) in every step of the 3SDO method
and the MTOP algorithm.

Scalability The scalability of the optimization method can
be assessed from the number of function evaluations. For the
proposed 3SDO, the number of function evaluations is given
by

N3SDO = Nc +NsK +Ne, (16)

where Nc is the number of function evaluations in concep-
tual design step. NsK is the initial function evaluations to



Table 3: Thermal compliance problem—Comparison of the
computational cost.

Step # iter # feval

3SDO

1. Conceptual 20 20

2. Clustering 7 0

3a. Sampling 40 40

MTOP

3b. Optimization 4 4

Outer 156 0

Inner 936 1872

generate the metamodel and Ne is the number of function
evaluations in the EGO.

On the other hand, the number of function evaluations
for the MTOP is given by

NMTOP = No×K× (K−1), (17)

where No is the outer iteration number. From Eq. (16) and
Eq. (17), the proposed 3SDO method is linear with number
of clusters K while the MTOP is quadratic with K. A plot
of number of function evaluations with up to 10 materials is
given in Fig. 6 with Nc = 100,Ns = 10,Ne = 100 and No =
500.
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Fig. 6: Thermal compliance problem—Comparison of the
predicted number of function evaluations.

6.2 Mechanical Compliance under a Static Load
Let us consider the optimal distribution of three different

materials (K = 3) in a 3D beam in cantilever (Fig. 7). The ob-
jective is to minimize the mechanical compliance subjected

to a mass constraint. The design domain is discretized into
60× 20× 8 H8 identical finite elements. The three-step de-
sign optimization approach is applied as follows.

x

y

z

Fig. 7: Mechanical compliance problem—Design domain
and boundary conditions for the 3D beam in cantilever.

Step 1: Conceptual design The mechanical compliance is
a scalar counterpart of thermal compliance. The optimiza-
tion problem is stated as in Eq. (14) except that U(x) is the
nodal displacement vector, F is the external load vector, and
K(x) is the stiffness matrix. The mass fraction constraint is
prescribed to be m f = 0.3. The relative elastic modulus of
the most dense material is 1.0 and the one of the least dense
material is 10−3. The Poisson’s ratio is 0.3.

The optimal density distribution x∗ (Fig. 8) is achieved
in 64 iterations using Top3d [62] with a control-based strat-
egy [63]. The convergence criterion is ‖xk− xk−1‖ ≤ 10−3,
where k is the iteration number. The optimal design variables
are distributed from 1.0 (stiff material in black color) to 0.0
(compliant material in white color) with 8320 distinct values
(using 16 digits of precision). The corresponding objective
function value is f = 2217.

Fig. 8: Mechanical compliance problem—Conceptual de-
sign with 8320 distinct density values and f = 2217.



Step 2: Clustered design The conceptual design is then
clustered into three clusters (Fig. 9). As in the previous ex-
ample, contour indicates the cluster distribution. The clus-
tered design has compliance value f = 2432, which is, as
expected, higher than the one of the conceptual design.

Fig. 9: Mechanical compliance problem—Clustered design
with three clusters and f = 2432.

Step 3: Metamodel-based global optimization The op-
timization problem is to minimize mechanical compliance
subject to a mass constraint with three design variables. The
initial Kriging metamodel of the mechanical compliance is
built with 30 LHS samples. In this metamodel, R2 = 0.99
and PRESSRMS = 0.037. The final design is obtained af-
ter three EGO iterations using the constrained expected im-
provement function. In the final metamodel, R2 = 0.99 and
PRESSRMS = 0.034. The comparison between 3SDO and
MTOP on the final objective value and computational cost is
summarized in Tables 4 and 5, respectively. Results demon-
strate the effectiveness and efficiency of the proposed algo-
rithm: the 3SDO requires only 3% of functional evaluation
and it is able to achieve result 11% better than the MTOP.

Table 4: Mechanical compliance problem—Comparison of
the final objective value.

f ∗ µ∗k m∗µk R

3SDO

2350
1.00
0.10
0.48

0.16
0.15
0.69

3

MTOP
2645 6025

Table 5: Mechanical compliance problem—Comparison of
the computational cost.

Step # iter. # feval

3SDO

1. Conceptual 64 64

2. Clustering 3 0

3a. Sampling 30 30

MTOP

3b. Optimization 3 3

Outer 480 0

Inner 1440 2880

6.3 Minimum Penetration and Mass under a Dynamic
Load on an Armor Plate

Let us consider the thickness (topometry) optimization
of an armor plate impacted by a rigid ball (Fig. 10). The plate
undergoes large displacement and plasticity. Nonlinear finite
element analysis is utilized. The goal is to minimize both the
impact penetration and the mass of the plate. The dimension
of the plate is 300 mm × 300 mm. The displacement of the
plate is constrained along its four edges. In the numerical
analysis, the plate is discretized into 30× 30 identical finite
elements. The rigid ball impacts the plate in a perpendicular
direction at a speed of 10 m/s. The base material properties
are listed in Table 6. The initial design has uniformly element
thickness distribution of 5 mm as shown in Fig. 10. The
initial design has maximum penetration f1 = 12.05 mm and
mass f2 = 0.50.

10 m/s

constrained edges

Fig. 10: Armor plate problem—Finite element model.

Step 1: Conceptual design The simulation is performed
using explicit nonlinear finite element analysis in LS-DYNA.
The conceptual design is obtained with one iteration of the
HCA algorithm using element internal energy as the field
variable [39]. The result is shown in Fig. 12. The contour in-
dicates the value of the element thickness from 1 mm (white)
to 10 mm (black). The average thickness is kept at 5 mm.
The corresponding penetration is f1 = 9.33 mm and the mass
fraction is f2 = 0.50.

Step 2: Clustered design The conceptual design is clus-
tered using the K-means algorithm. A parametric study is



Table 6: Armor plate problem—Base material properties.

Property Value

Density 7830 kg/m3

Elastic Modulus 207 GPa

Poisson’s Ratio 0.3

Yield stress 200 MPa

Tangent modulus 2.0 GPa

Fig. 11: Armor plate problem—Initial design (left) and
impact simulation (right) with maximum penetration f1 =
12.05 mm and mass fraction f2 = 0.50.

Fig. 12: Armor plate problem—Conceptual design (left) and
impact simulation(right) with maximum penetration f1 =
9.33 mm and mass fraction f2 = 0.50.

performed to determine the influence of the K value. Fig-
ure 13 shows the clustered designs corresponding to K =
1, . . . ,18. Figure 14 shows the values of the the maximum
penetration f1 and mass fraction f2 for each clustered de-
sign. As the number of clusters increases, the value of f1
tends to decrease. The value of f2 remains relatively con-
stant. For the clustered design, it is desirable to keep the
lowest K value and the lowest values for f1 and f2. From
these results, K = 4 can be identified as a potential optimal
design.

Step 3: Metamodel-based global optimization The ob-
jective is to minimize both the maximum penetration f1 and
the mass fraction f2 of the armor plate. The multi-objective

optimization problem is:

find µµµ ∈ RK(K = 3)
minimize f 1(x(µµµ)) : maximum penetration
minimize f2(x(µµµ)) : mass fraction
subject to 1 6 µk 6 10, k = 1,2,3.

(18)

A Kriging metamodel is only required for f1. The num-
ber of LHS samples to build the f1 initial metamodel is ten
times the number of clusters, this is: P = 10K. The mass
fraction function f2 is linear and no metamodel is required;
therefore, σ2 = 0 and the multi-objective expected improve-
ment Eq. (11) can be simplified to E[I] as defined by Eq. (9).

The Pareto front of all clustered designs is shown in
Fig. 15. As observed, Pareto designs for K = 4 dominates
most of the other Pareto designs as well as the initial design,
the conceptual design, and clustered design (K = 4). In this
objective space, the conceptual design and the clustered de-
sign (K = 4) are close to each other. The computational cost
of this structural optimization problem is summarized in Ta-
ble 7.

Table 7: Armor plate problem—Computational cost of the
3SDO method (K = 4).

Step # iter. # feval

1. Conceptual 0 1

2. Clustering 12 0

3a. Sampling 40 40

3b. Optimization 100 100

6.4 Thin-walled S-rail crashworthiness design
Thin-walled S-rails are essential components of the pro-

gressive crushing zone in a vehicle. During a frontal or rear
collision, S-rails are designed to absorb a high amount of the
impact kinetic energy through plastic deformation. In this
example, the geometry of the thin-walled S-rail of square
cross section is defined as shown in Fig. 16, where L= 1.0 m.
The S-rail is crushed in the axial direction by a rigid wall
traveling at a constant speed of 5 m/s. The crushing distance
is prescribed to be 0.5L, which occurs 100 ms after the im-
pact.

The objective is to maximize specific energy absorption
(energy absorption per unit mass) and minimize peak crush-
ing force. The design variable in this example is the shell
element thickness of the S-rail. The material properties are
summarized in Table 8.
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1 18

Fig. 13: Armor plate problem—Clustered designs with K = 1, . . . ,18.
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Fig. 14: Armor plate problem—Maximum penetration and
mass fraction as functions of the number of clusters.

The crashworthiness indicators of the S-rail are the spe-
cific energy absorption (SEA) the peak crushing force (PCF).
These crashworthiness indicators are defined as follows:

SEA(x) =
∫

δ
P(x,δ)dδ

m(x)
, (19)

PCF(x) = max
δ

P(x,δ), (20)

where P(x,δ) is the reaction force of the thin-walled com-
ponent at a crushed distance δ. The simulation is per-
formed with the non-linear finite element analysis software
LS-DYNA.
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Fig. 15: Armor plate problem—Pareto front of the design
optimization problem and the optimized clustered design
(K = 4) with maximum penetration f1 = 9.46 mm and mass
fraction f2 = 0.50.

Step 1: Conceptual design The conceptual design of the
S-rail aims to trigger its progressive collapse. To this end,
principles of compliant mechanism design are utilized: given
the displacement of input ports, the objective is to find the
thickness distribution that maximizes the displacement of
output ports [3]. In this case, the input ports are prescribed at
the contact nodes with a rigid wall. The output ports are de-
fined by the wavelength λ of the progressive buckling corre-
sponding to an ideal axial crushing condition [64] (Fig. 17).
The optimization is to maximize the mutual potential energy
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Fig. 16: S-rail problem—Geometry of the thin-walled S-rail
(side view). The cross section is squared of dimensions H ×
H and thickness xe.

Table 8: S-rail problem—Material properties of the finite el-
ement model.

Property Value

Density 7800 kg/m3

Elastic Modulus (E) 207 GPa

Poisson’s Ratio 0.29

Yield stress (σY ) 253 MPa

Tangent modulus

(σY/E < ε≤ 0.048) 2437 MPa

(0.048 < ε≤ 0.108) 883 MPa

(0.108 < ε≤ 0.148) 550 MPa

(0.148 < ε≤ 0.208) 433 MPa

(0.208 < ε≤ 0.407) 281 MPa

(0.407 < ε≤ 0.607) 185 MPa

(0.607 < ε≤ 0.987) 124 MPa

of the structure subjected to a mass constraint [65]. This is:

find x ∈ Rn

minimize f (x,U(x)) =−LTU(x)

subject to h(x) =
1
n

n

∑
e=1

xe−m f = 0

xL
e 6 xe 6 xU

e , e = 1, . . . ,n

(21)

where x is the thickness distribution, U(x) is the nodal dis-
placement vector, and L is the nodal (dummy) force vector
with zeros at all degrees of freedom except for the ones cor-
responding to the output ports where the value is one. The
lower thickness bound is xL

e = 0.6 mm and the upper thick-
ness bound is xU

e = 6.0 mm. The mass fraction is set to
be m f = 0.50. The initial design has a constant thickness
of 3.0 mm for all the finite elements. The corresponding

crash simulation shows Euler-type buckling with two plastic
hinges (Fig. 18). The conceptual design is obtained with one
iteration of the HCA algorithm using element mutual poten-
tial energy as the field variable [39]. Progressive folding is
observed in this conceptual design. The corresponding thick-
ness distribution and crash simulation are shown in Fig. 19.
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Fig. 17: S-rail problem—Locations of input and output ports
for a thin-walled S-Tube following the wavelength λ cor-
responding to the progressive buckling after an ideal axial
crushing condition.

Fig. 18: S-rail problem—Initial design represented by a uni-
form thickness distribution in the “unfolded” thin-walled
structure (left). The initial design depicts Euler-type buck-
ling (right). The corresponding crashworthiness indicators
are SEA= 3.39 kJ/kg and PCF= 267 kN.

Fig. 19: S-rail problem—Conceptual design represented the
thickness distribution in the “unfolded” thin-walled struc-
ture (left). The conceptual design depicts progressive fold-
ing (right). The corresponding crashworthiness indicators
are SEA= 5.05 kJ/kg and PCF= 359 kN.

Step 2: Clustered design A parametric study is performed
on the number of clusters. Figure 20 shows the “unfolded”
clustered designs for K = 1, . . . ,12. The corresponding spe-
cific energy absorption (SEA) and peak crushing force (PCF)
values are summarized in Figure 21. While a rigorous
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Fig. 20: S-rail problem—Clustered designs with K = 1, . . . ,12.

method to find the optimal number of K has not yet been
found, in this example K = 2 depicts a desirable high SEA
and low PCF values. This design can be idenfied as the po-
tential optimal design.
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Fig. 21: S-rail problem—SEA and PCF values as a function
of the number of clusters K.

Step 3: Metamodel-based global optimization The de-
sign objectives are to maximize the specific energy absorp-
tion (SEA) and minimize the peak crushing force (PCF). The
multi-objective optimization problem can be stated as fol-

lows:

find µµµ ∈ RK

maximize SEA(x(µµµ))
minimize PCF(x(µµµ))
subject to 0.6 mm 6 µk 6 6.0 mm, k = 1, . . . ,K,

(22)
where µk is the thickness of the kth cluster. Kriging meta-

models are built for both objective functions using 40 initial
LHS samples. The EGO algorithm with multi-objective ex-
pected improvement is utilized. Figure 22 shows the result-
ing Pareto front for K = 1, . . . ,4. All Pareto fronts dominate
the initial design, the conceptual design, and clustered de-
signs. The best clustered design is for K = 2; however, the
best Pareto fronts correspond to K = 3 and K = 4. Table 9
summarizes the computational cost.

Table 9: S-rail problem—3SDO computational cost

step # iter. # feval

Conceptual 1 2

Clustering 8 0

Sampling 40 40

Optimization 100 100

7 Summary and Discussion
This work presents a design strategy to solve multi-

material structural optimization problems that consists of
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Fig. 22: S-rail problem—Pareto fronts for K = 1, . . . ,4. Ini-
tial, conceptual, and clustered design are dominated. Clus-
tered designs have the following (−SEA, PCF) coordinates:
for K = 1: (−3.82,274), for K = 2: (−4.81,349), for K = 3:
(−3.98,423), and for K = 4: (−3.90,381).

three steps: conceptual design generation, clustering, and
metamodel-based global optimization. The conceptual de-
sign is a continuous design variable distribution generated by
structural optimization in linear models (Secs. 6.1 and 6.2) or
a heuristic design method such as HCA for nonlinear models
(Secs. 6.3 and 6.4). Unsupervised machine learning tech-
niques such as the K-means clustering algorithm are utilized
to reduced the dimension of the optimization problem from
thousands of design variables to a lower number of clusters.
With the reduced number of design variables, metamodel-
based global optimization can be performed. To this end,
this work uses EGO. The proposed method is demonstrated
through four examples: thermal compliance minimization,
mechanical compliance minimization, mass and impact pen-
etration minimization, as well as specific energy absorption
maximization with peak crushing force minimization. The
first two examples use linear finite element models under a
static load. The last two examples use nonlinear finite ele-
ment models under a dynamic load.

Aspects of the proposed structural optimization ap-
proach can be modified to solve specific problems. For ex-
ample, instead of using topology optimization as illustrated
in the paper, topograghy optimization can be applied. For
clustering, K-means can be replaced by Principle Compo-
nent Analysis or another unsupervised machine learning al-
gorithm. In any case, the designer can supervise the design
clustering and select the final number of clusters (materials)
depending on the type of metamodel used in the final op-
timization step and/or the manufacturing process of the op-
timized design. Our ongoing research explores the use of
supervised clustering methods.

In this work, the results of the linear models are com-
pared to a multimaterial topology optimization algorithm,
demonstrating lower computational cost in the proposed al-
gorithm. For the nonlinear model, the results for different

number of clusters are compared. While more research is
needed, the parametric studies in this work show that the
analysis (crash simulation) of the cluster designs is a suit-
able indicator to approximate the optimal number of clusters.
Other approaches such as the elbow method, information cri-
terion approach, and the Silhouette method [51] are compu-
tationally less expensive but not as effective as the paramet-
ric study shown in this work. Ongoing investigation aims
to control the structural complexity of the clustered design
generated by the proposed approach.
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