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Abstract 

Global DNA hypomethylation occurs in many cancer types but there is no explanation for its differential 

occurance or possible impact on cancer cell physiology. Here we address these issues with a computational study 

of genome-scale DNA methylation in 16 cancer types. Specifically, we identified (1) a possible determinant for 

global DNA methylation in cancer cells, and (2) a relationship between levels of DNA methylation, nucleotide 

synthesis and intracellular oxidative stress in cells. We developed a system of kinetic equations to capture the 

metabolic relations among DNA methylation, nucleotide synthesis, and anti-oxidative stress response, including 

their competitions for methyl and sulfur groups, based on known information about one-carbon metabolism and 

trans-sulfuration pathways. We observed a kinetic-based regulatory mechanism that controls reaction rates of the 

three competing processes when their shared resources are limited, particularly when the nucleotide synthesis 

rates or oxidative states are high. The combination of this regulatory mechanism and the need for rapid nucleotide 

synthesis, as well as high production of glutathione dictated by cancer-driving forces, led to the nearly universal 

observations of reduced global DNA methylation in cancer. Our model provides a natural explanation for 

differential global DNA methylation levels across cancer types and support the observation that more malignant 

cancers tend to exhibit reduced DNA methylation levels. Insights obtained from this work provide useful 

information about the complexities of cancer due to interplays among competing, dynamic biological processes. 
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Introduction 

It has been widely observed that cancer genomes tend to have increased DNA methylation levels in the 

promoter regions of their protein-encoding genes, but intriguingly their global methylation levels (including 

promoter and non-promoter regions) tend to decrease in comparison with normal tissue cells. This has been 

observed in a variety of cancer types, including colon, liver, gastric, ovarian, breast, thyroid, and lung cancer (1-4). 

Certain cancers can have over 50% reduction vs. their normal controls as observed in human primary GBMs and 

glioma cell lines (5). It has been speculated that such reduced levels of global DNA methylation might have been 

selected to increase opportunities for the host cancer cells to overcome or to adapt to specific stresses encountered 

as reduced methylations generally imply increased gene expressions (6).  

A number of studies have been published aiming to explain the possible causes for the altered DNA 

methylation levels in cancer, predominantly on tumor suppressor genes. A popular view has been that increased 

methylation in the promoter regions of such genes will keep the expressions of these genes low, hence enabling 

the survival of the cancerous host cells (7,8). A few studies have suggested possible causes of the reduced global 

DNA methylation in cancer (9). One proposal is that dietary deficiency in methyl carriers (folate and methionine) 

could be a reason (8,10) as insufficient methyl groups in diet have been linked to hepatic steatosis, cirrhosis, and 

even hepatic tumorigenesis (10). It was speculated that methyl-carrying molecules entering the one-carbon 

metabolism might be preferentially directed towards de novo synthesis of thymidylate needed for nucleotide 

synthesis at the expense of homocysteine re-methylation, hence resulting in reduced global DNA methylation 

during folate deficiency (11). It is noteworthy that the one-carbon metabolism has three exits: the folate cycle, the 

methionine cycle and the transsulfuration pathway with the latter going to the production of glutathione (GSH), 

the main antioxidant in human cells. Since cancer cells generally have high oxidative states, they tend to produce 

more GSH molecules for anti-oxidation and survival, therefore fewer homocysteine molecules will be directed 

towards DNA methylation compared to normal controls, hence resulting in reduced global DNA methylations as 

another proposal suggests (12). All these proposals suggest that the reduced DNA methylation may be the result 

of competition among several processes, including nucleotide synthesis and anti-oxidation, for their shared 
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resources but they are all speculative without detailed mechanistic understanding that offers a reliable explanation 

of why other processes may outcompete DNA methylation and how this may be regulated.   

We present here a computational study to address both the why and the how questions through (i) 

quantitative analyses of the well-established competitive relations among the three aforementioned processes 

using a set of ordinary differential equations; and (ii) an integrative analysis of epigenomic and transcriptomic 

data of cancer vs. control tissues of 16 cancer types to derive cancer type specific relations between DNA 

methylation and its competing processes. Specifically, we answer: (1) what may have caused the reduced level of 

global DNA methylation in cancer? And (2) why are the global DNA methylation levels distinct across different 

cancer types?  

We first introduce some basics of the metabolic pathways under study. S-adenosyl methionine (SAM) is 

the most essential compound for DNA methylation, which consists of a sulfur-containing group and a methyl 

group. The sulfur-containing group comes from amino acid methionine, and the methyl group is from amino acid 

serine carried by folate. While DNA methylation consumes methyl groups, the sulfur-containing group is recycled 

back to methionine or converted to a GSH precursor. Figure 1 shows the detailed pathways for the methionine, 

folate and GSH metabolisms and their relations, through which metabolites S-adenosylhomocysteine (SAH), 

SAM, methionine and Hcy can be inter-converted. Since folate and GSH pathways do not interact directly (Figure 

1), we study them separately and call the sub-system consisting of the folate and methionine pathways as F-M and 

the other with GSH and methionine pathways as G-M. Throughout the paper, we use transsulfuration pathway, 

anti-oxidation system and GSH pathways interchangeably. In addition, DNA methylation means global level 

DNA methylation, unless otherwise specified. 

Materials and Methods 

Data 

DNA methylation data measured using HumanMehtylation450 arrays for 14 cancer types and 40 bisulfide 

sequencing data for eight cancer types are retrieved from the TCGA database. We have also used RNA-seq based 
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gene expression data for 14 cancer types from the TCGA database. Six of these have all three data types available 

and the numbers of samples available for these three data types are summarized in Supplementary Table S1. 

Method for estimating array-based DNA methylation level 

The methylation array data (the HumanMehtylation450) we used cover ~485,000 CpG probes. These 

probes fall uniquely into one of the six categories: TSS1500, TSS200, 5’ UTR, first exon, gene body, and 3’ UTR, 

as summarized in Supplementary Table S2. Approximately half of the CpG probes are in more than one category. 

We have estimated each sample’s total methylation level in each of the six CpG categories by summarizing the 

beta values of all the CpG islands that are located in each of each category, where a beta value is defined as the 

ratio between the methylated probe intensity and the overall intensity (sum of methylated and un-methylated 

probe intensities).  

Method for estimating sequence-based DNA methylation level 

For bisulfide sequencing data, we estimated the total methylation level of the CpG regions located in both 

gene regions and the LINE-1 regions in the genomes of 39 cancer patients the same way as in (13). The total 

methylation level in genes is estimated by averaging the methylation levels across all CpG sites that are located 

within gene bodies. The total methylation level of gene promoter region is estimated by averaging the methylation 

levels across CpG sites that are located within 2Kb upstream of gene’s transcription starting site. The total 

methylation level of the LINE-1 elements is estimated by averaging the methylation levels across all CpG sites 

that are located within LINE1 elements across the whole genome.  

Building equations for each reaction in nucleotide synthesis, DNA methylation and GSH synthesis 

For each mono- or bi-substrate reaction under consideration (Figure 1), we built a reaction equation based 

on its kinetics defined by the Michaelis-Menten equation (14), where reaction rate 𝑉 can be written as: 

𝑉 =
𝑉𝑚𝑎𝑥[𝑆]

(𝐾𝑚 + [𝑆])
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or 

𝑉 =
𝑉𝑚𝑎𝑥[𝑆1][𝑆2]

(𝐾𝑚,1 + [𝑆1])(𝐾𝑚,2 + [𝑆2])

Reactions with non-standard forms are taken from (14) and detailed in Supplementary Table S3. All the model 

parameters, 𝑉𝑚𝑎𝑥 and 𝐾𝑚, are collected from (14) (see Supplementary Table S4).

We have noted that the F-M-G system falls into the category of stiff systems (15) as the concentrations of 

different molecular species differ by several orders of magnitudes. Numerical solvers to such ODEs tend to 

perform poorly on such systems. We have applied the following strategy in an iterative manner by alternatively 

working on the F-M and G-M systems separately to derive a solution to the F-M-G system, which takes advantage 

of the fact that there is a natural separation in time scales for the two sub-systems and neither of them is a stiff 

system.  

We started by determining the initial values for the 15 molecular species used in the whole system. By 

analytically solving for the steady-state concentrations in the F, M, G systems individually using MATLAB 

function “solve”, we noted that 10 of the 15 species could be represented as analytical functions of the rest five. 

Though it was not likely that we could represent the steady state concentrations of all the 15 species using one 

less variable (i.e. four variables), these reduced number of variables are primarily for reducing the search space 

for initial values and ease of computation, and theoretically shouldn’t affect the identification of the steady state 

concentrations. We now define the steady-state concentrations of these five species in normal tissues as 𝑥1
0, 𝑥2

0, 𝑥3
0,

𝑥4
0, 𝑥5

0. We will search the vicinity of each of these values, specifically 
𝑥𝑖

0

10
, 

𝑥𝑖
0

5
, 𝑥𝑖

0, 5𝑥𝑖
0, and 10𝑥𝑖

0 for 5 ≥ 𝑖 ≥ 1.

For each of the 55 combinations of initial values, we calculate the corresponding values of the 10 dependent

variables, and then do the following:  

1. Solve the F-M system in steady state by treating the variables in the G system as constants using their

current solutions;

2. Update the current solution to variables in the F-M system based on the solution derived in (1);

3. Solve the G system in steady state by treating the variables in F-M system as constants using their

current solutions;
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4. Update current solution to variables in the G system based on the solution derived in (3);

5. Repeat Steps 2-4 until the first derivatives of all the 15 variables, defined as 
abs(𝑠𝑡+d𝑡−𝑠𝑡)

𝑑𝑡
, as well as 

their relative changes, defined as 
abs(𝑠𝑡+d𝑡−𝑠𝑡)

𝑠𝑡
, are within a pre-specified threshold, 0.01. 

The convergence of the algorithm for finding steady state concentrations of the F-M-G system is 

established in Supplementary document. 

Relevant enzymes in F-M-G system and marker genes for estimating the levels of folate, serine, cysteine, 

and methionine 

We have used known marker genes and their expression levels for estimating the level of each metabolite 

and enzyme used in our ordinary differential equations and analysis. Specifically, we have done the following, 

with detailed gene list given in Supplementary Table S5: 

1. For folate, we have used expressions of genes, FPGS, GGH, SLC19A1, encoding the folate

homeostasis mediators as a measure for its concentration (16);

2. Transporters of amino acids cysteine, serine and methionine are taken from (17).

Estimating the expression level of a group of genes in a common pathway 

Obtaining an overall expression of a group of genes on multiple samples, 𝑋, is to find a one-dimension 

representation, 𝑑, for 𝑋, which could be formulated as an optimization problem 

min
α,d

𝑓(𝛼, 𝑑) = ||𝑋 − 𝛼𝑑𝑇||𝐹

which is the largest eigen-value of the matrix 

∑ 𝑥𝑖
𝑇𝑥𝑖

𝑁

𝑖=1

where 𝑥𝑖 is the row vector of X. Note 𝛼 serves as an ancillary variable in here.

Proof: 
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𝑓(𝛼, 𝑑) = ∑(𝑥𝑖 − 𝛼𝑖𝑑𝑇)(𝑥𝑖 − 𝛼𝑖𝑑𝑇)𝑇

𝑁

𝑖=1

= ∑(𝑥𝑖𝑥𝑖
𝑇 − 2𝛼𝑖𝑑𝑇𝑥𝑖

𝑇 + 𝛼𝑖
2𝑑𝑇𝑑)

𝑁

𝑖=1

𝜕𝑓(𝛼,𝑑)

𝜕(𝛼𝑖)
= −2𝑑𝑇𝑥𝑖

𝑇 + 2𝛼𝑖𝑑𝑇𝑑

Let 
𝜕𝑓(𝛼,𝑑)

𝜕(𝛼𝑖)
= 0, we have 𝛼𝑖

∗ =
𝑑𝑇𝑥𝑖

𝑇

𝑑𝑇𝑑
. We replace 𝑓(𝛼, 𝑑) with 𝛼𝑖

∗

𝑓(𝛼, 𝑑) = ∑(𝑥𝑖𝑥𝑖
𝑇 −

𝑑𝑇𝑥𝑖
𝑇𝑥𝑖𝑑

𝑑𝑇𝑑
)

𝑁

𝑖=1

 

To minimize 𝑓(𝛼, 𝑑) is equivalent to maximizing 

∑
𝑑𝑇𝑥𝑖

𝑇𝑥𝑖𝑑

𝑑𝑇𝑑

𝑁

𝑖=1

And that would be the eigenvector corresponding to the largest eigen-value of the matrix 

∑ 𝑥𝑖
𝑇𝑥𝑖

𝑁

𝑖=1

Results 

Reduced global DNA methylation in cancer vs. normal control 

We have examined DNA methylation data of 5,219 tissue samples of cancer vs. control tissues of 16 

cancer types, out of which 5,179 samples are measured using the array technology and 40 samples measured 

using the bi-sulfide sequencing technology. The two datasets each cover different cancer types, with the array and 

sequencing data covering 14 and 8 cancers types, respectively, giving rise to a total of 16 distinct cancer types 

(see Materials and Methods). The array data consist of methylation data of 486,428 CpG islands, covering 99% 

of RefSeq genes, with an average of 17 CpG sites per gene distributed across its entire promoter region (i.e., 

TSS1500, TSS200, 5’ UTR, and the first exon) and the gene body regions (i.e., gene body and the 3’ UTR). The 

total methylation levels of promoter and gene body regions’ CpG islands across different cancers are summarized 
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in Supplementary Figure S1. Details regarding how the methylation level of each CpG category is estimated can 

be found in the Materials and Methods section.  

We noted that cancer tissues tend to have significantly increased methylation levels in promoter regions 

(Figure S1A) and substantially reduced methylations in gene bodies (Figure S1B), which account for more than 

80% of the CpG islands considered here. Analyses of bisulfide sequencing-based methylation data gives rise to 

the same conclusion that gene bodies tend to be hypo-methylated (Figure S1C) and promoter regions have 

increased methylation levels. In addition, we have also done similar analyses on DNA methylation in transposable 

elements, specifically LINE-1, which is accepted as a reliable measure for estimating the DNA methylation level 

at the genome scale (18); and observed similar decrease in the methylation level in this region (Figure S1D). We 

noted that among the 16 cancer types under study, two cancer types PRAD and BRCA have increased levels of 

methylations than their matching normal tissues. 

In the following sections, we built mathematical models to study the detailed reasons and associated 

mechanisms for the observed hypo-methylation at the global scale in cancer. The units for concentration and time 

are uM and hr respectively. 

The methionine cycle: dependencies of DNA methylation on folate and transsulfuration pathways 

We have built a system of kinetic equations based on the known pathway models shown in Figure 1, to 

describe the reaction rates associated with 15 key molecular species in the folate, methionine and GSH (F-M-G) 

cycles, which consists of 24 enzyme-catalyzed reactions and four transporters, shown in Table 1 with detailed 

information of how each reaction equation is derived given in Supplementary Table S3.  

We have examined the relationship between the DNA-methylation level and each of its four parameters, 

namely the levels of folate, serine, cysteine and methionine uptakes, respectively, according to this system of 

equations with all the four parameters having their values sampled from the normal ranges of their respective 

physiological values collected from (14). Specifically, we have derived the numerical solutions of the fixed points 

of this system of equations for each combination of the parameter values uniformly sampled from the given 

ranges, using the MATLAB ode solver (see Materials and Methods). Figure 2 shows the level of relevant 
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reactions or metabolites changing as a function of the levels of folate and serine concentrations (Figure 2A-2C) 

and as a function of the levels of cysteine and methionine concentrations (Figure 2D-2F).  

We have observed that as the levels of serine (a methyl donor) and folate (a methyl carrier) increase, the 

DNA methylation level, nucleotide synthesis rate go up (Figure 2A-2B); and the system’s total methyl amount 

increases with increase in folate, but not with increase in serine uptake (Figure 2C), this indicates that folate is the 

key factor in determining the total methyl pool, not serine. As the level of methionine (a sulfur donor) increases, 

the DNA methylation level, GSH synthesis and total sulfur concentration all go up (Figure 2D-2F). It is 

noteworthy that changes in the rate of cysteine uptake do not have a significant impact on the DNA methylation 

rate, since it goes into the downstream of the methionine cycle and it does not directly contribute to the sulfur 

supply for SAM used in DNA methylation. Here, the DNA-methylation rate, nucleotide synthesis rate and GSH 

synthesis rate are estimated as the reaction velocities catalyzed by enzymes DNMT, TS and GS, respectively (see 

Supplementary Table S3); the total methyl and the sulfur levels are estimated as the sum of concentrations of all 

metabolites that carry methyl and sulfur groups, respectively. 

This analysis confirms that our system of equations captures the intuition that the level of DNA 

methylation should be an increasing function of the levels of methyl and sulfurs, provided by folate and serine, 

and methionine, respectively. In the following sections, we will study how this relationship is affected by other 

processes when they compete for methyl and sulfurs. 

The F-M system: a model of competition for methyl between nucleotide synthesis and DNA methylation 

As the ultimate donor of methyl, serine reacts with THF to generate 5,10-methylene-THF, during which 

methyl in serine is converted to a methylene group. Then this methylene group will go to one of three places: (1) 

as the methyl group of dTMP by the reaction catalyzed by thymidylate synthase (TS); (2) as the methyl group of 

5mTHF catalyzed by MTHFR and ultimately for DNA methylation; and (3) to THF or 1,10-CH=THF. In our 

differential equations representing the F-M system, we have used the (steady state) levels of 5mTHF and DHF as 

estimates for the levels of methyl groups going to DNA methylation and nucleotide synthesis, respectively, since 

they are the immediate downstream metabolites of 5,10-methylene-THF going into the two processes. Here, we 
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address the following question: when competing for methyl groups between DNA methylation and nucleotide 

synthesis, does one process have an encoded priority over the other?   

We have assessed whether the two processes may have a competitive relationship as defined by our 

differential equations under a condition that nucleotide synthesis must be done at a rapid rate to mimic the typical 

situation in cancer. Specifically, we have checked how the DNA methylation rate changes when the rate 

coefficient 𝑉𝑚𝑎𝑥  of TS increases, with TS being the key enzyme leading to nucleotide synthesis.

Figure 3 shows that as the need for nucleotide synthesis goes up, reflected by TS’s 𝑉𝑚𝑎𝑥 value, methyl

groups going to DNA methylation decreases (Figure 3A) while those going into nucleotide synthesis increase 

(Figure 3B). So do the DNA methylation rate (Figure 3C) and the nucleotide synthesis rate (Figure 3D), 

respectively. More specifically, as 𝑉𝑚𝑎𝑥  increase from the low to the high end of its normal range, methyl going to

DNA methylation is decreased by 4.8% while that going to nucleotide synthesis is increased by 40.6%. 

Correspondingly, the DNA methylation rate is decreased by 0.5% while the nucleotide synthesis rate is increased 

by 36.5%. We predict that this is the result of a regulatory mechanism which controls the competition between the 

two processes.  

To elucidate this regulatory mechanism, we have conducted the following analysis focused on three 

enzymes SHMT, TS and MTHFR forming a Y shaped branch structure in the folate cycle with SHMT catalyzing 

the reaction leading to 5,10-m THF, which then branches out to nucleotide synthesis catalyzed by TS and to 

methionine cycle by MTHFR (see Figure 1). In cancer tissues, the expression level and hence the 𝑉𝑚𝑎𝑥 of TS tend

to increase substantially. We first examined the reaction rate constants of the three enzymes: 𝑉𝑚𝑎𝑥= 5200 uM/hr

and 𝐾𝑚 = 600 uM for SHMT; 𝑉𝑚𝑎𝑥= 5000 uM/hr and 𝐾𝑚 = 6.3 uM for TS; and 𝑉𝑚𝑎𝑥= 5300 uM/hr and 𝐾𝑚 = 50

uM for MTHFR. Hence, the reaction rate of TS is close to two orders of magnitude higher than that of SHMT, ~91 

times higher to be more exact, which will increase as the 𝑉𝑚𝑎𝑥 of TS increases. We also noted that the substantial

increase in the 𝑉𝑚𝑎𝑥  of TS as done in the above illustrative example leads to only 2.9% increase in the

concentration of THF (see Supplementary Table S6), indicating that the increase in the reaction rate of SHMT is 

limited by this number, regardless of the level of increase in the serine supply. Because of the tiny increase in this 
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reaction rate, we assume, for the simplicity of discussion, that the rate remains unchanged. This immediately 

implies that the increased reaction rate of TS will take away a portion of the flux to 5mTHF to meet the need of 

the increased TS reaction rate; and the higher the TS reaction rate is increased, the higher proportion of the flux to 

5mTHF will be diverted towards the reaction catalyzed by TS, hence more  reduced level of DNA methylation.  

In sum, it is the combination of the reaction rate constants in the folate cycle, particularly of three 

enzymes SHMT, TS and MTHFR along with their relative expression levels that play the key regulatory role in 

governing the competition for methyl groups between nucleotide synthesis and DNA methylation.  

The G-M system: a sulfur-redistribution model: redox balance vs. DNA methylation 

SAM serves a unique role in the system under study, as it not only contains a methyl group but also a 

sulfur group that carries the methyl molecule. As discussed earlier, the sulfur group in homocysteine can be 

recycled back to the methionine cycle and further to SAM, or it can go to the GSH metabolic pathway, indicating 

that DNA methylation also needs to compete with the GSH pathway for sulfur, in addition to its competition with 

nucleotide synthesis. This pathway starts with a reaction between homocysteine and serine (Figure 1), leading to 

the generation of cystathionine that is then cleaved by cystathionine lyase to generate α-ketobutyrate and cysteine, 

which is then used for GSH production. Here we study how GSH production and DNA methylation may compete 

for sulfur, which ultimately affects the level of DNA methylation. Similar to the previous section, we use the 

(steady state) levels of two immediate downstream metabolites, methionine and cystathionine, respectively, to 

estimate the level of sulfurs going to DNA methylation and GSH synthesis, respectively. 

We have examined how the two processes change their activity levels as the level of intracellular H2O2 

goes up, where H2O2 is used to represent the oxidative state since it is the most abundant reactive oxygen species 

(ROS) in cancer in general (19). Generally, as the H2O2 level goes up, the host cells will increase their GSH 

production to naturalize the excess H2O2 to keep the oxidative stress under control, which will consume sulfurs. 

Here, we show how an increased demand for sulfur by GSH production affects the level of DNA methylation. We 

have observed as the need for anti-oxidation and hence GSH synthesis goes up (reflected by the H2O2 level), 

sulfurs going to DNA methylation decrease (Figure 3E) while sulfurs going to GSH production increase (Figure 
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3F). So do the DNA methylation rate (Figure 3G) and GSH synthesis rate (Figure 3H). More specifically, sulfur 

going to DNA methylation is decreased by 13.6% and those to GSH production is increased by 6.2%. 

Correspondingly, DNA methylation rate is decreased by 1.9% and the GSH synthesis rate is increased by 2.6%. 

As in the previous section, we predict that this is the result of a regulatory mechanism that controls the flux of 

sulfur to different branches when they are limited.  

We have conducted an analysis similar to that in the previous section on four enzymes: SAHH, BHMS, 

MS and CBS (Figure 1), which play key roles in the regulatory mechanism under investigation. As before, we 

noted: 𝑉𝑚𝑎𝑥= 320 uM/hr and 𝐾𝑚 = 6.5 uM for SAHH; 𝑉𝑚𝑎𝑥= 2160 uM/hr and 𝐾𝑚 = 12 uM for BHMT; 𝑉𝑚𝑎𝑥= 500

uM/hr and 𝐾𝑚 = 1 uM for MS; and 𝑉𝑚𝑎𝑥= 700000 uM/hr and 𝐾𝑚 = 1000 uM for CBS. From the above example,

we observed: as the H2O2 level goes up to the high end we set, the Hcy concentration goes up by 6% (see 

Supplementary Table S7). For the simplicity of discussion, we assume that there is no change in the Hcy 

concentration considering its tiny increase. All these reveal that the reaction rate of CBS goes up substantially and 

the Hcy flux into MET will go down. Knowing that the reaction rate of CBS is significantly higher than those of 

BHMT and MS based on their rate constants, we predict that the Hcy flux into MET and hence SAM will go down 

substantially, which is consistent with the observed change of MET in the above example, as detailed in 

Supplementary Table S7. In addition, H2O2 is known to have an inhibitory role on MS and BHMT (Figure 1). 

Hence the reaction rates of both MS and BHMT will go down as the H2O2 level goes up. 

Based on the above, our prediction of the regulatory mechanism is: when the H2O2 concentration is not 

too high, its their inhibitory roles on MS and BHMT will slow down the flux towards DNA methylation, leading to 

the accumulation of Hcy. As the H2O2 concentration further goes up, Hcy concentration continues to increase. 

Once once the Hcy concentration is close to or exceeds the  𝐾𝑚 value of CBS, the enzyme will instantly dump all

the Hcy into the GSH synthesis pathway due to the very high reaction velocity of CBS. Overall, it is the 

combination of the reaction constants of the methionine cycle, particularly those of the four enzymes discussed 

here and the inhibitory role of H2O2 that controls the competition between DNA methylation and GSH synthesis.  

We have also conducted a simulation analysis of the F-G-M system as a whole by systematically going 

through each of the 117 kinetic parameters encoded in the system by individually changing the value of each 
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parameter, specifically through multiplying its default value by 0.1, 0.2, 0.5, 0.6, 0.8, 1.0, 1.2, 1.5, 1.6, 1.8, 2, 

respectively. The goal is to determine which of these parameters are most impactful on the competitions under 

study. As expected, the kinetic parameters associated with DNMT and the uptake of folate, serine and methionine, 

respectively, are the most impactful, all resulting in at least 10% change in the DNA methylation level through the 

above parameter manipulation. Interestingly, other most impactful parameters are those associated with MTHFR, 

MS, CBS and BHMT, which are at the core positions of the whole system, where redistributions of methyl and 

sulfur happen, each of which leads to at least 5% change in the level of DNA methylation.  

In sum, our analyses revealed that there are regulatory mechanisms, largely encoded in the relative levels 

of their enzymes’ reaction rate constants, that determine how the three processes compete for two shared 

resources: methyl and sulfurs.  

We have previously demonstrated that the rate of nucleotide synthesis in cancer is dictated by the level of 

cytosolic Fenton reactions, which also largely determines the level of oxidative stress (20) while the level of 

cytosolic Fenton reactions is predominantly determined by concentrations of H2O2 and iron, for whose 

accumulation chronic inflammation is largely responsible (21). Hence we predict that the observed genome-scale 

hypo-methylation in cancer is the result of these encoded regulatory mechanisms and the urgent need for rapid 

nucleotide synthesis and GSH synthesis, dictated by the level of Fenton reactions.  

With this established framework, we address why different types of cancers may have different levels of 

global DNA methylation using cancer tissue gene-expression data.  

Cancer specific DNA methylation 

To understand why different cancer types may have different levels of hypo-methylation vs. their normal 

controls, we have conducted cancer-specific analyses of the integrated model of the above three subsystems, 

collectively referred to as the F-M-G system, through applying the observed gene-expression levels of the relevant 

enzymes, normalized with respect to their corresponding normal controls. Supplementary Figure S2 shows 

differentially expressed genes across the F-M-G system. Note that for cases where multiple genes encoding one 
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enzyme or transporter, we estimated the integrated expression level of the gene group as a whole, using a method 

given in Materials and Methods. 

We have developed a model for predicting the DNA-methylation level of a given cancer tissue based on 

the expression levels of selected enzymes in the F-M-G system. We used the Michaelis-Menten equation to 

capture how the reaction velocity V depends upon the concentrations of the main substrate S and the catalyzing 

enzyme E: 

𝑉 =
𝑉𝑚𝑎𝑥[𝑆]

𝐾𝑚 + [𝑆]
=

𝑘𝑐𝑎𝑡[𝐸][𝑆]

𝐾𝑚 + [𝑆]

Here, we can reasonably assume that the relevant reaction rate constant 𝐾𝑚 for each enzyme is the same across

different cancer types. Hence, the rate of each reaction under consideration is entirely determined by [𝑆] and [𝐸]. 

The cancer specific enzyme concentration [𝐸] would be that of normal condition multiplied by the fold change in 

the enzyme’s gene expression levels in cancer vs. control tissues. For each cancer type, we estimated an “average” 

fold-change in expression levels of genes encoding the relevant enzymes/transporters between cancer and control 

samples, as described in Materials and Methods. Figure S2 shows changes in concentrations of the relevant 

enzymes and transporters across different cancers vs. corresponding controls. Clearly, so estimated enzyme 

concentrations will give rise to different steady-state concentrations of each metabolite and reaction rates, as 

shown in the 4th column of Table 2.   

Our cancer specific DNA methylation prediction is calculated for ten cancer types, which have both 

methylation array data and RNA-Seq gene-expression data for cancer and control samples. For each cancer type, 

we have estimated the steady-state concentrations of all the relevant metabolites, particularly the DNA-

methylation level using the reaction rate catalyzed by enzyme DNMT. As shown in Table 2, our predictions of the 

DNA methylation levels are highly consistent with the experimental data in the eight cancer types considered. For 

the two cancer types where our predictions are not consistent with experimental data, namely BRCA and THCA, 

we believe that the reason for the hypo-methylation prediction in BRCA and hyper-methylation for THCA is due 

to the possibility that certain factors that may also contribute to DNA methylation are not included in our model.  
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We have then studied how DNA methylation levels differ when patients have different levels of GSH 

synthesis and nucleotide synthesis rates. The analysis is done on the same ten cancer types as above. We noted 

that samples with higher nucleotide synthesis or GSH synthesis levels tend to have lower DNA methylation rates, 

consistent with our model that DNA methylation is at an inferior position when competing for shared resources 

with nucleotide synthesis and GSH synthesis. This is the case for seven out of ten cancer types but not for KIRC, 

PRAD and THCA as shown in Table 3. These three cancer types clearly warrant further studies in order to 

understand why they behave differently from the other seven cancer types.  Note that the levels of GSH synthesis 

and nucleotide synthesis are estimated using genes involved in glutathione synthesis and RNA polymerases 

pathways, respectively, with details given in Materials and Methods. 

We further studied whether DNA methylation is indeed competing with nucleotide synthesis and anti-

oxidation system for methyl and sulfur. Particularly, we are interested in the relationships between DNA 

methylation and nucleotide synthesis/anti-oxidation capacity when methyl/sulfur is limited. To accomplish this, 

we have introduced a measure of the average methyl/sulfur availability: the ratio between nucleotide 

synthesis/anti-oxidation capacity and methyl/methionine availability with the property: the lower the ratio is, the 

lower the average availability of methyl/methionine is for the nucleotide synthesis/anti-oxidation capacity. For 

methyl compound, we have observed significant correlations between DNA methylation and nucleotide synthesis 

in those samples with high and low average methyl availability, respectively; and similarly for sulfur, we have 

also observed significant correlations between DNA methylation and anti-oxidant capacity in those samples with 

high and low average sulfur availability, respectively. Here, the levels of methyl and methionine, anti-oxidation 

capacity and nucleotide synthesis are estimated using genes involved in folate and methionine transporters 

(Supplementary Table S5), glutathione synthesis and RNA polymerases pathways, respectively, with details given 

in Materials and Methods.  

As shown in Table 4, when the average methyl availability is low, most cancer types showed significant 

negative correlations (p-value cutoff: 0.05) between DNA methylation and nucleotide synthesis, except for KIRC, 

PRAD and THCA; and when the average sulfur availability is low, most cancer types showed significant negative 

correlations (p-value < 0.05) between DNA methylation and the anti-oxidant capacity, except for BRCA, KIRC, 
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PRAD and THCA. These data strongly suggest competitive relations between DNA methylation and nucleotide 

synthesis/anti-oxidation capacity for methyl and sulfur. It has also explained: (1) why our prediction of the 

methylation level in BRCA is not accurate shown in Table 2; and (2) why the DNA methylation levels do not 

depend on nucleotide synthesis or anti-oxidation capacity as shown in Table 4, as methyl and sulfur may be not 

limited resources in these cancer types, i.e., not rate-liming factor in the cancerous cell division; and DNA 

methylation does not need to compete for the two resources with other processes. We have also noticed that even 

when the average methyl/sulfur availability is high, the negative correlations are also significant (p-value < 0.05) 

for some cancer types. Hence, we posit that even though the average availability of methyl/sulfur is high in thee 

samples compared to other samples, these resources are still limited with respect to their cell division rates 

dictated by cytosolic Fenton reactions (see Discussion), and hence competitions are still there. 

Discussion 

We have previously developed a model proposing that Fenton reactions, Fe2+ + H2O2 -> Fe3+ + OH- +

OH, in cytosol and mitochondria may represent key drivers of cancer initiation and progression at a more basic 

level than the previously proposed drivers such as genomic mutation (22), epigenomic alteration (23) and 

metabolic reprogramming (24). Fenton reactions have been found to take place when concentrations of Fe2+ and 

H2O2 are sufficiently high in the same location without involvement of any enzyme. When there are plentiful 

reducing elements near the reaction sites, such as sulfur, NADH or superoxide, Fe3+ can be reduced to Fe2+, hence 

enabling the reaction to continue indefinitely, which is also referred to as the Harbor-Weiss reaction (25). Then 

the reaction can be rewritten as: O2
− + H2O2 → ∙ OH + OH− + O2with Fe2+ as a catalyst since it is not consumed

by the (continuous) reaction; and superoxide as the reducing element as our analysis revealed that O2
− is the most

commonly used reducing element in cancer (26). We have demonstrated statistically that all cancers in the TCGA

database have Fenton reactions in their cytosol, mitochondria and extracellular matrix and space (27). An

important implication of this model is that cytosolic Fenton reactions drive de novo nucleotide synthesis (and

glycolytic ATP production) to produce net protons (H+) at rates comparable to those of OH−-producing Fenton
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reactions, hence keeping intracellular pH stable. More specifically, it is the rates of cytosolic Fenton reactions that 

dictate the rate of nucleotide synthesis and hence the rates of DNA synthesis and cell division in cancer. 

This model, in conjunction with the discovery made here, strongly suggests that there is an encoded 

regulatory mechanism that determines the winners in competition for methyl and sulfurs when they are of limited 

availability, and it offers a natural explanation of why cancers in general have reduced genome-scale DNA 

methylation as well as why different cancers tend to have distinct levels of global DNA methylation, hence 

addressing an important and open question in cancer biology.  

In addition, we have also provided an explanation as why certain cancers tend to have more reduced DNA 

methylations, i.e., those with higher levels of nucleotide synthesis and oxidative stresses, hence having established 

that the global DNA methylation level could be used as a predictor for more aggressive cancer types.  

Further extension of the current study will include detailed metabolisms of serine, methionine and H2O2 

to make the model more realistic: concentrations of the latter compounds are presently treated as input parameters, 

rather than treating them in a more realistic manner via explicitly modeling the ways that they are actually brought 

into cancer cells. In addition, the observation on BRCA and THCA were that the global methylation levels in their 

tumor samples do not differ significantly from their normal samples, while our model predicts that BRCA is 

hypo-methylated, and THCA is hyper-methylated. We believe that these discrepancies are due to the assumption 

in our model that only two factors contribute to the global DNA methylation level, namely the competitions for 

sulfur and for methyl groups with two other processes. Careful inspection of the data in Table 4 revealed that the 

global methylation levels have no significant negative correlation with neither of the two competing processes, 

namely nucleotide synthesis and anti-oxidation system in BRCA and THCA, suggesting that other factors, such as 

hormones, may also affect the global methylation level of DNA. We examined the global methylation levels of 

different subtypes of breast cancer, and noted that triple-negative breast cancers (free of hormone regulation) are 

significantly hypo-methylated in tumor (p-value= 0.0129), consistent with our model prediction. This suggests 

one possible direction for further development of our model in the future. We believe that our study here offers a 

good example for studying complex, non-linear relationships among multiple players involved in specific 
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biological processes, leading to novel understanding about previously made perplexing observations, and can be 

applied to study a suite of such problems in cancer research.  
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Tables: 

Table 1: Reaction rates associated with all the metabolites involved in folate, methionine and GSH metabolisms, 

with the detailed information for each rate along with an explanation, given in Supplementary Table S3. 

𝑑[𝐷𝐻𝐹]

𝑑𝑡
= 

𝑉𝑇𝑆([𝑑𝑈𝑀𝑃], [𝐶𝐻2𝐹]) − 𝑉𝐷𝐻𝐹𝑅([𝐷𝐻𝐹], [𝑁𝐴𝐷𝑃𝐻])

𝑑[5𝑚𝑇𝐻𝐹]

𝑑𝑡
= 

𝑉𝑀𝑇𝐻𝐹𝑅([𝐶𝐻2𝐹], [𝑁𝐴𝐷𝑃𝐻], [𝑆𝐴𝑀]) − 𝑉𝑀𝑆([5𝑚𝑇𝐻𝐹], [𝐻𝐶𝑌], [𝐻2𝑂2])

𝑑[𝑇𝐻𝐹]

𝑑𝑡
= 

𝑉𝐹𝑇𝐷([10𝑓𝑇𝐻𝐹]) + 𝑉𝑀𝑆([5𝑚𝑇𝐻𝐹], [𝐻𝐶𝑌], [𝐻2𝑂2]) + 𝑉𝑃𝐺𝑇([10𝑓𝑇𝐻𝐹], [𝐺𝐴𝑅])

+ 𝑉𝐴𝑅𝑇([10𝑓𝑇𝐻𝐹], [𝐴𝐼𝐶𝐴𝑅]) − 𝑉𝐹𝑇𝑆([𝑇𝐻𝐹], [𝐻𝐶𝑂𝑂𝐻])

− 𝑉𝑆𝐻𝑀𝑇([𝑆𝐸𝑅], [𝑇𝐻𝐹], [𝐺𝐿𝑌], [𝐶𝐻2𝐹]) − 𝑉𝑁𝐸([𝑇𝐻𝐹], [𝐻2𝐶 = 𝑂], 𝐶𝐻2𝐹)

+ 𝑉𝐷𝐻𝐹𝑅([𝐷𝐻𝐹], [𝑁𝐴𝐷𝑃𝐻])

𝑑[𝐶𝐻2𝐹]

𝑑𝑡
= 

𝑉𝑆𝐻𝑀𝑇([𝑆𝐸𝑅], [𝑇𝐻𝐹], [𝐺𝐿𝑌], [𝐶𝐻2𝐹]) + 𝑉𝑁𝐸([𝑇𝐻𝐹], [𝐻2𝐶 = 𝑂], 𝐶𝐻2𝐹)

− 𝑉𝑇𝑆([𝑑𝑈𝑀𝑃], [𝐶𝐻2𝐹]) − 𝑉𝑀𝑇𝐻𝐹𝑅([𝐶𝐻2𝐹], [𝑁𝐴𝐷𝑃𝐻], [𝑆𝐴𝑀])

− 𝑉𝑀𝐻𝐷([𝐶𝐻2𝐹], [𝐶𝐻𝐹])

𝑑[𝐶𝐻𝐹]

𝑑𝑡
= 

𝑉𝑀𝐻𝐷([𝐶𝐻2𝐹], [𝐶𝐻𝐹]) − 𝑉𝑀𝐶𝐻([𝐶𝐻𝐹], [10𝑓𝑇𝐻𝐹])

𝑑[10𝑓𝑇𝐻𝐹]

𝑑𝑡
= 

𝑉𝑀𝐶𝐻([𝐶𝐻2𝐹], [10𝑓𝑇𝐻𝐹]) + 𝑉𝐹𝑇𝑆([𝑇𝐻𝐹], [𝐻𝐶𝑂𝑂𝐻]) − 𝑉𝑃𝐺𝑇([10𝑓𝑇𝐻𝐹], [𝐺𝐴𝑅])

− 𝑉𝐴𝑅𝑇([10𝑓𝑇𝐻𝐹], [𝐴𝐼𝐶𝐴𝑅𝑃]) − 𝑉𝐹𝑇𝐷([10𝑓𝑇𝐻𝐹])

𝑑[𝑀𝐸𝑇]

𝑑𝑡
= 

𝑉𝐵𝐻𝑀𝑇([𝐻𝐶𝑌], [𝐵𝐸𝑇], [𝑆𝐴𝑀], [𝑆𝐴𝐻], [𝐻2𝑂2]) + 𝑉𝑀𝑆([5𝑚𝑇𝐻𝐹], [𝐻𝐶𝑌], 𝐻2𝑂2)

+ 𝑉𝑏𝑀𝑒𝑡𝐼𝑛([𝑏𝑀𝐸𝑇], [𝑀𝐸𝑇]) − 𝑉𝑀𝐴𝑇𝐼([𝑀𝐸𝑇], [𝑆𝐴𝑀], [𝐺𝑆𝑆𝐺])

− 𝑉𝑀𝐴𝑇𝐼𝐼𝐼([𝑀𝐸𝑇], [𝑆𝐴𝑀], [𝐺𝑆𝑆𝐺])

𝑑[𝑆𝐴𝑀]

𝑑𝑡
= 

𝑉𝑀𝐴𝑇𝐼([𝑀𝐸𝑇], [𝑆𝐴𝑀], [𝐺𝑆𝑆𝐺]) + 𝑉𝑀𝐴𝑇𝐼𝐼𝐼([𝑀𝐸𝑇], [𝑆𝐴𝑀], [𝐺𝑆𝑆𝐺])

− 𝑉𝐺𝑁𝑀𝑇([𝑆𝐴𝑀], [𝑆𝐴𝐻], [5𝑚𝑇𝐻𝐹], [𝐺𝐿𝑌]) − 𝑉𝐷𝑁𝑀𝑇([𝑆𝐴𝑀], [𝑆𝐴𝐻], [𝐷𝑁𝐴])

𝑑[𝑆𝐴𝐻]

𝑑𝑡
= 

𝑉𝐺𝑁𝑀𝑇([𝑆𝐴𝑀], [𝑆𝐴𝐻], [5𝑚𝑇𝐻𝐹], [𝐺𝐿𝑌]) + 𝑉𝐷𝑁𝑀𝑇([𝑆𝐴𝑀], [𝑆𝐴𝐻], [𝐷𝑁𝐴])

− 𝑉𝑆𝐴𝐴𝐻([𝑆𝐴𝐻], [𝐻𝐶𝑌])
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𝑑[𝐻𝐶𝑌]

𝑑𝑡
= 

𝑉𝑆𝐴𝐴𝐻([𝑆𝐴𝐻], [𝐻𝐶𝑌]) − 𝑉𝐶𝐵𝑆([𝐻𝐶𝑌], [𝑆𝐴𝑀], [𝑆𝐴𝐻], [𝑆𝐸𝑅], [𝐻2𝑂2])

− 𝑉𝐵𝐻𝑀𝑇([𝐻𝐶𝑌], [𝐵𝐸𝑇], [𝑆𝐴𝑀], [𝑆𝐴𝐻], [𝐻2𝑂2])

− 𝑉𝑀𝑆([5𝑚𝑇𝐻𝐹], [𝐻𝐶𝑌], 𝐻2𝑂2)

𝑑[𝐺𝑆𝐻]

𝑑𝑡
= 

𝑉𝐺𝑆([𝐺𝐿𝑌], [𝐺𝐿𝐶], [𝐺𝑆𝐻]) − (2)𝑉𝐺𝑃𝑋([𝐺𝑆𝐻], [𝐻2𝑂2]) + (2)𝑉𝐺𝑅([𝐺𝑆𝑆𝐺], [𝑁𝐴𝐷𝑃𝐻])

− 𝑑1[𝐺𝑆𝐻] − 𝑉𝑏𝐺𝑆𝐻𝑂𝑢𝑡([𝐺𝑆𝐻])

𝑑[𝐺𝑆𝑆𝐺]

𝑑𝑡
= 

𝑉𝐺𝑃𝑋([𝐺𝑆𝐻], [𝐻2𝑂2]) − 𝑉𝐺𝑅([𝐺𝑆𝑆𝐺], [𝑁𝐴𝐷𝑃𝐻]) − 𝑑2[𝐺𝑆𝑆𝐺]−𝑉𝑏𝐺𝑆𝑆𝐺𝑂𝑢𝑡([𝐺𝑆𝑆𝐺])

𝑑[𝐺𝐿𝐶]

𝑑𝑡
= 

𝑉𝐺𝐶𝑆([𝐶𝑌𝑆], [𝐺𝐿𝑈], [𝐺𝑆𝐻], [𝐺𝐿𝐶], [𝐻2𝑂2]) − 𝑉𝐺𝑆([𝐺𝐿𝑌], [𝐺𝐿𝐶], [𝐺𝑆𝐻])

𝑑[𝐶𝑌𝑆]

𝑑𝑡
= 

𝑉𝐶𝑇𝐺𝐿([𝐶𝑌𝑇]) − 𝑉𝐺𝐶𝑆([𝐶𝑌𝑆], [𝐺𝐿𝑈], [𝐺𝑆𝐻], [𝐺𝐿𝐶], [𝐻2𝑂2]) + 𝑉𝑏𝐶𝑌𝑆𝐼𝑛([𝑏𝐶𝑌𝑆]) − 0.35

∗
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𝑑[𝐶𝑌𝑇]

𝑑𝑡
= 

𝑉𝐶𝐵𝑆([𝐻𝐶𝑌], [𝑆𝐴𝑀], [𝑆𝐴𝐻], [𝑆𝐸𝑅], [𝐻2𝑂2]) − 𝑉𝐶𝑇𝐺𝐿([𝐶𝑌𝑇])

Table 2: Cancer specific DNA methylation: observed vs. predicted levels. Column 2 is the observed DNA 

methylation level changes calculated using methylation array data with p-values of hyper-, no change or hypo-

methylation shown in the third column. Columns 4 and 5 are predicted steady-state DNA methylation levels for 

cancer and control tissues, where a cancer type is predicted to have hypo-methylation if the predicted level of 

DNA methylation is lower in cancer compared to that in controls. A prediction is considered to be consistent with 

experimental data if they both show hypo- or hyper-DNA methylation. 

Cancer 

type 

Observed 

methylation changes p-value

Predicted 

cancer (𝜇M/hr) 

Predicted 

control (𝜇M/hr) 

    BLCA Hypo 1.33E-08 81.95 94.71 

    BRCA No change 5.13E-01 90.27 94.71 
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    COAD Hypo 2.51E-02 86.99 94.71 

    HNSC Hypo 8.39E-04 89.61 94.71 

    KIRC Hypo 7.25E-13 82.48 94.71 

    LIHC Hypo 5.10E-13 85.76 94.71 

    LUAD Hypo 4.11E-02 92.59 94.71 

    LUSC Hypo 7.63E-11 85.09 94.71 

    PRAD Hyper 1.00E-04 99.83 94.71 

    THCA No change 9.13E-02 106.49 94.71 

Table 3: Comparisons of DNA methylation levels between samples with different levels of anti-oxidation and 

nucleotide synthesis rates for 10 cancer types. The second column shows p-values of Wilcoxin tests for the null 

hypothesis that DNA methylation levels of patient samples with high GSH synthesis rate is lower than those with 

relatively lower GSH synthesis activities; the third columns shows p-values of Wilcoxin tests for the null 

hypothesis that the DNA methylation levels of patient samples with high nucleotide synthesis rate is lower than 

those with relatively lower nucleotide synthesis rates. 

Cancer type Anti-oxidation Nucleotide synthesis 

BLCA 2.86E-03 1.25E-03 

BRCA 1.62E-01 5.54E-02 

COAD 2.60E-02 1.21E-02 

HNSC 2.44E-04 1.38E-05 

KIRC 9.58E-01 5.97E-01 

LIHC 1.68E-01 9.69E-06 

LUAD 8.40E-04 6.65E-05 
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LUSC 1.40E-02 2.90E-05 

PRAD 5.98E-01 6.94E-01 

THCA 1.00E+00 9.34E-01 

Table 4: The significances of observed negative correlations between: (1) DNA methylation and nucleotide 

synthesis when high (Methyl_H) and low (Methyl_L) level of methyl is available; and (2) DNA methylation and 

anti-oxidation capacity when high (Sulfur_H) and low (Sulfur_L) level of sulfur is available. Significant negative 

correlations (p-value < 0.05) are marked bold. 

Methyl_H Methyl_L Sulfur_H Sulfur_L 

BLCA 5.50E-05 5.26E-03 8.45E-02 2.20E-02 

BRCA 4.02E-01 1.96E-02 2.47E-01 2.10E-01 

COAD 6.21E-01 3.14E-04 1.03E-01 2.89E-03 

HNSC 6.00E-04 2.25E-05 1.62E-01 1.10E-02 

KIRC 4.69E-01 7.26E-01 9.99E-01 5.14E-01 

LIHC 5.63E-04 2.84E-05 9.32E-01 5.00E-02 

LUAD 1.02E-01 3.51E-05 1.15E-02 2.08E-04 

LUSC 1.59E-06 1.08E-03 1.18E-01 1.36E-02 

PRAD 6.90E-01 4.73E-01 9.64E-02 1.82E-01 

THCA 9.10E-01 9.60E-01 9.41E-01 9.97E-01 
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Figure legends: 

Figure 1: The one-carbon metabolic pathway (adapted from (14)) consisting of the folate, the methionine and the 

transsulphuration pathways. All the reaction substrates are in upright letters and the catalyzing enzymes are in 

italics. Substrates in purple, green and red represent metabolite variables in three subsystems in our model, and all 

the other substrates are treated as constants. Metabolites in light blue are those that could activate or inhibit 

certain reactions. bMET and bCYS represent methionine and cysteine up-taken from the blood circulation, 

respectively. 

Figure 2: Under normal cytosolic conditions, the DNA methylation rate (A), nucleotide synthesis rate (B) and 

methyl concentration (C) (z-axis) in steady states as a function of the serine (x-axis) and folate (y-axis) 

concentrations, respectively; and DNA methylation rate (D), GSH synthesis rate (E) and total sulfur concentration 

(F) (z-axis) as a function of the cysteine (x-axis) and methionine (y-axis) influx from blood circulation,

respectively. 

Figure 3: (A) The level of 5mTHF (y-axis), reflecting the level of methyl going to DNA methylation as a function 

of the TS’s 𝑉𝑚𝑎𝑥 value (x-axis); (B) The level of DHF (y-axis), reflecting the level of methyl going to nucleotide

synthesis as a function of the TS’s 𝑉𝑚𝑎𝑥 value (x-axis); (C) the DNA methylation rate (y-axis) as a function of the

TS’s 𝑉𝑚𝑎𝑥 value;  (D) the nucleotide synthesis rate (y-axis) as a function of the TS’s 𝑉𝑚𝑎𝑥 value; (E) The level of

methionine (y-axis), representing the level of sulfur going to DNA methylation as a function of the H2O2 

concentration (x-axis); (F) The level of cystathionine (y-axis), reflecting the level of sulfur going to GSH 

synthesis as a function of the H2O2 concentration (x-axis); (G) The DNA methylation rate (y-axis) as a function of 

the H2O2 concentration; (H) The GSH synthesis rate (y-axis) as a function of the H2O2 concentration. 
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