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Abstract 

Alcohol use disorder is a widespread mental illness characterized by periods of 

abstinence followed by recidivism, and stress is the primary trigger of relapse. Despite 

the higher prevalence of alcohol use disorder in males, the relationship between stress 

and behavioral features of relapse, such as craving, is stronger in females. Given the 

greater susceptibility of females to stress-related psychiatric disorders, understanding 

sexual dimorphism in the relationship between stress and alcohol use is essential to 

identifying better treatments for both male and female alcoholics. This review addresses 

sex differences in the impact of stressors on alcohol drinking and seeking in rodents 

and humans. As these behavioral differences in alcohol use and relapse originate from 

sexual dimorphism in neuronal function, the impact of stressors and alcohol, and their 

interaction, on molecular adaptations and neural activity in males and females will also 

be discussed. Together the data reviewed herein, arising from a symposium entitled 

“Sex matters in stress-alcohol interactions” presented at the Fourth Volterra Conference 

on Stress and Alcohol, will highlight the importance of identifying sex differences to 

improve treatments for comorbid stress and alcohol use disorder in both populations.  
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Introduction 

Substance Use Disorders (SUDs) are a major public health burden in the US, 

costing more than $400 billion annually in crime, poor health outcomes, and lost 

productivity (U.S. Department of Health and Human Services, 2016). Traditionally 

SUDs, including alcohol use disorder (AUD), have been diagnosed up to twice as 

frequently in males (World Health Organization, 2014). However, women are steadily 

increasing their use of alcohol and illicit substances, with greater prevalence of binge 

drinking and heavy alcohol consumption (Dawson, Goldstein, Saha, & Grant, 2015; 

Grant et al., 2017; Keyes, Li, & Hasin, 2011), as well as psychoactive drug use 

(SAMHSA, 2015), than previously observed. In addition, women display greater 

vulnerability than men to all stages of addiction, including initiation, progression and 

relapse (Agabio, Campesi, Pisanu, Gessa, & Franconi, 2016; Quinones-Jenab, 2006). 

Given the chronically relapsing nature of AUDs, determining the neurobiological 

underpinnings of differential susceptibility to AUDs can promote the development of 

more effective treatments for both sexes. Of particular interest as a source for sexual 

dimorphism in disease prevalence, progression and resurgence is the impact of stress 

on neurobiology and behavior. 

Stress-related disorders, including anxiety disorders, mood disorders and post-

traumatic stress disorder (PTSD), are twice as frequently diagnosed in females as 

compared to males (World Health Organization, 2014). Stress and the negative 

emotional state it generates are primary triggers of relapse in men and women (Annis, 

Sklar, & Moser, 1998; Seo & Sinha, 2014; Sinha, 2007), suggesting that overlapping 

circuitry regulates alcohol use and stress responses in both sexes. Data indicate that 
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females may display a more direct relationship between current or past stress exposure 

and relapse-related variables. Females with comorbid alcohol use and PTSD show 

greater sensitivity to the effects of stress on alcohol craving and relapse (Heffner, Blom, 

& Anthenelli, 2011), and PTSD may more commonly precede the development of AUD 

in females vs. males (Sonne, Back, Diaz Zuniga, Randall, & Brady, 2003). Moreover, 

chronic drug abuse shows differential neuroadaptations in men and women. Sex 

differences have been observed in physiologic, neuroendocrine, and craving responses 

to stress and drug cues (Back, Brady, Jackson, Salstrom, & Zinzow, 2005; Fox & Sinha, 

2009). Importantly, these measures have been associated with high risk of relapse and 

poor treatment outcomes (Back et al., 2005; Daughters, Richards, Gorka, & Sinha, 

2009; Fox & Sinha, 2009; Moeller, Bederson, Alia-Klein, & Goldstein, 2016; Sinha, 

Garcia, Paliwal, Kreek, & Rounsaville, 2006; Van Dam, Rando, Potenza, Tuit, & Sinha, 

2014). These differential sensitivities to alcohol and stress in males and females 

suggest circuit dichotomies between the sexes – yet most preclinical research to date 

has focused on elucidating factors promoting alcohol use, relapse, and stress 

responses solely in males. The limited number of studies that have, to date, 

investigated sex differences in stress-alcohol interactions, or effects in females, are 

reviewed herein and summarized in Table 1. One primary intersection between stress 

and abused drugs like alcohol, which may generate divergent neuroadaptations in 

males and females, is the activation of systemic stress response systems. 

 

Physiological stress responses and alcohol use 
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Sex differences in substance misuse, as well as the long-term impact of 

stressors on drinking or other drug use and relapse, may stem from sexual divergence 

in systemic stress responses. Activation of the hypothalamic-pituitary-adrenal (HPA) 

axis by stressors, resulting in elevated circulating corticosterone (CORT; cortisol in 

humans), is magnified in female rodents, relative to males, after various stressors 

(Rivier, 1999) and multiple drugs of abuse, including alcohol (Ogilvie & Rivier, 1996; 

Rivier, 1993). In male rats, alcohol dependence dysregulated HPA axis responses to 

alcohol (Richardson, Lee, O'Dell, Koob, & Rivier, 2008), whereas blockade of the 

glucocorticoid receptor, one target of CORT, impeded both the development (Somkuwar 

et al., 2017; Vendruscolo et al., 2012) and the expression (Vendruscolo et al., 2015) of 

dependence-induced exacerbation of alcohol self-administration. At present, the effects 

of alcohol dependence on these parameters in females remain unknown and as such 

are a critical future direction of preclinical research, as polymorphisms in the 

glucocorticoid receptor gene were associated with earlier onset of alcohol use or misuse 

in females, more than in males, in a large cohort of Finnish teenagers (Desrivieres et 

al., 2011). Early abstinence from alcohol in humans is marked by dysregulated basal 

physiological and neuroendocrine tone, and stress- and cue-induced physiological, HPA 

axis and emotional changes are strongly associated with increased drug and alcohol 

craving, drug use and relapse risk (Back et al., 2005; Fox et al., 2009; Fox & Sinha, 

2009). Administration of the glucocorticoid receptor antagonist mifepristone reduced 

alcohol craving, relative to placebo, in a mixed-sex clinical treatment population with 

AUD, similar to effects observed in male alcohol-dependent rats (Vendruscolo et al., 

2015); however, the population was disproportionately male and thus sex differences in 
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treatment efficacy could not be determined. Together, these data implicate stress 

responses, particularly CORT function via glucocorticoid receptors, as intrinsic drivers of 

alcohol use in both sexes and suggest overlapping neurocircuitry and similar 

neuroadaptations may drive the interaction between stress and drug use in males and 

females. Despite long-standing knowledge of increased systemic HPA axis response to 

stressors and alcohol in females, most research into neuroadaptations caused by 

alcohol, stress, or their co-occurrence, and the impact of such adaptations on alcohol-

related behaviors, has focused exclusively on male subjects. To date, only a small 

fraction of preclinical investigations into stress, alcohol and their interaction have 

explored sex differences, at either the molecular or behavioral level, as detailed in the 

following sections. 

 

Sexual dimorphism and differential neuroadaptations of stress- and alcohol-

responsive circuitry 

A reciprocal relationship exists for behavioral regulation by stress and alcohol, 

with alcohol modifying stress-related behaviors and stressors altering alcohol 

consumption (Logrip, Zorrilla, & Koob, 2012). This suggests that overlapping 

neurocircuits support behavioral responses to both alcohol and stress, with intrinsic sex 

differences in the circuitry producing different behavioral responses in males and 

females. Candidate regions activated by both stress and alcohol that display divergent 

structural or electrophysiological responses between the sexes include regions of the 

limbic system and extended amygdala, where stress and alcohol interact to regulate 

neuronal activity, as well the locus coeruleus (LC), responsible for controlling arousal. 
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Behavioral arousal, regulated by norepinephrine, modulates individual perception 

of stressful and rewarding experiences (Espana, Schmeichel, & Berridge, 2016), and 

sex differences in noradrenergic arousal mechanisms could contribute to differential 

systemic as well as neuronal stress responses. Noradrenergic neurons, whose cell 

bodies are found in the LC, display sexual dimorphism in both structure and function, 

with increased dendritic complexity (Bangasser, Zhang, Garachh, Hanhauser, & 

Valentino, 2011) and basal activation of corticotropin-releasing factor (CRF) receptors, 

measured as CRF1-Gs-coupling, observed in unstressed Sprague-Dawley female rats, 

relative to males (Bangasser et al., 2010). Despite the increased basal CRF1 activation, 

administration of CRF into LC increased neuronal activity to a greater degree in female, 

versus male, neurons, although prior swim stress normalized this difference (Curtis, 

Bethea, & Valentino, 2006). Similar to CRF, chronic alcohol consumption via liquid diet 

activated more neurons in female versus male rat LC, as measured by c-fos 

immunoreactivity, and differentially affected CRF1 localization, with more CRF1 

observed in the plasma membrane of female rats (Retson, Reyes, & Van Bockstaele, 

2015). Decreased membrane CRF1 levels, and associated reductions in LC neuron 

activation, likely result from sex differences in CRF1 internalization by β-arrestin2, which 

is observed only in males (Bangasser et al., 2010). Together these studies implicate the 

LC as one neuronal locus displaying intrinsic sexual dimorphism, yielding sex 

differences in activation by acute stressors, as well as sex differences in adaptation to 

the chronic stress of alcohol dependence.  

A primary source of CRF input to the LC is the central extended amygdala (Van 

Bockstaele, Bajic, Proudfit, & Valentino, 2001), a circuit comprised of the central 
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nucleus of the amygdala (CeA), bed nucleus of the stria terminalis and shell of the 

nucleus accumbens (Alheid & Heimer, 1988; Cassell, Freedman, & Shi, 1999). The 

extended amygdala provides an interface by which stress and reinforcers, including 

alcohol, interact, and adaptation of this circuit following chronic stress or alcohol 

underlies the negative affect believed to drive escalated alcohol use and relapse (Koob, 

2015; Koob & Le Moal, 2008). In particular, the central nucleus of the amygdala (CeA), 

the output nucleus of the amygdala complex, has long been implicated in alcohol 

dependence and alcohol-stress interactions. In males, CeA neuron activity is altered by 

various neuropeptides whose expression is changed by substantial alcohol exposure in 

a direction associated with elevated anxiety-like behavior (Economidou et al., 2008; 

Funk, O'Dell, Crawford, & Koob, 2006; Gilpin et al., 2011; Pandey, Zhang, Roy, & Misra, 

2006; Roberto, Bajo, Crawford, Madamba, & Siggins, 2006; Zhu, Bie, & Pan, 2007). 

While few studies have addressed sex differences in the extended amygdala, two 

studies investigating sex differences in CRF expression have shown sex-specific 

expression patterns in the CeA. During adolescence, female rats displayed fewer CRF-

immunoreactive cells than males, with binge-like alcohol drinking blunting CRF 

expression in both sexes (Karanikas, Lu, & Richardson, 2013). Conversely, chronic 

alcohol liquid diet consumption activated CRF-expressing CeA neurons in females only, 

relative to alcohol-naïve controls, whereas swim stress in alcohol-dependent rats 

increased activation of CRF neurons only in males (Retson, Hoek, Sterling, & Van 

Bockstaele, 2015). Together these data demonstrate that alcohol and stress generate 

sexually divergent adaptations of similar targets, which may vary by developmental 
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stage. Of importance is the impact of such neuroadaptations on neuronal activity in the 

region. 

Alcohol’s effects on male neurons of the medial CeA have been extensively 

studied. Alcohol enhances GABAergic inhibitory postsynaptic responses and reduces 

the magnitude of glutamatergic excitatory postsynaptic potentials and currents 

(EPSP/Cs) (Roberto et al., 2006; Roberto, Madamba, Moore, Tallent, & Siggins, 2003; 

Roberto, Madamba, Stouffer, Parsons, & Siggins, 2004), in part via CRF’s actions 

(Bajo, Cruz, Siggins, Messing, & Roberto, 2008; Herman et al., 2013; Herman et al., 

2016; Varodayan et al., 2017). Given the aforementioned sex differences in the effects 

of stress and alcohol on CeA CRF neurons, associated changes in neuronal activity 

would be expected to display different patterns in males and females. To date, only two 

studies have tested sex differences in the electrophysiological impact of alcohol and 

stress on CeA neurons. The first investigated alcohol’s effects on the circuitry 

connecting the basolateral amygdala (BLA), a region with greater spine density in males 

vs. females (Rubinow, Drogos, & Juraska, 2009), to the CeA’s lateral (CeL) vs. medial 

(CeM) subdivisions in adult male and female Wistar rats (Logrip, Oleata, & Roberto, 

2017). Alcohol was less effective in decreasing female EPSPs, particularly in the BLA-

CeM circuit, as compared to male neurons that showed similar alcohol-induced 

reductions in BLA-CeL and BLA-CeM EPSPs. Hormonal status also impacted female 

responses, as BLA-CeM EPSPs were unexpectedly potentiated by alcohol during 

proestrus. To extend these investigations, stress-alcohol interactions were assessed by 

acute CORT application, a pharmacological challenge previously shown to potentiate 

BLA excitability through the same mechanism as acute stress in males (Duvarci & Pare, 
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2007; Karst, Berger, Erdmann, Schutz, & Joels, 2010). CORT significantly reduced 

EPSP magnitude only in the female BLA-CeL circuit, with no significant effects 

observed in female BLA-CeM or either male CeA subdivision (Logrip et al., 2017). 

Subsequent co-application of alcohol reduced EPSPs in both male CeA subdivisions 

similarly to alcohol alone, whereas female BLA-CeM neurons demonstrated no 

response to either stimulus and female BLA-CeL neurons showed no further decrease 

in EPSP magnitude beyond the dramatic reduction induced by CORT. Together these 

studies demonstrated sexually dimorphic sensitivity of CeA neurons to alcohol and 

CORT, with male neurons primarily inhibited by alcohol and not CORT, whereas female 

neurons were more sensitive to CORT than to alcohol. Recent studies in Long-Evans 

rats have shown reduced sensitivity of females, relative to males, to the effects of 

withdrawal from chronic intermittent alcohol vapor on BLA EPSCs as well as anxiety-like 

behavior (Morales, McGinnis, Robinson, Chappell, & McCool, 2018). Specifically, 

females required longer exposure to intermittent ethanol vapor to display the same 

phenotypes as males, which included increased glutamate release and increased EPSC 

amplitude in the BLA. These data are in line with the reduced acute alcohol sensitivity of 

female neurons to BLA-evoked CeA EPSPs (Logrip et al., 2017). While these 

differential sensitivities would suggest greater amygdala neuroadaptation to stressors 

for females and to alcohol for males, the broader molecular and behavioral impacts of 

these findings remain to be determined. 

A subsequent study assessing sex differences in CeM neuronal activity, using 

local stimulation to activate glutamatergic inputs to the CeA from various sources, 

compared outbred Wistar rats with selectively bred Marchigian Sardinian alcohol-
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preferring (msP) rats (Kirson, Oleata, Parsons, Ciccocioppo, & Roberto, 2017). With 

local stimulation, Wistar females were shown to have comparable sensitivity to EPSP 

inhibition by alcohol as Wistar and msP males, whereas msP female rats’ EPSPs were 

insensitive to acute alcohol treatment (Kirson et al., 2017). Activation of the CB1 

receptor, considered anxiolytic, also produced sex-specific effects, inhibiting EPSPs 

significantly in neurons from msPs of both sexes, but only in Wistar male neurons. CB1 

activation blocked alcohol’s ability to modulate Wistar female CeM EPSPs and 

unmasked an alcohol sensitivity in msP female neurons, without altering alcohol’s 

effects in male neurons of either genetic background. This contrasts with equivalent 

reductions in alcohol intake in C57BL/6J (B6) mice of both sexes after inhibition of 

FAAH, the enzyme that catalyzes breakdown of CB1’s endogenous ligand anandamide 

(Zhou et al., 2017), but aligns with greater female dose sensitivity to CB1 antagonist 

effects to reduce drinking in Long-Evans rats (Morales, McGinnis, & McCool, 2015). Yet 

CB1 inhibition alone did not alter CeM electrophysiological properties in rats of either 

sex or genetic background, suggesting that behavioral effects of cannabinoid system 

manipulation on alcohol drinking may be driven by brain regions outside the CeA or by 

neuroadaptations caused by extensive alcohol drinking history. Regardless, these 

studies demonstrate significant sex differences in alcohol’s acute ability to modulate 

neuronal activity, illustrated here within the CeA, that may depend on the specific brain 

locus and/or circuit being studied as well as genetic background. These initial studies 

strongly support the need for additional investigations to elucidate how sex regulates 

neuronal adaptation to alcohol and stressors, in order to understand the myriad factors 
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regulating sex differences in behavioral responses to alcohol, stressors and their 

interaction.  

 

Sex differences in behavioral adaptations to alcohol and stress 

As discussed above, sex differences exist in physiological responses to stress 

and to alcohol exposure, and are predictive of sex differences in behavioral responses 

to these two challenges. The effects of stress on alcohol-motivated behavior (reviewed 

in H. C. Becker, Lopez, & Doremus-Fitzwater, 2011; Sinha, Shaham, & Heilig, 2011) 

vary significantly across studies due to experimental differences in species, strain, age, 

type of stressor, chronicity of the stressor, and type of drinking behavior assessed. In 

contrast, animal models of drug-motivated behavior consistently show females take and 

seek alcohol and other drugs in larger amounts than males (J. B. Becker & Koob, 2016; 

Lancaster, Brown, Coker, Elliott, & Wren, 1996). Enhanced drinking in females, relative 

to males, would be predicted due to greater basal circulating and stress-induced levels 

of CORT in females (Kitay, 1961; Weinstock, Poltyrev, Schorer-Apelbaum, Men, & 

McCarty, 1998), since CORT levels positively correlated with the level of alcohol-

seeking in females (Bertholomey, Nagarajan, & Torregrossa, 2016) and blockade of 

CORT’s effects at the glucocorticoid receptor reduced alcohol intake in males 

(Vendruscolo et al., 2015). However, studies examining sex differences in stress-

induced alcohol-related behaviors are inconsistent, likely due to variations in 

experimental factors, as listed above.  

Only a handful of studies have measured the behavioral consequences of 

experimenter-administered alcohol as a function of stress exposure and sex. In one 
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study, maternal separation produced behavioral sensitization to alcohol in female, but 

not male, Swiss mice tested in adulthood (Kawakami, Quadros, Takahashi, & Suchecki, 

2007). In contrast, multiple studies have failed to detect sex differences in the ability of 

maternal separation or social isolation stress to alter alcohol conditioned place 

preference/aversion (CPP/CPA) or locomotor response to alcohol (Arias, Revillo, & 

Spear, 2012; Arias et al., 2010; Pautassi, Nizhnikov, Fabio, & Spear, 2012). Similarly, 

sex differences were not observed in the effects of adolescent or adult exposure to 

footshock stress on alcohol CPP in mice (Song et al., 2007). Taken together, it appears 

that age at stress exposure and behavioral testing, as well as species of rodent, 

contribute to the ability to detect sex- and stress-dependent effects on behavioral 

responses to noncontingent administration of alcohol. 

A number of studies using limited, intermittent, or continuous home cage access 

to alcohol have examined the effects of stress, given at various times during 

development, on alcohol drinking and preference. With respect to early life stress, 

maternal separation in Wistar rats has been shown to increase adult alcohol intake in 

males, but not females (Ploj, Roman, & Nylander, 2003; Roman, Ploj, & Nylander, 

2004), yet the same manipulation in a separate study enhanced restraint stress-induced 

alcohol drinking in adulthood in females compared to males (Penasco, Mela, Lopez-

Moreno, Viveros, & Marco, 2015). A number of studies have also examined the effects 

of adolescent stress exposure on subsequent alcohol drinking, given that sex 

differences in alcohol intake tend to emerge during adolescence (Doremus, Brunell, 

Rajendran, & Spear, 2005; Lancaster et al., 1996). Repeated restraint stress in early 

adolescence (postnatal days [p]30-35) increased drinking in female, but not male, 
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Wistar rats during limited, intermittent access in mid-late adolescence (p37-51) (Wille-

Bille, de Olmos, Marengo, Chiner, & Pautassi, 2017). In contrast, adolescent social 

isolation/social instability stress has been shown to increase subsequent alcohol 

consumption in adulthood in male, but not female, Long-Evans rats (Butler, Carter, & 

Weiner, 2014; Roeckner, Bowling, & Butler, 2017; Skelly, Chappell, Carter, & Weiner, 

2015). Animals exposed to acute stress in adulthood also show varying results. In high 

alcohol preferring (HAP2) mice, restraint stress increased drinking in males and 

reduced drinking in females (Chester, de Paula Barrenha, DeMaria, & Finegan, 2006), 

whereas female B6 mice were more sensitive to the effects of predator odor to increase 

limited access drinking (Cozzoli, Tanchuck-Nipper, Kaufman, Horowitz, & Finn, 2014). 

These findings contrast with another study showing that despite overall greater alcohol 

intake in female WSC mice, there were no modulations in alcohol intake as a function of 

restraint stress in either sex (Tambour, Brown, & Crabbe, 2008). Though female B6/129 

mice drank more alcohol in both continuous access and binge-like (drinking-in-the-dark) 

conditions, only males demonstrated increases in both alcohol consumption and 

alcohol-induced increases in locomotor activity following exposure to unpredictable 

chronic mild stress (Quadir et al., 2017). Clearly, sex- and stress-related alterations in 

voluntary drinking vary significantly as a function of the parameters used. 

Only two studies have examined sex differences in the effects of stress in 

altering alcohol-motivated behavior using operant self-administration and reinstatement 

of alcohol seeking techniques (Bertholomey et al., 2016; Bertholomey & Torregrossa, 

2017). A number of studies (discussed below) have examined sex- and estrous cycle-

related alterations in alcohol self-administration, finding enhanced drinking in females. 
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However, investigation of vulnerability to “craving”-like behavior using reinstatement 

models is critical in addressing factors contributing to relapse (Bossert, Marchant, Calu, 

& Shaham, 2013; Epstein, Preston, Stewart, & Shaham, 2006). A recent study found 

that despite greater overall alcohol self-administration in female Long-Evans rats, they 

did not show the alcohol-cue+alcohol-primed reinstatement of alcohol seeking evident in 

males (Randall, Stewart, & Besheer, 2017). In contrast, a contemporaneous study 

showed not only that female Sprague-Dawley rats displayed enhanced alcohol cue-

induced and yohimbine stress-induced reinstatement of alcohol seeking compared to 

males, but that these effects were additive when cues and yohimbine were given in 

combination (Bertholomey et al., 2016). Further, alcohol drinking and cue-related 

seeking were enhanced in female, but not male, rats exposed chronically to CORT in 

adolescence (p30-50) and tested in adulthood, suggesting that both acute and chronic 

stressors may contribute to an increased vulnerability in females. Importantly, both 

plasma CORT and estradiol (E2) levels were positively correlated with responding 

during reinstatement, indicating that physiological markers of the stress response as 

well as circulating ovarian hormones contribute to the increased sensitivity to stress-

related alcohol-motivated behavior in females (Bertholomey et al., 2016). Taken 

together, the impact of sex differences on stress modulation of alcohol drinking and 

seeking is inconsistent and complex, and substantial research is still needed to parse 

the role of each of the potential sources of sex differences on the behavioral response 

to stress and alcohol. Nonetheless, the consistent finding that females consume more 

alcohol than males, and tend to be more sensitive to stress, points to the importance of 
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assessing overlapping stress and gonadal hormone systems when measuring 

behavioral responses to stress in males and females. 

 

Role of gonadal hormones in regulating sex differences in alcohol- and stress-

regulated behavior 

Sex differences in the behavioral response to stress and alcohol can be 

mediated by chromosomal sex (genetic effect), the developmental effects of hormones 

on brain structure and function (organizational effect), and/or by the effects of circulating 

gonadal hormones at the time of stress or alcohol exposure (activational effect). 

Typically, the first step in determining the cause of sex differences in behavior is to 

determine if the activational effects of circulating gonadal hormones are sufficient to 

explain the observation (J. B. Becker et al., 2005). This can be achieved using a 

number of different approaches, including monitoring estrous cycle in gonadally intact 

females, removing the influence of endogenous gonadal hormones by gonadectomy 

(GDX), with or without subsequent hormone replacement, and/or treatment with 

hormone receptor modulators. Numerous studies have investigated whether estrous 

cycle-related alterations in ovarian hormones (namely estradiol and progesterone), or 

plasma levels of gonadal hormones measured on the day of a behavioral test mediate 

observed differences. Others have assessed whether removal of the major source of 

testosterone in males (via castration [CAST]) or estradiol/progesterone in females (via 

ovariectomy [OVX]) diminishes sex differences observed in gonadally intact animals, 

and if specific hormone replacement can rescue sex-specific effects.  
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Studies investigating these questions using slightly different models have been 

surprisingly equivocal with respect to alcohol-related behavior. For example, overall 

alcohol self-administration is not affected by estrous cycle phase in freely-cycling female 

rats (Bertholomey & Torregrossa, 2017; Ford, Eldridge, & Samson, 2002b; Priddy et al., 

2017; Roberts, Smith, Weiss, Rivier, & Koob, 1998); however, the pattern of 

consumption differed in proestrus females (when estradiol levels are high) (Ford et al., 

2002b) or when cycles were synchronized (Roberts et al., 1998). In studies targeting the 

activational effects of gonadal hormones using GDX, removal of testosterone has been 

shown to slightly reduce (Cailhol & Mormede, 2001), increase (Vetter-O'Hagen & Spear, 

2011), or have no effect (Almeida et al., 1998) on alcohol drinking in male subjects. 

Conversely, removal of estradiol and progesterone via OVX has reduced alcohol 

drinking more consistently (Almeida et al., 1998; Cailhol & Mormede, 2001; Ford, 

Eldridge, & Samson, 2002a; Ford et al., 2002b; Ford, Eldridge, & Samson, 2004; Forger 

& Morin, 1982), although no effects were evident in other studies (Vetter-O'Hagen & 

Spear, 2011). Despite the potential confound of implicating both organizational and 

activational effects of hormones, studies in prepubertally GDX animals find similar 

results, with CAST increasing drinking in male subjects (Sherrill, Koss, Foreman, & 

Gulley, 2011; Vetter-O'Hagen & Spear, 2011), and OVX decreasing (Sherrill et al., 

2011) or not altering (Vetter-O'Hagen & Spear, 2011) drinking in females. Parallel 

findings are evident when gonadal hormones are replaced, as administration of 

testosterone (Vetter-O'Hagen & Spear, 2011) or the androgen dihydrotestosterone 

(Almeida et al., 1998) decreased alcohol consumption in CAST males, whereas 

estradiol treatment dose-dependently increased intake in OVX females (Ford et al., 
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2002a, 2004), although others have failed to observe estradiol replacement effects 

(Almeida et al., 1998). Estradiol treatment may alter alcohol intake through 

enhancement of alcohol’s reinforcing properties, as OVX mice treated with estradiol 

displayed greater alcohol CPP than untreated OVX mice (Hilderbrand & Lasek, 2018). 

Despite some conflicting findings, the overall consensus is that testosterone is 

responsible for reduced alcohol drinking in males and ovarian hormones are 

responsible for increased drinking in females. However, these results can be difficult to 

reconcile as GDX, hormone replacement, and sham controls for both sexes were often 

not compared in the same study. Further, none of these studies examined the role of 

gonadal hormones in altering stress-related increases in alcohol reinforcement.  

A previous report (described above) found that plasma estradiol levels positively 

correlated with the degree of cue+yohimbine-induced reinstatement in females 

(Bertholomey et al., 2016), suggesting that estradiol might be responsible for the 

increased alcohol seeking observed in females, relative to males. This finding is 

consistent with similar studies examining estradiol enhancement of cocaine seeking 

(Feltenstein, Henderson, & See, 2011; Larson, Roth, Anker, & Carroll, 2005). Thus, a 

subsequent study determined the effects of GDX, with or without hormone replacement, 

relative to sham-GDX controls, on both operant self-administration of alcohol and 

cue+yohimbine-induced reinstatement of alcohol seeking (Bertholomey & Torregrossa, 

2017). Consistent with previous findings, females self-administered significantly more 

alcohol than males, and GDX increased self-administration in males and decreased 

self-administration in females, relative to gonadally intact sham surgery controls. 

Furthermore, replacing estradiol in females increased alcohol self-administration, while 
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testosterone replacement reduced self-administration in males, relative to sham levels 

of responding. While circulating hormone levels could shift the degree of alcohol self-

administration within sex, GDX in both sexes was not sufficient to eliminate sex 

differences, as OVX females still self-administered significantly more alcohol than GDX 

males. Therefore, the activational effects of hormones cannot fully explain sex 

differences in alcohol self-administration. Unlike alcohol-reinforced self-administration, 

neither GDX nor hormone replacement significantly altered cue+yohimbine-induced 

reinstatement of alcohol seeking, although estrogen receptor antagonists tended to 

reduce seeking in gonadally intact female rats. Therefore, differences between males 

and females in this alcohol craving-like response does not appear to be mediated by the 

activational effects of hormones. Nonetheless, it is possible that within sex, circulating 

hormones modulate individual differences in the degree of reinstatement, as suggested 

by prior correlational findings, but that the range of reinstatement response is greater in 

females regardless of hormonal state. Together these studies indicate that while 

hormone supplementation can alter parameters of alcohol self-administration, adult 

GDX does not directly modulate the motivation to work for alcohol in an operant setting, 

in contrast with some findings discussed above for alcohol drinking in a free-access 

setting. Future studies will need to investigate how either organizational or genetic 

effects of sex alter neurodevelopment in a way that leads to increased risk for alcohol-

motivated behaviors, such as alcohol seeking and drinking, as well as stress-induced 

craving in females. Identification of these mechanisms may lead to improved, sex-

specific treatments for AUDs. 
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Clinical laboratory and epidemiological studies of sex differences in stress in 

addiction 

Limitations exist in assessing treatment options in females given the need to 

better understand the molecular bases of sex differences in stress-alcohol interactions. 

However, components of the stress response – including HPA axis and adrenergic 

system activity – represent common targets implicated by both preclinical and clinical 

studies as possible points of differentiation between the sexes. Human studies have 

shown neuroadaptations in the HPA axis with chronic drug and alcohol abuse, as well 

as emotional changes during abstinence, which impact responses to stress and 

increase the risk of relapse (Back et al., 2005; Fox, Hong, Siedlarz, & Sinha, 2008; Fox 

& Sinha, 2009; Sinha et al., 2006). Evidence from clinical surveys and daily clinical 

assessments of drug craving indicate that both stress- and cue-induced drug craving 

states frequently lead to continued drug use and relapse (Bradley, Phillips, Green, & 

Gossop, 1989; Epstein, Marrone, Heishman, Schmittner, & Preston, 2010; Epstein et 

al., 2009; Hodgins, el-Guebaly, & Armstrong, 1995; Kowalczyk et al., 2015; Marlatt & 

Gordon, 1985; Preston et al., 2009; Wallace, 1989). The studies presented herein 

demonstrate evidence of sex differences in these HPA axis neuroadaptations, as 

assessed in human laboratory studies, as well as sex differences in treatment efficacy 

of medications targeting this stress pathophysiology. Because investigation of sex 

differences in AUD has been somewhat sparse, even at the clinical level, studies 

described herein demonstrate sex differences in mechanisms that may similarly drive 

craving and relapse in both alcohol- and cocaine-dependent individuals, to identify 

putative targets for future preclinical studies. 
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Exposure to stress as well as drug and alcohol cues consistently increases drug 

craving and stress-related arousal in individuals with SUD (Sinha, Catapano, & 

O'Malley, 1999; Sinha, Fuse, Aubin, & O'Malley, 2000; Sinha et al., 2003). Treatment-

engaged patients with AUD show enhanced and persistent stress- and cue-induced 

alcohol craving and anxiety following one month of abstinence, accompanied by 

dysregulation of the physiological response to stress (Fox, Bergquist, Hong, & Sinha, 

2007; Fox et al., 2009; Sinha et al., 2009). These patients also displayed higher severity 

of alcohol and other drug abuse, with elevated stress- and cue-induced craving, 

heightened anxiety and HPA axis dysregulation compared to those with less alcohol 

abuse severity (Fox et al., 2005). Furthermore, all AUD patients were prospectively 

followed for 90 days with up to 70% having relapsed. After accounting for baseline 

variations in demographics, drug use, and clinical variables, multiple indices of stress 

system dysregulation and altered emotional state – namely, stress- and cue-induced 

alcohol craving, higher basal cortisol, suppressed stress-induced cortisol and ACTH 

responses, and high levels of cortisol/ACTH ratio during neutral-relaxed state – 

predicted future time to alcohol use (Blaine, Milivojevic, Fox, & Sinha, 2016; Sinha, Fox, 

et al., 2011).  

While HPA arousal corresponds to relapse, SUDs are characterized by blunted 

stress-induced HPA axis activity, an effect that disproportionately affects women. 

Women with cocaine use disorder (CUD) exhibited significantly lower ACTH, cortisol 

and blood pressure responses following exposure to personalized stress, drug-cue, and 

neutral imagery, as compared to CUD men (Fox et al., 2006), yet both CUD and healthy 

control females reported significantly higher levels of anxiety and sadness following 
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stress exposure, relative to males (Fox et al., 2008). Patients with AUD similarly display 

HPA axis alterations, as well as sexual dimorphism in the interaction between alcohol 

use and stress. In a population of individuals diagnosed with AUD, PTSD, or comorbid 

AUD and PTSD, sex differences were observed in HPA axis markers both at baseline 

and in response to the cold pressor task (Brady et al., 2006). Across all three groups, 

females showed significantly lower levels of ACTH compared to males. Moreover, 

females in either the AUD or the PTSD group showed greater ACTH blunting in 

response to stress compared to males in the matching diagnostic groups. Collectively, 

these findings suggest that stress and drug cues increase craving and anxiety, and that 

chronic drug use is associated with an altered HPA axis response to stress, marked by 

basal hyperactivity and blunted phasic response to stress, that is more severe in 

females. While it remains unknown whether HPA axis dysfunction predisposes 

individuals to SUDs or develops consequent to the SUD, these states have been shown 

to potently predict relapse, suggesting that improved understanding of the molecular 

mechanisms triggering these adaptations are important preclinical avenues of 

investigation to identify better treatments and reduce relapse in both sexes. Conversely, 

knowledge about medication responses in clinical trials addressing stress-alcohol 

interactions will provide additional indicators of sex differences that must be further 

elucidated by preclinical investigations. 

 

Medications targeting stress pathophysiology and sex differences in addiction 

Given the dysregulation of HPA axis responses in SUD, as well as the role of 

stress as a trigger for craving and relapse, pharmacologically targeting craving and 
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stress-related HPA axis dysfunction could improve treatment and reduce relapse rates 

in SUD patients (Milivojevic & Sinha, 2017). As significant sex differences have been 

observed in SUD-related adaptation of these pathways, however, special attention must 

be paid to the development of sex-specific treatment targets. Whereas much 

experimental evidence has focused on treatments in male-only or male-biased 

populations, studies investigating multiple medications aimed at improving the HPA axis 

dysregulation found in SUDs in sex-balanced populations have yielded some sex-

specific effects. In particular, targeting the adrenergic system via inhibition of 

postsynaptic (α1) or activation of presynaptic (α2) adrenoreceptors (AR) has been more 

effective as a treatment in females than in males. In preliminary studies of AUD patients 

in early abstinence, the α1-AR antagonist prazosin was found to reduce stress-induced 

alcohol craving and negative emotions, while reducing basal cortisol levels and 

increasing stress-induced cortisol responses (Fox et al., 2012). Similarly, in early 

abstinent CUD and AUD individuals, the α2-AR agonist guanfacine was found to reduce 

cue-induced craving, decrease baseline cortisol levels and normalize stress-induced 

cortisol responses (Fox et al., 2012). However, population sizes in these preliminary 

studies precluded the performance of sufficiently powered sex-specific analyses. 

Subsequent investigations in a larger population of individuals with comorbid CUD and 

AUD demonstrated that guanfacine significantly reduced cocaine craving, alcohol 

craving, anxiety, and negative emotion following exposure to stress, drug/alcohol cue 

and neutral conditions; however, in this population, guanfacine’s effects were significant 

only in females, not males (Fox, Morgan, & Sinha, 2014). Guanfacine has also 

demonstrated enhanced efficacy vs. placebo to improve CUD/AUD females’ cognitive 
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performance on a Stroop task under neutral, stress, and drug cue conditions 

(Milivojevic, Fox, Jayaram-Lindstrom, Hermes, & Sinha, 2017). Importantly, this effect 

was not observed in men. Together these studies not only implicate the adrenergic 

system as a medication target to treat females more successfully than males, but also 

highlight the need for preclinical investigations to elucidate sex differences in stress- 

and alcohol-induced adrenergic circuit adaptations that may underlie this differential 

treatment efficacy. 

Given the a priori sex difference in hormone status that likely impacts neuronal 

activity, as discussed above, elevating progesterone levels has been explored as a 

therapeutic approach that may generate a sexually dimorphic response. Relative to 

placebo treatment, progesterone administration reduced cue-induced craving and 

cortisol responses in treatment-seeking men and women with comorbid CUD and AUD, 

in addition to improving prefrontal inhibitory function, as measured by the Stroop task 

(Fox, Sofuoglu, Morgan, Tuit, & Sinha, 2013). While main treatment effects were 

observed regardless of sex, progesterone treatment provided the added benefit of 

decreasing ratings of negative emotion and increasing ratings of relaxed mood following 

stress exposure in women but not men (Fox et al., 2013). One metabolite of 

progesterone that may produce different treatment responses in males and females is 

the neuroactive steroid allopregnanolone (ALLO). ALLO is found in higher 

concentrations in the female mouse brain, but increased after alcohol drinking only in 

male mice (Finn et al., 2004). In humans, the plasma concentration of ALLO was 

increased following severe intoxication in both females and males (Torres & Ortega, 

2003, 2004). ALLO is a potent allosteric enhancer of gamma aminobutyric acid type A 
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receptor (GABAA) activity (Porcu & Morrow, 2014) that may differentially regulate 

alcohol intake by sex, with greater sensitivity shown in male vs. female mice (Ford, 

Beckley, Nickel, Eddy, & Finn, 2008; Sinnott, Phillips, & Finn, 2002). To assess the role 

of ALLO in progesterone’s treatment effects, CUD/AUD individuals who received 

progesterone were grouped by their baseline ALLO levels. The high ALLO group 

showed reductions in craving, improved cognitive performance, reduced basal cortisol 

and increased phasic cortisol in response to stress in all subjects, compared to the low 

ALLO group, with no sex differences observed (Milivojevic, Fox, Sofuoglu, Covault, & 

Sinha, 2016). Together these studies suggest elevation of neuroactive steroids like 

ALLO may represent a biomarker of treatment efficacy in men and women, warranting 

future preclinical and clinical research into steroids like ALLO that may be useful 

biomarkers for long-term treatment efficacy in both sexes. 

 

Conclusion 

AUD, although currently more prevalent in males, afflicts both sexes, and the 

gender gap in disease prevalence is narrowing. Yet preclinical studies including 

females, which provide a fuller understanding of brain mechanisms underlying these 

disorders, continue to lag far behind the vast body of literature focusing solely on male 

subjects. The data reviewed above demonstrate significant sex differences in the impact 

of stressors on AUD in both preclinical animal models and human studies. Importantly, 

observed sex differences in the brain mechanisms supporting alcohol-stress 

interactions, in the behavioral impact of past stress on alcohol use, and in drug 
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treatment efficacy highlight the need for continued pursuit of knowledge in the 

preclinical realm to understand the neural basis of sex differences in stress responses 

and alcohol use, so that better therapeutic approaches may be developed for both 

sexes. 
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Table 1. Summary of literature investigating sex differences or female effects of stress on alcohol-related 
behaviors. 

Sex Subjects Stressor Age (Tx) Age (Test) Measures Outcome (group) Citation  
Mouse 
Behavior 
F=M HAP repeated RS Adult Adult EtOH drinking ↑ drinking (RS M), Chester et al., 2005        
      ASR ↓ drinking (RS F); ND ASR 
 
F=M B6 Various Adult Adult EtOH drinking ↑ drinking (predator odor, Cozzoli et al., 2014 
      hormone levels F>M); ↓ drinking (other  
       stressors); ↑ CORT (F>M) 
 
F=M SW Long/short MD Neonatal Adult EtOH LMA ↑ LMA (long MD F) Kawakami et al., 2007     
    (p2-14)  Hormone levels ↑ CORT (F>M baseline; 
       M>F post-EtOH) 
 
F=M  KM  Footshock Adol (p26) Adol EtOH CPP Chronic stress > baseline  Song et al., 2007 
   (acute, chronic) Adult (p56) Adult  (Adol); stress = baseline  
       (Adult); ND by sex 
 
F=M WSC RS Adult Adult EtOH drinking ND drinking (RS) Tambour et al., 2008 
       ↑ drinking (F>M) 
 
F=M  B6/129 UCMS Adult Adult EtOH drinking  ↑ drinking, LMA (UCMS M); Quadir et al., 2017 
     (CA; IA)  ↑ drinking (F>M) 
 
 
Rat 
Molecular/Electrophysiological  
M=F SD SS Adult Adult CRF1 IP ↑Gs coupling, all females  Bangasser et al., 2010 
      (HC/SS±OVX), SS males 
     CRF1 internalization male SS ↑, female SS ↓ 
 
M=F SD acute CRF on slice Adult Adult LC activity LC activity F>M Curtis et al., 2006 
  SS    SS ↑ LC activity M not F 
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F=M Wi SBSA Adol Adol CeA CRF-IR CRF-IR M>F; Karanikas et al. 2013 
   (P28-42) (P43)  SBSA ↓ CRF-IR (M & F) 
 
F=M Wi, msP EtOH (acute)   CeM EPSP amplitude EtOH ↓ EPSP (Wi M/F, msP Kirson et al., 2017  
  CB1 Ant. (acute)   local stimulation) M); CB1 Ant ↓ EPSP (Wi M,  
      msP M/F); CB1 Ant ┤EtOH 
      (Wi F); CB1 Ant ↑ EtOH (msP F) 
 
F>M Wi EtOH (acute) Adult Adult CeL and CeM EPSP EtOH ↓ EPSP (M>F) Logrip et al. 2017 
F=M  CORT (acute)   amplitude (BLA CeL: CORT ↓ EPSP (F only) 
     stimulation) proe CeM EtOH ↑ EPSP 
 
F=M LE CIE + WD Adult Adult EPM, BLA EPSC ↑ ALB (M>F); ↓ PPR (M>F, Morales et al. 2018 
      amplitude (M/L M stimulation); ↑ EPSC  
      stimulation) (M>F, L stimulation 
 
F=M SD EtOH (0-3 g/kg) Pre/peri/post Adult Hormone levels ↑ ACTH, CORT (F, GDX M Ogilvie & Rivier, 1996 
   puberty    > M; emerged peripuberty) 
 
F=M SD 14d EtOH LD Adult Adult Hormone levels LD ↑ CORT (M only); SS ↓ Retson et al. 2015 
   SS    CORT (LD Fem only) 
      CeA cFos-IR LD ↑ cFos (F only); SS ↑ cFos 
       in CRF neurons (LD M only) 
 
F=M   EtOH (0.2-1.8 g/kg) Adult Adult Hormone levels ↑ ACTH, CORT (F>M; Rivier, 1993 
       pro/est F > di F)  
 
F=M SD FS Adult Adult Hormone levels ↑ ACTH, CORT (F>M) Rivier, 1999 
 
Behavior 
F=M Wi EtOH (2.5 g/kg)+ Neonatal Neonatal EtOH LMA ↑ LMA (MD ± SI, CORT Arias et al., 2010  
   MD ± SI or (p15) (p15)  manipulation; ND by sex) 
   CORT manipulation 
 
F=M SD EtOH (2.5 g/kg) Neonatal Weanling EtOH LMA ND LMA Arias et al., 2012  
   SI  (p15-18) (p21) 
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F=M SD Chronic CORT Adol Adult  EtOH drinking; Cue/ ↑ drinking, cue REINST Bertholomey et al., 2016  
    (p30-50) (p90+) YOH REINSTM (CORT F>H2O F>M);  
      ↑ REINST (F>M; 
      cue+YOH> cue or YOH) 
 
F=M SD; GDX YOH Adult Adult EtOH drinking; Cue/ ↑ drinking (F>M; E2>T); Bertholomey et al., 2017 
 ±E2/T    YOH REINSTM ↑ REINST (F>M; ND E2/T) 
 
F LE SI Adol Adult  EtOH drinking transient ↑ drinking (SI) Butler et al., 2014 
    (p30-72) (p100+) ALB ND ALB 
 
M=F LE CIE Adult Adult IA2BC, CB1 Ant CIE ↑ IA2BC (M only); Morales et al. 2015 
       CB1 Ant ↓ IA2BC (M>F) 
 
F=M SD MD Neonatal Neonatal EtOH CPP, LMA ND EtOH CPP (MD) Pautassi et al., 2012     
        (p1-13) (p14-15)  ↑ LMA (all; >2.0 g/kg) 
       ND by sex 
 
F=M Wi Single, long MD Neonatal Adol EtOH drinking+ WD+RS (F>M) Peñasco et al., 2015) 
    (p9) (p28-50) WD ± RS ↑ drinking (MD+RS) 
 
F Wi Long/short MD Neonatal Adult EtOH drinking ND drinking acquisition Roman et al., 2004 
    (p1-21)  ± RS ↑ drinking (RS) 
 
F=M LE SI, social Adol   Late Adol EtOH drinking ↑ drinking, ALB, ND CORT Roekner et al., 2017 
   instability (p30-46) /Adult ALB, hormone (male social instability); ND  
      levels drinking, ALB, ↓ CORT (SI F) 
 
F=M  Wi Repeated RS Adol (p30-34) Adol EtOH drinking ↑ drinking, ALB (adol RS F)  Wille-Bille et al., 2017   
     (p30-34) ALB ↓ drinking (RS M, adult F) 
    Adult  Adult        
    (p70-74) (p70-74) 
 
 
Human 
F=M AD± PTSD Cold pressor Adult Adult Subjective/hormonal ↑ subjective stress Brady et al., 2006 
  stress test   stress rating ǂ  ACTH (AD±PTSD) 
      ↓ basal, greater ↔ ACTH  

(F vs. M) 
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M>F CS+AA; Stress Imagery Adult Adult Drug craving ↑ craving, anxiety, ACTH, Fox et al., 2005 
 TS Alcohol Cue   Emotional response CORT (more frequent 

    Hormone levels users) 
 
M>F AD; TS Stress Imagery Adult Adult Alcohol craving ↑ craving, negative  Fox et al., 2007 
  Alcohol Cue   Emotional response emotions (stress, cue) 
     Hormone levels ↑ CORT (cue) 
 
F=M AD+CA; Stress Imagery Adult Adult Alcohol craving ↑ craving (cue M)  Fox et al., 2009 
 TS  Alcohol Cue   Hormone levels ↑ ACTH, CORT (stress F) 

     ǂ  ACTH, CORT (stress, cue M) 
 

M>F AD; TS;  Stress Imagery Adult Adult Alcohol craving ↑ craving, negative  Sinha et al., 2009 
 ABST Alcohol Cue   Emotional response emotions (stress, cue) 
     Hormone levels ǂ  ACTH, CORT (stress, cue) 
 
M>F  AD; TS Stress Imagery Adult Adult Alcohol craving ↑ craving, anxiety; ↔  Fox et al., 2012 
  Alcohol Cue   Emotional response ACTH, CORT (stress, cue); 
  Prazosin   Hormone levels Prazosin ↔ these effects 
 
M>F Human Stress Imagery Adult Adult Alcohol craving ↑ craving and baseline Sinha et al., 2011 
 (AD; TS;  Alcohol Cue   Latency to Relapse CORT 
 ABST)    Hormone levels ↓ time to relapse 
     90-day follow-up 
 
M>F AD GR Ant Adult Adult Alcohol craving, GR Ant ↓ craving, drinking Vendruscolo et al., 2015 

Effects indicators: ↑increase, ↓ decrease, ǂ blunted, ┤blockade, ND no difference 
Abbreviations: Sex: M = male; F = female; Species/Rodent lines: Ms = mouse; B6 = C57BL/6; HAP = high alcohol-preferring; KM = Kunming; LE = 
Long-Evans; SD = Sprague-Dawley; SW = Swiss Webster; Wi = Wistar; WSC = withdrawal seizure control, Estrous cycle indicators: pro = 
proestrus, est = estrus, di = diestrus; Experimental terms: AA = alcohol abusing; ABST = abstinent; ACTH = adrenocorticotropic hormone; AD = 
alcohol dependent; ALB = anxiety-like behavior; ant = antagonist; ASR = acoustic startle response; BLA = basolateral amygdala; CIE = chronic 
intermittent ethanol vapor; CA= cocaine abusing; CD = cocaine dependent; CeA = central amygdala; CeL = lateral CeA; CeM = medial CeA; 
CORT = corticosterone (rodent)/cortisol (human); CPP = conditioned place preference; CRF = corticotropin-releasing factor; EPSP/C = excitatory 
postsynaptic potential/current; EPM = elevated plus maze; EtOH = ethanol (alcohol); E2 = estradiol; FC = fear conditioning; FS = Footshock; GDX 
= gonadectomized; g/kg = grams of ethanol per kilogram of body weight; GR = glucocorticoid receptor; IA2BC = intermittent access to 2-bottle 
choice; IR = immunoreactivity; LC = locus coeruleus; LD = alcohol-containing liquid diet; LMA = locomotor activity; MD = maternal 
deprivation/separation; mPFC = medial prefrontal cortex; PTSD = post-traumatic stress disorder; p# = postnatal day; SA = self-administration; 
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SBSA = sweetened EtOH binge-like self-administration; SI = social isolation; SS = swim stress; T = testosterone; TS = treatment seeking; REINST 
= reinstatement; RS = restraint stress; UCMS = unpredictable chronic mild stress; WD = withdrawal; YOH = yohimbine;  
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HIGHLIGHTS 

• Sex differences in alcohol use extend to stress which is more problematic for women 
• Neural responses to alcohol and stressors are different in males and females 
• Stress hormones and sex hormones impact drinking and seeking more in females 
• Studying sex-specific stress/alcohol interactions crucial for improving treatments 


