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Abstract

Medical expenditure data analysis has recently become an important problem in biostatistics. 

These data typically have a number of features making their analysis rather difficult. Commonly, 

they are heavily right-skewed, contain a large percentage of zeros and often exhibit large numbers 

of missing observations due to death and/or the lack of follow-up. They are also commonly 

obtained from records that are linked to large longitudinal data surveys. In this manuscript, we 

suggest a novel approach to modeling these data through the use of GMM (Generalized Method of 

Moments) estimation procedure combined with appropriate weights that account for both dropout 

due to death and the probability of being sampled from among National Long Term Care Survey 

(NLTCS) subjects. This approach seems particularly appropriate due to the large number of 

subjects relative to the length of observation period (in months). We also use a simulation study to 

compare our proposed approach with and without the use of weights. The proposed model is 

applied to medical expenditure data obtained from the 2004–2005 NLTCS linked Medicare data 

base. The results suggest that the amount of medical expenditures incurred is strongly associated 

with higher number of activities of daily living (ADL) disabilities and self-reports of unmet need 

for help with ADL disabilities.
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1 Introduction

The rising medical expenditures have figured in the news rather prominently in the last 

several years and have prompted a substantial interest in the analysis of healthcare related 
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data. Rising health care expenditures for older adults have provoked a lot of concern 

recently. The goal of our research is to investigate whether unmet need for help with 

disabilities in activities of daily living (ADL) is associated with higher medical expenditures. 

If this is the case, such a connection would inform policy makers about resource planning 

for older adults with unmet ADL need. Unmet ADL need is a serious problem among older 

adults. 15% of older adults need help from others to complete basic activities of daily living 

(ADL) [1] such as bathing, dressing, eating, toileting, and getting around inside. However, 

nearly 20% of older adults who need ADL help report unmet need for assistance with their 

ADL [2, 3, 4]. Unmet need for ADL assistance is associated with increased healthcare 

utilization including hospitalization [5], re-hospitalization [6], and nursing home placement 

[7]. Unmet need for ADL assistance is also associated with increased risk for death [8] and, 

for many older adults, medical care expenditures increase significantly in the months before 

death [9].

The medical expenditure data are commonly available from a number of longitudinal 

surveys such as the NLTCS (National Long Term Care Survey). NLTCS is one of the longest 

running longitudinal surveys in the USA that has been ongoing for more than 30 years and it 

is linked to Medicare claims data. Since the detailed description of NLTCS has been given 

already in [10], we only offer a very brief one. Let the starting point of our observation 

period be Sept 1st, 2004. Beginning with this date, subjects begin entering the study starting 

from the day of the interview. The interview day can fall on any day between Sept 1st, 2004 

and Dec 31st, 2005. As a result, we observe the straggled entry of subjects. Some subjects 

die during this follow-up period while others survive until Dec 31st, 2005 at which point the 

follow-up period stops for all subjects. Note that medical expenditures are taken from linked 

Medicare claims data; the reason follow-up was only conducted until the end of 2005 had to 

do with availability of the pre-linked Medicare records. The total medical expenditures are 

subdivided into a number of categories, e.g. durable medical equipment, hospital 

expenditures, skilled nursing facility, home health agency etc. For each subject, a number of 

covariates are available, such as unmet need for ADL disabilities, the number of ADL 

disabilities, and age. All of the covariates are binary. In addition to these two, some others 

were the diabetes status, the heart disease status etc. as well as demographic covariates such 

as age and gender. The total number of subjects was 2400 of which 467 died during the 

period of study.

The medical expenditure data tend to be rather complicated data and they present numerous 

statistical analysis challenges. First, they tend to be highly skewed to the right, with a 

relatively small proportion of patients incurring very high medical costs while the rest of 

patients hardly incurring any. Second, these data usually have a lot of missing observations 

either due to the lack of follow-up or death related dropout or both factors. Since the 

probability of death is related to expenditures due to significantly higher expenditures for 

many in the last months of life, the missing observations due to death cannot be viewed as 

MCAR (missing completely at random) which makes the analysis even harder. Third, the 

common simple random sampling (SRS) assumption cannot be used in their analysis since 

each observation point has the survey-related weight. We now discuss these issues in some 

extra detail.
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The presence of skewness in the data, together with a large number of zeros, implies that the 

choice of the modeling distribution may not be very straightforward. In general, such data 

cannot be viewed as generated by any particular continuous distribution. One of the 

approaches used to treat this problem is the use of OLS (ordinary least squares) regression 

with a positive shift at zero. For an overview of this approach, see, e.g. [11]. This approach 

has two significant shortcomings. First, the choice of the constant used to shift all of the 

observations away from zero tends to be rather arbitrary. Moreover, a retransformation back 

to the original scale is required in this case after the model has been fitted. Another 

possibility is to use the Tobit model which is, effectively, a censored normal regression that 

is based on the concept of latent variables. The genesis of this idea also goes back to 

econometric research; for details and a good overview, see [12] and [13]. The use of the 

Tobit model is problematic because it is very sensitive to violation of normality and 

heteroscedasticity assumptions (see [14] for more details). Moreover, Tobit model assumes 

that there is an underlying normal random variable that is censored due to some random 

mechanism; this implies, effectively, that zeros are not viewed as a valid response which is 

typically wrong in the medical cost data context.

Finally, the so-called two part model envisions a logit or probit GLM to model the 

probability of zero occurring while using another OLS or GLM to model the actual level of 

positive cost. This approach effectively models the fact that excessive zeros may be 

generated by a mechanism different from that of positive expenditures. Note that this 

amounts to the use of a degenerate mixture model where one of the components is 

concentrated at just one point. The two-part model has a long and distinguished history in 

various applications. A version of this model was used in 1970’s by meteorologists for 

rainfall; see, e.g. [15], [16] and [17]. The first ever example of its use in economic context 

was probably [18]. Later, this model was widely used in health economics as a result of the 

well known Health Insurance Experiment conducted by RAND Corporation; in that context, 

the two-part model was introduced in [19] and [20]. [21] provided a good overall review of 

the widespread use of the two-part model for health care cost data. Note that in the cross-

sectional context the two parts of the model may be fitted separately. An excellent recent 

work on the practical implementation of the two-part model in the cross-sectional context is 

[22]. This approach was later extended to the longitudinal data context; the first occurrence 

was, probably, in [23].

The presence of missing data because of death also creates a significant problem in the data 

analysis. Some options considered so far in the literature include using an estimated 

probability of survival, obtained using, for example, Kaplan-Meier approach, within a short 

subinterval as a weight and then summing up the mean total cost weighted by it over all of 

the intervals. Such an approach was first suggested in [24]. [25] managed to extend this 

approach to develop an estimator whose asymptotic distribution is independent of the choice 

of partition. A different approach models the hazard function of the terminal event (i.e. 

death) based on subject specific covariates as a part of the joint model. For more detailed 

discussion of this approach, see [26] and [10].

Finally, the fact that the data come from a longitudinal survey also needs to be taken into 

account. It has been long known that ignoring sampling weights can lead to severely biased 
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parameter estimates with underestimated standard errors (see [27] for a detailed discussion 

of this issue in the medical context). There has been relatively little research on how to 

account for sampling weights in biomedical modeling.

Our main goal in this manuscript is to estimate the extent of the influence that unmet ADL 

needs have on the amount of incurred expenditures within the follow-up interval. We also 

attempted to estimate the extent of this influence in the most unbiased way possible. The 

model is constructed to estimate net expenditures and also provide unbiased estimates of 

parameters (see the Table (4)), especially the one that reflects the influence that unmet ADL 

needs have on the probability of incurring expenditures as well as on the amount of 

expenditures. We constructed a model that allowed estimation of the influence of unmet 

ADL needs in the context of known contributors to older adults medical expenditures. These 

known contributors also include respondents baseline characteristics (e.g. age, ADL status). 

A number of subjects have died during the period of study and we incorporate the 

knowledge of their death in the form of Inverse Probability Weighting (IPW) procedure. 

Since observations missing due to death are clearly not Missing Completely At Random 

(MCAR), this information has to be incorporated to avoid possibly biased estimates of the 

cost [28]. Such a bias is typically a serious problem whenever the complete multivariate 

distribution of the data cannot be fully specified. It is possible to think of such a bias as 

resulting from two sources: one is the lack of information about the unmeasured disease 

severity between patients with different levels of ADL and the other is due to unbalanced 

nature of the data when some of the patients die during the period of study. Moreover, [29] 

(see p. 490) noted earlier that, ignoring the data that are not missing completely at random, 

such as MAR (Missing At Random), “…can potentially introduce bias in the estimates of 

regression parameters”. Due to these two concerns, we are introducing inverse probability 

weighting into our model to account for the missingness pattern due to the dropout.

Our secondary goal in conducting this research is to propose a longitudinal model that can 

relate highly skewed medical expenditures data with substantial missing data proportion to 

unmet need for ADL and some additional covariates. The ultimate hope is that the 

conclusions obtained will be of use in public policy. The current manuscript is structured as 

follows. Section 2 introduces the population averaged model we use to describe total 

medical expenditures across all categories and a novel method we introduce in order to fit it. 

Section 3 is dedicated to illustrating how the model works with simulated data. Section 4 

shows how the model performs with real data. Finally, Section 5 describes possible 

directions of future research.

2 Model

Suppose a group of n subjects is followed with the medical expenditures being observed on a 

monthly basis. For each subject i, i = 1, …, n, we have mi monthly expenditure recorded 

where mi ≤ m = 13 observations. The reason there may be less than m observations for some 

subjects is because some subjects die before the end of study. The total number of 

observations is . The observed expenditures of each subject are Yi = (Yi1, …, 

Yi,mi)′ with Yij being expenditures in jth month for the ith subject. Also, denote 
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. Of course, Yij ≥ 0; moreover, for some of i = 1, …, n, j = 1, …, mi, Yij = 

0; that happens when a subject doesn’t incur expenditures in any of the categories. All the 

subjects that did not die during the period of study are not observed any longer after Dec 

31st, 2005 which is a fixed date that does not depend on a subject and also does not depend 

on the medical costs. In other words, the experiment ends at a pre-specified time. Also note 

that the time a subject enters the study is not fixed to be Sept 1st, 2004 but can occur on any 

day after that date and until the end of the study period. Technically, the time of entry into 

the study for a subject is his/her initial interview day. However, we will consider the 1st day 

of the month that follows the interview month as the true time of entry since this is more in 

line with how the Medicare claims are processed. In such a setting, the medical expenditures 

data should be viewed as truncated on the left.

Some earlier work, e.g. [10], has only modeled the dependence of just one category - 

hospital expenditures - on a number of subject specific covariates. Our interest lies in 

modeling the total expenditures and, in particular, the influence of the number of ADL 

disabilities and unmet need for help with ADL disability on these expenditures. All of the 

covariates involved in this study were constant over time and so we denote Xi the vector of 

covariates for ith subject. We follow the approach similar to that used by [26] and [10] with 

several notable differences. First, we model jointly the probability of incurring total medical 

expenditures (that is, P(Y > 0)), and the amount of positive expenditures. Second, instead of 

the subject level approach used in [26] and [10], we use the population-averaged approach. 

In other words, instead of using subject-wise random effects to induce the necessary 

autocorrelation structure, the autocorrelation matrix for each subject is modeled directly. 

Also, unlike [26] and [10], we are using the GMM (Generalized Method of Moments) 

approach that is a generalization of the classical GEE (Generalized Estimating Equations) 

approach first pioneered in [30]. GMM was first proposed in econometric context in [31]. 

The classical GEE approach is very robust to misspecification of the subject-wise 

autocorrelation structure and can easily handle unbalanced designs. Also, the GEE choice is 

rather sensible when the number of subjects is large relative to the length of time period 

involved. However, GEE is known to be consistent only when the missing data are assumed 

to be MCAR which is clearly not the case for us. Moreover, our data are generated from 

what is effectively a mixture model that does not belong to an exponential family. The last 

two issues force us to consider a somewhat more general GMM which has been used 

extensively in econometrics for a long time.

Note also that our data have been obtained using a survey (NLTCS) with complicated 

weigtht structure, and, moreover, the death of certain subjects produces the dropout effect. 

There are a number of ways to compensate for the dropout effect. One of them is to use only 

the so-called “complete cases” (subjects that didn’t die until the end of the study period) 

with appropriate weights so that they account for “incomplete cases” as well. This approach 

is rather inefficient as it forces the researcher not to use a substantial proportion of the data. 

Therefore, we prefer to be able to weight the contribution of each subject at each month of 

observation to the total pseudo-likelihood of the model explicitly. This can be achieved using 

the Inverse Probability Weighting-GMM (IPW-GMM) approach; for detailed historical 

introduction see e.g. [29], Chapter 18. One of the few references in the literature using the 
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GEE approach for data with excessive zeros is [32]; they consider just clustered (rather than 

specifically longitudinal) data that are not weighted in any way. [32] also uses an 

independent working correlation assumption and only takes into account the intrasubject 

correlation when computing “sandwich” estimators of standard errors of estimated 

parameters.

We assume that Yij may be equal to zero with a non-zero probability that depends on the 

covariate vector Xi = (Xi1, …, Xip)′. Let γ be the p × 1 vector of parameters and denote p(Xi, 

γ) the probability of expenditures Yij being equal to zero. A number of choices are available 

to model this probability, e.g. the logistic or a probit model. To make our discussion simpler, 

we use a logistic model whereby

which implies that . Since the positive expenditures are highly 

skewed to the right, a right skewed distribution should be used to model it. A gamma family 

represents a convenient choice, including exponential and χ2 distributions as special cases. 

We parameterize gamma density as  defined for y ≥ 0. This 

parameterization (see, for example, [33]) is commonly used for purposes of generalized 

linear modeling. It is rather convenient since the mean is, then,  and the variance is 

 with  being the dispersion parameter. There is some empirical evidence from 

various applications that the gamma distribution with the constant dispersion parameter may 

be insufficiently heavy tailed for healthcare modeling purposes; thus, we assume that, in 

general, the dispersion parameter may depend on a set of covariates through the log link. We 

use the log link to model the mean expenditure of ith subject in jth month as well. For 

simplicity, we assume that the covariate vector used to model the mean and the dispersion 

parameter is the same as that in the logistic model above though this need not always be 

true. Thus, letting δ and ρ be respective parameter vectors and  the dispersion parameter, 

we define  and .

For an observation Yij, denote ξij = 1 if Yij > 0 and ξij = 0 if Yij = 0. Denote 

. Under the assumption of independence working model, we can write the 

full pseudolikelihood of our model as

(2.1)

where
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The above is only true if there are no missing observations and all observations come from a 

simple random sample. In practice, some subjects die before the end of the study period and 

this has to be reflected in a weight assigned to each observation. More specifically, we 

suggest treating each death as a terminal event and use the inverse probability weighting 

(IPW) procedure to take that into account. For ith subject, define Rij = 1 if the ith subject has 

a recorded expenditure amount (whether 0 or positive) in jth month and 0 otherwise. Denote 

the vector of response indicators for ith subject Ri = (Ri1, …, Rim)′. Then, the occasion 

when the subject experiences the terminal event (death) is . For a complete 

case, where mi = m and the entire expenditure vector Yi = (Yi1, …, Yim)′ is observed, we 

have Di = m + 1. For an individual with an incomplete vector of mi < m responses, we only 

observe Yi = (Yi1, …, Yimi)′ and Di = mi + 1.

We assume that the dropout due to death in jth month can be thought of as occuring “at 

random” in the classical sense - the probability of death only depends on the subject specific 

covariates as well as prior expenditures (observations) in months up to j − 1st. In any month 

j, the probability of survival through the jth month for the ith subject is pij = P(Di > j|Di ≥ j) 
= P(Rij = 1|Ri1 = ··· = Ri,j−1 = 1). It is commonly assumed that Ri1 = 1 for any subject i and, 

therefore, pi1 = 1. Due to the MAR (Missing At Random) assumption, it seems reasonable to 

assume that the probability of survival for ith subject in jth month depends on both subject-

wise covariate vector Xi and on the expenditures in all of the prior months. Let Yij = (Yi1, 

…, Yi,j−1)′. Define the joint covariate vector - a vector that typically consists 

of all observed expenditures prior to jth month for ith subject as well as the subject specific 

covariates Xi. The probability pij can then be modeled using, for example, logistic 

regression, as

(2.2)

In order to compute the weight assigned to subject i in jth month, we take the inverse of 

unconditional probability of survival occurring in jth month which is  and multiply 

it by the sample weight under the independence assumption. If we denote the sampling 

weight of the ith subject ωi, the weights to be used are defined as .

Thus, if the ith individual had observed expenditures Yij in the jth month (whether zero or 

positive), that subject will receive weight ωij in that month. If, on the contrary, the subject 

has died before or in jth month, he will receive the weight of zero. For the ease of notation, 
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let us introduce the joint parameter vector θ = (γ,δ,ρ). Then, the log-pseudolikelihood will 

become

where each

Note that, in our case, the marginal distribution of each observations Yij is a mixture that 

does not belong to an exponential family. Traditional GEE generally assumes that marginal 

distribution of observations Yij belongs to an exponential family; however, a slightly more 

general GMM (Generalized Method of Moments) (see, e.g., [31]) approach allows us to 

dispose of this assumption. GMM - based approach allows us, under weak assumptions on 

the true dependence within the sample, to obtain consistent and asymptotically normal 

estimators of the model parameters. As in the classical GEE method, this is done without 

taking into account the unknown dependence structure when formulating estimation 

equations.

Let the score function be  where . 

Then, the sequence of estimating equations is defined as

At this point, we need to invoke some results on convergence of GMM estimators in cases 

where the sample is not the random draw from the population of interest. For example, [34] 

showed that the asymptotic normality is still valid for a variety of situations where weights 

are used as propensity scores and are dependent both on covariates and on other 

observations (which corresponds to the missing at random case). By this result, the 

normalized difference n−1/2(θ̂−θ) converges to a normal distribution with mean zero and 

variance Σθ that needs to be estimated. The usual sandwich estimator has to be modified due 

to the presence of estimated weights. The usual “sandwich” estimator that would be 

ordinarily used to estimate Σθ is
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In order to estimate the weights pij (and, therefore, ωij), we need to run a logistic regression 

analysis of the “stacked” dataset that includes observations for all subjects. This involves 

solving the following system of equations:

The system of equations above represents the sum of subject-wise score functions for the 

logistic regression model (2.2) used to compute propensity weights. Note that only when 

Ri,j−1 = 1 the ith subject’s contribution is not equal to zero. In other words, only when in a 

given month j − 1 the ith subject had recorded (possibly zero) expenditures, this subject 

contributes a nonzero term to its score function Si(α). One can also say here that, after the 

death of ith subject he/she does not contribute anything to its score Si(α). In order to adjust 

for estimated weights, we need to change the sandwich estimator. More specifically, we 

replace Ui(Yi|θ̂) in the middle part of the “sandwich” estimator with the residual of the 

multivariate regression of Ui(Yi|θ̂) on Si(α). Such a residual is

Taking the above into account, the modified estimator of Σ̂ becomes

This amounts to effectively using a residual from a multivariate regression of Ui(Yi|θ) on 

Si(α) in order to reduce variability of estimated θ̂. For details of this approach, see e.g. [29], 

Chapter 18.

3 Simulation study

In order to assess model performance a simulation study was performed. Data characteristics 

of interest are sampling weights, positive right skewed response with a point mass on zero, 

correlated response over time, dropout due to death, and the staggered entry into the study 

due to differing interview dates.

In order to mimic the analysis of real data, 5 independent binary covariates Xik, k = 1, …, 5, 

were generated from a Bernoulli distribution with the probability p = 0.5. Out of many ways 

of generating multivariate distribution with gamma marginals, we select the so-called 

Clayton copula. In brief, for a random vector X = (X1, …, Xd)′ with continuous marginal 

distributions Fi(x) = P(Xi ≤ x), applying a probability integral transform results in a random 

vector U = (U1, …, Ud)′ = (F1(X1), …, Fd(Xd))′ with uniform marginals. Then, the joint 

cumulative distribution of (U1, …, Ud) is said to be a copula. The Clayton copula belongs to 
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a specific class of copulas commonly called Archimedean copulas that allow modeling of 

dependence for an arbitrary high number of dimensions using only one parameter. For more 

details and an introduction to copulas, see e.g. [35]. In our cases, expenditures for a finite 

population of 50, 000 individuals were generated from a 13 dimensional Clayton Copula 

with the parameter θ = 2. In order to mimic expenditures Yij, we back transform individual 

univariate uniform random variables using the appropriate inverse gamma CDF and then 

multiply by the necessary scale factor. Let Γ−1(u; α) be the value of inverse Gamma CDF at 

u with the shape parameter α. Now, the resulting “synthetic” expenditures are correlated 

with the correlation coefficient ρ ≈ 0.5 and are represented as

where uij is the random variate from the copula corresponding to Xij, Yij is the expenditure 

of ith subject in jth month, and ν is the dispersion parameter,

In order to introduce a point mass on zero, the probability of no expenditure was calculated 

for each month of each subject. An indicator of non-zero expenditure was generated from a 

Bernoulli distribution with probability  that was obtained as

We used the same set of covariates here as the one used to model the distribution of 

expenditures Yij. If the indicator was one, the expenditure was left as it was, if the indicator 

was zero, the expense was set to zero, to simulate months with no expenditures. The 

introduction of zeros reduced correlation to levels consistent with the observed data (ρ ≈ 

0.3).

In order to introduce staggered entry due to interview date, a random start month was drawn 

from a multinomial distribution with π = (0.1810, 0.3101, 0.3142, 0.1634, 0.0294, 0.0011) 

for months 1 to 6 to mimic the sample exactly. Unconditional probabilities of survival are 

calculated based on a logistic model that depends on the same 5 binary covariates as before 

and the expenditure of the previous month. We assume the dependence on the expenditure of 

ith subject in the previous month in order to simulate the MAR (Missing At Random) 

compliant dropout times due to death. Unconditional probabilities of not dropping out in the 

jth month for the ith subject are computed as a product of the probability of not dropping out 

j − 1st month multiplied by the probability of survival through jth month. It is assumed that 

the probability of survival in the first month is 1. Therefore, the probability that ith subject 

dies in jth month is given by the expression
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Beginning with the month following the start month, a binary death indicator was sampled 

from a Bernoulli distribution with . For each subject, expenditures prior to the start 

month and after the month of death (if any) were dropped as being unobserved and not 

occurring respectively. In order to create sampling weights, data was structured to have 100 

strata with 10 clusters each containing 50 subjects. A two stage sampling design was 

implemented. The first stage consisted of selecting a simple random sample of two clusters 

per each stratum. The probability of selection for each cluster was, therefore, equal to 0.2. 

At the second stage, a sample of four subjects per cluster was chosen with probability 

proportional to size so that we ended up with a sample of size 800. The size measure for ith 

subject was defined similarly to [10], namely

where δi is an indicator variable equal to one if the ith individual died before the end of the 

study and zero otherwise; ȳi is the average monthly cost of ith subject. Note that this is an 

informative sampling scheme where the subjects who died during the period of study are 

oversampled. Sampling weights were calculated as the inverse of probability of selection. 

This was repeated 1000 times to create 1000 samples with 800 subjects each.

For each sample, a logistic model was fitted to estimate death weights, and then the IPW-

GEE model was fitted and the Robust Sandwich Variance Estimator was used for standard 

errors. Coefficient estimates, variability of those estimates, mean of the Robust standard 

errors, and coverage probability of true parameter values are presented in Table (1). Note 

that in 3.3% of simulations, estimation procedure did not converge and the respective results 

were not included in the Table (1). It is clear that our approach seems to work rather well 

with simulated data in this informative sampling scheme. Note, in particular, an excellent 

coverage probability for all of the confidence intervals involved.

Since we estimate monthly expenditures in this setting, the presence of the dropout related 

weights does not change the values of estimated parameters greatly. We conducted a 

separate simulation where the weights used were just sampling weights, that is, ωij = ωi for 

each subject i. The resulting Table is almost identical to the Table (1) and is omitted in the 

interest of brevity. What is different, however, is the numerical stability of the estimation 

procedure. Whereas before, as we mentioned earlier, the estimation procedure did not 

converge in only about 3.3% of all cases, when the dropout related weights are omitted, this 

number rises to approximately 15%. We believe this is yet another reason to include the 

dropout related weights in our estimation procedure.
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For comparison purposes, we also fit the same model to the data with no use of weights; 

therefore, the presence of missing data due to death as well as sampling weights are both 

ignored. The results are given in the Table (2). Note that the fitted coefficients are now 

biased, with the particularly pronounced bias present in estimated intercept of the medical 

expenditure model and in the dispersion parameter of the gamma distribution. The 

informative sampling scheme we are using results in oversampling of subjects with higher 

average expenditures and those who died during the observation period. If this element of 

the sampling design is ignored, one would expect a larger intercept in the medical 

expenditure model as well as a larger estimated dispersion parameter. The latter would 

account for increased variability in medical expenditures that was not properly accounted for 

by the sampling design.

4 Analysis of the NLTCS data

Included in the analysis are the 2400 respondents of the 2004 NLTCS community survey of 

whom 467 died during the observation period. Each respondent was followed for up to 13 

months after the interview. Observation stopped with either death or being censored at the 

end of 2005. On average, respondents were followed for 10.66 months with a standard 

deviation of 2.46 months. Monthly medical expenditures in the follow-up period were 

obtained from the Medicare claims data by accumulating recorded expenditures within the 

same month. 86.12% of respondents had a nonzero total medical expenditure during the 

follow-up period.

A descriptive summary of monthly expenditures and some weighted sample characteristics 

is given in the Table (3). Ordinarily, SAS PROC GENMOD is used for the GEE approach to 

estimation of longitudinal data-based models. However, PROC GENMOD requires an 

explicit distributional assumption out of the (fairly short) list; our data have been generated 

by a mixture of right-skewed continuous gamma distribution and the degenerate point-mass 

distribution. Due to that, we decided to use PROC NLMIXED instead since it can 

approximately solve the necessary non-linear estimating equation.

For comparison purposes, we fit gamma models with both constant and non-constant 

dispersion parameters. We examine goodness of fit of these distributions to the positive 

monthly healthcare expenditures. More specifically, 1000 data sets are simulated for each 

model; afterwards, the expected quantiles based on the model are computed and plotted 

against sample quantiles. These plots show that, in both cases, the fit is relatively good 

although the heteroscedastic version does offer certain improvement by providing a more 

heavy tailed distribution. We also tried alternative heavy tailed distributions, such as inverse 

gamma and Weibull. Respective quantile to quantile plots showed a much worse pattern and 

are not shown here in the interests of brevity.

The weights have been fitted using the same set of covariates as the main model with the 

addition of the prior months medical expenses. That set of covariates Zij consists of 

moderate to severe ADL disability (3–5 categories), unmet need for ADL disability, age 

(viewed as a continuous varibale), gender, race (white or nonwhite), and medical expenses in 

j − 1st month.
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The results of our analysis are presented in (4) and (5). The first two parts of these models 

are very similar. All of the parameters that are statistically significant in one of them are 

significant in the other and vice versa. For convenience, we will refer to p-values from (4). 

They suggest that both increased ADL and the unmet need for medical assistance are 

strongly associated with the higher amount of incurred expenditures (p < 0.0001 and p < 

0.0008, respectively). The increased ADL is also strongly predictive of the higher 

probability of incurring expenditures (p < 0.0072); however, the unmet need is not strongly 

predictive of that same probability (p < 0.2473). Both gender and race also seem to be 

strongly associated with the higher probability of incurring medical expenditures; females 

seem to incur costs less often than males (p < 0.0001) and whites seem to incur expenditures 

more often than people of other races (p < 0.0002). Finally, the older age is strongly 

associated with larger medical expenditures (p < 0.0007).

5 Discussion

Our work continues the recently observed trend of utilizing complex survey data in 

statistical healthcare research. A particularly beneficial feature of a survey such as NLTCS is 

its linkage to Medicaid/Medicare claims which provides an opportunity to study the 

relationship between demographic characteristics and medical expenditures. Modeling 

medical expenditures has long been known to be difficult due to the presence of a large 

number of zeroes as well as the highly skewed nature of the non-zero part of observations 

and commonly present missing observations. All of these features need to be taken into 

account when analyzing the data.

A distinctive feature of our analysis is the use of a marginal model that is estimated using the 

GEE/GMM approach with inverse probability weighting. This approach has been less 

popular in the literature than the competing mixed modeling approach; [32] is one of the few 

available examples but they only modeled general clustered (and not specifically 

longitudinal) data that didn’t come from a survey and were not subject to a dropout 

phenomenon. We found the GEE/GMM based approach particularly applicable in our case 

since our dataset had a large number of participants relative to the length of observations 

available; this latter fact makes GEE/GMM asymptotic results practically applicable. Its 

other appealing properties is robustness to misspecification of the data covariance structure 

as well as the ease of adapting it to the presence of dropout in the data under the MAR 

(Missing At Random) Assumption.

It is also of interest to note that, due to the “working independence” assumption that we 

have, in fact, been using in our GEE/GMM analysis, we can utilize any of the subject-wise 

covariates Xi, even though some of them may have missing values (see, e.g. the discussion 

in [29] on p. 529. Unlike in a classical IPW method that is only using the so-called 

“complete cases” (only subjects who didn’t die until the end of the study period), the IPW-

GEE/GMM estimator that we are using in this research, does not disregard any of the 

available data.

The choice of a particular distributional model for the data analysis in this situation is rather 

complicated. A large number of different distributions have been used in practice before, e.g. 
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the generalized gamma distribution [10], Pareto distribution [36] and several others. We 

conjecture that a combination of excessive zeros and a right-skewed heavy-tailed distribution 

may also be modeled as a member of a general exponential dispersion family, e.g. one of the 

so-called Tweedie family distributions (see e.g. [37]). Such an approach would avoid the 

necessity of using a mixture model to describe the data and may result in a simplified 

estimation procedure. Future research is needed to investigate such a possibility.
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Figure 1. 
Quantile-quantile plot for monthly expenditures to compare the fit to homoscedastic gamma
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Figure 2. 
Quantile-quantile plot for monthly expenditures to compare the fit to heteroscedastic gamma

Hass et al. Page 17

Stat Med. Author manuscript; available in PMC 2017 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hass et al. Page 18

Ta
b

le
 1

R
es

ul
ts

 o
f 

si
m

ul
at

io
n 

w
he

n 
th

e 
w

ei
gh

ts
 w

er
e 

us
ed

Si
m

ul
at

io
n 

R
es

ul
ts

P
ar

am
et

er
T

ru
e 

P
ar

am
et

er
 V

al
ue

M
ea

n 
E

st
im

at
e

SE
 o

f 
E

st
im

at
es

M
ea

n 
of

 S
E

C
ov

er
ag

e 
P

ro
ba

bi
lit

y

α
0

1.
83

1.
84

02
0.

18
23

0.
03

57
93

.3
%

α
1

−
0.

18
−

0.
20

05
0.

11
24

0.
10

60
92

.0
%

α
2

−
0.

21
−

0.
20

24
0.

10
99

0.
10

60
94

.6
%

α
3

2.
35

2.
33

58
0.

11
94

0.
11

74
92

.9
%

α
4

−
1.

18
−

1.
18

00
0.

12
69

0.
11

62
92

.2
%

α
5

−
0.

22
−

0.
21

98
0.

10
85

0.
10

70
93

.5
%

β 0
7.

30
7.

29
70

0.
14

16
0.

12
61

90
.7

%

β 1
0.

27
0.

28
47

0.
08

47
0.

08
12

93
.8

%

β 2
0.

34
0.

33
97

0.
08

39
0.

08
12

94
.2

%

β 3
−

0.
34

−
0.

34
42

0.
09

14
0.

08
34

92
.7

%

β 4
0.

00
0.

01
03

0.
08

06
0.

07
96

94
.8

%

β 5
0.

19
0.

19
85

0.
08

58
0.

08
11

92
.7

%

ν
0.

93
0.

95
11

0.
06

42
0.

05
97

91
.2

%

Stat Med. Author manuscript; available in PMC 2017 July 10.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hass et al. Page 19

Ta
b

le
 2

R
es

ul
ts

 o
f 

si
m

ul
at

io
n 

w
he

n 
th

e 
w

ei
gh

ts
 w

er
e 

no
t u

se
d

Si
m

ul
at

io
n 

R
es

ul
ts

P
ar

am
et

er
T

ru
e 

P
ar

am
et

er
 V

al
ue

M
ea

n 
E

st
im

at
e

SE
 o

f 
E

st
im

at
es

M
ea

n 
of

 S
E

C
ov

er
ag

e 
P

ro
ba

bi
lit

y

α
0

1.
83

1.
86

57
0.

11
19

8
0.

11
58

93
.1

%

α
1

−
0.

18
−

0.
19

41
0.

07
65

0.
07

69
95

.2
%

α
2

−
0.

21
−

0.
18

55
0.

07
79

0.
07

81
94

.4
%

α
3

2.
35

2.
31

50
0.

09
45

0.
09

05
92

.4
%

α
4

−
1.

18
−

1.
16

49
0.

08
04

0.
08

29
94

.6
%

α
5

−
0.

22
−

0.
21

77
0.

07
85

0.
07

68
94

.3
%

β 0
7.

30
7.

41
74

0.
07

68
0.

07
70

65
.6

%

β 1
0.

27
0.

27
54

0.
05

49
0.

05
26

93
.7

%

β 2
0.

34
0.

33
13

0.
05

36
0.

05
37

95
.1

%

β 3
−

0.
34

−
0.

34
47

0.
05

31
0.

05
14

94
.8

%

β 4
0.

00
0.

02
69

0.
05

30
0.

05
18

90
.6

%

β 5
0.

19
0.

19
04

0.
05

09
0.

05
20

95
.1

%

ν
0.

93
1.

06
67

0.
04

51
0.

04
57

13
.6

%

Stat Med. Author manuscript; available in PMC 2017 July 10.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hass et al. Page 20

Ta
b

le
 3

Su
m

m
ar

y 
ch

ar
ac

te
ri

st
ic

s 
of

 th
e 

da
ta W

ei
gh

te
d 

sa
m

pl
e 

ch
ar

ac
te

ri
st

ic
s 

of
 N

LT
C

S 
re

sp
on

de
nt

s

N
P

er
ce

nt
 w

it
h 

po
si

ti
ve

 c
os

t
M

ea
n 

po
si

ti
ve

 m
on

th
ly

 c
os

t
P

er
ce

nt
 o

f 
su

bj
ec

ts
 d

ie
d 

(%
)

A
ge

L
es

s 
th

an
 7

5 
ye

ar
s

54
9

85
.8

19
63

.1
9.

7

75
 y

ea
rs

 o
r 

ab
ov

e
21

75
87

.5
20

88
.2

13
.3

G
en

de
r

M
al

e
79

1
85

.6
23

11
.6

17
.3

Fe
m

al
e

19
33

86
.5

18
60

.9
10

.2

R
ac

e

W
hi

te
23

87
84

.4
24

73
.8

10
.0

O
th

er
33

7
86

.5
19

22
.3

12
.8

D
ia

be
te

s

N
o

20
74

85
.3

18
71

.1
12

.0

Y
es

64
2

88
.8

22
71

.1
13

.2

E
m

ph
ys

em
a

N
o

25
13

86
.0

19
41

.8
11

.8

Y
es

21
1

89
.2

25
10

.8
19

.4

A
D

L

1–
3 

L
im

ita
tio

ns
14

17
84

.4
17

42
.2

7.
8

4–
5 

L
im

ita
tio

ns
13

07
88

.2
22

47
.0

17
.2

U
nm

et
 A

D
L

 n
ee

d

N
o

21
26

85
.8

18
59

.3
11

.5

Y
es

59
8

87
.6

24
30

.8
15

.6

Stat Med. Author manuscript; available in PMC 2017 July 10.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hass et al. Page 21

Table 4

Parameter estimates for the population-averaged model of NLTCS data: homoscedastic gamma

Parameter GMM estimate Standard error p-value

Part I: incurring expenditures

Intercept 8.8264 1.3426 0.0000

Unmet need −0.1527 0.1320 0.2473

ADL 3–5 −0.3924 0.1460 0.0072

Age −0.0848 0.0128 0.0000

Gender (female) −1.7841 0.3900 0.0000

Race (white) 0.8102 0.1883 0.0002

Part II: amount of positive expenditures

Intercept 6.6437 0.3196 0.0000

Unmet Need 0.2741 0.0817 0.0008

ADL 3–5 0.3825 0.0735 0.0000

Age 0.0140 0.0041 0.0007

Gender (female) 0.2058 0.0942 0.0290

Race (white) −0.5118 0.1336 0.0001

Dispersion parameter 0.9103 0.1407 0.0000
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Table 5

Parameter estimates for the population-averaged model of NLTCS data: heteroscedastic gamma

Parameter GMM estimate Standard error p-value

Part I: incurring expenditures

Intercept 8.8267 1.3426 0.0000

Unmet need −0.1528 0.1320 0.2472

ADL 3–5 −0.3924 0.1460 0.0072

Age −0.0848 0.0128 0.0000

Gender (female) −1.7840 0.3900 0.0000

Race (white) 0.8102 0.1883 0.0002

Part II: amount of positive expenditures

Intercept 6.2887 0.3366 0.0000

Unmet Need 0.3140 0.0898 0.0005

ADL 3–5 0.4425 0.0677 0.0000

Age 0.0193 0.0044 0.0001

Gender (female) 0.2302 0.0974 0.0181

Race (white) −0.5433 0.1318 0.0000

Part III: Dispersion parameter

Intercept 2.0874 0.1970 0.0000

Unmet Need −0.1166 0.0451 0.0097

ADL 3–5 −0.3217 0.0375 0.0000

Age −0.0306 0.0024 0.0000

Gender (female) −0.6493 0.0501 0.0000

Race (white) 0.2601 0.0535 0.0000
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