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Abstract

Cell signaling pathways regulate much in the life of a cell: from shuttling cargo through 

intracellular compartments and onto the cell surface, how it should respond to stress, protecting 

itself from harm (environmental insults or infections), to ultimately, death by apoptosis. These 

signaling pathways are important for various aspects of the immune response as well. However, 

not much is known in terms of the participation of cell signaling pathways in Ag presentation--a 

necessary first step in the activation of innate and adaptive T cells. In this brief review, I will 

discuss the known signaling molecules (and pathways) that regulate how Ags are presented to T 

cells and the mechanism(s) if identified. Studies in this area have important implications in 

vaccine development and new treatment paradigms against infectious diseases, autoimmunity and 

cancer.

Introduction of Cell Signaling Pathways

What allows cells to respond to stimuli in specific ways? A priori, one can envisage a 

stimulus and a cellular response. Unfortunately, in between that stimulus and response is a 

black box. An external or internal event triggers within a cell a cascade (linear or branched), 

resulting in the phosphorylation and/or dephosphorylation of specific proteins. As a 

consequence, these cell signaling pathways have effects upon or within the cell that results 

in a specific response. For example, the activation of these pathways can stimulate cell 

migration or arrest. This can be due to the polymerization or depolymerization of 

cytoskeletal proteins, or the rearrangement of proteins or intracellular compartments. A 

potential effect can also result in activation-induced cell death.

Studies to dissect the specific paths (i.e., proteins that are phosphorylated or 

dephosphorylated and consequent effects on “downstream” intracellular proteins) followed 

by cell signaling pathways, have helped us understand many ways in which cells react to the 

environment— including infections by pathogens. As this is a Brief Review in The Journal 
of Immunology, I will focus my comments on cell signaling pathways that control the 

presentation of Ag to conventional and unconventional T cells.
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Why would cell signaling pathways even be important for the immune system? Certainly, 

APCs need to be able to capture and internalize Ag in various forms--and by various routes 

(1-5). This could be by phagocytosis, pinocytosis, infection by a pathogen, or even taken 

from within a cell as an endogenous protein or lipid. Ag-loaded molecules need to be able to 

be transported intracelluarly along the cytoskeletal network, to their ultimate expression on 

the cell surface for recognition by T cells. That “movement” needs direction—this is 

provided by cell signaling pathways.

APCs mainly utilize three pathways of Ag presentation; Ags are presented by MHC or 

MHC-like molecules (1-5). The first pathway involves MHC class I molecules (2, 6-18). In 

the cytosol, endogenously-synthesized polypeptide chains are threaded into a barrel-like 

structure called the proteasome, which contains a variety of proteolytic enzyme activities. As 

the polypeptide is cleaved, a diverse array of peptides consisting of approximately 9 – 15 

amino acids is generated. These peptides are then delivered into the endoplasmic reticulum 

(ER) by the transporter associated with Ag processing (TAP). Upon being loaded onto 

peptide-receptive MHC class I molecules, ER resident peptidases cleave amino terminal 

amino acids, resulting in the 8 – 9 amino acid peptides that are usually found associated with 

MHC class I molecules. The peptide-loaded MHC class I molecules are then transported 

through the Golgi to the cell surface, where they are recognized by CD8+ T cells. The 

second Ag presentation pathway involves MHC class II molecules (17, 19-31). Rather than 

being synthesized intracellularly within an APC, Ags are taken up by phagocytosis (or 

pinocytosis) and delivered to late endocytic compartments where they are processed into 

longer (e.g., 15 – 20) peptide-sized fragments than those loaded onto MHC class I 

molecules. Initially, MHC class II molecules are complexed with the invariant chain (Ii). The 

CLIP portion of the Ii prevents peptide loading until the MHC class II molecules traffic to 

late endocytic compartments (e.g., MIIC). It is here that an antigenic peptide replaces the Ii 

chain's CLIP. The newly-loaded MHC class II molecule is then transported to the cell 

surface where it is recognized by CD4+ T cells. The third Ag presentation pathway does not 

involve peptide Ag presentation. CD1 molecules are MHC class I-like molecules that 

generally present lipid Ags to invariant, relatively oligoclonal or even diverse T cells. These 

lipids can be of microbial origin or from mammalian cells themselves (5, 32). The CD1 

family of Ag presenting molecules consists of two members (based on the human CD1 

molecules): Group 1 includes CD1a, CD1b and CD1c molecules, whereas Group 2 consists 

of CD1d as its sole member (33). Each of these molecules differ somewhat in how they 

traffic intracellular and thereby how they acquire Ag.

For the sake of completeness, I will note there are the very interesting MHC class I-like 

MR1 molecules, which present microbial vitamin B-derived metabolites to a novel T cell 

subpopulation called MAIT [(mucosal-associated invariant T cells; ref. (34, 35)] Because so 

little is known about the cell signaling pathways regulating their function, they will not be 

discussed here.

The presentation of specific Ags to T cells by cell-to-cell interactions, results in the 

production of various cytokines that, in turn, stimulate the APCs. For T cells to be 

stimulated by APCs, cell signaling pathways within the APCs themselves need to be 

activated; this results in the proper Ags being processed and loaded onto the appropriate Ag 
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presenting molecule to be expressed on the surface. This is absolutely required for Ag-

specific T cells to be activated and perform their effector cell functions.

Which are the most widely studied cell signaling pathways that control classical (i.e., MHC 

class I and II) and non-classical (e.g., CD1d) Ag presentation and the mechanism/s (if 

known) by which they do this? One of the best understood cell signaling pathway family is 

that mediated by the MAPK (Fig. 1; left side). Following a cell stimulus, a MAPKKK is 

phosphorylated which, in turn, phosphorylates a MAPKK. Finally, the MAPKK activates the 

MAPK which then is transported into the nucleus to mediate its function. The MAPK family 

consists of three main members: p38, ERK and JNK [reviewed in (36)]. Upon receiving a 

cell stimulus, such as infection with a pathogen, exposure to inflammatory cytokines, etc., 

the resultant activation of the MAPK pathways results in inflammation, cell growth, 

differentiation or apoptosis. Consequently, the activation of MAPK pathways has the 

potential to impact the ability of a host's immune cells to appropriately respond to an 

infection. Of these three pathways, p38 has been studied the most in terms of aspects 

relating to Ag processing and presentation.

Role for p38 on APC maturation and function

The MAPK p38 can be phosphorylated by two upstream kinases: MKK3 and MKK6 (37). 

For macrophage (MΦ) maturation (20) and production of IL-12 (38), p38 is required via its 

stimulation by MKK3 (38). This occurs because MKK3 indirectly activates the IL-12 p40 

promoter through its phosphorylation of p38 (39). In MΦ, anisomycin (a p38 activator) 

enhances LPS-induced IL-12 production; this is blocked by the p38-specific inhibitor, 

SB203580 (39). Blocking p38 also impairs DC/T cell clustering, which can, of course, 

reduce effector T cell activation (39). Interestingly, p38 inhibits (whereas ERK promotes) 

the differentiation of monocytes into DCs (40). As will be mentioned below, p38 and ERK 

have similar reciprocal control over CD1d-mediated Ag presentation (41-43). Unstimulated 

DCs have a basal level of p38 that is enhanced following stimulation with anisomycin, a 

drug that activates both p38 and JNK (44). In both human (44) and mouse (45) DCs, 

activation of TLR4 results in the phosphorylation of p38. TLRs have a variety of known 

effects on APCs; these are discussed later in this review. The other MAPKK that can activate 

p38, MKK6, increases the APC activity of Langerhans cells by stimulating the NF-κB 

pathway (46).

The MAPK p38 has been shown to be important for Ag presentation by classical MHC class 

I and II molecules. Ag uptake is increased in DCs treated with cyclophin A, which results in 

p38 activation (47). p38 (and ERK) activation by osteoprotegerin ligand increases 

costimulatory molecule expression (48), readying APCs for interaction with Ag-specific T 

cells. In the context of Ag presentation by MHC class I, p38 can help--or hinder. For 

example, p38 phosphorylation following CD40L engagement results in the activation of DCs 

and expansion of HIV-specific memory CD8+ T cells (49). It was presumed that the 

expansion of these T cells is MHC class I-dependent; however, it has recently been shown 

that SIV peptides can be presented to CD8+ T cells by MHC class II molecules (50). I 

indicated above that TLR engagement activates p38 in DCs (44, 45); this also results in 

enhanced Ag presentation by DCs to antitumor T cells via MHC class I molecules (51). In 
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contrast, there is increased Ag uptake for cross-presentation by MHC class I molecules in a 

Japanese Encephalitis Virus model when p38 is inhibited (7); thus, p38 appears to be a 

negative regulator in this model.

p38 activation in DCs (52) and its induction by fragments of the food product gliadin (53), 

increases costimulatory and MHC class II molecule expression, which, in turn, enhances Ag 

presentation to CD4+ T cells. This is in contrast to one report, in which the role of p38 in 

MHC class II-mediated Ag presentation by multiple myeloma patient DC was studied. In 

that system, p38 activation inhibited Ag presentation by MHC class II molecules, 

concomitant with reduced costimulatory molecules and MHC class II expression on the cell 

surface (54).

We have done extensive analyses on signal transduction pathways that can regulate lipid Ag 

presentation by CD1d. It is well known that viruses (along with other external stimuli) 

activate p38 in cells (43). When we analyzed the role for p38 in regulating CD1d-mediated 

Ag presentation following infection with vaccinia virus or vesicular stomatitis virus, we 

found it was inhibitory; blocking p38 actually increased Ag presentation to natural killer T 

(NKT) cells (42, 43). However, this does not only occur in a virus infection. Inducing 

apoptosis in CD1d+ APCs stimulates p38 activation; not surprisingly, these cells are poorer 

stimulators of NKT cells (41). Interestingly, another group has looked at Ag presentation by 

Group 1 CD1 molecules. As we have observed with CD1d, p38 is inhibitory in that system 

as well (55). Notably, p38 has an NKT cell-intrinsic negative effect, as treatment of iNKT 

cells with a p38-specific inhibitor impairs their stimulation by the CD1d-binding (and NKT 

cell-stimulating) glycolipid, α-galactosylceramide [α-GalCer; ref. (56)] or by an anti-CD3-

specific mAb (57). Therefore, p38 can affect both the APC and T cell sides of a host's 

immune response.

Participation of JNK

As indicated above, JNK has effects on many of the same cellular functions as p38, although 

there is not total overlap (37). Certainly, analyses of JNK in DCs have reported that, like for 

p38, anisomycin induces JNK in human monocyte-derived DCs, although at higher 

concentrations (39). Unlike that for p38, at baseline, there is no detectable JNK in human 

DCs (39), nor does TLR4 activation stimulate JNK in murine DCs (45). Does JNK have any 

role in Ag processing and presentation? It has been shown that JNK2-deficient mice 

generate more CD8+ T cells in response to IL-2 (58) and more antiviral CD8+ cells are 

found in these mice upon infection with lymphocytic choriomeningitis virus (59). This 

suggests that JNK can have a negative effect on MHC class I-mediated Ag presentation; 

alternatively (or additionally), this could be T cell-intrinsic. In line with those two reports, 

we have found that JNK2 is a negative regulator of Ag presentation by CD1d (Liu et al., 

manuscript in preparation). Studies on the JNK signaling pathway in the control of Ag 

presentation by classical and/or non-classical MHC molecules are still limited to date.

Role of ERK

There are a few reports that have asked whether the ERK MAPK pathway is important for 

MΦ or DC maturation, or if it can be activated in either cell population. For example, one 
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report suggested that LPS or GM-CSF induces ERK in macrophages, albeit with different 

kinetics [the latter induces ERK activation much more quickly—5 min vs. 15 min, 

respectively; ref. (60)]. LPS activates ERK in MΦ (44, 61); however, it apparently does not 

do so in DCs (62). In terms of MΦ maturation, it is both ERK- and p38-dependent (20). In 

contrast, ERK promotes, but p38 impairs, the differentiation of human monocytes into DCs 

(40). We have reported that, in the context of lipid Ag presentation by CD1d, ERK is a 

positive regulator (43).

As indicated above, a number of cytokines can activate MAPK signaling, with an impact on 

APC maturation or Ag presentation abilities. In some cases, such as with TGF-β, even 

though that cytokine can activate MAPKs, which negatively regulate CD1d-mediated Ag 

presentation [(41-43); Liu, et al., in preparation], the ultimate effect on Ag presentation by 

CD1d in the TGF-β model appears to be (at least) p38-independent (21).

Regulation of Ag presentation by protein kinase C (PKC) isoforms

The protein kinase C (PKC) family members are ser/thr kinases that consist of three main 

subgroups: 1. Conventional/Classical [(PKCα, β (I and II)], and γ; 2. Atypical (PKC ζ and 

λ/ι); and 3. Novel (δ, ε and θ) [reviewed in (63)]. Within these subgroups are 10 kinases 

that play distinct roles in the regulation of gene expression and cell proliferation. The 

activation of PKCs modifies them from a quiescent cytosolic form, to an active, membrane-

associated form (64). Beyond their role as cytoplasmic signal transduction molecules, there 

is also evidence to suggest they can serve as nuclear kinases as well. In terms of the control 

of Ag presentation, PKC isoforms have been shown to promote Ag presentation by MHC 

class II molecules. In particular, the use of PKC activators such as bryostatin, which 

activates PKC-α, δ and ι, or PKC activation by phorbol esters and ionomycin, increases the 

surface expression of MHC class II molecules and thereby increases Ag presentation (27, 

65, 66). The use of PKC-specific (i.e., PKC-α and/or –δ) inhibitors by our laboratory and 

others, further supports the positive correlation between PKC-δ activation and Ag 

presentation by MHC class II molecules (23, 27, 67). Interestingly, we have found that Ag 

presentation by CD1d, which is an MHC class I-like molecule that traffics intracellularly 

more like MHC class II molecules, is promoted by PKC-δ (67). In contrast to MHC class II 

and CD1d, Ag presentation by MHC class I molecules is not impacted by PKC-δ (27, 67).

TLRs and Ag processing and presentation

In general, when one thinks about what constitutes the innate immune response, the first 

thing that often comes to mind is a response via Toll-like receptors [TLRs; reviewed in (68)]. 

The TLR family of molecules consists of up to 13 structurally similar molecules in 

mammals, which are homologues of the Drosophila toll gene product (69). TLRs are 

molecules on the cell surface and/or in intracellular (e.g., endocytic) compartments (i.e., 

TLR3, TLR7/8, TLR9), to which microbial or viral products bind; this results in the 

activation of various cell signaling pathways, including MAPK as well as other kinases (70). 

The majority of TLRs (TLR3 is the exception) use the MyD88 adaptor molecule for 

signaling down the TLR activation cascade (68, 70). These responses can have important 

effects on Ag presentation by classical MHC molecules (17), as well as by CD1d (71-76). 

Globally, the binding of a ligand to its specific TLR can regulate immunodominance; this 
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has been shown in the context of the Toxoplasma gondii-encoded protein, profilin, via MHC 

class II molecules (77). In contrast, TLR7/8 agonists can impair the differentiation of 

monocytes into DCs (78). Thus, activation via TLRs can promote (or inhibit) APC function.

In terms of MHC class I-mediated Ag presentation, TLR engagement can enhance (or have a 

minimal effect on) overall surface MHC class I expression (79, 80). However, ligands for 

TLR2 and other TLRs can impair conventional Ag presentation by MHC class I (80, 81). 

TLR signals can also have very important regulatory (albeit not direct) roles in triggering the 

delivery of MHC class I molecules to phagosomes for cross-presentation. These signals 

result in the IκB-kinase 2-mediated phosphorylation of phagosome-associated SNAP23, 

which stabilizes SNARE complexes, ultimately facilitating cross-presentation (11). Similar 

to endogenous Ag presentation by MHC class I, cross-presentation can also be reduced upon 

TLR engagement (7, 15, 18). Alternatively, cross-presentation can be enhanced via the 

binding of TLR2- (13, 82), TLR4- (18), TLR7- (8) or TLR9-specific agonists (83). 

Differences in terms of the activation vs. inhibition of cross-presentation are likely due to the 

timing of APC exposure to the TLR ligands, as compared to the cross-presented Ags.

Ag presentation by MHC class II molecules is also differentially affected by the engagement 

of distinct TLRs. Interestingly, in some cases, it seems to be a means of immune evasion by 

a pathogen. For example, 19 and 24 kDa lipoproteins from Mycobacterium tuberculosis can 

inhibit both MHC class II expression and Ag processing via TLR2 signaling (25, 84, 85). In 

contrast, a variety of TLR ligands (including those for TLR2), can upregulate MHC class II 

molecules on microglia (29). Ligands for TLR1/2, 4, 7 and 9 were shown to enhance the 

ability of APCs to present Ag-85B of Bacillus Calmette-Guerin (BCG) to CD4+ T cells 

specific for that Ag, via the upregulation of MHC class II molecules (86). Moreover, the 

stimulation of TLR signaling and delivery of a TLR-specific ligand (in this case, the TLR4 

ligand, LPS) into phagosomes, can contribute to the generation of peptide/MHC class II 

complexes; this is as a means to segregate self vs. non-self peptides in a phagosome-

autonomous manner (22). This delivery of TLR4 ligands is due to adaptor protein-3 (AP-3)-

dependent transport of TLR4 from endosomes to phagosomes (87). Sometimes, MHC class 

II-mediated responses--in this case, flagellin-specific CD4+ T cell responses--can be 

enhanced in a TLR5-dependent (but nonconventional TLR signaling pathway) manner (26). 

In that report, DCs from MyD88-deficient mice could increase flagellin-specific CD4+ T 

cells in a TLR5-dependent manner that was comparable to DCs from wildtype mice (26). 

This response is regulated by CD103-CD11b+ DCs (88). Type I interferons can work with 

TLR ligand-mediated signals in order to generate type B peptide/MHC class II complexes 

(pMHC); type B pMHC are complexes formed in early endosomes from exogenous peptides 

(89). In fact, type I interferons are very important for such peptide generation, as DCs 

deficient in the receptor for type I interferons are impaired in their ability to generate type B 

pMHC (89). However, in the context of DC maturation, whereas TLR ligands can inhibit 

MHC class II synthesis and presence in intracellular compartments, type I interferons can 

prevent this from occurring (30).

The activation of TLR signaling pathways by TLR-specific ligands has also been 

investigated in terms of its effect on the CD1d/NKT cell axis. Mimicking APC stimulation 

of NKT cells (i.e., a panel of murine NKT cell hybridomas) using anti-CD3 and IFN-α 
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upregulates TLRs on the cell surface (75). Moreover, the exposure of NKT cells to a variety 

of TLR ligands enhances NKT cell production of IFN-γ, IL-4 and TNF-α (75). However, 

another report indicated that although human NKT cells express all TLRs (except TLR8), 

they are not activated when directly exposed to TLR ligands; yet, they are stimulated when 

TLR ligands are added to total PBMCs (73). The differences could simply be due to the fact 

that these studies analyzed mouse NKT cell hybridomas (75), as opposed to normal human 

NKT cells from PBMCs (73). Culture of murine mononuclear cells (MNCs) with the CD1d-

binding glycolipid, α-GalCer, and poly I:C (a TLR3 ligand), resulted in NKT cell activation 

in a model of airway inflammation (76). Certainly, the effects observed in that report could 

be NKT cell- and/or APC-specific. Murine bone marrow-derived DCs (BMDCs) exposed to 

LPS or infected with Salmonella typhimurium were able to stimulate NKT cells at a high 

level. This suggests that APC TLR4 signaling enhanced Ag presentation by CD1d molecules 

(71). Additionally, TLR4 has been shown to work with Nod1 and Nod2, two members of the 

Nod-like receptor family that are cytosolic pattern recognition receptors. Here, LPS 

treatment of BMDCs resulted in IFN-γ production by NKT cells (74). An in vivo infection 

with S. typhimurium (which contains LPS) can activate iNKT cells (71, 72), but does so 

without the need for a CD1d-presented lipid Ag (72).

JAK/STAT pathway effects on MHC and CD1d

The JAK/STAT signaling pathway is activated by most cytokines involved in the 

development and regulation of the host's immune response (90). There are four receptor-

associated JAKs that, upon phosphorylation of the receptor they are bound to, recruit one of 

seven STATs to the receptor to be phosphorylated by that JAK. This process then results in 

the dimerization of the phosphorylated STATs which are translocated into the nucleus, 

where they regulate the expression of a variety of genes (91).

JAK/STAT signaling upon activation by IFN-γ is critical for MHC gene expression and, 

ultimately, expression of MHC class I and class II molecules on the cell surface (90, 91). Of 

importance, it has been shown that phosphorylated STAT1 facilitates human MHC locus 

chromatin remodeling, as a first step for the subsequent expression of HLA genes (92). 

Impairing the ability of IFN-γ to stimulate JAK/STAT signaling and thereby preventing 

MHC gene expression, is one mechanism by which viruses can evade recognition by the 

host's immune response (16). For example, MHC class I and/or class II molecules can be 

targeted by herpesviruses (19, 28, 93) or influenza virus (31). In each of these cases, it is 

likely that a virus-encoded protein(s) prevented IFN-γ-induced activation of the JAK/STAT 

pathway. Similarly, immune evasion by solid tumors can be due to an impairment of JAK/

STAT signaling that prevents the upregulation of MHC class I molecules (12, 14) or TAP1 

expression (9).

In contrast to the immune evasion examples presented above, activation of JAK/STAT 

signaling can have beneficial effects. For example, IL-10, which activates a JAK1/STAT3 

complex, inhibits DC maturation by mesenchymal stem cells (94). A case where this could 

be important is in the prevention of NKT cell-mediated colitis. Here, crosslinking CD1d on 

colonic epithelial cells results in STAT3 activation; the transcription of the il-10 gene (by 

STAT3) and consequent IL-10 production controls inflammation in those cells (95). 
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Recently, we showed that STAT3 is essential for CD1d-mediated Ag presentation, due to its 

ability to regulate the transcription of UDP glucose ceramide glycosyltransferase, an enzyme 

involved in the first step of glycosphingolipid biosynthesis—from which the natural ligands 

of CD1d are derived (96). The critical nature of STAT3 in the CD1d/NKT cell axis is evident 

in patients with loss-of-function mutations in STAT3. Those patients have a significantly 

reduced number of NKT cells (97).

Rho kinase and the actin cytoskeleton in CD1d-mediated Ag presentation

Rho GTPases are well known for mediating intracellular protein traffic [reviewed in (98)]. 

This is due to their control over the generation of F-actin. Thus, Rho GTPases activate the 

Rho kinase (ROCK) which then phosphorylates the LIM kinase (LIMK), which then 

activates cofilin. Normally, cofilin, in its nonphosphorylated form, prevents the 

polymerization of actin. The phosphorylation of cofilin by LIMK permits F-actin formation 

(99, 100). We found that F-actin actually impairs Ag presentation by CD1d (101). When we 

disrupted the actin cytoskeleton with cytochalasin D, Ag presentation was enhanced. Thus, 

ROCK is a negative regulator of CD1d-mediated Ag presentation. Interestingly, we found 

that ROCK actually promoted Ag presentation by MHC class II molecules (101). This was 

another example in which we have found specific cell signaling pathways that differentially 

regulate Ag presentation by MHC class II vs. CD1d (21, 96, 101).

Knowing that ROCK impairs Ag presentation by CD1d via the polymerization of actin is 

only part of the mechanism by which this occurs. How does actin actually do it? Recently, it 

has been reported that actin segregates CD1d nanoclusters on the cell surface via direct 

interaction between actin and the CD1d cytoplasmic tail (102). This interaction keeps them 

at a certain density on the surface. Allowing the formation of larger nanoclusters (by 

blocking the ability of CD1d's cytoplasmic tail to bind to actin) results in enhanced NKT cell 

activation—exactly the same observation we made when the actin cytoskeleton was 

disrupted in our system by cytochalasin D (101).

Cell signaling pathways and disease: can these be used as targets in terms of 
immunotherapy?

For the most part, cell signaling pathways appear to be important in inflammatory diseases 

(including cancer), which have a clear--or likely--immune component, where Ag processing 

and presentation would come into play. Of the MAPK, upstream ERK pathway components 

(i.e., Ras-Raf-ERK) are more involved. Either Ras or Raf contribute to malignant 

transformation and are thereby targeted with Ras- or Raf-specific inhibitors (103-106). 

Moreover, blocking ERK in esophageal and gastric cancers, or in melanoma (in the context 

of immunotherapy), results in an increase in MHC class I molecules (107-109).

For the p38 MAPK, inflammation has been shown to increase tumor-induced (and 

immunosuppressive) myeloid-derived suppressor cells (MDSC); the activation of p38 is 

believed to be important for MDSC survival (110). For the treatment of rheumatoid arthritis, 

p38 inhibitors have been considered (111). Moreover, p38 is also believed to be a culprit in 

the development of acquired immune deficiency syndrome and HIV-associated 
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neurocognitive disorders in HIV patients, which could have an Ag presentation component 

(112).

An important aspect of p38 signaling needs to be taken into account when considering using 

inhibitors against that MAPK: there is reciprocal cross-talk between p38 and STAT3 

[reviewed in (113)]. In the context of the CD1d/NKT cell axis, this could be critical in the 

disease that one is attempting to mitigate, as p38 is a negative (whereas STAT3 is a positive) 

regulator of lipid Ag presentation by CD1d (41-43, 96, 97, 101).

The JAK/STAT pathway (in particular, STAT3), is also important in cancer and 

inflammation. In a recent study of patients with non-refractory Hodgkin's lymphoma being 

treated using a PD-1 blockade immunotherapy paradigm, phosphorylated STAT3 was 

detected in the nucleus of Reed-Sternberg cells (the presence of which is necessary for the 

diagnosis of Hodgkin's lymphoma) (114). In Behcet's disease, an inflammatory disorder 

resulting in vasculitis, STAT3 is activated (115). In contrast, there appears to be attenuated 

IFN-α-induced STAT3 signaling in DCs from patients with Crohn's disease and IL-10 

induces enhanced STAT3 activation, which could impact the DC's ability to present Ag 

(116). Relating Crohn's disease effects to the various cell signaling pathways in this brief 

review, there appears to be an association with an ICOSL loss-of-function mutation resulting 

in reduced cell signaling in these patients (117); this likely impacts immune homeostasis.

Lastly, signaling via TLRs have been predominantly associated with infectious diseases 

(118-124); however, a variety of single-nucleotide polymorphisms in human TLRs have not 

only been associated with infectious and inflammatory (including autoimmune) diseases, but 

also with cancer (121, 123-126). As such, TLRs have been looked at as potential targets for 

immune-based therapy against infectious diseases (118, 119), as well as sepsis-associated 

pathology (118). Moreover, another approach that is being considered is the specific 

targeting of TLR-associated adaptors that are negative regulators of TLR signaling (127). 

This is reminiscent of the CTLA-4 and inhibitory receptor programmed cell death-1 (PD-1) 

targeting of antitumor T cells that has recently shown promise in clinical trials with cancer 

patients (128, 129). This approach effectively removes inhibitory signals coming from the 

APCs to the effector T cells.

Conclusions

Although cell signaling pathways have been studied for quite a number of years, very little 

has been focused on Ag processing and presentation, and how they affect APCs and/or the T 

cells that recognize them. Nonetheless, Figure 2 summarizes what I have described in this 

Brief Review in terms of how these cell signaling pathways affect MHC class I, MHC class 

II and/or CD1d. To help the readers, I have also included a table (Table 1), indicating the 

reports cited here, that have studied these specific cell signaling pathways and Ag 

presentation. As is clear from the work done so far, the cell signaling pathways described 

above have at least some impact on various components of a host's immune response; these 

could potentially be exploited for adding new weapons to the arsenal against infectious and 

autoimmune diseases, as well as cancer. We have just begun to scratch the surface.
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FIGURE 1. 
Activation of the MAPK family of cell signaling molecules. There are three main families of 

MAPK: p38, ERK and JNK. Each has important roles in the response of a cell to a stimulus. 

On the left indicates the normal process of events: A cell stimulus results in the activation of 

a MAP3K (MAPKKK), which in turn phosphorylates a MAP2K (MAPKK). The MAPKK 

activates the MAPK via phosphorylation which leads to a biological response. The specific 

biological responses mediated by the individual MAPKs are indicated on the right.
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FIGURE 2. 
Summary of the known effects of cell signaling pathways on Ag presentation by MHC class 

I, MHC class II and CD1d molecules. The effects are indicated as a traffic light analogy: 

green is a positive (or upregulating) effect, red is a negative (or downregulating) effect; those 

pathways in the yellow light suggest some ambiguity for the effects of those pathways (e.g., 

some are positive; some are negative—it depends on the context).
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Table 1

Reports addressing Ag presentation via cell signaling pathways
*

Cell Signaling Pathway Effects on Ag presentation by:

MHC I MHC II CD1d

p38 7; 47-49; 51 52-54 21; 42,43

ERK 47, 48 47, 48 43

JNK 58, 59
Liu, et al.

**

PKC 23, 27, 65-67 67

ROCK 101 101

TLR 7, 8, 13, 15, 17, 18, 51, 79-83 17, 22, 25, 26, 30, 77, 84-86, 88, 89 71-76

JAK/STAT 9, 12, 14, 16, 19, 28, 31, 90-93 16, 19, 28, 31, 90-93 96, 97

*
The table indicates the reference numbers cited in this review that describe a role for the various cell signaling pathways in Ag presentation

**
Liu, et al. (manuscript in preparation)
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