
Towards Formalizing Adaptive Software Services 

Sonali Sharma, Rajeev Raje 
Department of Computer and Information Science 
Indiana University-Purdue University Indianapolis 

Indianapolis, IN, USA, 46202 
sharmaso@umail.iu.edu/rraje@cs.iupui.edu 

Ruchika Malhotra 
Department of Software Engineering 

Delhi Technological University 
Delhi, India 

ruchikamalhotra2004@yahoo.com

Abstract—More and more complex, distributed and software-
intensive systems are built using independently developed 
services. Due to various reasons, such as changes in the execution 
environment, these systems may need to adapt their behavior. 
Although, adaptation at the system level has been extensively 
studied, developing adaptive services to start-with has not 
received any significant attention. This paper describes a 
framework for formalizing the concept of adaptation at the 
service level, leading to the “service adaptation by construction” 
approach. Hence, the proposed work will help software 
developers in identifying the important adaptation categories at 
the service level.

Keywords—services; formalism; adaptation; taxonomy. 

I. INTRODUCTION

Adaptation can be considered as a key factor for the 
survival of species in nature. Similar to the natural species, 
current and future distributed, complex, and software-intensive 
systems (henceforth referred as “DCS systems”) will also need 
to adapt their behaviors – due to various reasons such as 
changes in the requirements and execution environments, 
demands for reuse and potential economic benefits. Such DCS 
systems are often composed as an ensemble of independently 
developed and deployed software services, thus, these 
individual services also need to be adaptive. Software 
Adaptation is widely recognized as an important problem in 
software engineering [1, 2]. It offers benefits such as high 
degree of flexibility, low maintenance cost, reliability and 
dependability and improved Quality of Service (QoS) [3].  

Despite of its importance, adaptation in most cases is 
considered as an afterthought. Such an ad-hoc approach 
generally involves the use of wrappers or adapters on the top of 
existing services or DCS systems to enable the desired 
adaptation. Such approaches can significantly increase the risk 
of unintended behavior of a DCS system or a service as they 
might not operate as desired. Also, such a service or a DCS 
system would not be properly tested as it might not be possible 
to test all adaptation scenarios when they are considered as an 
afterthought. Although, adaptation at the level of DCS systems 
has been extensively studied, developing adaptive services to 
start-with has not received any significant attention. The 
current methods and techniques are not powerful (see the next 
section) to develop such services using the “adaptation by 
construction approach”.

Hence, there is a need for a formalized approach towards 
software service adaptation – this requires a systematic study 
of the nature of adaptations that are applicable for software 
services and their appropriate categorization. Such a 
formalization and associated taxonomy will not only be crucial 
but also helpful for the developer of an adaptive service (and 
hence, an adaptive DCS system). In this paper, we focus on the 
adaptation by construction for individual services and not on 
their composed DCS systems. This paper describes a 
framework for formalizing the concept of adaptation at the 
service level, leading to the “service adaptation by 
construction” approach.

The rest of the paper is organized as follows: next section 
briefly discusses prominent related efforts; Section 3 presents 
the details of the proposed approach and illustrates the 
proposed approach by indicating a few examples; the paper 
concludes with lessons learnt and an outline of future efforts. 

II. RELATED WORKS

Many frameworks have been proposed to support different 
types of software adaptations. In FUSION framework [4], a 
learning-based approach is presented for run-time software 
adaptation in which the adaptation decisions are learned to 
make them more accurate. The adaptive behavior of the system 
is analyzed and tuned for unanticipated changes. In [5], the 
concept of control data is introduced and the relationship 
between the behaviors of a component with the control data is 
identified. Change of the control data triggers change in 
behavior which is viewed as adaptation. [6] describes a 
framework which is based on a model-driven middleware 
based approach for adapting applications and services 
dynamically. In [7], an architectural model based approach to 
self-adaptation is presented in which system level properties 
and constraints are exposed with the help of the model. A 
majority of these approaches are focused on system-level 
adaptation or adaptation at run-time – they do not consider a 
formal notion of adaptation while developing individual 
services, as advocated by our approach. 

In literature, a few taxonomies have also been proposed in 
the past. For example, in [8], a classification scheme has been 
described for self-adaptive systems. Five major characteristics 
have been defined, namely, origin, activation, system-layer, 
operation and controller distribution. In [9], the authors 
propose another taxonomy for self-protecting systems which 
can detect and tackle security threats at runtime. A signature 
level taxonomy is proposed in [10], which describes the 

___________________________________________________________________

This is the author's manuscript of the article published in final edited form as:
Sharma, S., Raje, R., & Malhotra, R. (2016). Towards formalizing adaptive software services. In 2016 1st India International Conference 
on Information Processing (IICIP) (pp. 1–6). https://doi.org/10.1109/IICIP.2016.7975331

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IUPUIScholarWorks

https://core.ac.uk/display/154759915?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/IICIP.2016.7975331


properties of signature changes in software systems based on 
their kind, frequency and evolution patterns. McKinley et al. 
[11] describes a taxonomy for adaptation with composition as
the mechanism for adaptation. Their focus is on techniques of
computational reflection and Aspect-oriented Programming.
Again, these approaches are at the system level and not at the
individual service level, as emphasized in our approach.

III. PROPOSED APPROACH

A. Taxonomy of Adaptation and Associated Formalism
As indicated earlier, we advocate the “adaptation by

construction approach” while designing individual services that 
need to adapt. As services are independently developed and 
deployed, each service needs to be associated with its formal 
specification. Here, we assume that service specifications are 
multi-level as proposed by [12]. They have suggested four 
levels of specifications – syntax, semantics, synchronization 
and QoS. Hence, in this paper, adaptations are considered at all 
these levels, resulting in adaptive specifications similar to 
proposal discussed in [13]. 

The first step towards achieving this goal is to develop 
taxonomy of adaptation and formalize it appropriately. An 
adaptation, in the context of a service can be classified and 
formally defined using the following grammar. The non-
terminals in the grammar start with an uppercase letter, while 
the terminals start with a lowercase letter or are enclosed in 
quotes. ‘&&’ indicates the logical AND, while ‘||’ indicates the 
logical OR operators. We use the prevalent notation (such as 
the use of ‘<’, ‘::=’, ‘|’, and ‘>’) for describing this grammar.  

<Adaptation> ::= <Basic> | <Compound> 

<Basic> ::= <Type-Adaptation> | <Size-Adaptation> | 
<Order-Adaptation> | <Number-Adaptation>| 
 <Time-Adaptation> | <Range-Adaptation> | 
<Syntax-Adaptation> | <Input-Adaptation> |  
<Output-Adaptation> | <Behavior-Adaptation> |
<Synchronization-Adaptation> |  
<QoS-Adaptation> 

<Compound> ::= <Basic> ‘&&’ <Basic> |  
<Basic> ‘||’ <Basic> 

<Type-Adaptation> ::= <Type> <Type-Function> <Type> 

<Type> ::= <Basic-Type> | <Constructed-Type> 

<Basic-Type> ::= int | float | real | bool | string … 

<Constructed-Type> ::= array | struct | union | class | … 

<Type-Function> ::= subset | equivalence |
reverse-implication | implication | …  

<Size-Adaptation> ::= <Range> <Size-Function> <Range> 

<Range> ::= int ‘..’ int 

<Size-Function> ::= increase | decrease 

<Number-Adaptation>::= int <Num-Function>  int 

<Num-Function> ::= equal | increase | decrease 

<Order-Adaptation>::=  set <Order-Function> set 

<Order-Function> ::= all-permutation |
restricted-permutation | pre-defined permutation 

<Time-Adaptation> ::= <State> <Time-Function> <State> 

<State> ::= s1 | s2 | s3 …

<Time-Function> ::= before | after | at | every | where | once | 
so-far | awaits | until | eventually … 

<Range-Adaptation> :: = range <Range-Function> range 

<Input-Adaptation> ::= set <Input-Function> set 

<Input-Function> :: = <Type-Function> | <Order-Function>

<Output-Adaptation> ::= set <Output-Function> set 

<Output-Function> ::= <Type-Function> |
<Order-Function> | <Num-Function> | <Size-Function> |

 <Time-Function> 

<Syntax-Adaptation> ::= <Input-Adaptation> |
<Output-Adaptation> 

<Behavior-Adaptation> ::= <State> <Pattern> <State> 

<Pattern> ::= insert pattern | delete pattern | move pattern |  
replace pattern | swap pattern | … 

<Synchronization-Adaptation> ::= <Policy> ‘=>’ <Policy> 

<Policy> ::= mutex | monitor | first-come-first-serve |…  

<QoS-Adaptation> ::= <Value> ‘=>’ <Value> |
<Range> ‘=>’ <Range> 

<Value> ::= int | float | double | … 

B. Types of Adaptation and Examples
In this section, we illustrate the abovementioned taxonomy

and formalism by describing a few of these adaptations and 
associated examples. In the discussion below, each adaptation 
is denoted as , where name is either a Basic or 
Compound category of adaptation as described in the above 
grammar. Also, we associate with each adaptation a generic 
function,  which maps an appropriate entity (e.g., a 
particular type in the case of the type adaptation), to another 
appropriate entity (e.g., another type in the case of the type 
adaptation). All non-terminals that contain the word Function
(e.g., Type-Function, Time-Function, Size-Function, etc.), in
the above grammar, are described using  (and its specific 
variants) either formally or semi-formally.  



1) Type Adaptation – Types, in the theory of programming
languages [14], are either basic types (e.g., int) or constructed 
types (e.g., arrays). As indicated in the above grammar, a type 
adaptation applies to both these categories. Formally, we 
define the Type-Adaptation, AT, as:

… where,  is type of any element before adaptation  is type 
of the element after adaptation, and  is the relation between 
and . can be the subset, equivalence, implication, reverse 
implication, or a specific transformation relation (e.g. type 
converting function). Examples that use relations such as 
subset or equivalence are fairly common – as they relate to the 
subtyping or inheritance relationships. In contrast, an example 
of such type adaptation that may use a specific transformation 
relation can be described in the context of the URL Shortner 
Service (from Google Marketplace [15]). The insert() method
of this service is responsible for shortening the URL. This 
method takes an API key (indicating the URL) as an argument 
– this key is of the type String – and shortens it into as few
characters as possible in order to make the URL more
readable, shareable and easy to email. This method can
support type conversion by accepting a QR-code as an
argument instead of a URL.

2) Size Adaptation – The Size adaptation is denoted by .
It is defined as: 

size of an element, before adaptation, and S’ 
is the size of that element, after adaptation. The computation 
of the size of an element depends on the nature of the element. 
For example, if the element is a set, then its size could be the 
cardinality of the set. is the relation that maps S to S’. can
be either increase or decrese function and is defined as: 

Rdec: S  S’… iff S < S’. 
Rinc: S  S’… iff S > S’. 

The size adaptation is generally associated with size of a 
service’s input or output parameters. General triggers for this 
adaptation could be the QoS constraints, the QoS adaptation, 
and resource availability for service or network conditions. 
For example, the URL Shortner service mentioned above does 
perform the size adaptation when it shortens a URL into a 
smaller form. This also emphasizes the fact that a service can 
exhibit more than one kind of adaptation. 

3) Number Adaptation – The Number adaptation is
denoted by . It is defined as: 

… where let a set of elements of an entity, before adaptation, 
is denoted as X and after adaptation is denoted as X’, such that 
X = { 1, … , } and X’ = {x’1, … , x’q} where p>0, q>0 and p 
!= q. Also, let N = |X| and N’ = |X’| where |X| and |X’| indicate 

the cardinality of sets X and X’ respectively.  can be equal, 
increase or decrease function and is defined as: 

Req: N  N’… iff N = N’. 
Rdec: N  N’… iff N < N’. 
Rinc: S  S’… iff N > N’. 

The number adaptation can be triggered when the service 
has a need to adapt to the change in the number of its inputs or 
outputs. Generally, such a scenario will occur if the client of 
the service provides fewer arguments than expected or expects 
a different set of outputs. If there was no adaptation in this 
situation, the service will throw an exception. However, such a 
situation could be handled by the number adaptation of the 
inputs or outputs. There could be various strategies to achieve 
this but the choice will be dependent on the developer of the 
service. As an example of number adaptation scenario, 
consider the case of missing parameters. In this case, the 
number of arguments provided by the client is less than 
expected number of arguments described by the service 
interface. One of the most common strategies suggested, in 
this case, is to replace the missing argument values with 
default values. Another approach could be to obtain some 
essential details of the input and form a complete new set of 
inputs with a reduced number of parameters. Again, the 
strategy may differ from developer to developer, but the 
general principles remain the same. Some of the common 
triggers of this type of adaptation are QoS requirement, size 
adaptation or when the required number of inputs and/or 
outputs are not provided or generated. A concrete example for 
this adaption is the Google’s Books Service [16] – it has a 
resource called Bookshelf which contains a method called list.
This method takes a required parameter UserId and an 
optional parameter, source. If an invocation is made with only 
one parameter, the number adaptation takes place by ignoring 
the optional argument. 

4) Order Adaptation – The Order Adaptation is denoted
by . It is defined as: 

… where O represents the set of n entities. For any such set O, 
a permutation can be defined as a bijective function R: O O . 
Following permutations are defined for R: 

Rall: an n-permutation of O. 
Rrestrictive: an r-permutation of O where r < n. 
Rpre-defined: a pre-defined sequence of elements of O. 

This adaptation indicates a change in order of an entity 
associated with a software service. This could mean changing 
the order of inputs to changing the order of a sequence of 
function calls. For example, the first function, Rall, described 
above, denotes adapting to any of the possible permutations. 
One such approach was proposed by [13]. In this approach, 
the function calls are performed with named parameters or 
arguments identified by keywords. The clients then can call 
the function by providing name of each argument along with 



the parameters. Another approach could be a restricted or 
group order adaptation. In this approach, the service may 
allow only certain deviation from the expected order or may 
allow the change in order for only certain input arguments. 
Thus, the adaptation function would change order based on 
only some permitted permutations of the expected input order. 
The criteria of filtering out valid permutations will be 
application specific. Another example of this adaptation is the 
use of named arguments in Python. 

5) Time Adaptation – In order to define the time (or
temporal) adaptation, it is required to define the meaning of a 
temporal entity. In [17], Hobbs et al. have proposed time 
based ontology to formally represent temporal entities and 
their properties as a way to efficiently describe time-based 
information  on the web, more specifically, web pages and 
web services. Also, one set of temporal relations have been 
proposed by Allen [18,19] which is also known as Allen’s 
Interval Algebra.  The relations defined in these works are 
used while defining the temporal adaptation as indicated 
below. The Time adaptation is denoted by . It is defined 
as:

where, S is the initial state of the entity at time t and S’ is its 
state after adaptation at time t’. Let p and q be temporal 
formulas. These formulae can be represented as basic time-
based propositions. For example, p is true if the time value is a 
time, 1. The sequence of states at any time t can be denoted 
by  and is represented as  { , t+1, +2 …  } – for t = 0, 1, 
2…n. Following functions, based on [17,18,19], are defined 
for R:

R1: S  S’… iff  After p.  
R2: S  S’… iff  Before p. 
R3: S  S’… iff  At p.  
R4: S  S’… iff Every p.  
R5: S  S’… iff [-]p where [-] represents  So-far.   
R6: S  S’… iff <->p where <-> represents Once.   
R7: S  S’… iff p since q.  
R8: S  S’… iff p Backto q (either p since q or[-]p ).  
R9: S  S’… iff p   where  represents Next.
R10: S  S’… iff p Awaits q.  
R11: S  S’… iff  pUq  where U represents Until.  
R12: S  S’… iff <> p where <> represents 
Eventually.   
R13: S  S’… iff []p where [] represents 
Henceforth.  
R14: S  S’… iff  p where  represents Globally.  
R15: S  S’…iff (<O>  && C) where  <O> is any of 
the above operators and C is the conditional 
expression.

While considering the time adaptation for an entity, it is 
important to understand the relationship of this entity with 
time. For example, let us consider an adaptation scenario for 

an input to a service. This input can be either a time itself or 
could be an input in any other form but dependent on time. 
For the former case, application of the abovementioned time-
based functions can be straight forward, but for the latter case, 
there might be more work required. This scenario is common 
in services which have real-time inputs. In such scenarios, the 
goal of adaptation is, generally, to modify the input 
representation in an effective way so that the changing input 
values may be utilized to adapt the service under various 
conditions. Thus, it becomes important to establish the 
relationship of time with the input. A common method is to 
time-stamp the input. This method is found among services 
with real-time data such as financial services and traffic 
routing services. A timestamp can describe the apprpriate time 
value by listing the year, month, day, hour, minute, second 
and millisecond. Different standards are available for time 
stamping values.

An example of time adpation is the GoogleNow wallpaper 
[20] application – it changes the color scheme of the
background based on the time of the day. Rhapsody [21], an
application for playing music, suggests songs to users based
on the time and day and generates a user’s listening pattern.
As another example, consider a map service that assists in
real-time directions based on traffic conditions. Such a service
would have an incoming temporal data as input, which will, in
most cases, be the data collected from GPS of vehicles on
road. A map service could be designed to adapt its route
suggestions not only based on current traffic but also the
current time of day. Traffic patterns are known to vary based
on the time of day or the season of the year, or based on some
other real-time feed of a live event in the city.

6) Range Adaptation – The Range adaptation is denoted
by . It is defined as:

… where RN is the range of an entity before adaptation and 
RN’ is the range of the entity after adaptation. RN is the set 
[x,..,y] that contains monotonically increasing integer or real 
values from x to y inclusive of x an y. Similarly, RN’ is the set 
[x’,..,y’] that contains values from x’ to y’ inclusive of x’ and 
y’. Following functions are defined for R based on the 
relations between RN and RN’: 

Rbefore: RN  RN’… iff  y < x’.  
Rmeets: RN  RN’… iff  y = x’.  
Roverlap: RN  RN’… iff [x,..,y]  [x’,.., y’] !=   i.e., 
RN and RN’ are not disjoint. 
Rstart: RN  RN’… iff ((x = x’) && (y < y’)).  
Rcon: RN  RN’… iff [x,..,y]  [x’,.., y’] = [x,..y,].  
Rfin: RN  RN’… iff  ((x < x’) && (y = y’)).  
Req: RN  RN’… iff ((x = x’) && (y=y’)).   



An example of such an adaptation is the  Set-
SPServerScaleOutDatabaseDataSubRange associated with 
the SharePoint Server [22]. 

7) Input Adaptation – The input adaptation is denoted by
. It is defined as:

… where, I is the set of input elements before adaptation, and 
I’ is the set of input elements after adaptation. The input 
adaptation, in turn, uses many of the earlier defined 
adaptations. Specifically, the input adaptation uses the type 
adaptation (AT), the order adaptation (Aorder), the number 
adaptation (Anumber), the size adaptation (Asize), the range 
adaptation (ARange) and the time adaptation (ATime). Hence, the 
function R for the input adaptation takes the appropriate forms 
that are defined for these related adaptations – that is why, 
here, we neither specifically enumerate these functions not 
indicate any concrete examples of the input adpatation.  

8) Output Adaptation – The output adaptation is denoted
by . It is defined as:

… where, O is the set of output elements before adaptation, 
and O’ is the set of output elements after adaptation. The 
output adaptation has the same semantics (and hence, the use 
of related adaptations) as the input adaptation, except it deals 
with the outputs of the function than the inputs of the function. 
Hence, again here, we do not elaborate details of the output 
adpatation.

9) Syntax Adaptation – A service is typically specified by
the function that it supports. Thus, at the service syntax level, 
a function’s signature maybe required to change – resulting in 
the syntactical adaption for that service. The signature of a 
function in an object-oriented language such as Java, consists 
of a function name, list of parameters along with their types, 
return type of function, access control modifier or some 
specialized keywords specific to the language (e.g., Java 
language has abstract and final as keywords). Based on this 
signature structure, the syntax adaptation will either be the 
input adaptation or the output adaptation or both. As these 
adaptations are described earlier, we do not repeat them here 
while discussing the syntax adaptation. In  the syntax 
adaptation, typically, the functionality of the service may not 
change At this level, the functionality of the service does not 
change but the function signature will need to adapt based on 
the specified parameter. An example of syntax adaptation is 
the Classifier Service described in [13]. 

10) Behavior Adaptation – A behavior (or semantic)
adaptation is the change in the core functionality of a software 
service. Thus, the behavior adaptation can be defined as the 

adaptation of the functionality of the service. For an adaptive 
service, there would be a number of semantic variants 
available. In literature, several approaches have been proposed 
for adaptation at the behavior level in software services. One 
such list of different adaptation patterns is proposed in [23]. 
These patterns are: Insert Process Fragment, Delete Process 
Fragment, Move Process Fragment, Replace Process 
Fragment, Swap Process, Extract Sub Process, Inline Sub 
Process, Embed Process Fragment in Loop, Parallelize 
Process Fragment, Embed Process Fragment in Conditional 
Branch, Add Control Dependency, Remove Control 
Dependency, and Update Condition. Any of these patterns 
could be the choice(s) for the behavior adaptation. The 
Classifier Service [13] uses the Update Condition pattern. 

11) Synchronization Adaptation – The next level in the
multi-level contract, advocated by [12], is the synchronization 
level. Services need to support concurrent accesses, in most of 
the application scenarios, and hence, this level is needed. In 
[24], the specification of the synchronization level is divided 
into two parts – the policy part and the implementation part 
and a catalog of policies is presented. A few examples of the 
policy, indicated in [24], are mutex, barrier, first-come-first-
serve (FCFS) and monitor. [25] discusses relations between 
these policies, and thus, provides a possible mechanism for 
adapting one policy to another. The relaxed matching 
function, defined in [25], is the relation associated with the 
synchronization adaptation and is defined as:

Rrelax: SP  SP’… iff  SP implies SP’.  

Again, the Classifier Service, from [13], is an example of 
synchronization adaptation which can adapt from mutex to 
first-come-first-serve.

12) QoS Adaptation – The last level in the multi-level
contract, advocated by [12], is the QoS level. Services, 
especially the ones which deal with real-time constraints, need 
to guaranteed a specific value or a range values for specific 
QoS parameters (e.g., response time).  Dynamic QoS 
parameters, such as the response time, are highly dependent 
upon the execution environment and hence, need to adapt for 
different operating scenarios. The QoS adaptation can either 
indicate change from a specific value to another specific value 
or from a range to another range. The latter scenario is most 
likely – thus, this adaptation will use the range adaptation 
described earlier. Again, the Classifier Service [13] is an 
example of such a QoS adaptation, where it can provide the 
classification in 3 to 120 ms.

13) Compond Adaptation -- Compound adaptations are
created by a combination of two or more basic adaptations. 
This categorization is important to identify the relationships 
amongst various adaptations. The compound adaptation 
allows a designer to identify the impact of a basic adaptation 
on other types of basic adaptations or on the system as a 



whole. One such example of a compound adaptation is the 
Synchronization-QoS Adaptation. This adaptation is obtained 
by a serial combination of the synchronization and QoS
adaptations. The underlying principle here is that the change 
in the synchronization policy will lead to a different QoS 
outcome. The Classifier Service [13], for example, when 
changes its synchronization behavior from mutex to FCFS
may result in a different response time – due to changing its 
behavior from a non-deterministic to a more deterministic 
manner. In some cases, such a change in the QoS outcome 
may be significant but in others it may not matter. Hence, the 
developer is required to consider such compound adaptations 
while developing services, in addition to the basic adaptations. 

IV. CONCLUSION AND FUTURE WORK

As more and more services will need to adapt, they should 
be developed using the “adaptation by construction” approach 
– i.e., developers of such services should consider the notion of
adaptation right from the beginning and not as an afterthought.
The proposed formalism and taxonomy will help developers in
identifying the important adaptation categories and ensure that
they are appropriately met. Also, selected adaptation categories
will have to be described in the specification of services –
perhaps, using an alternative such as [13]. The approach
discussed in this paper will allow a semi-automatic code
generation for such services from their adaptive specifications.

Our future work includes the creation of a toolset which 
enables the developer to choose the different adaptations that 
are consistent with each other and generate an adaptive multi-
level specification for the service. Such a tool can also develop 
skeleton code, which the developer can complete by filling in 
the application specific details. Another direction of our future 
work is to extend the current taxonomy based on specific 
domains. Finally, impact of adaptation of one type on another 
type and on the service as a whole will be investigated in 
future.

REFERENCES

[1] P. Alencar and H. Weigand, “Challenges in Predictive Self-Adaptation
of Service Bundles”, in IEEE/WIC/ACM International Joint
Conferences on Web Intelligence and Intelligent Agent Technologies,
vol.3, pp.457-461, 2009.

[2] M. Papazoglou, K. Pohl, M. Parkin, and A. Metzger (Eds.), Service
Research Challenges and Solutions for the Future Internet. S-Cube –
Towards Engineering, Managing and Adapting Service-Based Systems,
2010.

[3] S. Kell, “A Survey of Practical Software Adaptation Techniques”,  J.
UCS 14.13 (2008): pp. 2110-2157.

[4] N. Esfahani, A. Elkhodary, and S. Malek, “FUSION: A Learning-Based
Approach for Engineering Self-Adaptive Software Systems”, IEEE
transactions on Software Engineering, no. 11, vol. 39, pp. 1467-1493,
2013.

[5] R. Bruni, et al. "A Conceptual Framework for Adaptation,
“Fundamental Approaches to Software Engineering”, in 15th

International Conference, FASE 2012, pp. 240-254, 2012.
[6] S. Hallsteinsen, et al. “A Development Framework and Methodology for

Self-adapting applications in Ubiquitous Computing Environments”,
Journal of Systems and Software 85.12 (2012): pp. 2840-2859.

[7] D. Garlan, et al. "Rainbow: Architecture-based Self-adaptation with
Reusable Infrastructure”, Computer 37.10 (2004): pp. 46-54.

[8] M. Rohr, et al. “A Classification Scheme for Self-adaptation Research”,
(2006): pp. 1-5.

[9] E. Yuan, and S. Malek, “A Taxonomy and Survey of Self-protecting
Software Systems”,  in the 7th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems,  pp. 109-118,
2012.

[10] S. Kim, E. Whitehead, and J. Bevan, “Analysis of Signature Change
Patterns”, ACM SIGSOFT Software Engineering Notes. Vol. 30. No. 4.
ACM, 2005.

[11] P. McKinley, S. Sadjadi, E. Kasten, and B. Cheng, “A Taxonomy of
Compositional Adaptation” Technical Report No.  MSU-CSE-04-17,
Michigan State University, 2004.

[12] A. Beugnard, J. Jezequel, N. Plouzeau, and D. Watkins, “Making
Components Contract Aware”, IEEE Computer, vol. 32, issue:7, pp.38-
45, 1999.

[13] S. Phatak, “Multilevel Specification for Adaptive Services”, M. S.
Thesis, Department of Computer and Information Science, Indiana
University-Purdue University Indianapolis, 2009.

[14] L. Cardelli, and P. Wegner, “On Understanding Types, Data
Abstraction, and Polymorphism”,  ACM Computing Surveys (CSUR),
17(4), 471-523, 1985.

[15] Google URL Shortner: https://goo.gl/
[16] Google Books: https://books.google.com/
[17] J. Hobbs, and P. Feng Pan, “An Ontology of Time for the Semantic

Web”, ACM Transactions on Asian Language Information Processing
(TALIP) 3.1 (2004): 66-85, 2004.

[18] J. Allen, James, “Towards a General Theory of Action and Time”,
Artificial intelligence 23.2 (1984): 123-154, 1984.

[19] J. Allen, “An Interval-Based Representation of Temporal Knowledge”,
J. Allen, 7th International Joint Conference on Artificial Intelligence
(IJCAI), 1981.

[20] GoogleNow Wallpaper Application:
https://play.google.com/store/apps/details?id=com.bongoman.gnowwall
paper

[21] Rhapsode Music Service: http://www.rhapsody.com/.
[22] Set-SPServerScaleOutDatabaseDataSubRange, Share Point: 

https://technet.microsoft.com/en-us/library/jj871009.aspx.
[23] B. Weber, S. Rinderle, and M. Reichert, “Identifying and Evaluating

Change Patterns and Change Support Features in Process-aware
Information System”, Technical Report No. TR-CTIT-07-22,
University of Twente, The Netherlands, 2007.

[24] A. Kumari, “Synchronization and Quality of Service Specifications and
Matching of Software Components”, M. S. Thesis , Department of
Computer and Information Science, Indiana University Purdue
University Indianapolis, 2004.

[25] R. Raje, P. Katuri, A. Kumari, O. Tilak, “Multi-level Matching of
Distributed Software Components”, International Conference on
Computer, Communication, and Instrumentation, Mumbai, India, 2009.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


