1	Perioperative Outcomes are Adversely Affected by Poor Pretransfer Adherence to Acute Limb
2	Ischemia Practice Guidelines
3	
4	S. Keisin Wang MD, Michael P. Murphy MD, Ashley R. Gutwein MD, Natalie A. Drucker MD, Michael
5	C. Dalsing MD, Raghu L. Motaganahalli MD, Gary W. Lemmon MD, and A. George Akingba MD PhD
6	
7	Division of Vascular Surgery, Department of Surgery, Indiana University School of Medicine
8	Indianapolis IN
9	
10	Corresponding Authors:
11	Michael P. Murphy MD
12	Associate Professor
13	Department of Surgery - Division of Vascular Surgery
14 15	Indiana University School of Medicine
15 16	1801 Senate Blvd MPC# 2-3500, Indianapolis, IN 46202
10 17	Findle. (317) 902-0282 Fax: (317) 962-0289
18	Email: mipmurph@iupui.edu
19	
20	S. Keisin Wang MD
21	Integrated Vascular Surgery Research Fellow
22	Department of Surgery - Division of Vascular Surgery
23	Indiana University School of Medicine
24	1801 Senate Blvd MPC# 2-3500. Indianapolis. IN 46202
25	Phone: (317) 962-0282
26	Fax: (317) 962-0289
27	Email: wangkei@iunui edu
28	Email: wangkere rupuneda
20	Presentation: The contents of this manuscript has been accepted for oral presentation to VESS Winter
30	2018 (Vail CO)
31	
32	Word Count: 2337 (Abstract, Background, Methods, Results, Discussion, Conclusion)
33	,
34	Disclosures: The authors have no relevant financial conflicts of interest to disclose.
35	
36	Acknowledgements: The authors wish to thank Luona Sun and Cynthia Richardson for their assistance in
37	data acquisition.

This is the author's manuscript of the article published in final edited form as:

Wang, S. K., Murphy, M. P., Gutwein, A. R., Drucker, N. A., Dalsing, M. C., Motaganahalli, R. L., ... Akingba, A. G. (2018). Perioperative Outcomes are Adversely Affected by Poor Pretransfer Adherence to Acute Limb Ischemia Practice Guidelines. Annals of Vascular Surgery. https://doi.org/10.1016/j.avsg.2017.11.050

38	Abstract		
39			
40	Objectives:		
41	The accepted treatment for acute limb ischemia (ALI) is immediate systemic anticoagulation and		
42	timely reperfusion to restore blood flow. In this study, we describe the retrospective assessment of		
43	pretransfer management decisions by referring hospitals to an academic tertiary care facility and its		
44	impact on perioperative adverse events.		
45			
46	Methods:		
47	A retrospective analysis of ALI patients transferred to us via our Level I Vascular Emergency		
48	program from 2010 to 2013 was performed. Patient demographics, comorbidities, Rutherford ischemia		
49	classification, time to anticoagulation, and time to reperfusion were tabulated and analyzed for correlation		
50	to incidence of major adverse limb events (MALE), mortality, and bypass patency in the perioperative		
51	period (30-day postoperative). All time intervals were calculated from the onset of symptoms and		
52	categorized into three subcohorts (<6 hrs, 6-48 hrs, and >48 hrs).		
53			
54	Results:		
55	Eighty-seven patients with an average age of 64.0 (\pm 16.2) years presented to outlying hospitals		
56	and was transferred to us with lower extremity ALI. The mean delay from symptom onset to initial		
57	referring physician evaluation was 18.3 hrs. At that time of evaluation, 53.8% had Rutherford class IIA		
58	ischemia and 36.3% had class IIB ischemia. Seventy-six (87.4%) patients were started on heparin		
59	previous to transfer. However, only 44 (57.9%) patients reached therapeutic levels as measured by		
60	activated partial thromboplastin time (aPTT) prior to definitive revascularization. A delay of		
61	anticoagulation initiation >48 hrs from symptom onset was associated with increased 30-day		
62	reintervention rates compared with the <6 hrs group (66.7% vs. 23.5%; p <0.05). However, time to		
63	reperfusion had no statistically significant impact on MALE, 30-day mortality, or 30-day interventional		

- patency in our small cohorts. Additionally, patients with a previous revascularization had a higher 30-day
 reintervention rate (46.5%; *p*<0.05).
- 66
- 67 Conclusions:
- 68 The practice of timely therapeutic anticoagulation of patients referred for ALI from community
- 69 facilities occurs less frequently than expected and is associated with an increased perioperative
- 70 reintervention rate.

CER MARK

71	Background		
72			
73	Paramount to the treatment of ALI is prompt diagnosis, anticoagulation, and timely		
74	revascularization to minimize the risk of limb loss. ¹ Unfortunately, delays in diagnosis and treatment		
75	continue to be a significant challenge, especially in those who are initially evaluated at a community		
76	hospital without dedicated vascular specialists. ² Our Level I Vascular Emergency program was initiated		
77	in 2009 as part of an effort to improve vascular outcomes in the State of Indiana. Transferring facilities		
78	state the diagnosis, hospital location, and urgency of pathology. All patients stable enough for transfer		
79	are accepted, and transportation is accomplished by ground or air at the discretion of the accepting		
80	physician and weather conditions.		
81			
82	Although revascularization strategies and outcomes are well studied, there is a relative dearth of		
83	knowledge regarding the effect of preintervention anticoagulation with timely triage and their effects on		
84	limb salvage and mortality. ³ Therefore, the purpose of this study was to review our three-year		
85	experience, immediately after initiation of the Level I program, with the pretransfer care of ALI patients		
86	at our tertiary referral center and the outcomes associated with deviations from defined ideal		
87	management.		

88	Methods	
89		
90	After approval from the Indiana University Institutional Review Board (IRB), we performed a	
91	retrospective analysis of a prospectively maintained database of all patients diagnosed with ALI	
92	transferred to our facility via our Level I program from Jan 2010 to August 2013. For purposes of this	
93	study, ALI was defined as a cold, painful, ischemic limb presenting within a week of symptom onset. ^{4,5}	
94		
95	Patient demographics, comorbidities, Rutherford ischemia severity, time to heparinization, time	
96	to revascularization, and postoperative outcomes were abstracted via review of medical records. Times to	
97	emergency room (ER) presentation, heparin initiation, and revascularization were all recorded from the	
98	time of symptom onset and arbitrarily categorized into three subgroups (<6 hrs, 6-48 hrs, and >48 hrs).	
99	Our 30-day outcomes of interest were major amputation (above ankle), interventional patency, need for	
100	vascular reinterventions, and mortality. Categorical variables were compared with Fisher's exact tests	
101	while continuous variables (± standard deviation) were compared with Student's T-tests at an α of 0.05.	

n.. , variables (± sta..

102	Results		
103			
104	Comorbidities		
105			
106	In the three years queried, 103 patients with limb ischemia were transferred to us as a Level I		
107	Vascular Emergency; patients presenting with upper limb ischemia were excluded leaving 87 remaining		
108	cases. Demographics and comorbidities of the study population are detailed in Table 1. The average age		
109	of our population was 64.5 (\pm 16.2) years with a slight predisposition towards the male gender (57.5%).		
110	The most common comorbidity in this population was CAD (70.7%). Atrial fibrillation, a frequent		
111	source of thromboembolism to the extremities, was present in 20.1% of subjects. Additionally, 39.0% of		
112	the patients had a previous history of ipsilateral vascular bypass and 40.2% were actively smoking at the		
113	time of ALI onset.		
114			
115	Preinterventional Management		
116			
117	The mean duration of time from symptom onset to initial outside hospital (OSH) evaluation was		
118	18.3 hrs (range = $1-118$ hrs, median = 6 hrs). At the time of evaluation by the first physician, 53.8% had		
119	Rutherford class IIA ischemia and 36.3% had class IIB ischemia. The average delay from initial OSH		
120	evaluation to evaluation by a tertiary care hospital physician was 3.0 hrs (median = 2.0 hrs). After arrival		
121	to our facility from a mean transfer distance of 48.0 miles (range 1-183 = miles, median = 47 miles),		
122	mean delay until definitive blood flow restoration was 9.5 hrs (median = 5.0 hrs).		
123			
124	Among the 76 (87.4%) patients who received systemic heparin previous to transfer, only 44		
125	(57.9%) reached a documented therapeutic aPTT before their operation (Table 2). Of the remaining		
126	anticoagulated patients, 13 maintained nontherapeutic aPTTs while 19 patients did not have an aPTT		
127	measured before revascularization. Of those without a documented aPTT, 89.5% presented emergently		

for IIB ischemia and had intraoperative activated clotting times (ACT) on record. Of note, only 10
(11.5%) patients received heparin and were documented therapeutic by aPTT in less than 6 hrs from
symptom onset. Eleven (12.6%) patients were not anticoagulated at all after presentation to the
transferring facility. The reasons for not starting anticoagulation were unclear in all cases; however, two
patients clearly did not have a salvageable limb. There were no differences between patients with IIA and
IIB ischemia in terms of delays to heparin initiation (*p*=0.25) or revascularization (*p*=0.47).

134

135 Intervention

136 Arterial flow was restored in only three (3.4%) patients via a completely percutaneous approach. 137 All three patients were in IIA ischemia at presentation and consisted of one with an acutely thrombosed 138 PTFE graft who was thrombolysed and two occlusions of the iliac and superficial femoral arteries treated 139 by angioplasty and stenting. The remaining revascularizations utilized a primarily open technique. Of 140 these patients, 50 (59.5%) required primary thromboembolectomy while 28 (33.3%) patients required a de novo lower extremity vascular bypass. Only 12.6% of the total study population was revascularized 141 within 6 hrs of symptom onset. However, in the IIB ischemia subcohort, 36.3% was revascularized 142 143 within 6 hrs of symptom onset.

144

145 30-day Major Adverse Events

146

147 *Major Amputations:*

The 30-day major amputation rate for all transferred ALI patients was 13.1% (**Table 3**). Time to anticoagulation did not affect amputation risk. We did not observe a difference between Rutherford IIA and IIB patients (p=0.43); however, both groups experienced a lower amputation rate compared to those presenting with class III ischemia (p<0.01). A history of an ipsilateral revascularization did not influence amputation risk (p=0.49). Delays to therapeutic aPTT and revascularization did not influence perioperative major amputation rates in our population.

154

155 *Reinterventions:*

The overall 30-day vascular reintervention rate was 36.8%. We observed a difference in reintervention based on time to systemic heparinization with the >48 hrs cohort experiencing a 66.7% event rate compared to a 23.5% in patients heparinized in <6 hrs (p<0.05). Patients who had a previous ipsilateral revascularization were at a higher risk of reintervention (46.7% vs 36.8%, p<0.05). No difference was observed between class IIA and IIB ischemia patients. Those who delayed ER presentation (>48 hrs) also were at greater risk for perioperative reintervention (p<0.05). Delays until therapeutic aPTT and revascularization did not influence perioperative vascular reintervention risk.

164 *Patency:*

165 The overall 30-day interventional patency rate was 72.2%. There was no difference based on 166 delay to heparinization; although, a nonsignificant inferior patency rate was noted in the >48 hrs cohort 167 compared to the minimal delay cohort (60% vs 76.5%, p=0.42). Additionally, we observed no difference 168 between class IIA and IIB patients. There was also no difference based on delay to ER presentation or 169 presence of previous ipsilateral bypass. Delays until therapeutic aPTT and revascularization did not 170 influence perioperative patency.

171

172 *Mortality:*

The overall 30-day mortality was 7.9%. The most common cause of death was septic shock (n=3) followed by myocardial infarction (n=1), multiorgan systems failure (n=1), and acute mesenteric ischemia (n=1). While there was no statistical difference in mortality by time to anticoagulation, a trend was observed. All patients who were heparinized without delay survived, compared to a 10.0% mortality (p=0.28) in the 6-48 hrs group and 13.3% (p=0.20) in the >48 hrs group. The degree of Rutherford ischemia did not seem to affect perioperative mortality in our population. Similarly, delays until therapeutic aPTT and revascularization did not influence perioperative mortality.

180	Discussion
181	
182	In ALI, a sudden cessation of arterial blood flow directly blocks nerve, soft tissue, and
183	musculoskeletal access to resources vital to cell survival. ⁶ In this setting, a patient has approximately six
184	hours for restoration of blood carrying oxygen and nutrients before irreversible functional damage
185	occurs. ⁷ However, the duration until irreversible damage is dependent on tissue conditioning and degree
186	of collateralization from preexisting baseline vascular disease. ⁸ Therefore, clinical scoring systems are
187	utilized to predict disease severity to guide treatment individualization.9 Of particular importance is the
188	Rutherford ALI categorization system, an easy to use clinical tool which classifies ischemia severity and
189	guides urgency to revascularization. ⁵
190	
191	The latest ALI consensus practice guideline was developed in conjunction with the Society of
192	Vascular Surgery, American Heart Association, Intersociety Consensus for the Management of Peripheral
193	Arterial Disease, and representative bodies of cardiology, radiology, and vascular medicine. In these
194	guidelines, only four level I recommendations pertain to the preoperative care of the ALI patient
195	(Figure). ¹⁰ At the time of presentation to any facility, patients suspected of ALI should be evaluated by
196	an experienced clinician comfortable with the assessment of limb viability and can implement immediate
197	medical therapy. At that time, a comprehensive history should be taken to determine the cause of
198	thrombosis or embolization. Additionally, the initial evaluation should focus on the rapid assessment of
199	1) limb viability and 2) potential for salvage. It is key to note that this assessment does not require
200	imaging, especially if it may delay appropriate triage. After diagnosis, prompt systemic anticoagulation
201	should be initiated unless a hard contraindication is present. ¹¹
202	
203	The use of any antiplatelet and/or anticoagulant must be communicated clearly and concisely by
204	the transferring team. Especially important details to include are time of medication initiation and dose.
205	In our review, 13 patients received heparin without documentation of initiation time by the transferring

206	team. Additionally, 11 patients did not receive heparin at the transferring facility at all. While two limbs			
207	were clearly nonsalvageable, none of these 11 patients had a clear contraindication on retrospective chart			
208	review. While a possible explanation may be an attempt to avoid coagulopathy during surgery by			
209	clinicians uncomfortable with preoperative anticoagulation, the short half-life of unfractionated heparin			
210	makes cessation of medication administration on the way to the OR an ideal therapeutic plan. ¹² We			
211	observed a trend of increasing mortality in those who had a delay until systemic heparinization. This			
212	effect may prove to be significant with a higher-powered study. Failure to anticoagulate in the ALI			
213	population is not an isolated problem for our facility; an European experience reported by Spanos et al			
214	reported their four-year experience of 112 consecutive ALI patients and found that only 67% of them			
215	were anticoagulated at the time of arrival after transfer. ¹³ A concerted effort should be made to			
216	emphasize the importance of prompt anticoagulation to our transferring colleagues.			
217				
218	The superior outcomes observed in ALI patients who received timely anticoagulation occurred			
219	regardless of their aPTT status in our study, thus underscoring the importance of anticoagulation and less			
220	so the emphasis on clotting times in limb salvage. We did not observe a significant difference in			
221	outcomes with regards to perioperative mortality, patency, and major amputation in those who had a >48			
222	hr delay to heparinization. However, this was almost certainly due to lack of power as clinical experience			
223	would dictate a morbid clinical course in these patients. Unless contraindicated, the best anticoagulant in			
224	the acute setting is IV unfractionated heparin. ¹⁴ The dosing of which is discussed in detail elsewhere. ¹⁵			
225	Despite limitations, aPTT remains the most convenient and frequently used method for monitoring in vivo			
226	heparin response. It should be measured minutes after initial medication bolus to confirm therapeutic			
227	effect and continuously monitored to gauge needed changes to the continuous rate. ¹⁶			
228				
229	A problem we encountered in our cohort was a significant delay in presentation to the initial			
230	hospital of more than 18 hours from symptom onset. The worst offenders were those with baseline			

231 disease and therefore assumed acute limb pain was a day-to-day variant of symptoms and not a sudden

232	progression of disease. This incorrect assumption often made a difference between the salvage of a		
233	functional limb or not. Therefore, the burden is on us, as vascular surgeons, to educate our patients on		
234	signs of ischemic progression from chronic disease to ALI in the office setting before it occurs.		
235			
236	Seven patients (8%) were transferred without documentation of a lower extremity pulse exam in		
237	the history and physical of the initial evaluating physician. Not only is this a clinical concern, but it may		
238	have serious medicolegal ramifications. A detailed lower extremity vascular exam is standard of care for		
239	any patient with limb pain, sensory loss, or motor dysfunction. ¹⁷ Although the pulse exam may be		
240	subjective, the following classification is recommended at minimum: a) normal, b) weakly palpable, c)		
241	doppler signal present, and d) no signal. ¹⁸ The status of the dorsalis pedis and posterior tibial arteries on		
242	both sides need to be documented in the medical record.		
243			
244	As is the case for any retrospective review, this study has some inherent limitations. ¹⁹ However,		
245	a recurring deficit which developed during data collection was the incomplete documentation from the		
246	transferring facilities on time of symptom onset, degree of ischemia, and time and effect of		
247	anticoagulation despite receiving all available medical records. Consequently, the patient pool for		
248	statistical analysis was reduced affecting the power to detect outcome differences. Although we did		
249	receive direct transfers from community vascular surgeons, most of the patients arrived from ERs staffed		
250	by emergency, family, and internal medicine specialists often uncomfortable with ALI management. As		
251	such, it is of upmost importance that the accepting physician clearly state to the transferring physician the		
252	treatment plan before, during, and after the transfer process.		

253	Conclusion	
254		
255	ALI is a challenging pathology for the vascular surgeon. In many regions, referral of those	
256	diagnosed at community hospitals to tertiary centers have become the established system. In this study,	
257	we report inferior perioperative outcomes associated with patients who did not receive treatment per ALI	
258	practice guidelines. Therefore, improved system-wide protocols in the diagnosis, care, and transfer of	
259	these patients are needed to provide safe, timely care.	

260	References	
261	1	Wang IC Kim AH Kashyan VS Open surgical or endoyascular revascularization for acute limb
262	1.	ischemia. Journal of vascular surgery. 2016:63(1):270-278.
263	2.	Lukasiewicz A. Treatment of acute lower limb ischaemia. VASA. Zeitschrift fur
264		Gefasskrankheiten, 2016:45(3):213-221.
265	3.	Lambert MA. Belch JJ. Medical management of critical limb ischaemia: where do we stand
266		today? Journal of internal medicine. 2013:274(4):295-307.
267	4.	Creager MA, Belkin M, Bluth EI, Casev DE, Jr., Chaturvedi S, Dake MD, et al. 2012
268		ACCF/AHA/ACR/SCAI/SIR/STS/SVM/SVN/SVS key data elements and definitions for
269		peripheral atherosclerotic vascular disease: a report of the American College of Cardiology
270		Foundation/American Heart Association Task Force on Clinical Data Standards (Writing
271		Committee to Develop Clinical Data Standards for Peripheral Atherosclerotic Vascular Disease).
272		<i>Circulation.</i> 2012;125(2):395-467.
273	5.	Rutherford RB, Baker JD, Ernst C, Johnston KW, Porter JM, Ahn S, et al. Recommended
274		standards for reports dealing with lower extremity ischemia: revised version. Journal of vascular
275		surgery. 1997;26(3):517-538.
276	6.	de Franciscis S, De Caridi G, Massara M, Spinelli F, Gallelli L, Buffone G, et al. Biomarkers in
277		post-reperfusion syndrome after acute lower limb ischaemia. International wound journal.
278		2016;13(5):854-859.
279	7.	Hausenloy DJ, Yellon DM. Ischaemic conditioning and reperfusion injury. <i>Nature reviews</i> .
280		Cardiology. 2016;13(4):193-209.
281	8.	Falluji N, Mukherjee D. Critical and acute limb ischemia: an overview. Angiology.
282		2014;65(2):137-146.
283	9.	Hardman RL, Jazaeri O, Yi J, Smith M, Gupta R. Overview of Classification Systems in
284		Peripheral Artery Disease. Seminars in Interventional Radiology. 2014;31(4):378-388.
285	10.	Gerhard-Herman MD, Gornik HL, Barrett C, Barshes NR, Corriere MA, Drachman DE, et al.
286		2016 AHA/ACC Guideline on the Management of Patients with Lower Extremity Peripheral
287		Artery Disease: Executive Summary. Vascular medicine (London, England). 2017;22(3):Np1-
288		np43.
289	11.	Kalathottukaren MT, Haynes CA, Kizhakkedathu JN. Approaches to prevent bleeding associated
290		with anticoagulants: current status and recent developments. Drug delivery and translational
291		research. 2017.
292	12.	van Rein N, Biedermann JS, van der Meer FJM, Cannegieter SC, Wiersma N, Vermaas HW, et
293		al. Major bleeding risks of different low-molecular-weight heparin agents: a cohort study in 12
294		934 patients treated for acute venous thrombosis. <i>Journal of thrombosis and haemostasis : JTH</i> .
295		2017;15(7):1386-1391.
296	13.	Spanos K, Athanasoulas A, Argyriou C, Vassilopoulos I, Giannoukas AD. Acute limb ischemia
297		and anticoagulation in patients with history of atrial fibrillation. International angiology : a
298		journal of the International Union of Angiology. 2016;35(5):510-515.
299	14.	Kearon C, Akl EA, Ornelas J, Blaivas A, Jimenez D, Bounameaux H, et al. Antithrombotic
300		Therapy for VTE Disease: CHEST Guideline and Expert Panel Report. Chest. 2016;149(2):315-
301	1.5	352.
302	15.	Safani M, Tobias S, Robinson M, Hwang J, Thomas GS. Average-Weight Methodology in
303		Weight-Based Unfractionated Heparin Therapy in the Presence of Obesity. <i>Chest.</i>
304	1.6	2017;151(5):1187-1188.
305	16.	Hosen LIVI, Breedlove EY, Scono LE, Knoderer CA. Evaluation of an Unfractionated Heparin
300		rharmacy Dosing Protocol for the Treatment of Venous Infomboembolism in Nonobese, Obese,
307	17	and Severely Obese Patients. <i>The Annals of pharmacotherapy</i> . 2017;51(9):768-773.
308	1/.	from bood to too. Current and islam reports 2015;17(7):(11
309		from head to toe. Current caratology reports. 2015;17(7):611.

- Montorfano MA, Pla F, Vera L, Cardillo O, Nigra SG, Montorfano LM. Point-of-care ultrasound
 and Doppler ultrasound evaluation of vascular injuries in penetrating and blunt trauma. *Critical ultrasound journal*. 2017;9(1):5.
- 313 19. Mantel N. Synthetic retrospective studies and related topics. *Biometrics*. 1973;29(3):479-486.

Legends

Table 1Demographics and comorbidities

Table 2Delays in treatment

Table 3

Perioperative outcomes by delay until heparinization from symptom onset. Fisher's exact testing was performed comparing the minimally delayed cohort (<6 hrs) to the remaining groups.

Figure

Summary of the latest AHA/ACC consensus practice guidelines

Condition	Incidence
Age	64.5 ± 16.2
Male	57.5%
CAD	70.7%
HTN	67.9%
Active Smoker	40.2%
HLD	37.8%
DM	32.1%
AF	20.1%
COPD	18.3%
Previous Ipsilateral Revascularization	39.0%
Rutherford Classification at Presentation	Incidence
Ι	7.5%
IIA	53.8%
IIB	36.3%
ш	2.5%

Delay to ER Presentation (n=87)	Incidence
<6 hrs	37.9%
6-48 hrs	25.3%
>48 hrs	16.1%
Unknown	20.7%
Delay to Heparin (n=76)	Incidence
<6 hrs	23.7%
6-48 hrs	39.5%
>48 hrs	19.7%
Unknown	17.1%
Delay to Revascularization (n=71)	Incidence
<6 hrs	12.7%
6-48 hrs	69.0%
>48 hrs	18.3%

Delay Until Systemic Heparinization

	<6hr	6-48hr	>48hr
30-day Amputation	16.7%	6.9%	21.4%
		<i>p</i> =0.36	<i>p</i> =1.0
30-day Reintervention	23.5%	32.2%	66.7%
		<i>p</i> =0.74	<i>p</i> =0.03
30-day Mortality	0%	10.0%	13.3%
		<i>p</i> =0.28	<i>p</i> =0.20
30-day Patency	76.5%	74.1%	60%
		<i>p</i> =1.0	<i>p</i> =0.42

