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Abstract: The microcirculation plays a major role in maintaining homeostasis in the body. 
Alterations or dysfunctions of the microcirculation can lead to several types of serious diseases. It is 
not surprising, then, that the microcirculation has been an object of intense theoretical and 
experimental study over the past few decades. Mathematical approaches offer a valuable method for 
quantifying the relationships between various mechanical, hemodynamic, and regulatory factors of 
the microcirculation and the pathophysiology of numerous diseases. This work provides an overview 
of several mathematical models that describe and investigate the many different aspects of the 
microcirculation, including geometry of the vascular bed, blood flow in the vascular networks, solute 
transport and delivery to the surrounding tissue, and vessel wall mechanics under passive and active 
stimuli. Representing relevant phenomena across multiple spatial scales remains a major challenge in 
modeling the microcirculation. Nevertheless, the depth and breadth of mathematical modeling with 
applications in the microcirculation is demonstrated in this work. A special emphasis is placed on 
models of the retinal circulation, including models that predict the influence of ocular hemodynamic 
alterations with the progression of ocular diseases such as glaucoma.  

Keywords: microcirculation; blood flow; oxygen transport; autoregulation; fluid-structure 
interaction problems; mathematical model; retinal microcirculation 
 

1. Introduction 

The microcirculation is the collective name for the smallest (<150 µm in diameter) blood 
vessels in the body. As a first approximation, it consists of blood vessels that are too small to be seen 
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with the naked eye. Microcirculatory vessels are the site of control of tissue perfusion, blood-tissue 
exchange, and tissue blood volume. Each of these functions can be associated, though not 
exclusively, with a specific type of microvascular segment: arterioles, capillaries and venules. 
Arterioles are known as resistance vessels since a major fraction of total blood pressure dissipation 
occurs across them. Local and extrinsic stimuli (e.g., neural, metabolic, and mechanical) act on the 
thick muscular wall of arterioles, exerting control over the vessel diameter and modulating the level 
of local blood flow. The capillaries are the site of major exchange between blood and tissue. 
Nutrients and other molecules diffuse or are transported across the capillary wall to sustain life of the 
body’s cells. Finally, venules are classified as capacitance vessels because most of the tissue blood 
volume is localized in these microvessels. Comprehensive, recent reviews on the biological, 
anatomical and structural aspects of the microcirculation can be found in [1,2,3]. In addition, there 
exist several review works focused on the microcirculation in specific organs and tissues, see,  
e.g., [4] for brain, [5] for kidneys, [6] for gastrointestinal organs and [7] for lungs. 

Various techniques have been used to obtain a substantial amount of hemodynamic and 
geometric information about the microcirculation. For example, data has been obtained from 
studying whole organs both in vivo and in perfused conditions. The results of these studies are 
averaged quantities that give indirect information about microcirculatory behavior. Modern non-
invasive imaging techniques are used to obtain data about normal and diseased states in 
microcirculation. Imaging techniques—including MRI, imaging with light and sound, optical 
techniques such as laser Doppler and multispectral imaging—show microvascular structure and 
provide measures of function via perfusion, oxygenation, or permeability parameters. We refer  
to [8,9,10] for reviews on these imaging techniques. 

 

Figure 1. Conceptual illustration of the different scales addressed by mathematical 
models of the microcirculation. 

The role of theoretical models of the microcirculation has been described previously by Secomb 
in [11]. In this work, Secomb remarks that mathematical modelers of the microcirculation have 
pioneered the integration of knowledge across multiple levels of biological organization. He 
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classifies models as phenomenological, qualitative, quantitative, and predictive. In the present 
review, we will adopt a similar classification for microcirculation models; furthermore, in our model 
classification we will also highlight the spatial dimension of the models (0D to 3D) and their 
mathematical features. In Figure 1, we present a schematic illustration of the classification and scale 
of mathematical models of the microcirculation that are reviewed in this study. Geometrically 
reduced 0D/1D models are capable of providing very useful information on whole-scale vascular 
beds or organs (e.g., the brain or kidney), even if they cannot provide a spatially-resolved 
information. On the other hand, 3D models can capture detailed and patient-specific components of 
the vascular anatomy, at the price of a rapidly increasing computational cost. The full range of 
models between 0D and 3D representations offer a balance of information and can be used to study a 
large spectrum of scales.  

 

Figure 2. Main steps for developing mathematical models of the microcirculation. 
Arrows denote the directional flow of data. The geometry of the network defines the 
mathematical domain of the problem. The fluid dynamics (blood flow) and blood 
rheology models are combined with the network geometry to predict the distribution of 
flow, pressure, and hematocrit throughout the network. The fluid-dynamics action alters 
the vessel geometry exerting stresses on the vessel wall. Solute transport is studied along 
the vascular network, using the computed convective field. Solute is exchanged with the 
surrounding tissue, often according to a filtration model which depends on the difference 
of partial pressure of the solute across the vessel wall (double arrow symbol). In some 
models, especially the ones related to the exchange of large molecules, the fluid-dynamic 
pressure field may also enter in the solute exchange dynamics. Solute levels as well 
several other stimuli (neural, mechanical) contribute to autoregulation processes in the 
arterioles. Vessel geometry may thus vary due to the input of autoregulation and to the 
passive interaction with the blood flow (fluid-structure problem). The updated geometry 
enters back into the global model.  
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Theoretical modeling of microvascular networks typically involves several steps (see Figure 2). 
First, the geometry of the network must be specified. In this step, the length and diameter (or cross-
sectional shape) of vessels are defined as well as the network connectivity. Next, fluid dynamics and 
blood rheology models are combined to predict the distribution of flow, pressure, and hematocrit 
throughout the network. Then, solute transport and delivery to the surrounding tissue is studied along 
the network. Vessel geometry may vary due to the interaction with the blood flow (fluid-structure 
problem) or the input of autoregulatory signals. Last, computed solute levels and other stimuli 
(neural, mechanical) may enter into the model of vessel regulation. 

Several review articles address theoretical modeling of the microcirculation (recently, we refer 
to [12–15]. But, most of these papers focus on a specific aspect of modeling or on a specific scale of 
the problem. The aim of this work is to survey the mathematical approaches used broadly to study 
the microcirculation. Modeling microcirculatory networks requires ad hoc approaches. There are 
profound differences between modeling large/medium-sized blood vessels (e.g., the aorta, the circle 
of Willis, the femoral vessels) and modeling microcirculatory vessels. The number of vessels (a few 
vs. several thousand), vascular radial dimensions (cm vs. microns), the characteristic Reynolds and 
Womersley numbers (relevant vs. very low), and the role of blood rheology (Newtonian vs. 
corpuscular fluid models) are just some of the elements that impact the choice of mathematical and 
numerical models.  

The present work is organized as follows. In Section 2 we review the definition of the geometry 
of microvascular networks and their surrounding tissues; in Section 3 we review models for blood 
flow when blood is modeled as a continuum or a corpuscular medium; in Section 4 we review 
models for gaseous solute transport in blood and delivery to tissue; in Section 5 we review models 
for vessel mechanics and autoregulation; in Section 6 we highlight models of the retinal 
microcirculation. Finally, in Section 7 we summarize the conclusions of our work and present 
perspectives on mathematical models in this field.  

2. Modeling of Microvascular Networks and the Surrounding Tissue  

Microvascular networks are very complex structures, and their complexity is often related to the 
tissue they are supplying. For example, the mesenteric microcirculation exhibits a fairly regular 
organization whereas the cerebral microcirculation differs greatly among subjects and within specific 
parts of the brain. In general, micro-vessels do not form precise arrays in the tissue; rather, their 
spacing is non-uniform and their pathways are often tortuous [15]. Different mathematical methods 
are chosen to describe the geometrical features of the different microcirculatory beds, where the 
degree of complexity included in the model depends on the environment being modeled. 

2.1. Modeling of blood vessels 

Despite the irregularities in network structure, almost ubiquitously, arterioles and venules are 
organized in tree-like structures and capillary beds in net-like structures. Arterioles and venules are 
thus analyzed with distinct models from capillaries. Vessels are generally classified as 
arterioles/venules or capillaries based on diameter. Within these classifications, vessels are often 
divided into more specific subclasses with explicit diameter ranges [16,17]. The number of vessels in 
a certain class or subclass may dictate the type of model used to describe that class. For example, in 
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complex 3D geometries with thousands of vessels, capillaries can be represented in a simplified 
manner to reduce the computational cost [18,19]. The modeling choice may also reflect the 
resolution limit of available imaging techniques. Last, but not least, since microvascular beds are the 
main site of metabolic exchange, it is also important for models to account for the tissue environment 
in which the microvessels are embedded. 

2.1.1. Arteriolar and venular trees 

We define two main types of arteriolar and venular tree models: (i) compartmental models, in 
which there is no topology (or connectivity) of the vessel branches, and (ii) topological models, in 
which a proper, connected, anatomical network is built according to geometrical data. 
Compartmental models maintain a low number of unknowns and are capable of reproducing the 
global behavior of the system. The more complex topological models account for the spatial 
distribution of field variables and the complexity of interactions among vessels in the 
microcirculatory network. 

In the compartmental approach, several authors exploit the analogy of a vascular network with 
an electric circuit, formed by lumped resistive, capacitive and inductive elements. This reduced 
modeling approach allows for the inclusion of the microcirculatory network within a more 
comprehensive system, as in whole brain circulation studies [20,21]. Other compartmental models 
represent the arteriolar and venular trees as idealized classes of different hierarchy; for example, 
compartments are defined for large arterioles, small arterioles, capillaries, small venules and large 
venules [22]. The vessels comprising each compartment are arranged in parallel and are assumed to 
exhibit identical properties. The compartments are connected in series by conservation laws, so that 
each flow pathway from the arterial inflow to the venous drainage is equivalent. The functional 
characteristics of complete vascular beds are then derived, in an averaged sense, from the properties 
of the individual vessel classes and the number of vessels within each class.  

In the topological approach, anatomically-specific geometrical data are used to build the model. 
Usually, the tissue is represented as a simple volumetric shape (e.g., cube, parallelepiped, cylinder) 
of linear dimension ranging from a hundred microns to a few millimeters. The main complexity 
resides in the representation of the embedded vessel network. According to a “topological 
geometrical” approach, vessel trees are constructed ex-novo using a mathematical algorithm that 
retains the relevant vascular morphology and topology. Principles of fractal geometry derived from 
Murray’s law have been used in [23,24] to define the diameter of daughter vessels sprouting from a 
bifurcation. The degree of asymmetry of the network can be controlled via an asymmetry parameter 
as in [25,26] or using distributions of generation numbers using, for example, the Horton-Strahler 
approach as in [27,28]. Stochastic growth techniques have been adopted to obtain random graphs 
(see [1], Ch.1, for a review), including the diffusion limited algorithm used in [29] to obtain a 
network with a prescribed fractal dimension. In the “topological anatomical” approach, the network 
geometry (vessel radii and lengths) is extracted from digitized images of experimental measures. A 
relevant problem is constituted by the reconstruction of the graph connectivity. Generally, a 
backbone system of vessels is identified (see the procedure detailed in [19]). Semi-automatic or 
manual techniques are then used to segment the backbone and prune dead-end vessels. In [30], 
intravital microscopy was used to define the vessel lengths and connection patterns in the mesenteric 
plexum. Vessel diameters were measured manually at the center of each segment. In [17], raw data 
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were obtained from a multi-diode target camera of rodent mesentery. Network connectivity, topology 
and diameter distribution were manually reconstructed from the images, and a Bézier approximation 
was used to enhance the segment tortuosity.  

Over time, the resolution limits of various imaging techniques have vastly improved. For 
example, adaptive optics and ultra-high resolution optical coherence tomography has allowed for 
ultrahigh 3D resolution (3 × 3 × 3 µm3) to capture data on the smallest capillary vessels. However, 
details of the smallest capillary vessels have not always been possible to obtain, and thus several 
models include artificially generated geometrical trees to account for these small vessels. For 
example, in [31], a 3D model of a 3 × 3 × 3 mm3 portion of the human brain secondary cortex was 
presented. A backbone of visible large microvessels was reconstructed from high-resolution images, 
and smaller artificially generated segments were successively added using constructive optimization 
techniques. In [32], a network was obtained from high-resolution images of the mouse primary 
somatosensory cortex, ranging from the pial vessels to individual brain cells. In [16], images of the 
eye fundus were acquired and arteriolar vessels of the retina were segmented. Terminal arterioles 
with outlet diameter greater than 30 microns were connected with asymmetric structured fractal trees 
representing smaller vessels. Mixed topological/compartmental models were used by some authors to 
describe in detail certain portions of the network and, at the same time, represent other portions of 
the network in a lumped manner. For example, in [33], upstream and downstream portions of an 
otherwise microvascular anatomically accurate network were modeled by large arteries/veins and 
large arterioles/venules classes. In [20], lumped arteriolar/venular networks were coupled with more 
detailed models of larger vessels. 

All topological networks are eventually reduced to graphs for computational purposes. The 
network graph is uniquely described by the node coordinates and by the connectivity matrix. In the 
latter, the , -th element is equal to one if node  is connected to node  and zero otherwise, leading 
to the creation of one ‘‘arc’’. A single vessel can be composed of several arcs arranged in cascade or 
by a single arc. Vessel junctions are nodes at which different vessels are connected to each other. The 
most frequently adopted type of junction is the bifurcation (see the discussions in [18] and in [34]). 

2.1.2. Capillaries 

Capillary beds are composed of an extremely large number (>104) of tiny vessels (diameter 
ranging from 5 to 9 microns). Representations of capillaries using a vessel-by-vessel description are 
technically feasible but would be restricted to a small tissue region [30,33]. In certain topological 
geometrical models, capillaries are arranged as a compartment of parallel vessels, as in [23]. 
However, this representation does not fully describe the real net-like organization of capillaries. To 
model the net-like structure of capillary beds, some studies use mathematical algorithms to generate 
coherent capillary meshes. In [17] and [35], the capillary beds were generated on the basis of a 
Voronoi tessellation. In [27], a concentric circle mesh-like model was proposed to simulate 
capillaries in the rat retina. In [34], statistical algorithms were used to explore how the structural 
properties of the capillary bed influence the transport of blood through the human cerebral 
microvasculature.  Sprouting angiogenesis algorithms are often used to generate capillary networks 
embedded in tumoral tissues (see, e.g., [36–39]). The network shape is forged by stimuli coming 
from the tumor itself.  
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2.2. Tissue 

Unlike large blood vessels, microcirculatory vessels are embedded within tissues. This enables 
communication and mass (fluid, solute) exchange between the parenchymal tissue and these vessels. 
Several models thus couple a tissue description with the microcirculatory network. In compartmental 
models, the tissue is described as a well-mixed medium exchanging mass flux with the circulatory 
network across a lumped boundary. In topological models, the surface of exchange is extended and 
geometrically characterized. In general, the tissue slab is assumed to have a simple geometrical 
shape, for example a cylinder or a parallelepiped. The volume of the considered tissue slab may 
range from a few mm3 to several hundred mm3. There are also more complex representations. For 
example, in [40], the intricate geometry of lung alveoli is considered, where the capillary plexi 
surround an assumed spherical tissue region. In [18], the tissue continuum consists of nodes 
interconnected on a lattice, each node representing a tissue voxel with associated numerical 
quantities. Some authors introduce separate representations for the interstitial portion of the tissue 
and the (metabolically active) parenchymal cellular portion, see, e.g., [41].  

2.3. Homogenized models: perfused-tissue representations 

In some studies, mathematical techniques are used to homogenize the tissue and embedded 
vessels as single medium. Such techniques are typically employed when describing the capillary-
perfused tissue matrix, for which the network of vessels is so dense that the computational cost of 
addressing each vessel is too high. A simple model of capillary-perfused tissue can be found in [42] 
where capillaries were represented as distributed sources in the homogeneous tissue. More 
sophisticated homogenized models give rise to porous media representations. Effective permeability 
and diffusion coefficients of the matrix were computed via different approaches. For example,  
in [18], a number of sub-volumes (cells) were identified in the capillary plexum. For each cell, 
integral quantities such as effective conductance, vascular volume, and surface area were determined 
via explicit computation. Upscaling technique are successively used to connect the homogenized 
medium to larger scale vessels. Homogenization techniques are widely used to study blood perfusion 
in tumoral tissues. The literature in this field is very vast and in this context we limit ourselves to cite 
the comprehensive review works [43–46].  

In Tables 1 and 2, we compare geometrical descriptions of the microvascular bed for 
compartmental, topological and homogenized approaches. We do not include purely morphometric 
studies (for which we refer to [17]) and we limit ourselves to relevant examples of a certain type of 
model, giving preference, when possible, to 3D models. The Tables in this review provide a 
comprehensive list of studies that are not all referenced in the article due to space constraints.  

3. Modeling the Fluid Dynamics of Blood  

Blood is a dense suspension of cells in plasma solvent. Red blood cells (RBCs) are the primary 
cellular constituent of blood, with a volume fraction (hematocrit, HD) of typically 40–45%. While 
plasma is a Newtonian fluid, interactions between cells and plasma lead to complex non-Newtonian 
dynamics. This is especially true in the microcirculation, since vessel dimensions are comparable to 
cell diameter [13]. Radial migration of the RBCs away from the vessel wall occurs from 
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hydrodynamic interactions, forming a low-hematocrit/cell depleted layer along the vessel wall [68]. 
This phenomenon is the basis of several important rheological effects observed in vitro and in  
vivo [17]: (i) the Fåhraeus effect, which is the apparent reduction in tube hematocrit with respect to 
discharge hematocrit [69,70]; (ii) the Fåhraeus-Lindqvist effect, which dictates that the apparent 
viscosity of blood decreases when the vessel diameter is reduced below 1 mm; and (iii) plasma 
skimming at network bifurcations (also known as the “network Fåhraeus effect”), in which the 
fraction of the total RBC flow in the mother vessel of a bifurcation that enters one of the daughter 
branches does not correspond to the fractional blood flow entering that branch, due to the hindrance 
of the cell depleted layer. Plasma skimming results in a heterogeneous spatial distribution of 
hematocrit in the network [71]. 

Table 1. Geometric description of compartmental models (R = resistive, C = capacitive, 
L = inductive element in electric analogy). 

Reference Species 

and 

district 

Microcirculatory compartments Other compartments Tissue 

Ye (1993) [47], 

Arciero (2008) 

[22], 

Piechnik (2008) 

[48], 

Fantini (2014) 

[49] 

human [47]: arteriole and venule compartments 

grouped in length classes, capillary 

compartment; 

[22]: representative segment model: 

large/small arterioles and venules and 

capillaries; [48: different hierarchies of 

arteriolar/venular vessels {Fantini, 2014 

#67]: arteriole, capillary and venule 

compartments; 

[22]: large inlet/outlet  

artery/vein 

[47],[49]: 

lumped 

tissue 

compartme

nt 

Ursino (1998) 

[50], 

Spronck (2012) 

[51], 

Payne (2006) [52], 

Diamond (2009) 

[53], 

Müller (2014) [54]  

 

human 

brain 

[51]: PCA arterioles (R-C); [50]: large and 

medium/small pial arteries (R-C); [53]: 

cerebral arterioles and capillaries (R-C); ) 

[54]: arterioles/capillaries/venules (R-C-L) 

attached at the terminals of larger vessels; ) 

[52]: arterial and capillary/venous 

compartments (R-C) 

[50]: cerebral arteries 

and 

veins, CSF;  

[51]: PCA + venous,  

[53]: pial 

arteries/veins,  

body circulation, 

CSF,ISF;)  

[54]: body circulation, 

large 

brain arteries and veins 

- 

Gutierrez (2004) 

[55], 

Vazquez (2008) 

[56], 

Barrett (2013) 

[57]  

[55]: dog 

limb; 

[56], [57]: 

human 

brain 

[55],[56]: unique vascular compartment; 

[57]: arteries, capillaries and veins 

 lumped 

tissue 

compartme

nt 
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Table 2. Geometric description of topological models (A = anatomical, G = geometrical). 

Reference Dimension 
and district 

Arterioles Venules Capillaries Inlet/Outlet Tissue 

Liu [16] (2009) 2D human eye A + G for 
smaller 
vessels 

 G 1 main inlet  
and 12 outlets 

as boundary  
condition 

Guibert (2010) 
[19]  

3D human 
brain 

A A G (2D 
mesh) 

multiple I/Os  

Fang (2008) [58], 
Reichold (2009) 
[18], Lorthois 
(2011) [59], Pan 
(2014) [30] 
 

[58], [18]: 3D 
rat cortex, 
[59], [52]: 3D 
human brain; 
[30]: 2D, rat 
mesentery 

A A A [18]: pial arteriole, 
draining venule;  
[30]: 1 main 
artery/vein, 30 
secondary inputs  
and 4 secondary 
outputs 

[58]: 230 × 230 
× 450 μm3 
region, 
[18]: 0.23 × 
0.23 × 0.45 
mm3 region  
[59]: 1.6 mm3 
region 

Fry (2013) [33]  3D, hamster 
cremaster 
Muscle 

A smaller 
arterioles + 
G large 
arterioles 

A smaller 
veins +G 
large 
veins 

A 1 main artery and 2 
veins, 6 terminal 
arteries 

3D 
parallelepiped 

Gould (2015) [17]  3D, human 
brain 

A + G for 
smaller 
vessels 

A + G for 
smaller 
vessels 

G (Voronoi 
tessellation)

1 main artery and 1 
main vein 

27 mm3 

Boas (2008) [60]. 
Takahashi (2014) 
[61]  

[60]: 1D 
human brain ; 
[61]: 1D 

G G G 1 main artery and 1 
main vein 

 

Ganesan (2010) 
[62]  

3D rat retina A A G (2D 
mesh) 

6 main arteries and 
6 main veins 

 

Causin (2016) 
[29]  

3D human 
retina 

DLA 
algorithm 

DLA 
algorithm

G 
(equivalent 
resistance)

1 main artery and 1 
main vein 

1D slabs (250 
μm) 

El-Bouri (2015) 
[63], 
Su (2012) [34], 
Safaeian (2013) 
[35], 
Gagnon (2015) 
[64], Tsoukias 
(2007) [65], Park 
(2016) [66]  

[63], [34], 
[35], [58]: 3D 
human brain; 
[65]: 3D 
hamster cheek 
pouch 
retractor 
muscle; [64]: 
2D brain;  
 

  G with 
[34] 
investigati
on of 
different 
approaches 
(shortest 
arc, 
Gamma 
distribution, 
spanning 
tree); [58]: 
minimum 
spanning 
tree; [35]: 
Voronoi 
tessellation
; [64]: 
hexagonal 
tessellation

[34]: two outlet 
and inlet junctions; 
[35]: twelve inlet 
and 24 outlet 
flows; [56]: 1 
inflowing arteriole  
and 3 outflowing 
venules; [65]: 2 
arteriolar inlets and 
two venous outlets; 
[66]: multiple I/Os 
 

[63]: cubes 
with side  
from 125 to 
625 µm;  
[34]: cube with 
side 10 μm;  
[35]: 0.6 × 0.38 
× 0.3 mm3 
region; 
[65]: 100 × 
100× 800 mm3 

region 

Gorodnova (2016) 
[67]  

3D G (directed 
force layout 
algorithm) 

G 
(directed 
force 
layout 
algorithm)

G (fractal) 1 inlet and 
multiple outlets 

sphere of radius 
of 0.6 cm 
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3.1. Continuum modeling of blood flow 

Blood flow in the microcirculation differs substantially from flow in large vessels. In the 
microcirculation, inertial effects as well as pulsatility are generally neglected (see [72] for 
exceptions). A large majority of blood flow models applied to the study of networks treat blood as a 
(multiphase) continuum. In the simplest approach, whole blood flow is described as the flow of a 
Newtonian fluid governed by the Stokes equations. Poiseuille’s law has been traditionally used as a 
first approximation of such equations. In this context, the volumetric flow Q in the vessel is 
proportional to the pressure drop ∆  along the vessel and the fourth power of the vessel radius :  

 
8
∙

∆
  (1)

The symbol  in Eq. 1 is the whole blood viscosity. In comprehensive models of the circulatory 
system,  is generally prescribed as a constant [54] (see also [59] for the same choice in a smaller 
network). More physiologically-relevant expressions for 	  have been obtained from empirical 
equations fitting the Fåhraeus and Fåhraeus-Lindqvist effects to a range of hemodynamic 
measurements [15]. As reviewed in [73,74], in vitro data were originally used to determine a 
relationship between effective viscosity, hematocrit and glass-tube diameter. This relationship was 
subsequently modified based on data that showed a greater in vivo resistance. Specifically,  
corresponds to the concept of bulk (“apparent”) viscosity and is formally obtained from 
experimental data and upon application of the Hagen-Poseuille model as: 

	
8
∙

∆
(2)

Often, the relative value of the apparent viscosity (i.e., normalized with respect to plasma 
viscosity) is provided. Recently, an improved model of viscosity has been devised by including the 
effects of the endothelial surface layer (ESL) [74]. Alternative models for the viscosity have been 
proposed in [75], where an empirical equation for the apparent relative viscosity was derived as a 
function of hematocrit, and in [23], where an expression for  as a function of radius was proposed 
(see also [76]). Further attempts to develop physically consistent constitutive models of blood 
viewed as a non-Newtonian fluid have led, for example, to the use of the Casson-Quemada model, 
where the viscosity depends on the shear rate (we refer to [77] for a comparative study of different 
constitutive equations). 

The hematocrit value appearing in the phenomenological relations for the viscosity may be 
prescribed as in [16] or can be treated as an unknown in the model, as done in [31,62,78]. When the 
hematocrit is computed, an additional equation for the mass conservation of the continuum fluid 
representing RBCs must be added to the system, and volume fractions for plasma and RBC phases 
must be taken into account according to mixture theory [79].  

When modeling a network of vessels, an analogy to Kirchhoff’s first rule for electrical networks 
is generally adopted at the vessel bifurcations, where flux and RBC flux mass balances are enforced 
(see [62] for a detailed discussion of the related numerical procedure); pressure continuity is also 
usually enforced at bifurcation nodes [60]. Due to the low Reynolds number of the flow in 
microvessels, the continuity of the static pressure at bifurcations is generally used instead of the 
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continuity of the total (static plus dynamic) pressure (see [80] for a discussion on this issue and [30] 
for an example where the continuity of the total pressure is considered). In a microvascular network, 
a proper treatment of plasma skimming at the bifurcations is also needed. Empirical equations have 
been developed that depend on the flow split in the bifurcation, the vessel diameters, and the 
discharge hematocrit in the parent vessel in [74,81]. An alternative approach that can be applied to 
branch points with more than two outflowing segments was proposed in [17]. Another alternative 
approach has been proposed based on the assumption that the distribution of RBCs in diverging 
bifurcations satisfy a mathematical principle of optimality [69]. 

A mathematically rigorous approach for computing blood flow in a vessel stems from the 
mathematical procedure of averaging the velocity field (approximated by a purely axial 
component) over the vessel cross section. Namely, introducing a system of cylindrical coordinates 
( , ,	  and assuming that the variables are separable, one sets 

	 (3)

where  is the average velocity on the cross section , such that ,  and where  is a 
prescribed radial shape function. A typical velocity profile is given by the function [82] 

  1 ]  (4)

where  is a bluntness parameter ranging from 2 (parabolic profile) to 9 (plug flow profile). This 
approach allows for a rigorous asymptotic analysis of the various contributions arising in the 
balance equations.  

To obtain a unique solution for the fluid-dynamic fields in the network, it is necessary to impose 
(i) flow or pressure boundary conditions on inflowing and outflowing segments and (ii) hematocrit 
boundary conditions on inflowing segments. Difficulties may arise when multiple inflows/outflows 
exist but the corresponding boundary conditions are not all available from experiments. Several 
approaches have been used to address this issue. The use of literature-based typical values at outflow 
under the satisfaction of “target constraints” is the basis of the approaches proposed in [83]. A 
parametric analysis of boundary condition values has been carried out as well in [83] and [59]. 

An immediate extension of the homogeneous continuum was originally proposed in [84] and 
further developed in several works. In these approaches, the domain is usually a single cylindrical 
vessel in which two layers are arranged in a concentric fashion: an external plasma region (denoted 
here below by ‘ ’) devoid of cells and a core RBC region (denoted here below by ‘ ’). Each layer is 
generally supposed to consist of an incompressible Newtonian fluid with constant viscosity (  in  
and 	in , usually ). Imposing the balance of mass and momentum in each fluid domain 
with appropriate interface boundary conditions (continuity of velocity and shear stress are usually 
enforced [85,86,87]) yields two distinct velocity profiles of the type  

  ∆ 1
4

,
∆ ∗

4

∗

4
  (5)

where	 ∗is the (unknown) thickness of the cell depleted layer (see, e.g., [88] for a simplified trial-
and-error solution procedure to determine its size). The above relations for the core and cell depleted 
layer velocities have been again generalized to the case of blunted velocity profiles [89]. The overall 
mass balance of RBCs in the tube is then defined by:  
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  2 ,  (6)

where is the radial profile of the hematocrit, commonly chosen to be equal to zero in the cell 
depleted layer and equal to the (unknown) core hematocrit in the RBC layer [86]. Generally, the 
core hematocrit is assumed to be constant, but polynomial radial profiles [84],[90] have also been 
proposed. In [91], the RBC core was divided into two domains: an outer region characterized by 
reduced hematocrit with a constant or linear radial profile and linear variation of viscosity, and a core 
region with uniform hematocrit concentration and uniform viscosity. To compute the unknown 
quantities, model closure is performed in the above models using empirical data. For example,  
in [86], the core viscosity is described as a function of hematocrit via phenomenological equations 
using the model described in [71] or [92]. In some studies, the Oldroyd-B [93] or Casson [83] 
models have been used to describe the RBC core phase as a non-Newtonian fluid. In [89], a detailed 
derivation of the velocity profile in the core region considering a power-law fluid model is carried 
out.  

3.2. Mesoscale modeling of blood flow 

While a continuum description of blood is sufficient to obtain flow data for blood viewed as a 
bulk volume, more detailed studies are needed to consider the corpuscular nature of blood. Studying 
such details will aid the comparison and analysis of the mechanisms that lead to experimentally 
observed results of blood rheology. These approaches are known in the specialized literature as 
“mesoscale models”. Here, we limit ourselves to a brief description of the main approaches found in 
mesoscale models and we refer for additional details to the recent specific reviews by Cristini  
et al. [68] (till 2005), Secomb et al. [94] (till 2011), AlMomani et al. [95] (till 2012), Ju et al. [96] (till 
2015) and Ye et al. [97] (till 2016).  

3.2.1. Modeling of the cellular phase  

Red blood cells are the most abundant type of cells in blood. An adequate representation of their 
mechanical and rheological properties requires correct descriptions of the elastic and viscous 
properties of their membrane, the bending resistance of the membrane, and the difference in viscosity 
between the external and internal fluids. Deformable RBCs were first modeled with simple elastic 
models that evolved into hyperelastic models for fully deformable 3D cells. Both discrete and 
continuum models of the RBC membrane have been proposed. Discrete spring network models have 
been widely used to model the RBC membrane (see, e.g., [98,99]). A discrete representation of the 
membrane as a network of viscoelastic springs in combination with bending energy and constraints 
for surface-area and volume conservation is adopted for example in [100]. The continuum approach 
treats the whole cell as a homogeneous material represented by appropriate constitutive equations. 
Several models adopt the Mooney-Rivlin or Skalak constitutive relations, eventually adding bending 
resistance [101]. More complex constitutive equations, accounting for shear-thinning and 
viscoelasticity, have also been proposed (see, e.g., [102]). Mixture-type “biphasic models” as well as 
two-phase models of the cell as a deformable capsule with liquid cytoplasm enclosed by an elastic or 
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viscoelastic membrane have been used to represent the multiphase nature of the cellular  
components [103–107]). 

The number of RBCs being modeled dictates the numerical approach. Ye and colleagues 
developed a series of papers where a single RBC is considered (see [97] and references therein). This 
approximation is valid where RBCs move in single-file, namely in capillaries. More realistic 
simulations of multiple RBCs flowing through vessels with diameter ranging from 10 to 500 microns 
remains a major challenge. A large population (thousands) of RBCs is necessary to account for cell-
cell hydrodynamic interactions in these vessels. Sun et al. [105] used a Lattice-Boltzmann 
discretization to describe blood flow (plasma with suspended rigid particles) in a 2D channel. In 
recent years, some authors have proposed the use of hybrid models to describe single cellular 
components and their interaction in combination with a continuum representation of intra-cellular 
and extra-cellular processes (see the works by Bessonov and colleagues, e.g., [108]). 

A number of studies introduce mathematical models of other cellular components of blood, 
namely white blood cells and platelets immersed in plasma flow. Complex mechanisms involving 
these particles, such as coagulation and interactions between different types of cells, have also been 
studied. We refer to [109,110] for detailed overviews on these aspects. Moreover, we refer to [111] 
for an overview of the main mathematical models related to blood formation (hematopoiesis), 
disorders and treatments.  

3.2.2. Modeling of the plasma phase  

Lattice Boltzmann methods, mesh-free particle methods and dissipative particle dynamics 
(DPD) have been used to discretize the plasma component of blood. We refer to [112] for a detailed 
overview of these approaches and discussion of their applicability to problems of different scales.  

3.2.3. Modeling of cell-to-cell interactions 

RBCs immersed in plasma flow aggregate and form rouleaux due to mutual interactions. The 
equilibrium configuration and the cell shape are related to the strength of these interactions. 
Intercellular interactions and cell aggregation have been modeled using a Morse potential [113], 
according to a ligand-receptor binding model [114,115] or using a theoretical formulation of 
depletion energy [96]. 

3.2.4. Modeling of plasma-cell interactions 

The motion of the RBC membrane is coupled to the flow of the surrounding plasma, thus 
yielding a fluid-structure interaction problem. The difficulty of such a problem lies in the fact that 
RBCs can approach each other very closely, till aggregation. Moving mesh approaches are thus not 
frequently used, since meshes may face break down. The immersed boundary method has been a 
popular approach in combination with a fixed Cartesian mesh for the fluid [116]. Mesh-free particle 
methods have also been used where fluid-structure interactions are dealt with by adding elastic forces 
to membrane particles (see, e.g., [117], with an application to malaria infection). We refer to [118] 
for a comprehensive review of the possible numerical approaches in this context. 
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Table 3.  Models of blood flow in concentric regions (“a” = cell depleted layer, “c” = 
RBC core). 

Reference Cell-depleted  
layer fluid 
model 

Core layer  
fluid model  

Hematocrit  
model 

Viscosity  
model 

Sharan [86] (2001) 
[88] 

Newtonian 
fluid, 
Poiseuille 
flow 

Newtonian fluid,  
Poiseuille flow 

constant in c, zero in a, 
relation between tube 
hematocrit and core  
hematocrit from Pries’  
model  

model from Pries 

Verma (2014) [89], 
Zaman (2016) [93], 
Shaw (2014) [119], 
Sriram (2014) [69], 
Das (1998) [90]  

Newtonian 
fluid, 
Poiseuille 
flow 

axial flow; [89], 
[121]: power law 
fluid; [93]: Oldroyd-
B fluid; [119]: 
Casson fluid with  
glycocalyx layer;  
[69], [90]: Quemada 
fluid 

[89]: constant in c, zero 
in a, parametric analysis, 
[93]: no hematocrit; 
[119]: given constant in 
c; [69]: constant in c, 
zero in a; [90]: 
polynomial expression in 
c and small value in a. 

[89]: prescribed 
constant values; 
Zaman: prescribed 
relaxation and 
retardation parameters; 
[119]: constant in a, 
Pries model in c;  
[69]: constant in a, 
fitted from data in c; 
[90]: analytic 
expression function of 
hematocrit 

Chebbi (2015) [88] Newtonian 
fluid, 
Poiseuille 
flow 

Newtonian fluid, 
Poiseuille flow 

constant in c, zero in a, 
plasma skimming model 
(bifurcation) 

constant value 

3.3. Blood flow in homogenized tissue-perfused models 

The idea of explicitly modeling arteriolar and venular trees and using homogenization 
techniques to describe the capillary-perfused tissue is the focus of several studies. The concept of a 
capillary-perfused tissue relates to the theory of porous media. Fluid flow in this composite matrix is 
studied introducing effective permeability and diffusion coefficients. Several approaches have been 
proposed to compute these quantities, ranging from model unit cells [18] to asymptotic  
analysis [120]. Double porosity media have also been proposed in this context. In these models, a 
fracture pore system represents the embedded capillaries while a less permeable matrix pore system 
represents the interstitial fluid space [40]. 

4. Models of Gas Transport in Blood and Tissue 

The circulatory system is responsible for the transport, delivery and waste removal of gaseous 
species from blood to every tissue in the body. Oxygen, for example, is delivered to tissue via 
passive diffusion from blood, so blood must flow within a very short distance of every tissue point in 
the body. The distance that oxygen can diffuse into tissue is on the order of microns, and thus the 
circulatory system plays a critical role in transporting blood throughout the body via convection 
along a network of vessels before reaching the capillaries where the majority of diffusive oxygen 
exchange occurs. Blood gas transport involves a combination of convection, diffusion, permeation, 
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and/or chemical reactions and takes place over a range of special and temporal scales (see [15,121] 
for recent physiological reviews). The structural complexity and heterogeneity of the vascular 
networks of the microcirculation leads to heterogeneity also in tissue oxygenation and consumption. 
Experimental measures of the impact of such heterogeneity on tissue oxygenation are difficult to 
obtain, and thus theoretical modeling has served as an essential tool to characterize the physiological 
implications of such heterogeneity on oxygen delivery to tissue. Numerous theoretical models have 
been developed to describe the transport of oxygen to tissue by the microcirculation. These models 
include either steady-state or time-dependent oxygen transport descriptions from single or multiple 
vessels, as reviewed previously [122,123]. 

The value of theoretical models in providing a quantitative understanding of organ function at 
homeostasis and in pathological states such as ischemia and hypoxia has long been recognized. 
Studies of gas transport from blood to tissue date back to the pioneering work of Krogh [124] in 
1919, and were mainly focused on O2 transport. These studies sought certain quantities of interest: (i) 
tissue O2 extraction fraction (OEF), defined as the weighted average inlet-outlet gas concentration, 
which is an important indicator of tissue viability; and (ii) (cerebral) metabolic rate of O2 ((C)MRO), 
which correlates BF and the metabolic rate of O2 consumption. We refer to [125] for a precise 
definition of these quantities and their inter-correlation. As established more recently, these two 
definitions are not sufficient for estimating tissue oxygen (gas) levels since the heterogeneity of the 
microcirculation leads to heterogeneity in gas gradients, chemical interactions among species, and 
the spatial distribution of gas in tissue. This section reviews models of gas transport in tissue and 
blood. We do not consider models devoted to the study of BOLD (blood-oxygenation level 
dependent) signals in medical imaging, for which a vast literature exists. We refer for this topic  
to [83,126] and references therein. 

4.1. Modeling gas transport in tissue 

4.1.1. Krogh cylinder model  

The Krogh cylinder model [124] defines an array of parallel, evenly spaced oxygen-delivering 
vessels (e.g., capillaries) that supply oxygen exclusively to tissue cylinders surrounding each vessel. 
In this model, tissue oxygen consumption is assumed constant, the tissue partial pressure of oxygen 
( ) at the capillary wall equals the average capillary PO2, axial diffusion of oxygen is neglected, 
and tissue oxygen solubility and diffusivity are uniform. Eq. 7 gives the partial differential equation 
for the partial pressure of species  in the cylindrical tissue surrounding a capillary: 

  0
1

,  (7)

where  is the radial coordinate and  and  are the constant tissue diffusivity and 
source/consumption rate (possibly depending on other chemicals), respectively. An explicit solution 
of Eq. 7 can be found using a Bessel function expansion that gives the radial variation in tissue gas 
partial pressure as a function of radial distance from the vessel. Although the model includes many 
simplifications and often does not yield predictions that are consistent with experimental measures, 
the Krogh model provides an important foundation in the study of oxygen exchange with tissue and 
has been used and improved upon by several models. 
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The Krogh model has been extended to include other effects including time-dependent  
transport [127], -dependent O2 consumption (e.g., Michaelis-Menten kinetics) [128,129,130], 
myoglobin-facilitated tissue transport and intravascular resistance to radial oxygen diffusion. 
Myoglobin (Mb) can bind and release oxygen in the same way as the hemoglobin molecule, and thus 
movement of myoglobin can increase oxygen diffusion (known as myoglobin facilitation). In several 
models, the term for total oxygen flux is altered to include the effects of Mb  
facilitation [131,132,133], and the models predict that this extra term provides tissue with some 
resistance to hypoxia by increasing oxygen diffusion to low-PO2 regions. Capillary intravascular 
resistance arises from the PO2 drop between the center of a red blood cell and the capillary wall and 
has been shown to depend on capillary diameter and red blood cell velocity [78,134]. This factor can 
also be approximated in models by using a flux boundary condition on tissue PO2 at the outer edge of 
the capillary wall instead of the continuous PO2 condition of the Krogh model. Detailed reviews 
about the Krogh model and its applicability in standard and modified formulations are provided  
in [122,123,135,136]. 

4.1.2. Compartment models 

An alternative, yet related, simplified approach is represented by well-stirred compartment 
models, in which the tissue is characterized by a single, uniform compartmental 
concentration/pressure. The compartmental equation in the tissue can be formally obtained from 3D 
balance equations, performing volume averaging, yielding:  

 
,   (8)

where bars indicate average values,  is the tissue compartment volume and exchange with other 
compartments (including blood and a possible subdivision in interstitial and cell phases) with 
concentration 	is considered. This procedure and its connection with the Krogh model are outlined 
in [137]. 

Recent models of gas delivery adopt a fully spatially-dependent description of the gas content in 
tissue, where diffusive processes occur due to spatial gradients. In [42], the concept of “capillary-
perfused tissue” is introduced, in which the tissue description is enriched with terms representing gas 
exchange with embedded capillaries. Porous medium approximations of the tissue carried out  
in [18,138], where a seepage interstitial velocity computed from a Darcy model conveys the gas, are 
conceptually similar though mathematically more involved.  

4.2. Modeling gas transport in blood 

A prototype molar balance in blood for a generic gaseous species  is formulated in [139], 
according to the following partial differential equation: 

 ∙ ∆ , (9) 

where 	is the advective blood velocity (consistently computed, see Section 3 or prescribed), 	the 
gas diffusion coefficient in blood and 	the reaction transform rate in blood. The gas content 
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(dissolved component)  and its partial pressure are related according to Henry’s law 
/ . In compartmental approaches, for example [50,55,140], Eq. 9 reduces to  

 , , ̅ ̅  (10)

In [22,139,141], multiple vessel compartments are considered, and thus Eq.10 also includes the 
cascade of gas from one vessel hierarchy to the next.  

When dealing with a spatially resolved form of Eq. 9, as with blood flow models, a radial gas 
concentration profile is prescribed via cross-sectional averaging. A mathematical characterization of 
this procedure can be found for a generic solute in [142] and specifically for O2 in [29]. 

In Eq. 9, blood is treated as a single-phase continuum and the -th gaseous species is 
characterized by a single partial pressure value. More generally, gases like O2, CO2 and NO are 
carried in blood in hemoglobin-bounded form and dissolved form. A multi-phase model of blood 
(plasma dissolved and RBC-bound fractions) is a more suitable choice to represent a wider range of 
conditions. For example, for oxygen, the total concentration in blood can be written as  

 , , , 1 , , , , , (11)

where the subscript  indicates the fraction dissolved in plasma and the subscript  indicates the 
fraction dissolved in the RBCs; where ,  and (1- , 	are the hemoglobin bound and free 
fractions, respectively; and where ,  is the hemoglobin carrying capacity for oxygen. Typically, 
the free part in the plasma and the free part in the RBCs are assumed to be at the same partial 
pressure, so that , = , = . Also, local chemical equilibrium is usually assumed for the 
free and bound fraction of the gas. This introduces a saturation function , connecting the 
partial pressure of free and bound gas fractions. The most common function used to describe 
saturation is the Hill equation, which supposes a single-step reaction kinetic for O2 binding to Hb. A 
few models assume non-equilibrium kinetics, as in the Adair equation (see [121] for a complete 
discussion of this topic). In non-equilibrium conditions, separate balance equations are written for the 
bound and the dissolved fractions that include reaction terms between the different forms (see [78]). 

In smaller vessels like capillaries, continuum-based approaches like the one in Eq. 9 may fail to 
yield accurate results. Approaches based on discrete modeling of RBCs address this issue. Generally, 
these models work in the frame of reference of the erythrocyte, which simplifies the numerical 
treatment of the reaction between oxygen and hemoglobin in RBCs. This idea was first used by [79], 
who used an analytical model with a cylindrical RBC and the adjacent tissue to compute MTCs.  
In [143], a model with concentric layers around the capillary for wall, interstitial fluid, and the tissue 
is presented. Recent contributions from this viewpoint can be found in [144]. 

Detailed mathematical models of the acid-base chemistry of blood based upon mass action and 
mass balance equations have been also developed (see, for example, [145]). Transport of other 
species (e.g., CO2, CO, NO, etc) affects the transport of oxygen and is thus also an important 
modeling consideration. More precisely, CO2 shifts the hemoglobin-oxygen saturation curve, CO 
competes with oxygen for binding sites to Hb, and NO inhibits mitochondrial oxygen consumption. 
Several studies have implemented such multi-species models, for example for oxygen and carbon 
dioxide [41,146–149]. Ye et al. [139] developed a compartmental model of oxygen-carbon dioxide 
transport in the microcirculation that uses a Krogh cylinder approach and accounts for the coupling 
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between oxygen and carbon dioxide transport. The equations for steady-state oxygen-carbon dioxide 
coupled transport in the microcirculation are given as: 

 
, 0 , , , , , , , 0,  

for i = 1, 2, …, n-2; g = 0,1 
(12) 

 
∑ , , , 0, 

for i = n; g = 0,1 
(13) 

where ci,g is the average total concentration of gas (g = 0 for oxygen, g = 1 for carbon dioxide) over 
the vessel cross-section, Mg is the metabolic rate, VT is the tissue volume, Fi is the countercurrent 
exchange of gas (omitted in the model), Ei is the diffusion conductance, and Pi is the partial pressure 
in the i-th compartment. The model predicts the distributions of PO2, PCO2, saturation, and pH 
within the vessel and tissue compartments and includes the Bohr effect and Haldane effect. The 
effects of the radial variation in PO2 and PCO2 and the difference between the metabolic rates of the 
vessel wall and tissue are included in the model to improve the accuracy of oxygen and carbon 
dioxide vessel-tissue conductance predictions. Overall, including the transport of multiple species 
significantly improves predictions of tissue oxygenation when compared with models including only 
transport of a single species. 

4.3. Modeling blood-tissue gas exchange 

Blood-tissue exchange occurs mainly in capillary beds, although arterioles are also sites of 
important gas exchange in some cases. For example, it has been observed that in the hamster 
retractor muscle, two-thirds of oxygen is exchanged in the arterioles and the rest in capillaries while 
cerebral cortical capillaries unload about twice the amount of oxygen to the brain tissue as compared 
to arterioles [42,150]. 

4.3.1. Fick’s Law models 

From a mathematical viewpoint, a straightforward representation of the exchange process 
prescribes a proportionality relation between gas concentration in different compartments (for 
example, between venous and tissue concentration [142,151] or between arteriolar and tissue 
concentration [152]). In these models, the transfer of gas through the vessel wall is defined according 
to Fick’s law:  

 ∆N
∆t

∆C
∆x ∆  (14)

where 
∆

∆
 is the amount of the gas substance exchanged per unit time,  is the diffusion coefficient 

for the substance through the vessel wall,  is the surface area available for diffusion, ΔC is the 
concentration difference across the vessel wall ( 	 	 ), ∆x is the thickness of the vessel 

wall (~1 μm) and  is the permeability of the capillary wall defined as /∆x [121]. The value  
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can be a given, fixed, parameter or can be computed from a consistently coupled model for tissue as 
for example in [29,31,58,60].  

In some approaches stemming from modifications of the Krogh model, a mass transfer 

coefficient ( ) is introduced, defined as 
̅

, where the bars indicate the average of the 

quantity per unit area of the vessel wall [123]. The , which can be considered as a permeability 
of the wall appearing in Eq.(12) [122], relates the PO2 drop from the intravascular space to the O2 
flux across the capillary wall. Since the  depends on hematocrit, prescribing it introduces the 
influence of RBC flow on tissue oxygenation. Occasionally, the  quantity is expressed as a 
function of the non-dimensional Nusselt [123] or Sherwood numbers [153].  

McGuire and Secomb [132,133] developed a model of oxygen transport to exercising skeletal 
muscle that is an example of an extended Krogh model that includes the effects of the decline in 
oxygen content of blood flowing along capillaries, intravascular resistance to oxygen diffusion, and 
myoglobin-facilitate diffusion. The oxygen consumption rates depend on both convective and 
diffusive limitations on oxygen deliver when oxygen demand is high.  

4.3.2. Green’s functions model 

Secomb et al. [154,155,156] introduced a steady-state model of oxygen transport in capillary 
networks and surrounding tissue based a Green’s function method (Eqs. 15–17). The model utilizes 
techniques from potential theory which seek to reduce the number of unknowns needed to represent 
the oxygen field. Vessels are modeled as discrete oxygen sources, and the tissue regions are 
considered oxygen sinks; the resulting oxygen concentration at a tissue point is calculated by 
summing the oxygen fields (called Green’s functions) produced by each of the surrounding blood 
vessels. The tissue is assumed homogeneous with respect to oxygen diffusivity (D) and solubility (α), 
and Eq. 15 is obtained from the conservation of mass where P is tissue PO2 and M(P) is the tissue 
consumption rate (usually assumed as a constant value or according to Michaelis-Menten kinetics). 
The Green’s function G(x,xi) is the solution of Eq. 16 and represents the PO2 at a point x resulting 
from a unit point source at xi. The PO2 is given by Eq. 17 where qi represents the distribution of 
source strengths. A great benefit of this model is the ability to predict tissue oxygenation for a 
heterogeneous network of capillaries in three dimensions. The model predicted a much lower 
minimum tissue PO2 than would be predicted by a corresponding Krogh model. 

   (15)

 ,  (16)

 ,  (17)

More detailed descriptions of the blood-tissue gas exchange are considered by some authors. 
They usually consider a single vessel and partition the vessel wall into three or four layers 
(endothelium, smooth muscle layer and adventitia). They study gas transport in the radial direction in 
the vessel according to diffusion-reaction equations solved by Bessel expansions. Such a model is 
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used in [147] in the context of O2-CO2 interaction, in [157,158,159] in the case of NO-O2 interaction, 
especially when dealing with the NO scavenging mechanism in artificial RBC substitutes, see 
e.g.,[159].  

5. Modeling of Passive and Active Regulation of Microvessels 

When modeling the regulation of blood flow through a network, there are several forces acting 
on a vessel wall that should be considered. First, blood flow creates a pressure inside the vessel 
lumen that distends the vessel. Pressure external to the vessel created from the surrounding fluids, 
organs, and cytoskeletal structures tends to compress the vessel. The difference between the internal 
and external pressures is known as transmural pressure. According to the Law of Laplace [160], the 
circumferential tension generated within the vessel wall exactly balances the transmural pressure so 
that the diameter of the vessel is maintained.  

The tension that is developed within the vessel wall can be divided into two main components: 
passive tension and active tension. Passive tension is generated by the structural components of the 
vessel wall such as collagen and elastin fibrils; active tension is generated in the vessel wall due to 
the contraction of smooth muscle cells. Vasoactive agents interact with the vascular smooth muscle 
(VSM) of arterioles to cause a change in muscle tone and, consequently, vessel diameter. An increase 
in VSM tone causes an increase in active tension and thus a constriction of the vessel; a relaxation of 
VSM cells causes a decrease in active tension and a dilation of the vessel. In this section, different 
approaches used to model blood flow regulation are reviewed, and the mechanisms to which vessels 
respond are summarized.  

5.1. Wall mechanics models 

Several studies have incorporated the passive and active components of wall tension when 
modeling vessel mechanics (e.g., as in Eq. 18 where T is wall tension). Gonzalez-Fernandez and 
Ermentrout [161] include passive and active length-tension relationships of smooth muscle in their 
model to predict the occurrence of vasomotion in small arteries. Passive tension is described in the 
model by a nonlinear function that includes terms for stiff collagen, compliant elastin fibers, and 
general vessel wall stiffness. Maximally active tension is represented by a modified Gaussian 
function. The resulting active tension is assumed to be the product of the maximally active tension 
and a factor between zero and one determined by intracellular calcium levels. Achakri [162] et al. 
propose a similar mechanism for the appearance of vasomotion that is dependent on the active 
behavior of vascular smooth muscle. Circumferential stress in the arterial wall is defined by the sum 
of passive stress (completely relaxed muscle) and active stress (contracted muscle). The nonlinear 
function for passive stress is based on experimental measures. The function for active stress reflects 
length-tension characteristics of muscle, and the level of muscle contraction is assumed to depend on 
the degree of activation of the contractile proteins, which depends on the concentration of calcium 
ions in the intracellular space. The rate of change of calcium is assumed to depend on arterial 
pressure and on endothelial shear stress.  

Similar mechanical definitions based on length-tension characteristics described in [161,162] 
are used in numerous theoretical models of blood flow regulation [22,33,163,164]. In these models, 
the passive tension is defined as an exponential function of diameter with parameters estimated from 
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several experimental studies giving pressure-diameter curves for vessels with diameters ranging from 
40 to 300 μm (Eq. 19). The exponential function represents the observed nonlinear behavior of 
tension increasing rapidly as diameter increases. A Gaussian function is used to describe the 
maximally active tension generated by the VSM cells in the vessel wall (Eq. 20). The activation 
function that determines the level of VSM tone varies between 0 and 1 and is assumed to be a 
sigmoidal function (Eq. 21) of a stimulus function that depends on linear combinations of various 
factors (see Section 5.3, Eq. 22)). In the studies that incorporate this description of wall tension the 
model predictions are compared with experimental data and show a good fit [22,164,165,166].  

  (18)

 

 
exp 1  (19)

 
1   
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 1
1 exp

 (21)

  (22)

Ursino and colleagues [50,167,168] have employed a similar modeling approach in which the inner 
radius of a vessel is computed from the equilibrium of forces acting on the vessel wall (Law of 
Laplace). Wall tension is considered the sum of elastic, smooth muscle, and viscous tensions. 
Regulatory mechanisms are assumed to act on the smooth muscle tension of resistance vessels (i.e. 
arterioles). In these models, the relationship between active tension and inner vessel radius depends 
on an activation factor that represents the degree of smooth muscle contraction in a given vessel. The 
dynamics of various regulatory mechanisms are implemented using a first-order low-pass filter 
characterized by a gain function and time constant. This approach developed by Ursino has been 
adapted in several studies, including the comprehensive model of cerebral blood flow control 
presented by Banaji et al. [169]. 

5.2. Mechanistic tube law models 

In the absence of branching, a short section of vessel can be considered as a cylindrical 
compliant tube. One-dimensional blood flow models are obtained by averaging the incompressible 
Navier-Stokes equations (with constant viscosity) over a vessel cross section given some 
assumptions about the radial displacement and elastic material properties of the vessel wall. The 
following first-order, nonlinear hyperbolic system provides the one-dimensional equations for blood 
flow in elastic vessels: 
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Table 4. Models of oxygen/gas transport in blood and tissue (HL = Hill’s law, MM = Michaelis-Menten, FD = finite differences, FV 
= finite volumes, FEM = finite elements). 

Reference Gas Gas transport  

in blood 

Gas transport  

in tissue 

Blood-tissue  

exchange 

Numerical  

approach 

Target quantities 

Moschandreou 

(2011) [42] 

O2 (HL) bi-phasic mixture with 

distinction in rich blood 

core (advection-diffusion) 

and plasma layer (pure 

diffusion) in a single 

arteriole 

Krogh-like model 

with embedded 

mass transfer term 

with capillaries  

continuity  FD perivascular radial and axial O2 perfusion profiles, 

Sherwood number as a function of saturation and 

vessel radius 

Linninger (2013) 

[31], Beard (2001) 

[170], Park (2016) 

[66], Fang (2008) 

[58], Lucker 

(2015) [144]  

O2 [31], 

[58]: HL; 

[170]: Adair; 

HL, Clark 

unsteady convection for 

[31], [66]: mono-phasic 

blood; [170]:biphasic fluid 

(mixture) in 3D capillary 

network; [144]: bi-phasic 

flow in a single capillary 

with discrete RBCs;  

unsteady 

diffusion-reaction 

with [31]: first 

order metabolism, 

[170], [144]: MM 

with myoglobin 

facilitation, [66]: 

constant 

metabolic rate 

[31], [66], 

[58]: diffusive 

permeation; 

[170], [144]: 

continuity 

[31]: FV; 

[170]: FD; 

[58]: FEM 

[31]: blood O2 tension in an arteriole/venule sub-

unit, radial O2 profile; [170]: steady-state O2 

concentration profiles as a function of O2 

consumption, impact of myoglobin; [170]: CMRO 

and OEF as a function of transit time and BF; 

[58]:partial pressure of oxygen versus vessel 

diameter and O2 distribution in tissue; longitudinal 

O2 profiles, impact of instantaneous hematocrit 

fluctuations on tissue oxygenation 

Safaeian (2013) 

[35] (2013) [178], 

Jespersen (2012) 

[171], Lemon 

(1987) [172],  

Fry (2013) [33], 

Goldman (2000) 

[173], Tsoukias 

(2007) [65]  

[35], [171], 

[33]: O2 

(HL); O2 

(Moll); [65]: 

O2 (HL) + 

Hb carriers 

steady convection for mono-

phasic blood in [171] a single 

capillary (in collection of 

capillaries with different 

transit times) or [33], [173] 

vessel/capillary network, bi-

phasic mixture in [35], [65] 

anatomical network or [172] 

single capillary 

[35], [33]: steady 

diffusion-reaction 

in 3D volume; 

[171], [172]: 

given constant O2 

pressure in tissue; 

[173], [65]: steady 

diffusion-reaction 

with myoglobin 

facilitation 

[35]: pointwise 

sources; [171], 

[172], [65]: 

first order 

exchange with 

permeation; 

[33]: pointwise 

sources; [173]: 

hematocrit 

dependent 

permeation 

[178], [160]: 

Green’s 

function 

method, 

[172]: FD + 

FEM; [173], 

[65]: FD 

tissue O2 pressure distribution for different CMRO 

and perfusion levels, OEF as a function of BF 

(comparison with Buxton model); [171]: net O2 

extraction as a function of transit time, tissue O2 

concentration and capillary arrangement; [172]: 

O2 profiles in radial and axial directions as a 

function of chemical equilibrium parameters; [33]: 

O2 contour curves in tissue slices for different 

CMRO; [173]: study of geometric factors (shunts, 

tortuosity) in O2 levels in tissue and axial O2 

profiles in capillaries; [65]: PO in the capillaries 

and O2 in tissue as a function of the Hb substitute 
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Eggleton (2000) 

[143]  

O2 unsteady diffusion in 

single erythrocytes and 

plasma in a capillary 

vessel  

unsteady 

diffusion-

convection in 

annular muscular 

region 

FEMs in a 

frame moving 

with RBC 

velocity 

 radial O2 profile, local mass transfer 

coefficient for 1s simulated time, MTC  

Tsoukias (2003) 

[174], Chen (2007) 

[138]  

[174]: NO, 

O2 + NO 

steady diffusion-

convection-reaction for 

[174] capillary with 

discrete parachute-shaped 

RBCs, [138] straight 

arteriole and venule pair;  

[174]: steady 

diffusion-

convection-

reaction for 2D 

tissue and 

interstitium; 

[138]: diffusion-

convection porous 

medium perfused 

by capillaries 

[174]: 

continuity + 

(flux 

continuity 

with sources); 

[138]; first 

order reaction 

[174]: FEM 

+ moving 

frame for 

RBCs; 

[138]: semi-

analytic 

[174]: NO contour curves, comparison 

between discrete cell and continuum model, 

estimation of intravascular MTC; [138]: NO 

profiles, effect of capillary-perfused tissue 

Vazquez (2008) 

[56], Barrett 

(2013) [57]  

O2 (HL) unsteady balance for 

monophasic blood in [56] 

in capillary compartment, 

[57] arteries, capillaries, 

veins 

unsteady 

compartmental 

reaction 

permeation  ODE solver lumped tissue compartment; tissue and 

vascular O2 as a function of time for different 

permeability increase; [57]: sensitivity analysis 

on permeation parameter 

Reichold 

(2009)[18] 

generic 

solute 

unsteady graph-based 1D 

advection for monophasic 

fluid with upscaling 

procedure 

unsteady 

diffusion-reaction 

with upscaling 

permeation  FV  solute levels in tissue 
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0

 
(23) 

 
 (24) 

where x is the axial coordinate along the longitudinal axis of the vessel, t is time, A(x,t) is the cross-
sectional area of the vessel, q(x,t) is blood flow, p(x,t) is the average internal pressure over a cross 
section, f(x,t) is the friction force per unit length of the tube, ρ is the fluid density, and α is a 
coefficient that depends on the velocity profile assumed in the system.  

A complete derivation of these equations is provided in [80]. A tube law is implemented to close 
the system, where the transmural pressure (i.e., the difference between the internal pressure p(x,t) and 
external pressure pe(x,t)) is a function of cross-sectional area A(x,t) of the vessel and other parameters 
related to the geometric and mechanical properties of the system such the elasticity and stress-strain 
response curves for a vessel. Multiple different functions can be used to express this pressure-area 
relationship. Appropriate choices for such functions and parameters for both arteries and veins are 
described by Muller et al. They implement this tube law modeling approach when studying cerebral 
venous flow [20] and when developing a global multiscale model for the human circulation [54]. 

Similarly, fluid dynamic equations are derived from the continuity equation and momentum 
equation by Olufsen et al. [25]. In such models, the pressure-area relationship is shown to depend on 
Young’s modulus (E) in the circumferential direction. Young’s modulus is assumed to vary based on 
vessel type to reflect the elastin content of the vessel wall at different points along the arterial tree. 
For example, since small arteries are stiffer, E is chosen to be a function of vessel radius based on 
compliance estimates. In this way, the structural components of vessels are incorporated correctly 
into theoretical models. 

5.3. Factors eliciting a vasodilatory response in resistance vessels 

The models described in Sections 5.1 and 5.2 describe changes in vessel diameter due to various 
stimuli. Depending on the tissue and the metabolic conditions, vessels are known to respond to a 
great multitude of factors, including: pressure (myogenic response), shear stress, ATP concentration 
(conducted metabolic response), local metabolic factors, carbon dioxide concentration, hormones, 
neurological stimuli, and tubuloglomerular feedback. For example, in exercising muscle, metabolites 
from contracting muscle can cause direct vasodilation of resistance arterioles or indirect inhibition of 
noradrenaline release from nerves to prevent vasoconstriction [175]. Vasodilatory factors also affect 
vessels to very different extents depending on the size of the vessel. For example, sympathetic 
innervation is more pronounced in small vessels while the endothelium of large resistance vessels 
releases dilatory factors like nitric oxide at a much higher rate than small vessels [176]. 
Responsiveness to pressure (myogenic responsiveness) is expressed more distinctly in smaller 
vessels than larger vessels in some cases [176]. Despite differences in their reactivity, it has been 
shown that large and small vessels react in a coordinated manner, which is critical for an appropriate 
vasodilatory response. Network geometry also plays a role vasoactive responses. For example, the 
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anatomical relationship between pre- and post-capillary vessels allows for the diffusive exchange of 
substances between these vessels, providing important information about distal tissue regions to 
proximal vessels in the network [177].  

6. Focus: Modeling of the Retinal Circulation 

Various modeling techniques described in this article have been applied to understanding the 
geometry, mechanics and hemodynamics of the retinal microcirculation under both healthy and 
disease conditions. In this section, the various modeling techniques and methods used to study the 
retinal circulation are reviewed.  

6.1. Anatomic summary 

The retina is  the sensitive tissue lining the back of the eye. It collects the visual signal and sends 
it to the brain in the form of a neural signal. These tasks imply high oxygen demands. The retina 
receives oxygen from two distinct vascular systems [178]: the retinal blood vessels and the choroidal 
blood vessels (see 3). The first system specifically provides nourishment to the innermost retinal 
layers, while the choroid choriocapillaris provide nourishment via diffusion to the outermost retinal 
layers, which are normally avascular. Oxygenated blood is supplied to the retina by the central retinal 
artery (CRA) which, at the entrance of the optic nerve head, is approximately 170 m in diameter. 
The CRA branches into the superior and inferior papillary arteries, which in turn divide again, with 
each branch supplying roughly a quadrant of the retina. The major branching arteries are 
approximately 120 m in diameter. In the posterior retina, the fine arterioles that arise by side-arm 
branching leave the main arteries and enter the inner plexiform and ganglion cell layers. Only 
capillaries are found as deep as the inner nuclear layer. The venous system of the retina usually 
mirrors the arteriolar circulation. De-oxygenated blood is drained from the capillaries into 
successively larger veins that eventually converge into the central retinal vein (CRV). At the entrance 
of the optic nerve head, the CRV is approximately 220 m in diameter. 

 

Figure 3. Left: diagram of the lateral view of the eye; right: schematic section along 
retinal thickness with the blood supply system and the indication of the retinal layers 
mentioned in the text. 
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6.2. Geometric models of blood flow in the retinal circulation 

Takahashi et al. [23,61] developed a model of the microvasculature of the human retina using a 
fractal dichotomous branching structure. The model included arterioles stemming from the CRA, 
capillaries and venules converging into the CRV. Symmetric as well non-symmetric networks were 
considered. The model was used to quantify parameters such as blood pressure, blood flow, blood 
velocity, shear rate, and shear stress as a function of vessel diameter in the retinal microcirculation. 
Ganesan et al. [27] introduced a more realistic network model of the retinal using confocal 
microscopy images from a mouse retina to develop a complex network of microvessels that are 
distributed non-uniformly into multiple distinct retinal layers at varying depths. In the model, 
capillaries were represented as a circular mesh consisting of concentric rings along which several 
uniformly distributed nodes represent capillary vessels. The study defined a series of rules that 
explains the process of connecting the capillary network to arterial and venous networks to provide a 
complete and comprehensive vascular network of the retinal circulation. The model predicted the 
non-uniform repartition of blood hematocrit in the retina. In [179], Aletti et al. studied fluid-structure 
interactions in a 3D network representing the inferior temporal arteriole tree in the human retina. 
Typical diameters of the network were between 70 µm and 160 µm. They proposed a simplified 
model that could be used to solve the fluid problem on a fixed domain, where Robin-like boundary 
conditions represented the effect of the solid wall. In [180], Causin et al. adapted the geometry 
proposed by Takahashi in [61] to describe the retinal network. Blood flow and pressure drop in each 
vessel were related through a generalized Ohm’s law featuring a conductivity parameter, function of 
the area and shape of the vascular cross section. The model was used to study the response of the 
network to different interstitial and outlet pressures (or intraocular pressure, IOP). Phenomena of 
flow plateau, choking and flow diversion from one branch of the system to the other were predicted. 

6.3. Retinal blood flow regulation models 

Blood flow is regulated in the retina according to mechanistic responses to intraluminal pressure 
(myogenic response), shear stress, metabolite concentrations, and neural stimuli. Arciero et al. [22] 
developed a model that assessed the relative contributions of myogenic, shear, conducted metabolic, 
and carbon dioxide responses to blood flow in the retina. The model predicted that the metabolic 
responses were most significant in obtaining autoregulation of flow. This model has served as a 
foundation upon which more recent models have been developed to combine a mechanistic 
description of blood flow autoregulation in the retinal microcirculation with the mechanistic models 
described in Section 3. Arciero et al. [166], Carichino et al. [181] and Cassani et al. [182] have 
implemented Krogh-type models within a compartmental representation of the retinal 
microcirculation. These models yield predictions of blood flow that are consistent with experimental 
measures but do not capture the spatial variation of oxygen levels in retinal tissue. In [29], Causin et 
al. coupled a wall mechanics model with a model for oxygen transport in the retina and quantified 
the effects of blood pressure, blood rheology, arterial permeability to oxygen, and tissue oxygen 
demand on the distribution of oxygen in retinal blood vessels and tissue. 
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6.4. Models of gas transport in the retinal tissue 

Several models have been developed to estimate oxygen profiles in the avascular region of the 
retina (outer retina). Cringle and colleagues studied (see, e.g., [183,184]) oxygen delivery to the 
outer retina by 1D reaction-diffusion equations with constant or linear oxygen consumption in the 
region corresponding to photoreceptor mitochondria. The source of oxygen from choroid (not 
represented) was modeled as a boundary condition. The inclusion of the inner retinal layers along 
with the embedded blood sources in the inner retinal layer was proposed by Roos [185]. Oxygen 
sources were embedded in the inner retina via a prescribed flux term depending on blood convection. 
The effect of arterial occlusion was investigated, blocking the supply of blood from the inner retina. 
The results suggested that extreme hyperoxia would be needed to make the choroid capable of 
supplying oxygen to the entire retina by itself.  

One of the difficulties in modeling gas transport in the retina is that important parameters such 
as the average thickness of the retina, the choroidal tension and the structure of the inner retinal 
vascularization present relevant intra and inter-species differences. These model parameters are often 
fit to experimental data. For example, in [186] it was found by linear regression that the most 
metabolically active region extended from about 75% to 85% of the retinal depth from the vitreous. 

Table 5. Summary of blood flow regulation mechanisms in mathematical models of the 
microcirculation. 

Regulatory mechanism Model implementation Effect on vessel diameter 

myogenic response [166], [165], [163], [22], 

[187], [33], [188], [189] 

vasoconstriction 

shear-dependent response [187], [33], [52], [166], 

[22], [163], [165] 

vasodilation 

local metabolic response [187], [190] vasodilation 

conducted metabolic 

response 

[166], [22], [163], [33] vasodilation 

CO2 response [52], [166] vasodilation 

neural stimuli [191], [50], [52] Vasoconstriction or vasodilation 

6.5. Mechanistic models in retinal circulation  

The vasculature system of the retina is subjected to multiple mechanical forces. Intraocular 
pressure (IOP) from the anterior chamber of the eye, cerebral spinal fluid (CSF) pressure from the 
brain and tensions that come from the sclera exert significant biomechanical actions. The role of 
these actions is especially relevant near the entrance of the optic nerve head (ONH), where the nerve 
bundles pass through a sieve-like portion of sclera called lamina cribrosa (LC). The LC is also 
pierced by the CRA and CRV. Several mathematical models have described the mechanical response 
of the optic nerve head to variations in IOP, scleral tension and CSF pressure and its correlation to 
pathological conditions, in particular open angle glaucoma (see, e.g., [192–195]). In [196], Harris et 
al. analyzed the role of mathematical models in assessing how hemodynamic alterations may 
contribute to open angle glaucoma pathophysiology. A recent model by Guidoboni et al. [197] was 
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used to predict the effects of IOP, CSF pressure, and scleral tension on the deformation of the LC and 
the resulting effect on the flow of blood through the CRA and CRV. This information was 
incorporated into a more comprehensive model of the retina that accounts for the compression of the 
CRA/CRV by the lamina as well as blood flow regulatory mechanisms while IOP and mean arterial 
pressure (MAP) are varied [198]. The model represents veins as Starling resistors and accounts for 
venous compressibility. The model predicts that an increase in IOP or decrease in MAP do not have 
the same effect on ocular perfusion pressure due to the built-in compensatory mechanism in the veins 
to increase blood pressure in the retinal vasculature. In [199], Causin et al. demonstrated the 
relationship between stress state in the LC and blood perfusion using a poroelastic material model 
where blood vessels are viewed as pores in a solid elastic matrix. The model was used to investigate 
the influence on the distributions of stress, blood volume fraction (or vascular porosity) and blood 
velocity within the lamina cribrosa due to different levels of IOP and different mechanical constraints 
at the boundary of the lamina. The model simulations suggest that the degree of fixity of the 
boundary constraint strongly influences the lamina’s response to IOP elevation. 

7. Conclusions and Perspectives  

It was in 1661 that the physiologist M. Malpighi published the treatise “De pulmonibus 
observationes anatomicae” where he exposed the results of his observations of frog pulmonary 
alveoli obtained with a single lens microscope. His studies revealed for the first time the existence of 
a very fine network of vessels connecting arteries and veins. The importance of this discovery, and 
all the successive studies opened by it, is major. The microcirculation plays a fundamental role in the 
homeostasis of the body. Microcirculatory disorders are major contributors to morbidity and 
mortality. In the past few decades, much progress has been made in the mathematical and 
computational modeling of these complex systems. Their hierarchical structure includes at least three 
modeling scales, ranging from the cellular level to the vessel network level. There is a strong 
coupling of microvessels with the surrounding parenchymal tissue and cells. Feed-forward and 
feedback interactions have been envisaged [200]. The scenario is thus very complex. On the 
computational side, the applicability of high performance computing techniques favors large scale 
simulations, based on 3D anatomic models. This will be a steadily growing trend in future models. 
However, important gaps must still be filled. For example, to what extent can detailed single vessel 
simulations be enlarged to a network of thousands of vessels? Is the information from a single RBC 
tractable (and meaningful) to a much larger scale? What are appropriate upscaling techniques to 
transfer information between scales? These are only a few aspects that must be considered to 
advance in this field. Finally, we note that in this study we did not review the fundamental topic of 
drug delivery. The microcirculation is the ultimate site of exchange of substances/molecules and also 
functions as an important route for clearance. The delivery of drugs to certain organs can be difficult, 
such as in the brain due to the tight blood-barrier. Studies and numerical simulations of drug delivery 
rely on the precise knowledge of microcirculatory mechanisms. A correct representation of these 
latter is a fundamental background to obtain meaningful results.  
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