1	Cryopreserved Homografts in Infected Infrainguinal Fields are Associated with Frequent
2	Reinterventions and Poor Amputation Free Survival
3	
4	
5	S. Keisin Wang MD, Ashley R. Gutwein MD, Natalie A. Drucker MD, Michael P. Murphy MD, Andres
6	Fajardo MD, Michael C. Dalsing MD, Raghu L. Motaganahalli MD, and Gary W. Lemmon MD
7	
8	Indiana University School of Medicine
9	Department of Surgery
10	Division of Vascular Surgery
11	Indianapolis, IN
12	
13	
14	Corresponding Author:
15	S. Keisin Wang MD
16	Integrated Vascular Surgery Research Fellow
1/	Indiana University School of Medicine
18	Department of Surgery
19	Division of Vascular Surgery
20	1801 N. Senate Blvd MPC2-3500
21	Indianapolis, IN 46202
22	Phone: 317-962-0282
23	Fax: 317-962-0289
24	Email: wangkei@iupui.edu
25	
26	Keywords : cryopreserved homografts, critical limb ischemia, infection, conduit
27	
28	Presentation:

29 The project outlined in this manuscript was submitted as an abstract for oral presentation to VESS

30 2018 (Vail, Colorado).

This is the author's manuscript of the article published in final edited form as:

Wang, S. K., Gutwein, A. R., Drucker, N. A., Murphy, M. P., Fajardo, A., Dalsing, M. C., ... Lemmon, G. W. (2018). Cryopreserved Homografts in Infected Infrainguinal Fields Are Associated with Frequent Reinterventions and Poor Amputation-Free Survival. Annals of Vascular Surgery. https://doi.org/10.1016/j.avsg.2017.10.032

31	Abstract
32	
33	Objective:
34	Single-length saphenous vein continues to be the conduit of choice in infected-field critical
35	limb ischemia (CLI). However, half of these individuals have inadequate vein secondary to previous
36	use or chronic venous disease. We reviewed our outcomes of infected-field infrainguinal bypasses
37	performed with cryopreserved homografts (CH), a widely-accepted alternative to autogenous vein
38	in this setting.
39	
40	Methods:
41	This is a retrospective, institutional descriptive analysis of infected-field infrainguinal
42	revascularizations between 2012-2015.
43	
44	Results:
45	Twenty-four operations were performed in the same number of patients for limb ischemia
46	with signs of active infection. The mean age of the cohort examined was 62.5 ± 14.4 (standard
47	deviation) years. Mean SVS risk score was 3.9 with a baseline Rutherford's chronic ischemia score
48	of 4.3 at presentation. Emergent procedures constituted 29% of cases and the remainder were
49	urgent. The CH bypass captured was a reoperative procedure in all but one of the patients. Culture
50	positivity was present in 75% of cases with <i>S. aureus</i> (29%) the most commonly isolated organism.
51	
52	30-day mortality and major adverse cardiovascular events were both 4%. Amputation free
53	survival (AFS) was 75% at 30-days. Similarly, 30-day reintervention was 38% with debridement
54	(43%) and bleeding (29%) the most common indications.
55	

56	Average duration of follow-up was 27.9 ± 20.4 months (range 0.5 – 60.4). Mean length of
57	stay was 14.8 days. Reinfection requiring an additional procedure or antibiotic regimen separate
58	from the index antibiotic course was 13%. Primary patency and AFS at 1-year was 50% and 58%,
59	respectively. Primary patency and AFS at 2-years was 38% and 52%, respectively. Limb salvage at
60	one and 2-years was 70% and 65%. Fifteen (63%) patients required reintervention during the
61	follow-up period with 40% of those subjects undergoing multiple procedures.
62	
63	Conclusions:
64	CHs remain a marginal salvage conduit in the setting of infection and no autogenous
65	choices. Therefore, clinicians should individualize usage of this high-cost product in highly selected
66	patients only.

AP

67 Introduction

68

69	Autogenous single-length vein continues to remain the gold standard conduit for lower
70	extremity infected-field revascularizations for critical limb ischemia (CLI). ¹ However, up to 45% of
71	patients who require bypass do not have adequate continuous vein secondary to chronic venous
72	disease or previous vein harvest. ^{2,3} Unfortunately, the use of alternative synthetic conduits such as
73	PTFE (polytetrafluroethylene) puts the patient at increased risk for graft infection and limb loss.
74	Therefore, cryopreserved autologous homografts (CHs) have become a popular alternative in the
75	infected surgical field. The purpose of this retrospective analysis was to define outcomes for
76	contemporary use of CHs in infected fields with respect to patency and limb salvage.

resp.

77 Methods

78	
79	After obtaining Indiana University Institutional Review Board (IRB) approval, a single-
80	center retrospective review was completed of all infected-field CHs implanted for infrainguinal
81	arterial disease from 2012 to 2015. All procedures were performed at one institution by a group of
82	nine academic surgeons. Patients not seen by a vascular surgeon in our system for 12-months were
83	deemed lost to follow-up; for those, contact by phone was attempted.
84	
85	Demographics captured included age, sex, disease severity, and relevant comorbidities.
86	Presence of infection was defined as observation of cellulitis overlying a bypass graft or perigraft
87	purulence/fluid/air on imaging. Operative characteristics captured included location of
88	proximal/distal anastomosis, muscle flap usage, and intraoperative cultures. Post-operative
89	management strategies queried included use of anticoagulation, antiplatelets, and antibiotics
90	duration.
91	
92	CHs implanted were kept on-site in a liquid nitrogen dewar. These conduits were prepared
93	per manufacturer's instruction but not routinely seromatched to the host. Based on availability and
94	surgeon preference, the choice of cryopreserved vein or artery was made on a case-by-case basis.
95	CHs were used as the first choice in infected fields during this time over rifampin soaked prosthetic
96	and spliced autogenous vein if continuous vein was not available. All infected fields were copiously
97	irrigated with antibiotic and saline solution. No antibiotic impregnated beads were implanted in
98	our series.
99	
100	After surgery, all patients maintained IV or PO antibiotic use depending on the clinical

102	decision on additional duration was made in the outpatient setting. Post-operative imaging,
103	vascular labs, and overall management was left to the discretion of the individual attending
104	surgeon. Most commonly, a post-operative wound check was scheduled two to four weeks after the
105	index procedure. Graft surveillance was scheduled for every three months for the first year
106	followed by every six months thereafter. After the second year of follow-up, patients were
107	extended to annual visits if the bypass remained patent.
108	
109	Events captured included one and 2-year primary patency by vascular labs or CTA, one and
110	2-year amputation free survival (AFS), reinterventions, reinfection, anastomotic bleeding,
111	mortality, and major adverse cardiovascular events (MACE). AFS was defined as freedom from all-
112	cause mortality or above-ankle amputation. Reinfection was defined as any decline in clinical
113	status secondary to a new or persistent infection resulting in escalation of antibiotics, drainage, or
114	reoperation to revise the index bypass graft.

115	Results
110	nesuits

116

117	From 2012 to 2015, 24 infrainguinal CH (33% vein) bypasses were performed secondary to
118	an infected conduit (n=23) or native artery (n=1). The mean age of our population was 62.5 ± 14.4
119	years (Table 1). The most common comorbidities included previous bypass (96%), HTN (92%),
120	active smoking (58%), HLD (54%), CAD (42%), and DM (25%).
121	
122	Indications

123

124 Twelve percent of the patients were referred acutely after initial evaluation by an outside 125 vascular surgeon for definitive management. Mean Rutherford's chronic limb ischemia score and mean SVS risk score were 4.3 and 3.9, respectively.^{4,5} Emergent procedures (performed within 6 126 127 hours of admission) constituted 29% of cases and the remainder were urgent (within 24 hours). 128 All patients demonstrated signs of local infection on physical exam or imaging; however, only 8% 129 were septic at the time of presentation. All but one of the procedures were performed as a repeat 130 bypass. This exception was a male with a primary infection of the superficial femoral artery 131 secondary to chronic IV drug use and accidental arterial injection.

132

133 Intra-operative

134

Most of the infections were located in the groin (66.7%). All proximal sites of anastomosis were distal to the external iliac artery. Distal targets were divided into tibioperoneal (17%), belowknee (4%), and above-knee (79%) categories. Three patients received an extranatomic bypass consisting of two obturator bypasses and a femoral to femoral bypass via a retrorectus tunnel. Upon exploration, 33% of the patients had a pseudoaneurysm at the presumed site of infection

140	(Table 2). The majority (92%) of the infected conduits were unincorporated into the soft tissue.
141	Frank purulence was noted in 46% of limbs. Complete graft explantation was completed in 61%,
142	and the remainder received a partial explant at the location of active infection. Rotational muscle
143	flaps were utilized in 46% of cases. Seventy-five percent of cultures returned an identifiable
144	organism (Table 3). The most common isolated organisms were S. aureus (29%), P. aeruginosa
145	(24%), and coagulase negative Staphylococcus (24%). Eighteen percent of positive cultures further
146	demonstrated extended spectrum antibiotic resistance.
147	
148	Post-operative and 30-day Outcomes
149	
150	After the index operation, 38% of patients received therapeutic anticoagulation while 88%
151	received antiplatelet therapy (Table 4). All subjects received either IV (92%) or PO antibiotics in
152	the peri-operative period. The average duration of antibiotic coverage after surgery was 4.6 weeks.
153	30-day AFS was 75% with a mortality rate of 4%. The lone death occurred in an individual
154	presenting with peri-graft fluid and sepsis. Antibiotic sensitive S. aureus was isolated from
155	cultures, but the patient continued to decline clinically resulting in multi-system organ failure and
156	eventual withdrawal of care by the family. One patient experienced stroke/MI, suffering from an
157	NSTEMI several days post-operatively. Three (13%) patients experienced anastomotic bleeding
158	with two requiring takebacks for exploration. Reintervention at 30-days was 38% (n=7) most
159	commonly for further debridement (4/7) or bleeding (2/7). Average length of stay was 14.8 days.
160	
161	Overall Outcomes
162	
163	Mean follow-up for our population was 27.9 ± 20.4 months (Table 5). Primary patency in

164 our population at one and 2-years was 50% and 38%. AFS at one and 2-years was 58% (6

165 amputations, 5 deaths) and 50% (7 amputations, 7 deaths). Limb salvage at one and 2-years was 166 70% and 65%, respectively. Reintervention rate during follow-up was 63% with 40% of these 167 patients requiring repeat bypass. The most common cause of reintervention was for stenosis or 168 occlusion; one third of reinterventions were for debridement or drainage. There were no 169 additional episodes of anastomotic bleeding during long-term follow-up compared to the three 170 observed within 30-days. Thirteen percent of patients had reinfection of the implanted CH. Seven 171 patients (29%) required major amputation (3 BKA, 4 AKA) during follow-up. More than half, 54% 172 of all treated patients died during the follow-up period (Figure 1). Of these 11 deaths, 4 were from 173 unknown causes outside of our hospital system. The remainder of deaths occurred secondary to 174 lung cancer (n=1), hepatic failure (1), pulmonary embolism (1), renal failure (2), and sepsis (2).

AT A

175 Discussion

176

177	The optimal management strategy for an infected lower extremity bypass graft or artery
178	would be complete excision and in-line reconstruction with continuous autogenous vein.
179	Unfortunately, availability of suitable vein having adequate caliber and length is lacking in many
180	vascular patients with a previous history of bypass. ⁶ In our cause, this was 96% of the population
181	studied. As such, we routinely employ the use of CHs if the operation involves a potentially infected
182	field. However, we do not routinely implant CHs for sterile-field bypasses given their dismal
183	patency and limb salvage rates. ⁷⁻¹⁰
184	
185	CHs are harvested from multi-organ donors and preserved in dimethyl sulfoxide (DMSO)
186	before being frozen in liquid nitrogen (-196°C) for storage. ¹¹ Additionally, each CH vendor employs
187	a unique preservation process to decrease antigenicity. The complex harvest and preservation
188	process does incur a significant financial burden to the patient when this conduit is selected for
189	bypass. ¹² When needed, grafts are thawed to room temperature and individually modified by the
190	surgeon. After pressurization, the endothelial layer is slowly effaced and the tunica media
191	infiltrated by leukocytes resulting in chronic fibrosis. ¹³ This smoldering inflammatory response
192	likely has a large role in late graft failure characterized by intense fibroplasia. ¹⁴
193	
194	CHs seem to be more resistant to infection than prosthetic materials through an unclear
195	mechanism. This effect has been postulated to be related to the presence of the conduit
196	extracellular matrix allowing for the increased transfer of leukocytes and antibiotics into the
197	perigraft space. ¹⁵ Alternatively, it may be related to vendor-unique methods of tissue processing
198	including the storage of grafts in the presence of antibiotics. ¹⁶
199	

We report one and 2-year patencies of 50% and 38% corresponding to limb salvage rates of
70% and 65%. AFS during the same time periods were 58% and 52%. Seven patients required
amputation of the ischemic limb during the follow-up phase; however, amputation risk was
frontloaded as all but one of the subjects lost their limb within 21 days of the index operation. This
data clearly suggests a danger period for limb loss in the perioperative phase of infected-field
repeat bypasses.

206

207 Surprisingly, robust contemporary series describing CH conduits in infected fields have 208 been few and small.^{10,17} Brown *et al.* reviewed their experience with CHs in infected fields which 209 included peripheral, but also, carotid and visceral non-aortic reconstructions. Their published 210 experience described 39 total cases with a mean follow-up of 18 months. Mortality at 30-days was 211 2.6%. Interestingly, graft reinfection did not occur in their population in contrast to our observed 212 rate of 13%. Unfortunately, their 1-year patency was not published.⁷ The largest series of 213 cryopreserved vein bypasses was reported in 2003 of 240 consecutive cases in both clean and infected fields. The majority (89%) were performed for rest pain or tissue loss. The percentage of 214 215 infected limbs were not published. The authors did note an overall 30% 1-year primary patency 216 and 80% limb salvage for all comers.8

217

We found a high reintervention rate of 63% in our study. Twenty-eight additional
reinterventions following the index procedure were documented in our 24 patients. The most
common indication was for stenosis, occlusion, or necrotizing soft tissue requiring a combination of
angioplasty, thrombectomy, redo bypass, and debridement. It seems apparent that the index
bypass for this indication cannot be considered the final and definitive operation. Therefore, before
selecting the patient for limb salvage or primary amputation, it is imperative to disclose the risk of
prolonged hospitalization and additional interventions. Based on our experience, we have adopted

225	the use of cryopreserved homografts in infected fields with concurrent placement of a muscle flap
226	when possible for the sole purpose of limb salvage. After clearance of the infection, consideration
227	should be made into reoperation with an alternative conduit to improve long-term outcomes.
228	
229	Unfortunately, the retrospective nature of this study makes it impossible to be sure all
230	adverse events were tracked and captured. As many patients were referred to us from outside
231	vascular surgeons and hospital systems – their follow-up often occurred external to our records.
232	Regardless, the limited adverse events abstracted in this study illustrates well the poor prognosis of
233	this population. Another potential confounder present is inherent to a group practice, where
234	multiple vascular surgeons perform operations per their expertise, often on the same patient. Thus,
235	standard protocol and procedure were lacking.

AP

236 Conclusion

237

- 238 CHs are an accepted alternative to continuous autogenous vein for redo bypasses in the
- setting of an infected field. However, the surgeon should be aware of the increased incidence of
- amputation, death, and reintervention prior to offering CH limb salvage for this difficult population.

MA

241 Disclosures

242

243 The authors have no conflicts of interest to disclose.

ALA CRIS

244		References:
245 246	1	Mamode N. Scott RN. Graft type for femoro-popliteal bypass surgery. Cochrane Database of
247	1.	Systematic Reviews. 1999(2).
248	2.	Kent KC, Whittemore AD, Mannick JA. Short-term and midterm results of an all-autogenous
249	2	tissue policy for infrainguinal reconstruction. <i>Journal of vascular surgery</i> . 1989;9(1):107-114.
250	3.	Association Autogenous reversed vein hypass for lower extremity ischemia in patients with absent
252		or inadequate greater saphenous vein. <i>The American Journal of Surgery</i> , 1987:153(5):505-510.
253	4.	Chaikof EL, Fillinger MF, Matsumura JS, Rutherford RB, White GH, Blankensteijn JD, et al.
254		Identifying and grading factors that modify the outcome of endovascular aortic aneurysm repair.
255	~	Journal of vascular surgery. 2002;35(5):1061-1066.
250	5.	Hardman RL, Jazaeri O, Yi J, Smith M, Gupta R. Overview of Classification Systems in Peripheral Artery Disease Seminars in Interventional Radiology 2014;31(4):378-388
258	6	Kreienberg PB Darling Iii RC Chang BB Champagne BI Paty PSK Roddy SP et al Early
259		results of a prospective randomized trial of spliced vein versus polytetrafluoroethylene graft with
260		a distal vein cuff for limb-threatening ischemia. Journal of vascular surgery. 2002;35(2):299-306.
261	7.	Brown KE, Heyer K, Rodriguez H, Eskandari MK, Pearce WH, Morasch MD. Arterial
262		reconstruction with cryopreserved human allografts in the setting of infection: A single-center
263	0	experience with midterm follow-up. <i>Journal of vascular surgery</i> . 2009;49(3):660-666.
265	0.	sanhenous vein allografts in infrainguinal revascularization: analysis of 240 grafts. <i>Journal of</i>
266		vascular surgery. 2003;38(1):15-21.
267	9.	Gentile AT, Lee RW, Moneta GL, Taylor Jr LM, Edwards JM, Porter JM. Results of bypass to
268		the popliteal and tibial arteries with alternative sources of autogenous vein. Journal of vascular
269	10	surgery. 1996;23(2):272-280.
270	10.	Hartranft CA, Noland S, Kulwicki A, Holden CR, Hartranft T. Cryopreserved saphenous vein
271	11	grait in initialinguinal oypass. <i>Journal of vascular surgery</i> . 2014;60(5):1291-1296. Martin RS, Edwards WH, Mulherin II, Edwards WH, Jenkins IM, Hoff SI, Cryopreserved
273	11.	saphenous vein allografts for below-knee lower extremity revascularization. Annals of surgery.
274		1994;219(6):664-672.
275	12.	Huber AJ, Brockbank K, Riemann I, Schleicher M, Schenke-Layland K, Fritze O, et al.
276		Preclinical evaluation of ice-free cryopreserved arteries: structural integrity and
277	10	hemocompatibility. Cells Tissues Organs. 2012(1422-6421 (Electronic)).
278	13.	Calhoun A, Baur G, Porter J, Houghton D, Templeton JW. Fresh and cryopreserved venous allografts in genetically characterized dogs. <i>J Surg Res</i> , 1977(0022, 4804 (Print))
279	14	Carpenter IP Tomaszewski IF. Human sanhenous vein allograft hypass grafts: immune response
281	11.	Journal of vascular surgery. 1998(0741-5214 (Print)).
282	15.	Vogt PR, Brunner-LaRocca H-P, Lachat M, Ruef C, Turina MI. Technical details with the use of
283		cryopreserved arterial allografts for aortic infection: Influence on early and midterm mortality.
284		Journal of vascular surgery. 2002;35(1):80-86.
285	16.	Camiade C, Goldschmidt P, Koskas F, Ricco J-B, Jarraya M, Gerota J, et al. Optimization of the
280 282		Kesistance of Arterial Allografts to Infection: Comparative Study with Synthetic Prostheses.
287	17	Castier Y Francis F Cerceau P Besnard M Albertin I Fouilhe L et al Cryopreserved arterial
289	1/.	allograft reconstruction for peripheral graft infection. <i>Journal of vascular surgery</i> . 2005:41(1):30-
290		37.
291		

Rofo

Legends

Table 1: Comorbidities

Table 2: Operative characteristics

Table 3: Culture results

Table 4: Peri-operative management and results

Table 5: Extended outcomes

Figure 1: Kaplan-Meier analysis for AFS over time for patients receiving cryopreserved homografts in an infected surgical field. The inputs displayed are all-cause mortality and major (above-ankle) amputation.

Comorbidity	Incidence
HTN	92%
Active Smoker	58%
HLD	54%
CAD	42%
Obesity	33%
DM	25%
CRI (Cr > 1.5)	21%
CVD	17%
Arrhythmia	17%
HD	13%
COPD	8%
Rutherford's Ischemia Score	4.3 ± 0.6
SVS Risk Score	3.9 ± 2.1

Operative Characteristics	Incidence
Emergent	29%
Septic	8%
Loss of Incorporation	92%
PSA	33%
Purulence	46%
Wound Culture Positive	75%
Muscle Flap	46%

Patient #	Graft Material	Culture Results	ESBL/MRSA
1	Synthetic	S. aureus, S. marascens	No
2	Synthetic	Coagulase ⁻ Staph	No
3	Synthetic	Coagulase ⁻ Staph, P. aeruginosa, Citrobacter	No
4	Synthetic	P. aeruginosa	No
5	Synthetic	S. aureus	Yes
6	Synthetic	Klebsiella	No
7	Vein	P. aeruginosa	Yes
8	Synthetic	S. aureus, Enterococcus	No
9	Synthetic	Coagulase ⁻ Staphylococcus	No
10	Synthetic	S. aureus	No
11	Synthetic	Corynebacterium	No
12	Native Artery	P. aeruginosa	No
13	Synthetic	Corynebacterium	No
14	Synthetic	S. aureus	Yes
15	Synthetic	Coagulase ⁻ Staphylococcus	No
16	Synthetic	Enterococcus	No
17	Synthetic	Corynebacterium	No

Post-Operative Regimen	Incidence
Antiplatelets	88%
Anticoagulation	38%
Antibiotics	100%
Antibiotic Duration	4.6 ± 2.2 Weeks
30-day Outcomes	Incidence
MACE	4%
Major Amputation	21%
Mortality	4%
AFS	75%
Bleeding	13%
Reintervention	38%

Long-Term Outcomes	Incidence
Follow-up	27.9 ± 20.4 Months
LOS	14.8 ± 16.3 Days
Primary Patency	17.4 ± 18.2 Months
1-yr Primary Patency	50%
1-yr AFS	54%
2-yr Primary Patency	38%
2-yr AFS	52%
Reintervention Rate	63%
Reinfection	13%
Bleeding	13%
Major Amputation	29%
Death	54%

