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Abstract

The Cancer Genome Atlas (TCGA) offers an unprecedented opportunity to identify small-
molecule binding sites on proteins with overexpressed mRNA levels that correlate with poor
survival. Here, we analyze RNA-seq and clinical data for 10 tumor types to identify genes that are
both overexpressed and correlate with patient survival. Protein products of these genes were
scanned for binding sites that possess shape and physicochemical properties that can accommodate
small-molecule probes or therapeutic agents (druggable). These binding sites were classified as
enzyme active sites (ENZ), protein-protein interaction sites (PPI), or other sites whose function is
unknown (OTH). Interestingly, the overwhelming majority of binding sites were classified as
OTH. We find that ENZ, PPI, and OTH binding sites often occurred on the same structure
suggesting that many of these OTH cavities can be used for allosteric modulation of enzyme
activity or protein-protein interactions with small molecules. We discovered several ENZ (PYCRA,
QPRT, and HSPAG6) and PPI (CASCS5, ZBTB32Z, and CSAD) binding sites on proteins that have
been seldom explored in cancer. We also found proteins that have been extensively studied in
cancer that have not been previously explored with small molecules that harbor ENZ (PKMY'T1,
STEAP3, and NNMT) and PPl (HNF4A, MEFZB, and CBX2) binding sites. All binding sites
were classified by the signaling pathways to which the protein that harbors them belongs using
KEGG. In addition, binding sites were mapped onto structural protein-protein interaction networks
to identify promising sites for drug discovery. Finally, we identify pockets that harbor missense
mutations previously identified from analysis of the TCGA data. The occurrence of mutations in
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these binding sites provides new opportunities to develop small-molecule probes to explore their
function in cancer.
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INTRODUCTION

Cancer is a collection of more than 100 diseases that share a number of characteristics as
defined by Hanahan and Weinberg (1): Self-sufficiency in growth signals, insensitivity to
growth inhibitory signals, evasion from programmed cell death (apoptosis), ability to
undergo limitless cycles of cell growth, sustained ability to be supplied by blood
(angiogenesis), and tissue invasion and spread to other parts of the body (metastasis). Large-
scale sequencing studies of human tumors such as The Cancer Genome Atlas project
(TCGA) provide an opportunity to uncover the genetic basis of the processes that drive
cancer. TCGA catalogs clinical and molecular profiles of tumor samples from over 30
cancer types to discover cancer-causing alterations in large cohorts through integrated multi-
platform analyses. Analysis of this genomic data has revealed that the complex phenotypes
that define cancer are driven by tens of somatic mutations that occur on proteins across the
cellular network (2). Recent whole genome sequencing studies have profiled the molecular
signatures of individual tumors, including ovarian (3), colorectal (4), breast (5), renal (6),
and lung (7,8) cancer, to identify underlying driver mutations of each disease. Tumors were
found to harbor tens of mutations. Whole-genome gene expression profiling studies have
been instrumental not only in classifying tumors and uncovering genetic alterations in cancer
cells (mutations, copy number, and rearrangements), but as a rich source of potential targets
in cancer (9,10). A growing list of three-dimensional protein structures make it now possible
to rationally develop small-molecule probes to explore these targets. Small-molecule probes
can also provide leads for drug discovery targeting validated targets.

TCGA is an ongoing effort that aims to catalog clinical and molecular profiles of tumor
samples from over 30 cancer types to discover cancer-causing alterations in large cohorts
through integrated multi-platform analyses. The project aims to integrate the clinical and
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molecular profiles of at least 500 tumors for each disease and to determine its underlying
molecular mechanism. Multiple platforms capture the clinical, pathological, genomic,
epigenomic, transcriptomic, and proteomic profiles of cancers in TCGA project. Among
these platforms RNA-seq is a widely-used technology for the characterization of mMRNA
expression. RNA-seq uses high-throughput short reads that offer several distinct advantages
over its array-based predecessors. RNA-seq is not limited by a set of predetermined probes
seen in microarrays, and is superior in its ability to identify low abundance transcripts,
biological isoforms, and genetic variants (11). RNA-seq was performed for both tumor and
normal tissue for each disease at TCGA. Comparison of tumor and normal mRNA levels can
be used to identify overexpressed genes and their corresponding protein product that may
contribute to tumor formation, progression and metastasis. Patient information that
accompanies the genomic data affords further analyses to assess the correlation of mRNA
levels with patient outcome. Survival curves constructed by plotting patient outcome with
time can be used to generate metrics such as hazard ratios and other coefficients to
determine the correlation between overexpression of individual genes and clinical outcome.
This analysis has been widely used in clinical trials, where Kaplan-Meier survival curves are
used to determine the time-to-event differences between placebo and drug groups (12).

Whether overexpressed genes contribute to the cancer phenotype must be confirmed in
follow-up studies /in vitro and in vivo, especially since studies have shown that there is not
always a direct correlation between the levels of gene expression and the proteins that they
encode (13-15). This is typically accomplished using molecular biology approaches such as
RNAI (16) or CRISPR/Cas9 (17) technologies. A complementary approach is the use of
small organic molecules that work by binding to well-defined cavities or binding sites on the
surface of a protein and compete with the target’s ligands either in an orthosteric or
allosteric manner. Binding sites that are located at enzyme active sites, protein-protein
interfaces, or known allosteric sites, have particular functional relevance. Identification of
binding sites is accomplished by analyzing the three-dimensional structure of a protein.
Several computational methods have been developed to scan the surface of proteins for
binding sites (18). Binding site detection algorithms, such as CavBase (19), fpocket site
(20), and LIGSITECSC (21), often represent the protein structure through the use of points
on a three-dimensional grid. Other algorithms, such as Q-SiteFinder (22), PocketFinder (23),
and SiteHound (24), employ energy-based approaches to calculate interaction potentials at
points in the grid and cluster favorable points together into binding sites. Finally, ensemble
or combinatorial algorithms, such as SiteMap (25) and metaPocket (26), use a combination
of geometric and energy-based methods to identify potential binding sites.

The extensive TCGA data combined with the exponentially growing structural data at the
PDB offers a unique opportunity to identify protein structures of overexpressed or clinically-
relevant genes in cancer. These structures can be used to scan for binding sites to develop
chemical probes and lead compounds for drug discovery. In addition to detecting binding
sites, algorithms have been developed to score these binding sites based on whether they can
accommodate a small molecule. Both SiteMap and fpocket provide descriptors to assess
binding sites that are suitable for small-molecule ligands based on the amino acid
composition of the binding site and its collective physicochemical properties. SiteMap uses
the hydrophobicity and accessibility of a detected binding site to assess how likely a small
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molecule inhibitor will bind. It provides two scores, SiteScore and DrugScore. The latter
score goes beyond just assessing a binding site for ligand binding. It measures whether a
binding site is druggable, or whether it possesses similar proteins to other binding sites that
have led to FDA-approved drugs. fpocket provides a measure called the Druggability Score,
which is a general logistical model based on the local hydrophobic density of the binding
site, the hydrophobicity score, and a normalized polarity score. The discovery of binding
sites or druggable binding sites within structures that are encoded by overexpressed genes
with clinical relevance is highly significant as these binding sites can be used to develop
novel cancer therapeutics that are likely to exhibit greater efficacy in humans.

In addition to druggability, the binding sites must be functionally important to serve as
targets for small molecules. For example, binding sites located at enzyme active sites or at
the interface between a protein-protein complex are expected to disrupt protein function.
Protein kinases are one example of an enzyme class with druggable binding sites that occur
at the enzyme active site (27). The ATP binding site of kinases is highly druggable with a
SiteMap SiteScore and DrugScore above 1.1 (28). There are fewer small-molecule inhibitors
of protein-protein interactions, which is partly due to the lack of druggable binding sites at
protein-protein interfaces. The only examples of PPI inhibitors that have shown in vivo
efficacy, such as MDM2/p53 or BcL-xL, possess druggable binding sites (DrugScore of 0.92
and 0.82, respectively) (29). Therefore, the identification of binding sites that are considered
druggable at protein-protein interaction interfaces can provide new avenues to develop
chemical probes and cancer therapeutics. Finally, it is worth mentioning that binding sites
located outside an enzyme active site or protein-protein interface can also be functionally
relevant. These binding sites may modulate protein function in an allosteric manner through
long-range interactions that involve dynamic changes of the target protein (30-34).
Allosteric inhibitors have been successfully used to inhibit kinase activity and in some cases,
such as AKT, have shown more promise than competitive inhibitors.

Here, we collect gene expression profiles for 10 cancer types from TCGA and compare the
expression profiles between cancer and normal samples to identify genes that are
overexpressed in each cancer type. We search the Protein Databank for crystal structures of
the protein products of these genes. We scan the surface of these proteins and identify
binding sites. The functional relevance of binding sites is explored by classifying them into
known enzyme active sites, protein-protein interaction sites, or other sites that may lie
outside of functional sites. To further explore the biological outcome of small molecules that
bind to these binding sites, proteins harboring binding sites are further characterized in the
context of a global PP1 network and cancer signaling pathways to gain insight into the
biological effect of binding at these binding sites. Patient data is used to investigate the
correlation of overexpressed genes with clinical outcome. Our analysis uncovered new
unexplored and potentially druggable and clinically-relevant protein targets. The study also
provides new avenues for the rational design of small-molecule probes for well-established
oncogenes. This is the first study that maps binding pockets on three-dimensional structures
of the PDB within the context of cancer genomic data.
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Three-Dimensional Structures of Proteins Encoded by Differentially-Expressed Genes

We collected mRNA gene expression profiles of 10 cancer types from TCGA: breast
invasive carcinoma (BRCA), colon adenocarcinoma (COAD), glioblastoma multiforme
(GBM), head-and-neck squamous cell carcinoma (HNSC), kidney renal clear cell carcinoma
(KIRC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), thyroid
adenocarcinoma (THCA), triple-negative breast cancer (TNBC), and uterine corpus
endometrioid carcinoma (UCEC). For each cancer type, we collected the gene expression
profiles of both normal and tumor samples from RNA sequencing platforms using TCGA’s
Level 3 data. A search from among the 20192 reference proteins using UniProt (35)
identifiers led to 7044 proteins that are encoded by TCGA overexpressed genes (Table 1,
Supplementary Table 1). For each cancer type, we identified the number of overexpressed
genes with protein products having at least one high-resolution crystal structure by mining
the Protein Databank (PDB). A total of 5069 unique protein chains on 2758 crystal
structures from the PDB mapped to at least one of the 7044 overexpressed genes. In cases
where more than one crystal structure was identified for a protein, the computer program
CD-HIT was used to cluster the protein sequences of the crystal structures to find a set of
non-redundant representative structures for the given protein. This resulted in 1624 unique
crystal structures of proteins encoding overexpressed genes. The total number of proteins
that encoded overexpressed genes ranged from 839 for TNBC to 2096 for LUSC (Table 2).
Overall, the percentage of differentially-expressed genes with at least one crystal structure
spanning at least a portion of the gene sequence ranges from 20% in LUSC to 34% in GBM.
Additionally, we introduce more stringent cutoffs to distinguish between proteins that can
act as probes versus those that feature druggable binding sites by increasing cutoffs of both
the log, fold change and the druggability property of a binding site. Using these increased
cutoffs, we identify 5218 overexpressed proteins in TCGA, with only 1218 having a high
quality crystal structure at the PDB (Table 1).

Identification of Binding Sites on Protein Structures at the PDB

Using the three-dimensional structure of overexpressed genes for each disease, we scanned
their surfaces for binding sites using the SiteMap computer program. SiteMap identifies
binding sites by overlaying a three-dimensional grid around the entire protein to determine
the van der Waals energies at each point of the grid (site point). By linking together site
points on the protein surface that are protected from the solvent, SiteMap identifies potential
binding sites on a protein surface. Each binding site identified by SiteMap is evaluated based
on its ability to bind a ligand (SiteScore) and its druggability (DrugScore). Both SiteScore
and DrugScore use the weighted sums of the same parameters, namely the (i) number of site
points in the binding site; (ii) enclosure score that is a measure of how open the binding site
is to solvents; and (iii) hydrophilic character of the binding site (hydrophilic score). Unlike
DrugScore, SiteScore limits the impact of hydrophilicity in charged and highly polar sites. A
binding site with SiteScore and DrugScore of 0.8 is considered to be able to fit a small
molecule ligand. SiteScore and DrugScore values closer to 0.8 are considered “difficult’ to
drug, while binding sites with SiteScore and DrugScore closer to 1.1 are classified as highly
‘druggable’ (28). In this work, we consider a binding site with SiteScore and DrugScore
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values of 0.8 or greater as able to be probed and a binding site with DrugScore greater than
1.0 as druggable.

Among 1624 overexpressed proteins with at least one high-resolution human crystal
structure, 1044 (~64%) had at least one binding site (Table 1). Similarly, among the 1218
highly overexpressed proteins with crystal structures, 405 (~33%) had at least one druggable
binding site. For individual diseases, roughly 30% of proteins with crystal structures
corresponding to highly overexpressed genes possessed at least one druggable binding site
(Table 2). For example, 51 proteins with a crystal structure from among 211 in TNBC had a
druggable binding site, while 114 proteins with a crystal structure in LUAD were found to
have a binding site among 363. Generally, we found more binding sites than proteins with
crystal structures, suggesting that although many of the proteins harbored more than one
binding site, a large portion might only act as probes rather than druggable sites. An average
of about 0.38 druggable binding sites were identified per protein with crystal structures. For
example, a total of 145 druggable binding sites were identified on the 429 proteins with
crystal structures corresponding to differentially-expressed GBM genes. Among the most
frequently overexpressed proteins with druggable binding sites are the members of the
matrix metalloproteinases (MMPs) and protein kinases related to cell signaling
(Supplementary Figure S1).

Classification of Binding Sites

To characterize the potential functional impact of each of these binding sites, we classified
each binding site by its functional role based on its structural features and location on the
protein surface, particularly whether it corresponds to a catalytic site or to a binding site
located at a protein-protein interaction interface. Using the proximity of known structural
features and the functional annotations of key residues, we characterize each binding site on
the protein structure of overexpressed genes from TCGA into three groups: enzyme (ENZ),
protein-protein interaction (PPI), and other (OTH). Supplemental Figure S2 shows examples
of each of the three binding sites. For example, the ATP binding site of a protein kinase is
classified as enzyme (ENZ), while a binding site at the interaction interface between two
members of the protein families CDKs and cyclins are classified as PP1. All other binding
sites are referred to as “other” (OTH). Within the binding sites that we identified, there is a
wide distribution of binding site functions for each cancer type (Table 1 and 2). Overall,
there are many more ‘OTH’ binding sites than ENZ and PP1 across all tumors. OTH binding
sites constitute approximately 70% of the binding sites observed, while ENZ and PPI are
observed in about 20 and 10% of structures, respectively. Among those binding sites that we
classify as druggable, the distributions are 25, 11, and 66% for the ENZ, PPI, and OTH
binding sites, respectively. OTH binding sites may correspond to uncharacterized enzyme
active sites or may occur at PPI interfaces that have not been characterized.

Cavities at Enzyme Active Sites

Enzyme active site binding sites were identified by first mapping known catalytic residues
from Catalytic Site Atlas (CSA) (36) and UniProtKB (35) onto the identified structures of
each protein. CSA identifies catalytic residues as those that are (i) directly involved in a
catalytic mechanism; (ii) alter the pKx of another residue or water involved in the catalytic
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mechanism; (iii) stabilize a transition or intermediary state; (iv) activate a substrate (36).
UniProt defines these residues as being directly involved in catalysis (35). If one of the
catalytic residues was within the binding site, we classify the binding site as ENZ. In total,
we identified 434 unique enzyme active site binding sites and 126 druggable binding sites on
proteins that are encoded by overexpressed genes at TCGA (Table 1). The number of
druggable ENZ binding sites ranged from 10 for HNSC to 49 for LUSC. For example, there
were 34, 21, and 38 druggable enzyme binding sites for GBM, TNBC and LUAD,
respectively (Table 2). We further classify enzymes by their catalytic function and
distinguish between the druggability of the binding site (Supplemental Figure S3). We treat
kinases separately from the transferases. When kinases and transferases are combined, they,
along with the hydrolases, are the largest group among the enzyme active site binding sites.
There were 70, 91, 83, and 141 oxidoreductases, transferases, kinases, and hydrolases,
respectively. Lyases, Isomerases, and ligases, on the other hand, were the least common
among proteins with ENZ binding sites (26, 16, and 9, respectively).

Cavities at Protein-Protein Interaction Interfaces

Despite the fact that protein-protein interactions play a crucial role in a range of diseases
including cancer, few successful PPI inhibitors have been developed to date. This is
attributed to the fact that PPI interfaces are usually large and devoid of well-defined binding
cavities. Druggable binding sites that occur at protein-protein interfaces could be used to
develop small molecules to disrupt the protein-protein interaction. PPI binding sites were
identified by looking at the crystal structures with protein complexes with respect to the
representative structures for a given protein. For each representative structure of a given
protein, we went back to our sequence-based clustering approach in CD-HIT and identified
the set of protein structures that shared significant sequence identity with the representative
structure. We then aligned all the crystal structures from this alternative set of structures
back onto the representative structure. This superimposition resulted in the identification of
PPI interfaces that might not have appeared in the reference structure and their positions
with respect to the previously identified binding sites. In total, we identified 231 unique
binding sites located at protein-protein interaction interfaces, of which only 55 were
druggable. As expected, there were significantly fewer binding sites that occurred at PPI
interfaces than any of the other classes of binding sites. These ranged from 4 for HNSC to
19 for KIRC. For example, there were 13, 10, and 15 druggable PPI binding sites identified
for GBM, TNBC, and LUAD proteins, respectively (Table 2).

Proteins with Binding Sites Located at Both Enzyme Active Sites and Protein-Protein
Interaction Interfaces

While OTH binding sites were predominant among the different cancer types, the ENZ and
PPI binding sites give greater insight into the binding site’s function. Interestingly, there are
proteins that contain binding sites that are classified as both ENZ and PPI (Table 3). Of these
24 proteins, 10 have binding sites that are druggable and are part of the enzyme active site
and a PPI interface. Among these are proteins that are implicated in cancer progression and
metastasis, such as CDA (37) (Figure 1A), MMP14(38) and DDRI (39). In these cases, the
binding site at the catalytic site is also part of a PPI interface. Many of the cases where the
ENZ and PPI binding sites overlap correspond to binding sites that occur at the active site of
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proteases. The binding partner is usually a protease inhibitor, for example, AGT and T/MP1
in ANPEP and MMP14, respectively. Generally, these interactions may not be promising
targets since proteolytic activity may contribute to tumor invasion and metastasis. However,
the overexpression of protease inhibitors such as TIMPs and serpins suggest that inhibition
of proteases may oppose growth and metastasis of a tumor.

Other proteins contain distinct enzyme and PPI binding sites (Table 4). Of these 24 proteins,
only ALOX12and NR1L2feature both druggable ENZ and PPI binding sites. These
proteins can be placed into two categories based whether or not the binding sites are on the
same protein domains. Some have ENZ and PPI binding sites on the same domain such as
the decarboxylase GADZ, which has a catalytic site as well as a PPI binding site at its
homodimer interface. Another example is the phosphoribosyltransferase NMAMPT, which is
implicated in cancer metabolism (40), and has an ENZ binding site with an inhibitor bound
as well as a PPI binding site between the homodimer structure (Figure 1B). Other proteins
have ENZ and PPI binding sites on separate domains. For example, the serine/threonine-
protein kinase PLK1 has both an enzymatic ATP binding site on its protein kinase domain
and a binding site at the PPI interface at its POLO-box domain. Another similar example is
the receptor tyrosine kinase £PHB4, which has an enzymatic ATP binding site on its protein
kinase domain (Figure 1C) and a binding site at the PPI interface with an ephrin ligand
EFNBZ2on its ligand binding domain (Figure 1D). These binding sites may be used to
develop allosteric modulators. Small molecules that bind to the PPI binding site may alter
substrate binding to the active site. A small molecule inhibitor of enzyme activity may affect
the protein-protein interaction of the protein.

Unclassified Binding Sites

Binding sites that were neither enzyme active sites nor located at protein-protein interactions
were classified as OTH. In total, more than 1500 of these binding sites were identified on
proteins that are encoded by differentially-expressed genes. These binding sites could
potentially be either unassigned enzyme active sites, part of structurally unresolved protein-
protein interaction sites, or allosteric sites. A binding site is considered allosteric only if it
occurs on a protein that has enzyme activity or that engages other ligands at sites that are
distant from the allosteric binding site. Among the 782 proteins with OTH binding sites, 323
also have at least one ENZ or PPI binding site. These binding sites offer an opportunity to
design allosteric small molecule modulators of enzyme activity or protein-protein
interactions. Allosteric regulation of enzyme activity has been successfully achieved with
small molecules in several systems (41). For example, small molecule kinase inhibitors have
been developed to bind to allosteric binding sites to inhibit the enzyme activity of the protein
kinase (42). More recently, small molecules that bind to an allosteric binding site on the Ral
GTPase was shown to modulate the distal interaction with its effector protein (43).

Many OTH binding sites occur on proteins with existing ENZ and/or PPI binding sites,
which may be potential allosteric sites for protein inhibition. When the enzyme active site is
well characterized on a protein surface, additional binding sites represent opportunities for
allosteric inhibition of the protein’s function. For example, the sulfotransferase SULT72B1
has four binding sites on its protein surface (Figure 2A). The ENZ binding site is not shown
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on the figure but encompasses the adenosine nucleotide. Three additional OTH binding sites
were detected on the surface of the protein and represent potential sites for allosteric sites.
Another example of protein with both ENZ and OTH binding sites is the protein kinase RET
(Figure 2B). In this structure, a known inhibitor occupies the ENZ ATP binding site, while
an additional allosteric binding site is formed near the a.C helix. Similarly, there are proteins
with both PPI and OTH binding sites. One example is the PPI between CHNZand SLCI9A1
(Figure 2C), where an a-helix from SLC9A1 occupies two PPI binding sites on CHNZ2. An
additional potentially allosteric OTH binding site is formed on the backside of CHNZ.
Another example is the protein complex formed between PLAUR, PLAU, and VTN (Figure
2D). In this example, binding sites were found on the monomer structure of the apo protein.
After superimposition of additional crystal structures back onto the representative structure,
two of the three detected binding sites were classified as PPI. The two separate PPI binding
sites occupy the respective interfaces between PLAUR-PLAU and PLAUR-V'TN. An
additional OTH binding site was also detected on the protein surface and represents an
allosteric site.

A Search of Protein-Protein Interaction Networks to Identify OTH Binding Sites Located at
PPI Interfaces

The majority of OTH binding sites occur on proteins with no discernable ENZ or PPI
binding sites. To determine whether these binding sites could potentially be located at
protein-protein interaction interfaces, a database of predicted protein-protein complexes
known as PrePPI was explored (44). The PrePPI method uses both structural and non-
structural evidence to predict whether two proteins form a complex. For complexes
predicted based on structural information, PrePPI superimposes monomeric crystal
structures onto a reference complex based on the structural similarities of the monomeric
structures with the two structures forming the interaction interface. This model is then
evaluated based on how well the individual residues of the predicted interaction interface
overlap with the structural model. If the likelihood ratio of this structural modeling is above
a given cutoff, PrePPI provides the identifiers of both the individual proteins and the
reference structure for further evaluation. For the 458 proteins that contained only binding
sites classified as OTH, we evaluated the structural models given by PrePPI to determine
whether or not OTH binding sites overlapped with potential PPI interfaces. These 458
proteins are represented by 395 unique crystal structures consisting of 806 binding sites of
unknown function. Of these 806 OTH binding sites, 48 were on proteins without models of
structural complexes in PrePPl. Among the remaining 758 OTH binding sites, we identified
17 OTH binding sites on 13 proteins that are likely binding sites at protein-protein interfaces
(Table 5). In each of these 17 cases, a previously classified OTH binding site was predicted
by PrePPI to be part of a known protein-protein interaction interface, and perhaps directly
contributing to the PPI itself. It is interesting to note that several of these predicted protein-
protein interactions are well-established despite the lack of a co-crystal structure: These
include the ANKI-/LK (45) and CHNI-RACI (46) interactions. In each of these cases,
however, there was high degree of homology between the structure containing the OTH
binding site, and the PrePPI protein-protein complex to which it was superimposed. In most
cases, however, the protein containing the OTH binding site did not show any homology
with a protein in a PrePPI complex. In these cases, the similarity between the interaction
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interfaces of the two proteins and a model protein complex was used. The NCSI-PPP3CA,
LCNI-OVCHI, and ZBTB32-BCL6 interactions are examples in which the interaction was
uncharacterized in both the literature and existing PPI databases. These three interactions
were predicted based on the structural complementarity of both the interaction interface and
the crystal structure. Overall, we predict that approximately 2% of OTH binding sites with
unknown function to be part of a previously uncharacterized PPI interface.

Cancer Signaling Pathways

Pathways reveal signaling transduction across a cascade of proteins that elicit a variety of
cell phenotypes. Individual targets in these pathways are potential sites through which small
molecule inhibition are expected to enhance or alter the subsequent cell phenotype.
Alteration of individual genes within these signaling pathways lead to cancer related
processes such as cell growth and adhesion. We have identified 27 cancer related signaling
pathways in KEGG (47) and their respective proteins. Using the members in each of these
signaling pathways, we map binding sites onto these individual genes. We distinguish
between binding sites with DrugScore greater than 0.8 on proteins with log, fold change
greater than 1.5 (i.e., able to be probed) (Figure 3A) and those with DrugScore greater than
1.0 and log, fold change greater than 2 (i.e., druggable binding sites) (Figure 3B). While
some signaling pathways like the cell cycle contained binding sites of all functional types,
no binding sites could be identified for the Hedgehog pathway on differentially-expressed
genes. To address cross-talk between signaling pathways, binding sites were also evaluated
as being either unique to that signaling pathway or on proteins that occur in multiple
signaling pathways. In a majority of cancer signaling pathways, there were more binding
sites that occurred in multiple signaling pathways than in a signaling pathway, revealing
proteins targets that are involved in multiple signaling processes. Only the Citrate Cycle,
HIF-1, and PPAR signaling pathways had many more binding sites that were unique to the
signaling pathway itself than in multiple signaling pathways. In signaling pathways such as
focal adhesion and cytokine-cytokine receptor interactions, almost all of the druggable
binding sites belonged to proteins that were involved in cross-talk across cancer signaling
pathways. Finally, signaling pathways such as the cell cycle and Hippo pathways have an
even mix of binding sites on unique and overlapping proteins.

Correlation with Patient Survival for Proteins Encoded by Differentially-Expressed Genes

We collected patient survival data from TCGA clinical records for each disease to identify
the impact of gene expression on overall survival of cancer patients. To determine the overall
survival rate, we first identified the date of death or date of the last checkup for deceased and
living patients, respectively. For each differentially-expressed gene among the 10 diseases
we considered, the median expression value was used to divide patient tumors into two
groups, high and low expression. For a given gene, we then paired a patient’s gene
expression with their survival outcome to build a Cox proportional hazards regression model
for differentially-expressed genes. The ratio of the hazard rates between the high and low
expression groups are summarized by a metric known as the hazard ratio. The hazard ratio
derived from the regression model defines the probability that an event will occur in the next
time interval. In this model, this time interval is made sufficiently small that the hazard rate
is considered instantaneous. Therefore, the hazard ratio is used to describe the ratio between
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the hazard rates of two groups, such as the survival of patients expressing a gene at high and
low levels. In total, we identified 1343 differentially-expressed genes across all 10 diseases
with a hazard ratio above 1 and log, fold change above 1.5. Among them, 202 contained at
least one binding site (Figure 4A). Both KIRC (121 total) and LUAD (57 total) had the most
number of proteins that were both overexpressed and correlated with patient outcome. There
were 45 druggable genes that were found to be both overexpressed and correlated with
patient outcome in more than one cancer type. The most frequently occurring are MELK and
RRMZin 4 separate cancers, and another 9 proteins with significant fold changes and hazard
ratios in 3 cancers. The binding sites on these 202 proteins show a wide distribution in both
their druggability and binding site type (Figure 4B). Of the 601 unique binding sites on these
proteins, 102 are ENZ, 46 are PPI, 444 are OTH, and 9 have been classified as both ENZ
and PPI. Both the SiteScore and DrugScore of the PPI binding sites have upper limits of
about 1.1 for both metrics, while there are many ENZ and OTH binding sites that exceed
this cutoff. Similarly, we focused on the subset of the proteins that were highly
overexpressed and featured druggable binding sites. In total, we identified 60 proteins with
at least one druggable binding site across 10 diseases with a log, fold change greater than
2.0 and hazard ratio greater than 1.0 (Figure 4D). Similarly, there are far fewer binding sites
among proteins that fit these criteria. Of the 92 binding sites, 20 are ENZ, 6 are PPI, 65 are
OTH, and 1 is both ENZ and PPI (Figure 4E).

Protein-Protein Interaction Network

In addition to looking at differentially-expressed genes in the context of their expression, we
addressed their impact on the global protein-protein interaction network. Networks have
been used to not only model biological relationships, such as the relationship between drugs
and diseases (48) or genes and diseases (49), to understand their underlying mechanisms, but
also to identify new drug targets by identifying the relationships between a drug’s side
effects (50) or gene expression profile (51). Using experimental data, a global protein-
protein interaction network was constructed from physical interactions in humans by
integrating data from seven major interaction databases. This resulted in 203068 non-
redundant protein-protein interactions. To address the robustness of the network, we further
filtered the interactions by only kept those interactions that appeared in at least two of the
seven databases. This resulted in a network with 38164 non-redundant protein-protein
interactions. We then identified the network properties of each protein within this network to
measure the centrality and essentiality of each protein to the overall network. Among the
topological properties of a given protein are its degree, which describes the number of
interactions that are formed by that protein, and its betweenness centrality, which describes
the number of shortest paths that go through the given protein. In a biological context,
betweenness centrality is a measure of the available paths that a signal can travel through a
given network (52). Thus, proteins with high betweenness are thought to be essential to
biological function and are frequently targeted in drug discovery (53). For example, 7P53
has a betweenness centrality and degree of 4.1x1072 and 236, respectively, while EGFRis
2.3x1072 and 181 for the same properties. We examine the topological properties of all
proteins that are overexpressed (log, FC = 1.5) and whose expression correlate with patient
outcome (Figure 4C). Of these 1343 proteins, 1001 (~75%) did not have a high quality
crystal structure and an additional 141 (~10%) had a structure but no binding sites. Of the
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remaining proteins, 117 (9%) and 84 (6%) have binding sites and druggable binding sites,
respectively. When the differential-expression cutoff is increased to 2 and the minimum
DrugScore is increased to 1.0, 60 proteins have at least one druggable binding site (Figure
4F). Among the proteins with the highest centrality and degree are PLK1, KPNAZ, AURKA,
and AURKB.

New Unexplored Targets for the Development of Small-Molecule Probes and Cancer
Therapeutics

For each of the previously identified 60 targets, we integrate their structural, genomic,
biological, and clinical data to examine their druggability. We divide these targets into those
that are already established in cancer (Table 6) and those that are uncommon or novel (Table
7) based on the number of citations found in PubMed. Similarly, we analyzed the 202
proteins that were identified using the lower cutoffs in fold change and binding site
DrugScore (Supplementary Table S2). We rank-ordered the top targets for each cancer based
on their interconnectivity in the PPI network. Among these potential targets, we see a variety
of biological processes represented, including many involved in the immune response,
metabolism, homeostasis and cell cycle. Similarly, some are well-studied in cancer but lack
small molecule inhibitors, while others are have no co-crystallized small molecule inhibitors
but inhibitors have been reported in the literature. For example, the well-studied
transcription regulator 7OP2A is altered in cancer cells resulting in chromosome instability
and is among the genes that are overexpressed and correlate with survival, but has many
available topoisomerase specific inhibitors (54). Other genes may act as markers for cancer
and indicate late progression into cancer or are vital to the immune response against
tumorigenesis. However, there are many targets whose biology and lack of potential
inhibitors may prove to be interesting targets for future considerations. We highlight
examples of proteins with ENZ binding sites that have seldom been considered in cancer and
lack therapeutics (e.g. PYCRI, QPRT, HSPA6), or are well-studied in cancer but lack small
molecule inhibitors (e.g. PKMYTI1, STEAP3, NNMT) (Supplementary Figure S4).
Similarly, we highlight examples of proteins with PPI binding sites that have not been
previously targeted by small molecule inhibitors and are either seldom considered in cancer
(e.g. CASC5, ZBTB32, and CSAD), or are well-studied in cancer but lack small molecule
inhibitors (e.g. HNF4A, MEFZB, and CBX2) (Supplementary Figure S5, Supplementary
Table S3). OTH binding sites can provide an avenue to modulate either enzymatic function
or protein-protein interactions of the target. Compounds that bind to OTH sites could act
either in an orthosteric manner if the binding site happens to be the binding site of a
substrate or protein, or allosterically if the binding site is outside an enzyme active site or
protein binding site. Among the genes whose overexpression strongly correlated with patient
outcome and that possessed an OTH binding site, several had never been studied in cancer
before nor do they have small molecule inhibitors either in the literature or in co-crystallized
complexes. We highlight four examples that span a variety of tumors: a protein of unknown
function FAMSE3A, a water channel AQFPZ, a serine protease SERPINDI, and a protein
associated with the immune response TAFAIPSL2 (Supplementary Figure S6).

Among these targets, 26 have been previously probed with small-molecule ligands and X-
ray crystallography (Supplementary Table S4). Interestingly, many of these co-crystallized
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structures occur at binding sites at or below our higher DrugScore cutoff of 1.0, suggesting
that a more stringent cutoff may discard otherwise druggable binding sites. Additionally, we
mapped these druggable binding sites to conserved protein domains, and find that these
binding sites are mainly parts of the protein kinase, serpin, kinesin, and peptidase domains
(Supplementary Table S5). When we consider only those without co-crystallized small-
molecule inhibitors, protein kinases and trypsin domains are removed. The majority of
binding sites across both targeted and untargeted proteins are classified as OTH. In well-
studied systems where the active site is known, these OTH sites represent opportunities for
allosteric regulation.

We next looked at the secondary structure of residues that compose the individual binding
sites of these proteins across their individual binding site annotations. By examining the
residues around a binding site, we generalized the type of secondary structures that were
used to construct the binding site itself (Supplementary Figure S7). The majority of binding
sites identified were a mixture of secondary structures or random coils among all proteins
with or without small molecule inhibitors. Combined, these two secondary structures
generally making up the large majority of all binding sites in each binding site type. In each
case, the least frequently observed secondary structure among these binding sites were the
helix-like (i.e. a-helix, 31¢ helix, or t-helix) and sheet-like structures (i.e. beta bridges and
beta bulges). We then examined the secondary structures of the residues of the binding
partner inside PPI binding sites. About 27 and 46% of the residues of the binding partners in
the binding site were coil-like and helical (a-helix, 31¢ helix, or t-helix), respectively. Only
10% of the binding sites were characterized by strand-like structures (B-sheet or B-bridge).
The remaining PPI binding sites were a combination of these.

Missense Mutations on Protein Structures

A set of somatic mutations were obtained from a recent study from TCGA’s Pan-Cancer
initiative (55). We identified missense mutations from this study onto patients in 7 of 10
diseases and mapped these to protein structures. We classified these mutations as being (i)
adjacent to a binding site; (ii) elsewhere on the protein surface; or (iii) buried in the interior
of the protein (Figure 5A). We find that the majority of these missense mutations are found
on the surface of proteins but not within a predicted binding site. The frequency of mutations
occurring in the interior of a protein is higher than the frequency of mutations that occur at
binding sites. We explored some of the proteins with mutations occurring most frequently in
the binding site (Figure 5B). They include well known genes that have been previously
reported to be heavily mutated in cancer such as PIK3CA (56), S/(57), and PTEN (58). On
the most commonly mutated target, P/IK3CA, mutation rates are approximately five-fold less
at the binding site than the entire protein. Also, among the top targets is BRAF, which
features the common V600E mutation, which has been used for the rational design of small-
molecule inhibitors of the mutant protein (59-61).

We matched these proteins with missense mutations with their gene expression levels and
correlation with patient outcome. We find 29 binding sites on 26 proteins that are i)
overexpressed (log, fold change = 2); (ii) correlate with patient outcome (hazard ratio > 1);
and (iii) have a missense mutation adjacent to a binding site in a given disease (Table 8).
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These 29 binding sites include 9 ENZ, 3 PPI, and 17 OTH pockets. Among these mutations
adjacent to binding sites is the W167L mutation on the PPI interface between MADZL 1 and
MADI1L 1in LUAD (Figure 5C). This interaction is part of the spindle assembly checkpoint
in the cell cycle (62). Considering the significant reduction in contact area upon replacing
tryptophan with leucine, and the fact that tryptophan residues tend to often occur at protein-
protein interaction interfaces, we expect that this mutation may impair the protein-protein
interaction. Another mutation is the R121P mutation adjacent to the DNA-binding OTH
binding site on £X01 in LUAD (Figure 5D). The DNA-binding protein is also involved in
DNA repair during cell cycle regulation (63). Unlike the previous mutation, arginine
contains a positively charged group while proline is a neutral non-polar amino acid.

We examined the mutation rates of individual amino acids by looking at the wild-type and
mutated amino acids as a result of a mutation at each of the three locations on the protein
(Figure 5E). We find differences in the relative frequencies of specific point mutations
between each location. For example, mutations to alanine is less favored in the pocket or on
the surface of the protein than it is in the interior, especially at charged or polar groups.
Among the most common mutations in the binding site and on the surface is from lysine to
glutamic acid, which occurs at a much lower frequency in the interior of the protein.

DISCUSSION

The sequencing of the genome of human tumors has provided access to an unprecedented
number of new opportunities for the development of cancer therapeutics. While biological
methods such as siRNA or CRIPSR/Cas9 methods are useful tools to explore the role of
potential targets, chemical tools provide a complementary approach to interrogate new
targets. Small molecules do not affect the expression of the target thereby causing little
disruption to the signaling networks. In addition, small molecules have significantly greater
precision as they can be designed to binding to a single cavity within a protein and modulate
the function of the protein by disruption of protein-protein interactions or enzyme activity.
Small molecules can work either in an orthosteric manner if they directly interfere with the
binding of a protein or a substrate. They can also work in an allosteric manner by binding to
cavities located outside protein-protein and protein-substrate binding interfaces and
modulating the conformation and dynamics of the target.

For small molecules to engage their targets with high affinity, a well-defined cavity that
possesses suitable shape and physicochemical properties. The lack of such cavities is partly
responsible for the difficulty in developing small-molecule therapeutic agents that bind
directly to highly promising cancer targets such as mutated RAS GTPase or transcription
factors such as c-MYC. Conversely, the success of kinases as oncology targets can be
attributed to the well-defined ATP-binding site. Using binding sites of kinases and other
druggable targets, several algorithms have been developed to predict the druggable nature of
a binding site using the three-dimensional structure of the protein that harbors them (64).
Among them, SiteScore and DrugScore, which have been developed using data from binding
sites occupied by approved drugs (25,28). Druggable sites, the highly conserved nature of
the ATP-binding site has been the main impediment in the development of kinase drugs.
Developing highly selective kinase inhibitors is notoriously difficult, although some
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successes have been reported. Identifying novel targets with unique druggable binding sites
located on potential cancer targets may lead to cancer therapeutics with greater efficacy and
lower toxicity.

Here, in an effort to facilitate the chemical probing of new targets in cancer, we explore
RNA-seq data of 10 tumor types at TCGA to identify unique and druggable binding sites on
proteins encoded by protein products of overexpressed genes. The large-scale effort of
TCGA to sequence the genome of tumors from more than 30 cancers provides an
unprecedented opportunity to uncover new targets for the development of cancer
therapeutics. We identified genes whose mRNA levels are overexpressed in tumors
compared with normal tissue. Patient data provided by TCGA was used to further narrow the
list of targets to genes whose overexpression correlates strongly with patient survival. This
was accomplished by constructing survival curves and evaluating a hazard ratio for each
overexpressed gene. Genes with hazard ratio of 1 or greater where considered to correlate
with worse patient survival. For each of the 10 diseases that we have considered in this
work, we identified protein products of genes whose mRNA levels are differentially-
expressed that strongly correlate with patient survival. Additionally, we explored these
targets in the context of cancer related signaling pathways and the protein-protein interaction
network.

The exponentially growing list of three-dimensional structures of proteins prompted us to
search the PDB to identify structures for protein products of up-regulated genes that we
identified. We used a stringent threshold for these scores to ensure that small molecules that
bind to the druggable binding sites have the potential to be developed into therapeutic
agents. Among all up-regulated genes we found that 23% of their protein products had a
structure at the PDB. Among the 1218 proteins with structures, 405 (33%) had druggable
binding sites. A similar ratio was found among individual diseases. For example, 51 proteins
with a crystal structure from among 211 in TNBC had a druggable binding site, while 114
proteins with a crystal structure in LUAD were found to have a binding site among a total of
363. When overexpressed genes are further filtered by hazard ratio, a total of 54 proteins that
possess druggable binding sites and 65 possessed binding sites are identified among 1344
differentially-expressed genes. There were 15 druggable proteins that are present in multiple
tumor types. The most frequently-occurring were MELK in 4 tumors.

The presence of a binding site is not sufficient to serve as a suitable target site for chemical
probe development and drug discovery. The binding site must possess functional relevance.
Its position must be located at a site such that the binding of a small molecule will impair the
function of the protein harboring the binding site. For example, small molecules that bind to
a binding site located at an enzyme active site or protein-protein interface will disrupt
enzyme activity or protein-protein interactions and thereby impair the function of the target
protein. Binding sites located outside an enzyme active site or protein-protein interface, may
or may not modulate the activity of a protein. We classified all binding sites into enzyme
active sites, protein-protein interaction sites, or other sites with yet unknown function that
may provide an opportunity to modulate protein function through an allosteric mechanism.
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Many of the enzyme active sites occur on well-established oncology targets or have been
inhibited by small molecules. However, there were several examples of enzymes whose
function was explored in cancer but were never targeted with small molecules; these include
PKMYT1, STEAP3 and NNMT. There were also several druggable active site binding sites
that occurred on enzymes that have seldom been considered in cancer, such as PYCRI,
HSPAG, and QPRT. We identified several proteins whose overexpression correlate with
patient outcome that occurred at protein-protein interfaces. This discovery is highly
significant as protein-protein interactions have been historically challenging due to the lack
of well-defined binding sites at protein-protein interfaces (65,66). Protein-protein interfaces
can offer an opportunity to develop highly selective compounds since many of these
interfaces are structurally unique. Among all differentially-expressed proteins with binding
sites, 18% have binding sites that occurred at protein-protein interfaces. For the proteins
encoded by genes that correlate with patient survival, we identified 28 binding sites (7
druggable) on 25 proteins that occurred at protein-protein interfaces. Among these proteins,
13 have been studied in cancer. Examples include MEFZB, HNF4A, and CBX2. The
remaining 15 proteins have seldom been studied in cancer, such as CASC5and ZBTB32.
Interestingly, several protein structures possess both PPl and ENZ binding sites either on the
same domain (e.g. GAD1, NAMPT, and NR1/2) or on different domains (EPHBZ, PLK1,
and NTRKZ). Small molecules that bind to a binding site on these proteins may serve as
allosteric modulator of PPI interactions.

We found that the majority of binding sites were not located either at an enzyme active site
or protein-protein interaction site. We refer to these binding sites as other (OTH). Of the 601
unique binding sites on the 202 proteins encoded by genes whose overexpression correlates
with patient survival, 102 are ENZ, 46 are PPI, 444 are OTH, and 9 have been classified as
both ENZ and PPI. It is likely that many of these OTH binding sites occur at protein-protein
interfaces. To explore this possibility, we searched protein-protein interaction databases such
as PrePPI for binding partners. Among 759 OTH binding sites located on overexpressed
proteins, we identified 17 candidates that have the potential to be located at PPI interfaces.
Examples of these proteins include ANKZ, CHN1, and NCS1. While OTH binding sites that
occur at enzyme active sites or protein-protein interaction sites can be used to develop
probes that directly modulates the function of the target harboring these binding sites, the
remaining OTH binding sites can provide an opportunity to modulate receptors through an
allosteric mechanism (31,67). Whether a small molecule that binds to a binding site will
allosterically modulate enzyme function or a PPI interaction is difficult to predict. Small
molecules can serve as positive or negative allosteric regulators (34,68,69). These OTH
binding sites can also be used for the development of small molecules that can be attached to
probes for proteasome degradation (70).

Finally, we mapped mutations that were previously identified at TCGA (55) onto the three-
dimensional structure of proteins that are encoded by overexpressed genes that correlate
with patient outcome. A recent study explored the role of mutations on tumorigenesis (71)
and more recently using a structural genomics based approach (72,73). Our work
complements these studies by identifying druggable binding pockets and classifying pockets
into whether they occur at enzyme active sites or protein-protein interaction sites. Mutations
that occur within these pockets are expected to have direct consequences to the function of a
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protein. These pockets could provide promising targets for the development of small-
molecule therapeutic agents. Interestingly, several mutations occurred in enzyme active sites.
These mutations may either enhance or inhibit enzyme activity. Most of the enzyme
mutations appear to involve dramatic changes in physico-chemical properties such as
H113Q, G568W, R140L, M8OR for CA6, KIFCI1, NEKZ, and SULT4A1. Others involved
subtler mutations such as V46A, A287S, and M52T for CHEK1, PCK1, and PSPH,
respectively. Since we have focused on proteins that are expected to be overexpressed, it is
likely that these mutations will further enhance the activity of these enzymes. Three
mutations were identified to occur at protein-protein interfaces, R293P, W167L, and Q107H,
which correspond to ADORA2A, MAD2L1, and RHCG, respectively. The first two may
have disruptive effects considering that proline residues tend to disrupt secondary structures
and tryptophan residues are generally believed to tighten protein-protein interactions. The
overwhelming majority occurred at OTH binding sites. These mutations provide an
opportunity to validate the importance of these pockets. It suggests that these pockets may
be located at unknown active sites or protein-protein interfaces. Considering that many of
these OTH pockets occur on enzymes, it is more likely that they may be located at a protein-
protein interface and could be useful targets for the disruption of protein-protein
interactions.

MATERIALS AND METHODS

Gene Expression

Level 3 gene expression data expressed using RNA-seq (RNASeq Version 2) technology for
ten cancer types was retrieved from The Cancer Genome Atlas (TCGA). Triple-negative
breast cancer (TNBC) patients were identified from a subset of patients in BRCA by
filtering clinical records for breast cancer patients who were negative for estrogen receptor
(ER), progesterone receptor (PR), and Her2/neu. The gene expression data was used to build
a matrix of read counts for each sample against each mapped gene. Only samples with
designations of either the primary solid tumor or the solid tissue normal were kept in this
matrix. Differential expression analyses between cancer and normal samples in the RNA-seq
expression profiles were conducted using default parameters in the edgeR (74) package in R
(75). Differentially-expressed (overexpressed) genes were defined as those genes with p <
0.001 and Q < 0.05. Two logs fold changes of = 2.0 and = 1.5 were used to filtered genes for
further analysis. Gene symbols provided by TCGA were mapped to their respective UniProt
IDs using UniProt’s mapping tool (http://www.uniprot.org/mapping/).

Protein Structures

An annotated set of 20,192 reference human protein identifiers was retrieved from
UniProtKB/SwissProt (35). The FASTA sequences were retrieved for each of these proteins
and used to identify structures in the RCSB Protein Data Bank (PDB) (76). Each FASTA
sequence was queried against the pdbaa dataset using BLASTP (Protein-Protein BLAST
v2.2.25+) (77). To limit the search to protein structures that possess significant sequence
identity and coverage to the query sequence, only structures with E-value < 1075, >90%
sequence identity, and PDB sequence coverage >80% were kept. We then identified the
experimental methodology, taxonomy of the identified protein chain, and the structural
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resolution if the structure was from x-ray diffraction. Previously identified structures were
then filtered for only crystal structures from human proteins with a resolution better than 3
A. To reduce the number of redundant structures identified by BLASTP and generate a
representative set of crystal structures associated with each protein, CD-HIT (v4.6.1) (78)
was used with default parameters to cluster the FASTA sequences of the PDB structures
identified for each of the proteins. Only cluster centers identified by CD-HIT were used to
locate binding sites on the structures for the protein. In total, 4124 proteins had at least one
crystal structure that met all of these criteria.

Binding Site Identification

Identification of druggable binding sites on the crystal structures was carried out using the
Schrodinger Software Suite. For each cluster identified by CD-HIT, the cluster centers (i.e.
the representative structures) were used to identify binding sites. Structures were first
retrieved from PDB and binding partners were removed to identify the monomeric
representative structures. All other heteroatoms, including solvent molecules and bound
ligands, were removed. Selenomethonine residues were converted to methonines. These
preprocessed PDB monomeric structures were then processed using the Protein Preparation
Wizard workflow. Missing side chains and loops were added with the Prime (79) module.
Disulfide bonds were added and each crystal structure was protonated using PROPKA at pH
7.0. Binding sites were identified using the SiteMap (25) module in Schrddinger on the
processed structure. Up to 10 binding sites were kept, while all other parameters were left
default. Only binding sites (28) with SiteScore and DrugScore above 0.8 were kept. The
average coordinates of the SiteMap spheres were used to identify the centroid of the binding
site. Druggable binding sites were distinguished as those with a DrugScore above 1.0. In
total, we identified 5498 binding sites on 2607 proteins.

Binding Site Annotation

PyMOL (80) scripts were generated to create individual sessions for each protein with
druggable binding sites. The unprocessed protein structure, including all bound ligands and
other non-solvent molecules was overlaid back atop the crystal structure. In addition, all
redundant structures from the CD-HIT clustering were added and aligned back to the
druggable protein. The location of enzymatic binding residues were retrieved from UniProt
(35) and Catalytic Site Atlas (36) and highlighted on the processed protein structures.

Each binding site identified by SiteMap was visually inspected and manually annotated to
determine its functional role in the protein. If an enzymatic residue was in contact with the
SiteMap spheres, or if an enzymatic molecule or inhibitor occupied the space of the spheres,
the binding site was labeled ‘enzymatic’ (ENZ). If the binding site was at a protein-protein
interaction (PPI) interface on the original structure or on any of the aligned structures, the
binding site was labeled ‘PPI’. Otherwise, if the binding site was neither enzymatic nor part
of the interaction interface, it was labeled ‘Other’ (OTH). Binding sites of the recognition
site of human leukocyte antigens (HLAs) and heme cofactor binding site of Cytochrome
P450s were labeled ‘Other’.
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Secondary structures for each of the binding sites and their interaction partners were
retrieved from DSSP (81). The secondary structure of each residue of a crystal structure are
classified into helix, sheet, or coil in DSSP. The number of residues falling into each
category was retrieved for the residues within 5 A of the binding site. If there is at least a
60% consensus in the secondary structures for these residues, it was assigned into that
category. Otherwise, the binding site was considered mixed.

Survival Analysis

Kaplan-Meier curves were built using the survival (82) package in R (75). For each disease,
each patient’s time to last follow-up or time to death was collected from the clinical data
depending on whether or not the patient was deceased. A patient’s overall survival was
paired with their respective logoCPM and for diseases using RNA-seq. Expression levels for
each gene was separated into ‘high expression’ and ‘low expression’ groups using the
median expression of the gene across all patients for a given disease. A Cox proportional
hazards regression model was fitted to the survival profile to determine the hazard ratio (HR)
of each gene. Genes were filtered using p < 0.05 and HR > 1.0.

Signaling Pathway

27 cancer related signaling pathways were collected from KEGG (47). Individual proteins
within each of these pathways were collected and mapped to their respective UniProt IDs
using the REST API in KEGG. Any protein that could not be mapped to a UniProt entry
from the reference protein identifiers was filtered out.

Protein-Protein Interaction Network

A protein-protein interaction network was constructed using the NetworkX (83) module in
Python by retrieving human PPI data with experimental evidence from seven major
interaction databases: Biomolecular Interaction Network Database (BIND) (84), BioGRID
(85), Database of Interacting Proteins (DIP) (86), Human Protein Reference Database
(HPRD) (87), IntAct (88), Molecular INTeraction database (MINT) (89), and Reactome
(90). Only those interactions with at least two occurrences among the seven databases were
kept. The resulting network featured 9665 nodes and 38164 edges.

Missense Mutations

Mutations were obtained from a recent study by Kandoth and coworkers (55). The work
identified somatic variants from 12 cancers as part of TCGA’s Pan-Cancer initiative. We
only use missense mutation data as other mutations result in the insertion or deletion of
amino acids from the protein sequence, which would be very difficult to model onto the
three-dimensional structure of the protein. Mutations were mapped using the sample ID
barcode provided by TCGA to match patients with both mutation and gene expression data.
The data for three diseases were not used since THCA was not included in the original
study, while COAD and UCEC had low numbers of patient samples with matched gene
expression data. Genes were mapped from Ensembl Transcript 1Ds to UniProt IDs using
UniProt’s mapping tool. For each protein, the subsequent amino acid position on the protein
sequence was mapped to the protein structure using the pairwise function in BLASTP. Each
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mutation was then classified by minimizing the Euclidean distance from the corresponding
alpha carbon of the mutated residue to the site points (grid spheres) of each binding site on
the protein structure. In addition, the solvent-accessible surface area (SASA) of the mutated
residue was calculated using NACCESS (91). We used the SASA and distance to the closest
binding site to classify each mutation as being (i) adjacent to a binding site; (ii) elsewhere on
the protein surface; or (iii) buried in the interior of the protein. If the distance between the
mutation and the closest binding site was less than 4 A, the mutation was classified as being
adjacent to the binding pocket. Otherwise, if the SASA of the mutated residue was greater
than 10 A2, the mutation was classified as being on the surface of the protein. If the mutation
did not fit into either of these criteria, it was classified as located in the interior of the
protein.
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NAMPT

400z.B — Homodimer

PPI Binding Site

ENZ Binding Site

EFNB2

2hle.B — Extracellular domain

PPI Binding Site

EPHB4
2hle.A — Ligand binding domain

2vwy.A — Protein kinase domain

Figure 1. Examples of proteins with both ENZ and PPI binding sites
Proteins are represented in cartoon format. The monomer structure with identified binding

sites is in white. SiteMap binding sites are shown as spheres, bound ligands are shown as
ball-and-sticks. A, The homodimeric structure of CDA (PDB: 1mg0.B) with a bound
inhibitor at a binding site classified as both ENZ and PPI. B, The homodimeric structure of
NAMPT (PDB: 400z.B) with an ENZ (peach, bound inhibitor) and a PPI (blue) binding site
on the same domain. C, D, The protein kinase (PDB: 2vwy.A) and ligand binding domain
(PDB: 2hle.A) of EPHB4 featuring an ENZ and a PPI binding site on separate domains. The
binding site on the protein kinase domain is not shown as spheres, but is occupied by the
bound inhibitor (green).
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OTH Binding 9%
Site

ENZ Binding ¥
Site

SULT2B1
191q9.A

C SLC9A1 D
2bec.B

OTH Binding <.,
Site

Figure 2. Examples of proteins with potentially allosteric OTH binding sites
Proteins are represented in cartoon format. The monomer structure with identified binding

sites is in white. SiteMap binding sites are shown as spheres, bound ligands are shown as
ball-and-sticks. A, SULTZBI1 (PDB: 1q1g.A) with an ENZ binding site occupied by a
nucleotide and three additional OTH binding sites (green, blue, yellow). B, RET (PDB:
2iiv.A) with an ENZ binding site occupied by the bound inhibitor and an additional OTH
binding site (green). C, CHP2 (PDB: 2bec.A) with two PPI binding sites (green, blue) at the
interface with SL9CAI (PDB: 2bec.B) and an additional OTH binding site (peach). D, The
superimposed structure of PLAUR (PDB: 1ywh.M) with two PPI binding sites at the
interfaces with V7N (PDB: 3bt1.B, green) and PLAU (PDB: 3btl.A, yellow) and an
additional OTH binding site (peach).
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Figure 3. Binding sites in cancer related signaling pathways
Proteins with binding sites were mapped to 27 cancer related signaling pathways in KEGG.

Identified binding sites were divided based on whether the protein was exclusive to one
signaling pathway or occurred in multiple signaling pathways. A, Identified binding sites
had DrugScore greater than 0.8 on proteins with log, fold change greater than 1.5. B,
Identified binding sites had DrugScore greater than 1.0 and log, fold change greater than 2.
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Figure 4. Proteins with binding sites that are both overexpressed and correlate with patient

outcome

10
Degree

A, Fold change versus hazard ratio across all cancer types on proteins with logoFC = 1.5,
HR > 1.0, and DrugScore > 0.8. B, SiteScore and DrugScore of binding sites by functional

annotation for proteins in A. C, Degree versus betweenness centrality from PPI network for
all proteins with log,FC = 1.5 and HR > 1. Proteins are colored coded based on whether

there was a high quality crystal structure (blue), a crystal structure but no identifiable

binding sites (orange), binding sites with DrugScore between 0.8 and 1.0 (gray), and
druggable binding site with DrugScore greater than 1.0 (yellow). D, Fold change versus
hazard ratio across all cancer types on proteins with druggable binding sites with log,FC =
2.0, HR > 1.0, and DrugScore > 1.0. E, SiteScore versus DrugScore of druggable binding

sites with logoFC = 2.0, HR > 1.0, and DrugScore > 1.0. F, Degree versus betweenness
centrality from PPI network for all proteins with log,FC = 2.0, HR > 1.0, and DrugScore >

1.0.
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Figure 5. Proteins with missense mutations
A, Missense mutations were mapped to patients in 7 of 10 diseases (COAD, THCA, and

UCEC not included). Individual mutations were mapped to the protein structure and
classified as being adjacent to the binding site, elsewhere on the protein surface, or buried in
the interior of the protein structure. B, Percentage of samples with missense mutations
adjacent to a binding site in a given disease, showing the top 20 proteins rank-order using
the sum of frequencies. C, The W167L (green stick) mutation on the PPI interface between
MADZL 1 (white) and MADIL1 (cyan) is shown in cartoon (PDB ID: 1GO4). The PPI
binding site is shown as transparent spheres. D, The R121P (green stick) mutation adjacent
to the DNA-binding OTH site (tan, transparent spheres) on £XO1 (white cartoon) (PDB ID:
3QEB). DNA in the binding site from the crystal structure is also shown as cartoon. E, The
counts of missense mutations at the amino acid level divided classified as being adjacent to
the binding site, elsewhere on the surface of the protein, or buried in the protein interior. The
original amino acid is listed row-wise and the subsequent mutation is listed column-wise.
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