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Abstract

The Cancer Genome Atlas (TCGA) offers an unprecedented opportunity to identify small-

molecule binding sites on proteins with overexpressed mRNA levels that correlate with poor 

survival. Here, we analyze RNA-seq and clinical data for 10 tumor types to identify genes that are 

both overexpressed and correlate with patient survival. Protein products of these genes were 

scanned for binding sites that possess shape and physicochemical properties that can accommodate 

small-molecule probes or therapeutic agents (druggable). These binding sites were classified as 

enzyme active sites (ENZ), protein-protein interaction sites (PPI), or other sites whose function is 

unknown (OTH). Interestingly, the overwhelming majority of binding sites were classified as 

OTH. We find that ENZ, PPI, and OTH binding sites often occurred on the same structure 

suggesting that many of these OTH cavities can be used for allosteric modulation of enzyme 

activity or protein-protein interactions with small molecules. We discovered several ENZ (PYCR1, 

QPRT, and HSPA6) and PPI (CASC5, ZBTB32, and CSAD) binding sites on proteins that have 

been seldom explored in cancer. We also found proteins that have been extensively studied in 

cancer that have not been previously explored with small molecules that harbor ENZ (PKMYT1, 

STEAP3, and NNMT) and PPI (HNF4A, MEF2B, and CBX2) binding sites. All binding sites 

were classified by the signaling pathways to which the protein that harbors them belongs using 

KEGG. In addition, binding sites were mapped onto structural protein-protein interaction networks 

to identify promising sites for drug discovery. Finally, we identify pockets that harbor missense 

mutations previously identified from analysis of the TCGA data. The occurrence of mutations in 
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these binding sites provides new opportunities to develop small-molecule probes to explore their 

function in cancer.

Graphical Abstract

INTRODUCTION

Cancer is a collection of more than 100 diseases that share a number of characteristics as 

defined by Hanahan and Weinberg (1): Self-sufficiency in growth signals, insensitivity to 

growth inhibitory signals, evasion from programmed cell death (apoptosis), ability to 

undergo limitless cycles of cell growth, sustained ability to be supplied by blood 

(angiogenesis), and tissue invasion and spread to other parts of the body (metastasis). Large-

scale sequencing studies of human tumors such as The Cancer Genome Atlas project 

(TCGA) provide an opportunity to uncover the genetic basis of the processes that drive 

cancer. TCGA catalogs clinical and molecular profiles of tumor samples from over 30 

cancer types to discover cancer-causing alterations in large cohorts through integrated multi-

platform analyses. Analysis of this genomic data has revealed that the complex phenotypes 

that define cancer are driven by tens of somatic mutations that occur on proteins across the 

cellular network (2). Recent whole genome sequencing studies have profiled the molecular 

signatures of individual tumors, including ovarian (3), colorectal (4), breast (5), renal (6), 

and lung (7,8) cancer, to identify underlying driver mutations of each disease. Tumors were 

found to harbor tens of mutations. Whole-genome gene expression profiling studies have 

been instrumental not only in classifying tumors and uncovering genetic alterations in cancer 

cells (mutations, copy number, and rearrangements), but as a rich source of potential targets 

in cancer (9,10). A growing list of three-dimensional protein structures make it now possible 

to rationally develop small-molecule probes to explore these targets. Small-molecule probes 

can also provide leads for drug discovery targeting validated targets.

TCGA is an ongoing effort that aims to catalog clinical and molecular profiles of tumor 

samples from over 30 cancer types to discover cancer-causing alterations in large cohorts 

through integrated multi-platform analyses. The project aims to integrate the clinical and 
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molecular profiles of at least 500 tumors for each disease and to determine its underlying 

molecular mechanism. Multiple platforms capture the clinical, pathological, genomic, 

epigenomic, transcriptomic, and proteomic profiles of cancers in TCGA project. Among 

these platforms RNA-seq is a widely-used technology for the characterization of mRNA 

expression. RNA-seq uses high-throughput short reads that offer several distinct advantages 

over its array-based predecessors. RNA-seq is not limited by a set of predetermined probes 

seen in microarrays, and is superior in its ability to identify low abundance transcripts, 

biological isoforms, and genetic variants (11). RNA-seq was performed for both tumor and 

normal tissue for each disease at TCGA. Comparison of tumor and normal mRNA levels can 

be used to identify overexpressed genes and their corresponding protein product that may 

contribute to tumor formation, progression and metastasis. Patient information that 

accompanies the genomic data affords further analyses to assess the correlation of mRNA 

levels with patient outcome. Survival curves constructed by plotting patient outcome with 

time can be used to generate metrics such as hazard ratios and other coefficients to 

determine the correlation between overexpression of individual genes and clinical outcome. 

This analysis has been widely used in clinical trials, where Kaplan-Meier survival curves are 

used to determine the time-to-event differences between placebo and drug groups (12).

Whether overexpressed genes contribute to the cancer phenotype must be confirmed in 

follow-up studies in vitro and in vivo, especially since studies have shown that there is not 

always a direct correlation between the levels of gene expression and the proteins that they 

encode (13–15). This is typically accomplished using molecular biology approaches such as 

RNAi (16) or CRISPR/Cas9 (17) technologies. A complementary approach is the use of 

small organic molecules that work by binding to well-defined cavities or binding sites on the 

surface of a protein and compete with the target’s ligands either in an orthosteric or 

allosteric manner. Binding sites that are located at enzyme active sites, protein-protein 

interfaces, or known allosteric sites, have particular functional relevance. Identification of 

binding sites is accomplished by analyzing the three-dimensional structure of a protein. 

Several computational methods have been developed to scan the surface of proteins for 

binding sites (18). Binding site detection algorithms, such as CavBase (19), fpocket site 

(20), and LIGSITECSC (21), often represent the protein structure through the use of points 

on a three-dimensional grid. Other algorithms, such as Q-SiteFinder (22), PocketFinder (23), 

and SiteHound (24), employ energy-based approaches to calculate interaction potentials at 

points in the grid and cluster favorable points together into binding sites. Finally, ensemble 

or combinatorial algorithms, such as SiteMap (25) and metaPocket (26), use a combination 

of geometric and energy-based methods to identify potential binding sites.

The extensive TCGA data combined with the exponentially growing structural data at the 

PDB offers a unique opportunity to identify protein structures of overexpressed or clinically-

relevant genes in cancer. These structures can be used to scan for binding sites to develop 

chemical probes and lead compounds for drug discovery. In addition to detecting binding 

sites, algorithms have been developed to score these binding sites based on whether they can 

accommodate a small molecule. Both SiteMap and fpocket provide descriptors to assess 

binding sites that are suitable for small-molecule ligands based on the amino acid 

composition of the binding site and its collective physicochemical properties. SiteMap uses 

the hydrophobicity and accessibility of a detected binding site to assess how likely a small 
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molecule inhibitor will bind. It provides two scores, SiteScore and DrugScore. The latter 

score goes beyond just assessing a binding site for ligand binding. It measures whether a 

binding site is druggable, or whether it possesses similar proteins to other binding sites that 

have led to FDA-approved drugs. fpocket provides a measure called the Druggability Score, 

which is a general logistical model based on the local hydrophobic density of the binding 

site, the hydrophobicity score, and a normalized polarity score. The discovery of binding 

sites or druggable binding sites within structures that are encoded by overexpressed genes 

with clinical relevance is highly significant as these binding sites can be used to develop 

novel cancer therapeutics that are likely to exhibit greater efficacy in humans.

In addition to druggability, the binding sites must be functionally important to serve as 

targets for small molecules. For example, binding sites located at enzyme active sites or at 

the interface between a protein-protein complex are expected to disrupt protein function. 

Protein kinases are one example of an enzyme class with druggable binding sites that occur 

at the enzyme active site (27). The ATP binding site of kinases is highly druggable with a 

SiteMap SiteScore and DrugScore above 1.1 (28). There are fewer small-molecule inhibitors 

of protein-protein interactions, which is partly due to the lack of druggable binding sites at 

protein-protein interfaces. The only examples of PPI inhibitors that have shown in vivo 
efficacy, such as MDM2/p53 or BcL-xL, possess druggable binding sites (DrugScore of 0.92 

and 0.82, respectively) (29). Therefore, the identification of binding sites that are considered 

druggable at protein-protein interaction interfaces can provide new avenues to develop 

chemical probes and cancer therapeutics. Finally, it is worth mentioning that binding sites 

located outside an enzyme active site or protein-protein interface can also be functionally 

relevant. These binding sites may modulate protein function in an allosteric manner through 

long-range interactions that involve dynamic changes of the target protein (30–34). 

Allosteric inhibitors have been successfully used to inhibit kinase activity and in some cases, 

such as AKT, have shown more promise than competitive inhibitors.

Here, we collect gene expression profiles for 10 cancer types from TCGA and compare the 

expression profiles between cancer and normal samples to identify genes that are 

overexpressed in each cancer type. We search the Protein Databank for crystal structures of 

the protein products of these genes. We scan the surface of these proteins and identify 

binding sites. The functional relevance of binding sites is explored by classifying them into 

known enzyme active sites, protein-protein interaction sites, or other sites that may lie 

outside of functional sites. To further explore the biological outcome of small molecules that 

bind to these binding sites, proteins harboring binding sites are further characterized in the 

context of a global PPI network and cancer signaling pathways to gain insight into the 

biological effect of binding at these binding sites. Patient data is used to investigate the 

correlation of overexpressed genes with clinical outcome. Our analysis uncovered new 

unexplored and potentially druggable and clinically-relevant protein targets. The study also 

provides new avenues for the rational design of small-molecule probes for well-established 

oncogenes. This is the first study that maps binding pockets on three-dimensional structures 

of the PDB within the context of cancer genomic data.
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RESULTS

Three-Dimensional Structures of Proteins Encoded by Differentially-Expressed Genes

We collected mRNA gene expression profiles of 10 cancer types from TCGA: breast 

invasive carcinoma (BRCA), colon adenocarcinoma (COAD), glioblastoma multiforme 

(GBM), head-and-neck squamous cell carcinoma (HNSC), kidney renal clear cell carcinoma 

(KIRC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), thyroid 

adenocarcinoma (THCA), triple-negative breast cancer (TNBC), and uterine corpus 

endometrioid carcinoma (UCEC). For each cancer type, we collected the gene expression 

profiles of both normal and tumor samples from RNA sequencing platforms using TCGA’s 

Level 3 data. A search from among the 20192 reference proteins using UniProt (35) 

identifiers led to 7044 proteins that are encoded by TCGA overexpressed genes (Table 1, 

Supplementary Table 1). For each cancer type, we identified the number of overexpressed 

genes with protein products having at least one high-resolution crystal structure by mining 

the Protein Databank (PDB). A total of 5069 unique protein chains on 2758 crystal 

structures from the PDB mapped to at least one of the 7044 overexpressed genes. In cases 

where more than one crystal structure was identified for a protein, the computer program 

CD-HIT was used to cluster the protein sequences of the crystal structures to find a set of 

non-redundant representative structures for the given protein. This resulted in 1624 unique 

crystal structures of proteins encoding overexpressed genes. The total number of proteins 

that encoded overexpressed genes ranged from 839 for TNBC to 2096 for LUSC (Table 2). 

Overall, the percentage of differentially-expressed genes with at least one crystal structure 

spanning at least a portion of the gene sequence ranges from 20% in LUSC to 34% in GBM. 

Additionally, we introduce more stringent cutoffs to distinguish between proteins that can 

act as probes versus those that feature druggable binding sites by increasing cutoffs of both 

the log2 fold change and the druggability property of a binding site. Using these increased 

cutoffs, we identify 5218 overexpressed proteins in TCGA, with only 1218 having a high 

quality crystal structure at the PDB (Table 1).

Identification of Binding Sites on Protein Structures at the PDB

Using the three-dimensional structure of overexpressed genes for each disease, we scanned 

their surfaces for binding sites using the SiteMap computer program. SiteMap identifies 

binding sites by overlaying a three-dimensional grid around the entire protein to determine 

the van der Waals energies at each point of the grid (site point). By linking together site 

points on the protein surface that are protected from the solvent, SiteMap identifies potential 

binding sites on a protein surface. Each binding site identified by SiteMap is evaluated based 

on its ability to bind a ligand (SiteScore) and its druggability (DrugScore). Both SiteScore 

and DrugScore use the weighted sums of the same parameters, namely the (i) number of site 

points in the binding site; (ii) enclosure score that is a measure of how open the binding site 

is to solvents; and (iii) hydrophilic character of the binding site (hydrophilic score). Unlike 

DrugScore, SiteScore limits the impact of hydrophilicity in charged and highly polar sites. A 

binding site with SiteScore and DrugScore of 0.8 is considered to be able to fit a small 

molecule ligand. SiteScore and DrugScore values closer to 0.8 are considered ‘difficult’ to 

drug, while binding sites with SiteScore and DrugScore closer to 1.1 are classified as highly 

‘druggable’ (28). In this work, we consider a binding site with SiteScore and DrugScore 

Xu et al. Page 5

Mol Biosyst. Author manuscript; available in PMC 2017 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



values of 0.8 or greater as able to be probed and a binding site with DrugScore greater than 

1.0 as druggable.

Among 1624 overexpressed proteins with at least one high-resolution human crystal 

structure, 1044 (~64%) had at least one binding site (Table 1). Similarly, among the 1218 

highly overexpressed proteins with crystal structures, 405 (~33%) had at least one druggable 

binding site. For individual diseases, roughly 30% of proteins with crystal structures 

corresponding to highly overexpressed genes possessed at least one druggable binding site 

(Table 2). For example, 51 proteins with a crystal structure from among 211 in TNBC had a 

druggable binding site, while 114 proteins with a crystal structure in LUAD were found to 

have a binding site among 363. Generally, we found more binding sites than proteins with 

crystal structures, suggesting that although many of the proteins harbored more than one 

binding site, a large portion might only act as probes rather than druggable sites. An average 

of about 0.38 druggable binding sites were identified per protein with crystal structures. For 

example, a total of 145 druggable binding sites were identified on the 429 proteins with 

crystal structures corresponding to differentially-expressed GBM genes. Among the most 

frequently overexpressed proteins with druggable binding sites are the members of the 

matrix metalloproteinases (MMPs) and protein kinases related to cell signaling 

(Supplementary Figure S1).

Classification of Binding Sites

To characterize the potential functional impact of each of these binding sites, we classified 

each binding site by its functional role based on its structural features and location on the 

protein surface, particularly whether it corresponds to a catalytic site or to a binding site 

located at a protein-protein interaction interface. Using the proximity of known structural 

features and the functional annotations of key residues, we characterize each binding site on 

the protein structure of overexpressed genes from TCGA into three groups: enzyme (ENZ), 

protein-protein interaction (PPI), and other (OTH). Supplemental Figure S2 shows examples 

of each of the three binding sites. For example, the ATP binding site of a protein kinase is 

classified as enzyme (ENZ), while a binding site at the interaction interface between two 

members of the protein families CDKs and cyclins are classified as PPI. All other binding 

sites are referred to as “other” (OTH). Within the binding sites that we identified, there is a 

wide distribution of binding site functions for each cancer type (Table 1 and 2). Overall, 

there are many more ‘OTH’ binding sites than ENZ and PPI across all tumors. OTH binding 

sites constitute approximately 70% of the binding sites observed, while ENZ and PPI are 

observed in about 20 and 10% of structures, respectively. Among those binding sites that we 

classify as druggable, the distributions are 25, 11, and 66% for the ENZ, PPI, and OTH 

binding sites, respectively. OTH binding sites may correspond to uncharacterized enzyme 

active sites or may occur at PPI interfaces that have not been characterized.

Cavities at Enzyme Active Sites

Enzyme active site binding sites were identified by first mapping known catalytic residues 

from Catalytic Site Atlas (CSA) (36) and UniProtKB (35) onto the identified structures of 

each protein. CSA identifies catalytic residues as those that are (i) directly involved in a 

catalytic mechanism; (ii) alter the pKA of another residue or water involved in the catalytic 
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mechanism; (iii) stabilize a transition or intermediary state; (iv) activate a substrate (36). 

UniProt defines these residues as being directly involved in catalysis (35). If one of the 

catalytic residues was within the binding site, we classify the binding site as ENZ. In total, 

we identified 434 unique enzyme active site binding sites and 126 druggable binding sites on 

proteins that are encoded by overexpressed genes at TCGA (Table 1). The number of 

druggable ENZ binding sites ranged from 10 for HNSC to 49 for LUSC. For example, there 

were 34, 21, and 38 druggable enzyme binding sites for GBM, TNBC and LUAD, 

respectively (Table 2). We further classify enzymes by their catalytic function and 

distinguish between the druggability of the binding site (Supplemental Figure S3). We treat 

kinases separately from the transferases. When kinases and transferases are combined, they, 

along with the hydrolases, are the largest group among the enzyme active site binding sites. 

There were 70, 91, 83, and 141 oxidoreductases, transferases, kinases, and hydrolases, 

respectively. Lyases, Isomerases, and ligases, on the other hand, were the least common 

among proteins with ENZ binding sites (26, 16, and 9, respectively).

Cavities at Protein-Protein Interaction Interfaces

Despite the fact that protein-protein interactions play a crucial role in a range of diseases 

including cancer, few successful PPI inhibitors have been developed to date. This is 

attributed to the fact that PPI interfaces are usually large and devoid of well-defined binding 

cavities. Druggable binding sites that occur at protein-protein interfaces could be used to 

develop small molecules to disrupt the protein-protein interaction. PPI binding sites were 

identified by looking at the crystal structures with protein complexes with respect to the 

representative structures for a given protein. For each representative structure of a given 

protein, we went back to our sequence-based clustering approach in CD-HIT and identified 

the set of protein structures that shared significant sequence identity with the representative 

structure. We then aligned all the crystal structures from this alternative set of structures 

back onto the representative structure. This superimposition resulted in the identification of 

PPI interfaces that might not have appeared in the reference structure and their positions 

with respect to the previously identified binding sites. In total, we identified 231 unique 

binding sites located at protein-protein interaction interfaces, of which only 55 were 

druggable. As expected, there were significantly fewer binding sites that occurred at PPI 

interfaces than any of the other classes of binding sites. These ranged from 4 for HNSC to 

19 for KIRC. For example, there were 13, 10, and 15 druggable PPI binding sites identified 

for GBM, TNBC, and LUAD proteins, respectively (Table 2).

Proteins with Binding Sites Located at Both Enzyme Active Sites and Protein-Protein 
Interaction Interfaces

While OTH binding sites were predominant among the different cancer types, the ENZ and 

PPI binding sites give greater insight into the binding site’s function. Interestingly, there are 

proteins that contain binding sites that are classified as both ENZ and PPI (Table 3). Of these 

24 proteins, 10 have binding sites that are druggable and are part of the enzyme active site 

and a PPI interface. Among these are proteins that are implicated in cancer progression and 

metastasis, such as CDA (37) (Figure 1A), MMP14 (38) and DDR1 (39). In these cases, the 

binding site at the catalytic site is also part of a PPI interface. Many of the cases where the 

ENZ and PPI binding sites overlap correspond to binding sites that occur at the active site of 
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proteases. The binding partner is usually a protease inhibitor, for example, AGT and TIMP1 
in ANPEP and MMP14, respectively. Generally, these interactions may not be promising 

targets since proteolytic activity may contribute to tumor invasion and metastasis. However, 

the overexpression of protease inhibitors such as TIMPs and serpins suggest that inhibition 

of proteases may oppose growth and metastasis of a tumor.

Other proteins contain distinct enzyme and PPI binding sites (Table 4). Of these 24 proteins, 

only ALOX12 and NR1L2 feature both druggable ENZ and PPI binding sites. These 

proteins can be placed into two categories based whether or not the binding sites are on the 

same protein domains. Some have ENZ and PPI binding sites on the same domain such as 

the decarboxylase GAD1, which has a catalytic site as well as a PPI binding site at its 

homodimer interface. Another example is the phosphoribosyltransferase NAMPT, which is 

implicated in cancer metabolism (40), and has an ENZ binding site with an inhibitor bound 

as well as a PPI binding site between the homodimer structure (Figure 1B). Other proteins 

have ENZ and PPI binding sites on separate domains. For example, the serine/threonine-

protein kinase PLK1 has both an enzymatic ATP binding site on its protein kinase domain 

and a binding site at the PPI interface at its POLO-box domain. Another similar example is 

the receptor tyrosine kinase EPHB4, which has an enzymatic ATP binding site on its protein 

kinase domain (Figure 1C) and a binding site at the PPI interface with an ephrin ligand 

EFNB2 on its ligand binding domain (Figure 1D). These binding sites may be used to 

develop allosteric modulators. Small molecules that bind to the PPI binding site may alter 

substrate binding to the active site. A small molecule inhibitor of enzyme activity may affect 

the protein-protein interaction of the protein.

Unclassified Binding Sites

Binding sites that were neither enzyme active sites nor located at protein-protein interactions 

were classified as OTH. In total, more than 1500 of these binding sites were identified on 

proteins that are encoded by differentially-expressed genes. These binding sites could 

potentially be either unassigned enzyme active sites, part of structurally unresolved protein-

protein interaction sites, or allosteric sites. A binding site is considered allosteric only if it 

occurs on a protein that has enzyme activity or that engages other ligands at sites that are 

distant from the allosteric binding site. Among the 782 proteins with OTH binding sites, 323 

also have at least one ENZ or PPI binding site. These binding sites offer an opportunity to 

design allosteric small molecule modulators of enzyme activity or protein-protein 

interactions. Allosteric regulation of enzyme activity has been successfully achieved with 

small molecules in several systems (41). For example, small molecule kinase inhibitors have 

been developed to bind to allosteric binding sites to inhibit the enzyme activity of the protein 

kinase (42). More recently, small molecules that bind to an allosteric binding site on the Ral 

GTPase was shown to modulate the distal interaction with its effector protein (43).

Many OTH binding sites occur on proteins with existing ENZ and/or PPI binding sites, 

which may be potential allosteric sites for protein inhibition. When the enzyme active site is 

well characterized on a protein surface, additional binding sites represent opportunities for 

allosteric inhibition of the protein’s function. For example, the sulfotransferase SULT2B1 
has four binding sites on its protein surface (Figure 2A). The ENZ binding site is not shown 
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on the figure but encompasses the adenosine nucleotide. Three additional OTH binding sites 

were detected on the surface of the protein and represent potential sites for allosteric sites. 

Another example of protein with both ENZ and OTH binding sites is the protein kinase RET 
(Figure 2B). In this structure, a known inhibitor occupies the ENZ ATP binding site, while 

an additional allosteric binding site is formed near the αC helix. Similarly, there are proteins 

with both PPI and OTH binding sites. One example is the PPI between CHN2 and SLC9A1 
(Figure 2C), where an α-helix from SLC9A1 occupies two PPI binding sites on CHN2. An 

additional potentially allosteric OTH binding site is formed on the backside of CHN2. 

Another example is the protein complex formed between PLAUR, PLAU, and VTN (Figure 

2D). In this example, binding sites were found on the monomer structure of the apo protein. 

After superimposition of additional crystal structures back onto the representative structure, 

two of the three detected binding sites were classified as PPI. The two separate PPI binding 

sites occupy the respective interfaces between PLAUR-PLAU and PLAUR-VTN. An 

additional OTH binding site was also detected on the protein surface and represents an 

allosteric site.

A Search of Protein-Protein Interaction Networks to Identify OTH Binding Sites Located at 
PPI Interfaces

The majority of OTH binding sites occur on proteins with no discernable ENZ or PPI 

binding sites. To determine whether these binding sites could potentially be located at 

protein-protein interaction interfaces, a database of predicted protein-protein complexes 

known as PrePPI was explored (44). The PrePPI method uses both structural and non-

structural evidence to predict whether two proteins form a complex. For complexes 

predicted based on structural information, PrePPI superimposes monomeric crystal 

structures onto a reference complex based on the structural similarities of the monomeric 

structures with the two structures forming the interaction interface. This model is then 

evaluated based on how well the individual residues of the predicted interaction interface 

overlap with the structural model. If the likelihood ratio of this structural modeling is above 

a given cutoff, PrePPI provides the identifiers of both the individual proteins and the 

reference structure for further evaluation. For the 458 proteins that contained only binding 

sites classified as OTH, we evaluated the structural models given by PrePPI to determine 

whether or not OTH binding sites overlapped with potential PPI interfaces. These 458 

proteins are represented by 395 unique crystal structures consisting of 806 binding sites of 

unknown function. Of these 806 OTH binding sites, 48 were on proteins without models of 

structural complexes in PrePPI. Among the remaining 758 OTH binding sites, we identified 

17 OTH binding sites on 13 proteins that are likely binding sites at protein-protein interfaces 

(Table 5). In each of these 17 cases, a previously classified OTH binding site was predicted 

by PrePPI to be part of a known protein-protein interaction interface, and perhaps directly 

contributing to the PPI itself. It is interesting to note that several of these predicted protein-

protein interactions are well-established despite the lack of a co-crystal structure: These 

include the ANK1-ILK (45) and CHN1-RAC1 (46) interactions. In each of these cases, 

however, there was high degree of homology between the structure containing the OTH 

binding site, and the PrePPI protein-protein complex to which it was superimposed. In most 

cases, however, the protein containing the OTH binding site did not show any homology 

with a protein in a PrePPI complex. In these cases, the similarity between the interaction 
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interfaces of the two proteins and a model protein complex was used. The NCS1-PPP3CA, 

LCN1-OVCH1, and ZBTB32-BCL6 interactions are examples in which the interaction was 

uncharacterized in both the literature and existing PPI databases. These three interactions 

were predicted based on the structural complementarity of both the interaction interface and 

the crystal structure. Overall, we predict that approximately 2% of OTH binding sites with 

unknown function to be part of a previously uncharacterized PPI interface.

Cancer Signaling Pathways

Pathways reveal signaling transduction across a cascade of proteins that elicit a variety of 

cell phenotypes. Individual targets in these pathways are potential sites through which small 

molecule inhibition are expected to enhance or alter the subsequent cell phenotype. 

Alteration of individual genes within these signaling pathways lead to cancer related 

processes such as cell growth and adhesion. We have identified 27 cancer related signaling 

pathways in KEGG (47) and their respective proteins. Using the members in each of these 

signaling pathways, we map binding sites onto these individual genes. We distinguish 

between binding sites with DrugScore greater than 0.8 on proteins with log2 fold change 

greater than 1.5 (i.e., able to be probed) (Figure 3A) and those with DrugScore greater than 

1.0 and log2 fold change greater than 2 (i.e., druggable binding sites) (Figure 3B). While 

some signaling pathways like the cell cycle contained binding sites of all functional types, 

no binding sites could be identified for the Hedgehog pathway on differentially-expressed 

genes. To address cross-talk between signaling pathways, binding sites were also evaluated 

as being either unique to that signaling pathway or on proteins that occur in multiple 

signaling pathways. In a majority of cancer signaling pathways, there were more binding 

sites that occurred in multiple signaling pathways than in a signaling pathway, revealing 

proteins targets that are involved in multiple signaling processes. Only the Citrate Cycle, 

HIF-1, and PPAR signaling pathways had many more binding sites that were unique to the 

signaling pathway itself than in multiple signaling pathways. In signaling pathways such as 

focal adhesion and cytokine-cytokine receptor interactions, almost all of the druggable 

binding sites belonged to proteins that were involved in cross-talk across cancer signaling 

pathways. Finally, signaling pathways such as the cell cycle and Hippo pathways have an 

even mix of binding sites on unique and overlapping proteins.

Correlation with Patient Survival for Proteins Encoded by Differentially-Expressed Genes

We collected patient survival data from TCGA clinical records for each disease to identify 

the impact of gene expression on overall survival of cancer patients. To determine the overall 

survival rate, we first identified the date of death or date of the last checkup for deceased and 

living patients, respectively. For each differentially-expressed gene among the 10 diseases 

we considered, the median expression value was used to divide patient tumors into two 

groups, high and low expression. For a given gene, we then paired a patient’s gene 

expression with their survival outcome to build a Cox proportional hazards regression model 

for differentially-expressed genes. The ratio of the hazard rates between the high and low 

expression groups are summarized by a metric known as the hazard ratio. The hazard ratio 

derived from the regression model defines the probability that an event will occur in the next 

time interval. In this model, this time interval is made sufficiently small that the hazard rate 

is considered instantaneous. Therefore, the hazard ratio is used to describe the ratio between 
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the hazard rates of two groups, such as the survival of patients expressing a gene at high and 

low levels. In total, we identified 1343 differentially-expressed genes across all 10 diseases 

with a hazard ratio above 1 and log2 fold change above 1.5. Among them, 202 contained at 

least one binding site (Figure 4A). Both KIRC (121 total) and LUAD (57 total) had the most 

number of proteins that were both overexpressed and correlated with patient outcome. There 

were 45 druggable genes that were found to be both overexpressed and correlated with 

patient outcome in more than one cancer type. The most frequently occurring are MELK and 

RRM2 in 4 separate cancers, and another 9 proteins with significant fold changes and hazard 

ratios in 3 cancers. The binding sites on these 202 proteins show a wide distribution in both 

their druggability and binding site type (Figure 4B). Of the 601 unique binding sites on these 

proteins, 102 are ENZ, 46 are PPI, 444 are OTH, and 9 have been classified as both ENZ 

and PPI. Both the SiteScore and DrugScore of the PPI binding sites have upper limits of 

about 1.1 for both metrics, while there are many ENZ and OTH binding sites that exceed 

this cutoff. Similarly, we focused on the subset of the proteins that were highly 

overexpressed and featured druggable binding sites. In total, we identified 60 proteins with 

at least one druggable binding site across 10 diseases with a log2 fold change greater than 

2.0 and hazard ratio greater than 1.0 (Figure 4D). Similarly, there are far fewer binding sites 

among proteins that fit these criteria. Of the 92 binding sites, 20 are ENZ, 6 are PPI, 65 are 

OTH, and 1 is both ENZ and PPI (Figure 4E).

Protein-Protein Interaction Network

In addition to looking at differentially-expressed genes in the context of their expression, we 

addressed their impact on the global protein-protein interaction network. Networks have 

been used to not only model biological relationships, such as the relationship between drugs 

and diseases (48) or genes and diseases (49), to understand their underlying mechanisms, but 

also to identify new drug targets by identifying the relationships between a drug’s side 

effects (50) or gene expression profile (51). Using experimental data, a global protein-

protein interaction network was constructed from physical interactions in humans by 

integrating data from seven major interaction databases. This resulted in 203068 non-

redundant protein-protein interactions. To address the robustness of the network, we further 

filtered the interactions by only kept those interactions that appeared in at least two of the 

seven databases. This resulted in a network with 38164 non-redundant protein-protein 

interactions. We then identified the network properties of each protein within this network to 

measure the centrality and essentiality of each protein to the overall network. Among the 

topological properties of a given protein are its degree, which describes the number of 

interactions that are formed by that protein, and its betweenness centrality, which describes 

the number of shortest paths that go through the given protein. In a biological context, 

betweenness centrality is a measure of the available paths that a signal can travel through a 

given network (52). Thus, proteins with high betweenness are thought to be essential to 

biological function and are frequently targeted in drug discovery (53). For example, TP53 
has a betweenness centrality and degree of 4.1×10−2 and 236, respectively, while EGFR is 

2.3×10−2 and 181 for the same properties. We examine the topological properties of all 

proteins that are overexpressed (log2 FC ≥ 1.5) and whose expression correlate with patient 

outcome (Figure 4C). Of these 1343 proteins, 1001 (~75%) did not have a high quality 

crystal structure and an additional 141 (~10%) had a structure but no binding sites. Of the 
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remaining proteins, 117 (9%) and 84 (6%) have binding sites and druggable binding sites, 

respectively. When the differential-expression cutoff is increased to 2 and the minimum 

DrugScore is increased to 1.0, 60 proteins have at least one druggable binding site (Figure 

4F). Among the proteins with the highest centrality and degree are PLK1, KPNA2, AURKA, 

and AURKB.

New Unexplored Targets for the Development of Small-Molecule Probes and Cancer 
Therapeutics

For each of the previously identified 60 targets, we integrate their structural, genomic, 

biological, and clinical data to examine their druggability. We divide these targets into those 

that are already established in cancer (Table 6) and those that are uncommon or novel (Table 

7) based on the number of citations found in PubMed. Similarly, we analyzed the 202 

proteins that were identified using the lower cutoffs in fold change and binding site 

DrugScore (Supplementary Table S2). We rank-ordered the top targets for each cancer based 

on their interconnectivity in the PPI network. Among these potential targets, we see a variety 

of biological processes represented, including many involved in the immune response, 

metabolism, homeostasis and cell cycle. Similarly, some are well-studied in cancer but lack 

small molecule inhibitors, while others are have no co-crystallized small molecule inhibitors 

but inhibitors have been reported in the literature. For example, the well-studied 

transcription regulator TOP2A is altered in cancer cells resulting in chromosome instability 

and is among the genes that are overexpressed and correlate with survival, but has many 

available topoisomerase specific inhibitors (54). Other genes may act as markers for cancer 

and indicate late progression into cancer or are vital to the immune response against 

tumorigenesis. However, there are many targets whose biology and lack of potential 

inhibitors may prove to be interesting targets for future considerations. We highlight 

examples of proteins with ENZ binding sites that have seldom been considered in cancer and 

lack therapeutics (e.g. PYCR1, QPRT, HSPA6), or are well-studied in cancer but lack small 

molecule inhibitors (e.g. PKMYT1, STEAP3, NNMT) (Supplementary Figure S4). 

Similarly, we highlight examples of proteins with PPI binding sites that have not been 

previously targeted by small molecule inhibitors and are either seldom considered in cancer 

(e.g. CASC5, ZBTB32, and CSAD), or are well-studied in cancer but lack small molecule 

inhibitors (e.g. HNF4A, MEF2B, and CBX2) (Supplementary Figure S5, Supplementary 

Table S3). OTH binding sites can provide an avenue to modulate either enzymatic function 

or protein-protein interactions of the target. Compounds that bind to OTH sites could act 

either in an orthosteric manner if the binding site happens to be the binding site of a 

substrate or protein, or allosterically if the binding site is outside an enzyme active site or 

protein binding site. Among the genes whose overexpression strongly correlated with patient 

outcome and that possessed an OTH binding site, several had never been studied in cancer 

before nor do they have small molecule inhibitors either in the literature or in co-crystallized 

complexes. We highlight four examples that span a variety of tumors: a protein of unknown 

function FAM83A, a water channel AQP2, a serine protease SERPIND1, and a protein 

associated with the immune response TNFAIP8L2 (Supplementary Figure S6).

Among these targets, 26 have been previously probed with small-molecule ligands and X-

ray crystallography (Supplementary Table S4). Interestingly, many of these co-crystallized 
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structures occur at binding sites at or below our higher DrugScore cutoff of 1.0, suggesting 

that a more stringent cutoff may discard otherwise druggable binding sites. Additionally, we 

mapped these druggable binding sites to conserved protein domains, and find that these 

binding sites are mainly parts of the protein kinase, serpin, kinesin, and peptidase domains 

(Supplementary Table S5). When we consider only those without co-crystallized small-

molecule inhibitors, protein kinases and trypsin domains are removed. The majority of 

binding sites across both targeted and untargeted proteins are classified as OTH. In well-

studied systems where the active site is known, these OTH sites represent opportunities for 

allosteric regulation.

We next looked at the secondary structure of residues that compose the individual binding 

sites of these proteins across their individual binding site annotations. By examining the 

residues around a binding site, we generalized the type of secondary structures that were 

used to construct the binding site itself (Supplementary Figure S7). The majority of binding 

sites identified were a mixture of secondary structures or random coils among all proteins 

with or without small molecule inhibitors. Combined, these two secondary structures 

generally making up the large majority of all binding sites in each binding site type. In each 

case, the least frequently observed secondary structure among these binding sites were the 

helix-like (i.e. α-helix, 310 helix, or π-helix) and sheet-like structures (i.e. beta bridges and 

beta bulges). We then examined the secondary structures of the residues of the binding 

partner inside PPI binding sites. About 27 and 46% of the residues of the binding partners in 

the binding site were coil-like and helical (α-helix, 310 helix, or π-helix), respectively. Only 

10% of the binding sites were characterized by strand-like structures (β-sheet or β-bridge). 

The remaining PPI binding sites were a combination of these.

Missense Mutations on Protein Structures

A set of somatic mutations were obtained from a recent study from TCGA’s Pan-Cancer 

initiative (55). We identified missense mutations from this study onto patients in 7 of 10 

diseases and mapped these to protein structures. We classified these mutations as being (i) 

adjacent to a binding site; (ii) elsewhere on the protein surface; or (iii) buried in the interior 

of the protein (Figure 5A). We find that the majority of these missense mutations are found 

on the surface of proteins but not within a predicted binding site. The frequency of mutations 

occurring in the interior of a protein is higher than the frequency of mutations that occur at 

binding sites. We explored some of the proteins with mutations occurring most frequently in 

the binding site (Figure 5B). They include well known genes that have been previously 

reported to be heavily mutated in cancer such as PIK3CA (56), SI (57), and PTEN (58). On 

the most commonly mutated target, PIK3CA, mutation rates are approximately five-fold less 

at the binding site than the entire protein. Also, among the top targets is BRAF, which 

features the common V600E mutation, which has been used for the rational design of small-

molecule inhibitors of the mutant protein (59–61).

We matched these proteins with missense mutations with their gene expression levels and 

correlation with patient outcome. We find 29 binding sites on 26 proteins that are i) 

overexpressed (log2 fold change ≥ 2); (ii) correlate with patient outcome (hazard ratio > 1); 

and (iii) have a missense mutation adjacent to a binding site in a given disease (Table 8). 
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These 29 binding sites include 9 ENZ, 3 PPI, and 17 OTH pockets. Among these mutations 

adjacent to binding sites is the W167L mutation on the PPI interface between MAD2L1 and 

MAD1L1 in LUAD (Figure 5C). This interaction is part of the spindle assembly checkpoint 

in the cell cycle (62). Considering the significant reduction in contact area upon replacing 

tryptophan with leucine, and the fact that tryptophan residues tend to often occur at protein-

protein interaction interfaces, we expect that this mutation may impair the protein-protein 

interaction. Another mutation is the R121P mutation adjacent to the DNA-binding OTH 

binding site on EXO1 in LUAD (Figure 5D). The DNA-binding protein is also involved in 

DNA repair during cell cycle regulation (63). Unlike the previous mutation, arginine 

contains a positively charged group while proline is a neutral non-polar amino acid.

We examined the mutation rates of individual amino acids by looking at the wild-type and 

mutated amino acids as a result of a mutation at each of the three locations on the protein 

(Figure 5E). We find differences in the relative frequencies of specific point mutations 

between each location. For example, mutations to alanine is less favored in the pocket or on 

the surface of the protein than it is in the interior, especially at charged or polar groups. 

Among the most common mutations in the binding site and on the surface is from lysine to 

glutamic acid, which occurs at a much lower frequency in the interior of the protein.

DISCUSSION

The sequencing of the genome of human tumors has provided access to an unprecedented 

number of new opportunities for the development of cancer therapeutics. While biological 

methods such as siRNA or CRIPSR/Cas9 methods are useful tools to explore the role of 

potential targets, chemical tools provide a complementary approach to interrogate new 

targets. Small molecules do not affect the expression of the target thereby causing little 

disruption to the signaling networks. In addition, small molecules have significantly greater 

precision as they can be designed to binding to a single cavity within a protein and modulate 

the function of the protein by disruption of protein-protein interactions or enzyme activity. 

Small molecules can work either in an orthosteric manner if they directly interfere with the 

binding of a protein or a substrate. They can also work in an allosteric manner by binding to 

cavities located outside protein-protein and protein-substrate binding interfaces and 

modulating the conformation and dynamics of the target.

For small molecules to engage their targets with high affinity, a well-defined cavity that 

possesses suitable shape and physicochemical properties. The lack of such cavities is partly 

responsible for the difficulty in developing small-molecule therapeutic agents that bind 

directly to highly promising cancer targets such as mutated RAS GTPase or transcription 

factors such as c-MYC. Conversely, the success of kinases as oncology targets can be 

attributed to the well-defined ATP-binding site. Using binding sites of kinases and other 

druggable targets, several algorithms have been developed to predict the druggable nature of 

a binding site using the three-dimensional structure of the protein that harbors them (64). 

Among them, SiteScore and DrugScore, which have been developed using data from binding 

sites occupied by approved drugs (25,28). Druggable sites, the highly conserved nature of 

the ATP-binding site has been the main impediment in the development of kinase drugs. 

Developing highly selective kinase inhibitors is notoriously difficult, although some 
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successes have been reported. Identifying novel targets with unique druggable binding sites 

located on potential cancer targets may lead to cancer therapeutics with greater efficacy and 

lower toxicity.

Here, in an effort to facilitate the chemical probing of new targets in cancer, we explore 

RNA-seq data of 10 tumor types at TCGA to identify unique and druggable binding sites on 

proteins encoded by protein products of overexpressed genes. The large-scale effort of 

TCGA to sequence the genome of tumors from more than 30 cancers provides an 

unprecedented opportunity to uncover new targets for the development of cancer 

therapeutics. We identified genes whose mRNA levels are overexpressed in tumors 

compared with normal tissue. Patient data provided by TCGA was used to further narrow the 

list of targets to genes whose overexpression correlates strongly with patient survival. This 

was accomplished by constructing survival curves and evaluating a hazard ratio for each 

overexpressed gene. Genes with hazard ratio of 1 or greater where considered to correlate 

with worse patient survival. For each of the 10 diseases that we have considered in this 

work, we identified protein products of genes whose mRNA levels are differentially-

expressed that strongly correlate with patient survival. Additionally, we explored these 

targets in the context of cancer related signaling pathways and the protein-protein interaction 

network.

The exponentially growing list of three-dimensional structures of proteins prompted us to 

search the PDB to identify structures for protein products of up-regulated genes that we 

identified. We used a stringent threshold for these scores to ensure that small molecules that 

bind to the druggable binding sites have the potential to be developed into therapeutic 

agents. Among all up-regulated genes we found that 23% of their protein products had a 

structure at the PDB. Among the 1218 proteins with structures, 405 (33%) had druggable 

binding sites. A similar ratio was found among individual diseases. For example, 51 proteins 

with a crystal structure from among 211 in TNBC had a druggable binding site, while 114 

proteins with a crystal structure in LUAD were found to have a binding site among a total of 

363. When overexpressed genes are further filtered by hazard ratio, a total of 54 proteins that 

possess druggable binding sites and 65 possessed binding sites are identified among 1344 

differentially-expressed genes. There were 15 druggable proteins that are present in multiple 

tumor types. The most frequently-occurring were MELK in 4 tumors.

The presence of a binding site is not sufficient to serve as a suitable target site for chemical 

probe development and drug discovery. The binding site must possess functional relevance. 

Its position must be located at a site such that the binding of a small molecule will impair the 

function of the protein harboring the binding site. For example, small molecules that bind to 

a binding site located at an enzyme active site or protein-protein interface will disrupt 

enzyme activity or protein-protein interactions and thereby impair the function of the target 

protein. Binding sites located outside an enzyme active site or protein-protein interface, may 

or may not modulate the activity of a protein. We classified all binding sites into enzyme 

active sites, protein-protein interaction sites, or other sites with yet unknown function that 

may provide an opportunity to modulate protein function through an allosteric mechanism.
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Many of the enzyme active sites occur on well-established oncology targets or have been 

inhibited by small molecules. However, there were several examples of enzymes whose 

function was explored in cancer but were never targeted with small molecules; these include 

PKMYT1, STEAP3, and NNMT. There were also several druggable active site binding sites 

that occurred on enzymes that have seldom been considered in cancer, such as PYCR1, 

HSPA6, and QPRT. We identified several proteins whose overexpression correlate with 

patient outcome that occurred at protein-protein interfaces. This discovery is highly 

significant as protein-protein interactions have been historically challenging due to the lack 

of well-defined binding sites at protein-protein interfaces (65,66). Protein-protein interfaces 

can offer an opportunity to develop highly selective compounds since many of these 

interfaces are structurally unique. Among all differentially-expressed proteins with binding 

sites, 18% have binding sites that occurred at protein-protein interfaces. For the proteins 

encoded by genes that correlate with patient survival, we identified 28 binding sites (7 

druggable) on 25 proteins that occurred at protein-protein interfaces. Among these proteins, 

13 have been studied in cancer. Examples include MEF2B, HNF4A, and CBX2. The 

remaining 15 proteins have seldom been studied in cancer, such as CASC5 and ZBTB32. 

Interestingly, several protein structures possess both PPI and ENZ binding sites either on the 

same domain (e.g. GAD1, NAMPT, and NR1I2) or on different domains (EPHB2, PLK1, 

and NTRK1). Small molecules that bind to a binding site on these proteins may serve as 

allosteric modulator of PPI interactions.

We found that the majority of binding sites were not located either at an enzyme active site 

or protein-protein interaction site. We refer to these binding sites as other (OTH). Of the 601 

unique binding sites on the 202 proteins encoded by genes whose overexpression correlates 

with patient survival, 102 are ENZ, 46 are PPI, 444 are OTH, and 9 have been classified as 

both ENZ and PPI. It is likely that many of these OTH binding sites occur at protein-protein 

interfaces. To explore this possibility, we searched protein-protein interaction databases such 

as PrePPI for binding partners. Among 759 OTH binding sites located on overexpressed 

proteins, we identified 17 candidates that have the potential to be located at PPI interfaces. 

Examples of these proteins include ANK1, CHN1, and NCS1. While OTH binding sites that 

occur at enzyme active sites or protein-protein interaction sites can be used to develop 

probes that directly modulates the function of the target harboring these binding sites, the 

remaining OTH binding sites can provide an opportunity to modulate receptors through an 

allosteric mechanism (31,67). Whether a small molecule that binds to a binding site will 

allosterically modulate enzyme function or a PPI interaction is difficult to predict. Small 

molecules can serve as positive or negative allosteric regulators (34,68,69). These OTH 

binding sites can also be used for the development of small molecules that can be attached to 

probes for proteasome degradation (70).

Finally, we mapped mutations that were previously identified at TCGA (55) onto the three-

dimensional structure of proteins that are encoded by overexpressed genes that correlate 

with patient outcome. A recent study explored the role of mutations on tumorigenesis (71) 

and more recently using a structural genomics based approach (72,73). Our work 

complements these studies by identifying druggable binding pockets and classifying pockets 

into whether they occur at enzyme active sites or protein-protein interaction sites. Mutations 

that occur within these pockets are expected to have direct consequences to the function of a 
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protein. These pockets could provide promising targets for the development of small-

molecule therapeutic agents. Interestingly, several mutations occurred in enzyme active sites. 

These mutations may either enhance or inhibit enzyme activity. Most of the enzyme 

mutations appear to involve dramatic changes in physico-chemical properties such as 

H113Q, G568W, R140L, M80R for CA6, KIFC1, NEK2, and SULT4A1. Others involved 

subtler mutations such as V46A, A287S, and M52T for CHEK1, PCK1, and PSPH, 
respectively. Since we have focused on proteins that are expected to be overexpressed, it is 

likely that these mutations will further enhance the activity of these enzymes. Three 

mutations were identified to occur at protein-protein interfaces, R293P, W167L, and Q107H, 

which correspond to ADORA2A, MAD2L1, and RHCG, respectively. The first two may 

have disruptive effects considering that proline residues tend to disrupt secondary structures 

and tryptophan residues are generally believed to tighten protein-protein interactions. The 

overwhelming majority occurred at OTH binding sites. These mutations provide an 

opportunity to validate the importance of these pockets. It suggests that these pockets may 

be located at unknown active sites or protein-protein interfaces. Considering that many of 

these OTH pockets occur on enzymes, it is more likely that they may be located at a protein-

protein interface and could be useful targets for the disruption of protein-protein 

interactions.

MATERIALS AND METHODS

Gene Expression

Level 3 gene expression data expressed using RNA-seq (RNASeq Version 2) technology for 

ten cancer types was retrieved from The Cancer Genome Atlas (TCGA). Triple-negative 

breast cancer (TNBC) patients were identified from a subset of patients in BRCA by 

filtering clinical records for breast cancer patients who were negative for estrogen receptor 

(ER), progesterone receptor (PR), and Her2/neu. The gene expression data was used to build 

a matrix of read counts for each sample against each mapped gene. Only samples with 

designations of either the primary solid tumor or the solid tissue normal were kept in this 

matrix. Differential expression analyses between cancer and normal samples in the RNA-seq 

expression profiles were conducted using default parameters in the edgeR (74) package in R 

(75). Differentially-expressed (overexpressed) genes were defined as those genes with p < 

0.001 and Q < 0.05. Two log2 fold changes of ≥ 2.0 and ≥ 1.5 were used to filtered genes for 

further analysis. Gene symbols provided by TCGA were mapped to their respective UniProt 

IDs using UniProt’s mapping tool (http://www.uniprot.org/mapping/).

Protein Structures

An annotated set of 20,192 reference human protein identifiers was retrieved from 

UniProtKB/SwissProt (35). The FASTA sequences were retrieved for each of these proteins 

and used to identify structures in the RCSB Protein Data Bank (PDB) (76). Each FASTA 

sequence was queried against the pdbaa dataset using BLASTP (Protein-Protein BLAST 

v2.2.25+) (77). To limit the search to protein structures that possess significant sequence 

identity and coverage to the query sequence, only structures with E-value < 10−5, >90% 

sequence identity, and PDB sequence coverage >80% were kept. We then identified the 

experimental methodology, taxonomy of the identified protein chain, and the structural 
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resolution if the structure was from x-ray diffraction. Previously identified structures were 

then filtered for only crystal structures from human proteins with a resolution better than 3 

Å. To reduce the number of redundant structures identified by BLASTP and generate a 

representative set of crystal structures associated with each protein, CD-HIT (v4.6.1) (78) 

was used with default parameters to cluster the FASTA sequences of the PDB structures 

identified for each of the proteins. Only cluster centers identified by CD-HIT were used to 

locate binding sites on the structures for the protein. In total, 4124 proteins had at least one 

crystal structure that met all of these criteria.

Binding Site Identification

Identification of druggable binding sites on the crystal structures was carried out using the 

Schrödinger Software Suite. For each cluster identified by CD-HIT, the cluster centers (i.e. 

the representative structures) were used to identify binding sites. Structures were first 

retrieved from PDB and binding partners were removed to identify the monomeric 

representative structures. All other heteroatoms, including solvent molecules and bound 

ligands, were removed. Selenomethonine residues were converted to methonines. These 

preprocessed PDB monomeric structures were then processed using the Protein Preparation 

Wizard workflow. Missing side chains and loops were added with the Prime (79) module. 

Disulfide bonds were added and each crystal structure was protonated using PROPKA at pH 

7.0. Binding sites were identified using the SiteMap (25) module in Schrödinger on the 

processed structure. Up to 10 binding sites were kept, while all other parameters were left 

default. Only binding sites (28) with SiteScore and DrugScore above 0.8 were kept. The 

average coordinates of the SiteMap spheres were used to identify the centroid of the binding 

site. Druggable binding sites were distinguished as those with a DrugScore above 1.0. In 

total, we identified 5498 binding sites on 2607 proteins.

Binding Site Annotation

PyMOL (80) scripts were generated to create individual sessions for each protein with 

druggable binding sites. The unprocessed protein structure, including all bound ligands and 

other non-solvent molecules was overlaid back atop the crystal structure. In addition, all 

redundant structures from the CD-HIT clustering were added and aligned back to the 

druggable protein. The location of enzymatic binding residues were retrieved from UniProt 

(35) and Catalytic Site Atlas (36) and highlighted on the processed protein structures.

Each binding site identified by SiteMap was visually inspected and manually annotated to 

determine its functional role in the protein. If an enzymatic residue was in contact with the 

SiteMap spheres, or if an enzymatic molecule or inhibitor occupied the space of the spheres, 

the binding site was labeled ‘enzymatic’ (ENZ). If the binding site was at a protein-protein 

interaction (PPI) interface on the original structure or on any of the aligned structures, the 

binding site was labeled ‘PPI’. Otherwise, if the binding site was neither enzymatic nor part 

of the interaction interface, it was labeled ‘Other’ (OTH). Binding sites of the recognition 

site of human leukocyte antigens (HLAs) and heme cofactor binding site of Cytochrome 

P450s were labeled ‘Other’.
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Secondary structures for each of the binding sites and their interaction partners were 

retrieved from DSSP (81). The secondary structure of each residue of a crystal structure are 

classified into helix, sheet, or coil in DSSP. The number of residues falling into each 

category was retrieved for the residues within 5 Å of the binding site. If there is at least a 

60% consensus in the secondary structures for these residues, it was assigned into that 

category. Otherwise, the binding site was considered mixed.

Survival Analysis

Kaplan-Meier curves were built using the survival (82) package in R (75). For each disease, 

each patient’s time to last follow-up or time to death was collected from the clinical data 

depending on whether or not the patient was deceased. A patient’s overall survival was 

paired with their respective log2CPM and for diseases using RNA-seq. Expression levels for 

each gene was separated into ‘high expression’ and ‘low expression’ groups using the 

median expression of the gene across all patients for a given disease. A Cox proportional 

hazards regression model was fitted to the survival profile to determine the hazard ratio (HR) 

of each gene. Genes were filtered using p < 0.05 and HR > 1.0.

Signaling Pathway

27 cancer related signaling pathways were collected from KEGG (47). Individual proteins 

within each of these pathways were collected and mapped to their respective UniProt IDs 

using the REST API in KEGG. Any protein that could not be mapped to a UniProt entry 

from the reference protein identifiers was filtered out.

Protein-Protein Interaction Network

A protein-protein interaction network was constructed using the NetworkX (83) module in 

Python by retrieving human PPI data with experimental evidence from seven major 

interaction databases: Biomolecular Interaction Network Database (BIND) (84), BioGRID 

(85), Database of Interacting Proteins (DIP) (86), Human Protein Reference Database 

(HPRD) (87), IntAct (88), Molecular INTeraction database (MINT) (89), and Reactome 

(90). Only those interactions with at least two occurrences among the seven databases were 

kept. The resulting network featured 9665 nodes and 38164 edges.

Missense Mutations

Mutations were obtained from a recent study by Kandoth and coworkers (55). The work 

identified somatic variants from 12 cancers as part of TCGA’s Pan-Cancer initiative. We 

only use missense mutation data as other mutations result in the insertion or deletion of 

amino acids from the protein sequence, which would be very difficult to model onto the 

three-dimensional structure of the protein. Mutations were mapped using the sample ID 

barcode provided by TCGA to match patients with both mutation and gene expression data. 

The data for three diseases were not used since THCA was not included in the original 

study, while COAD and UCEC had low numbers of patient samples with matched gene 

expression data. Genes were mapped from Ensembl Transcript IDs to UniProt IDs using 

UniProt’s mapping tool. For each protein, the subsequent amino acid position on the protein 

sequence was mapped to the protein structure using the pairwise function in BLASTP. Each 
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mutation was then classified by minimizing the Euclidean distance from the corresponding 

alpha carbon of the mutated residue to the site points (grid spheres) of each binding site on 

the protein structure. In addition, the solvent-accessible surface area (SASA) of the mutated 

residue was calculated using NACCESS (91). We used the SASA and distance to the closest 

binding site to classify each mutation as being (i) adjacent to a binding site; (ii) elsewhere on 

the protein surface; or (iii) buried in the interior of the protein. If the distance between the 

mutation and the closest binding site was less than 4 Å, the mutation was classified as being 

adjacent to the binding pocket. Otherwise, if the SASA of the mutated residue was greater 

than 10 Å2, the mutation was classified as being on the surface of the protein. If the mutation 

did not fit into either of these criteria, it was classified as located in the interior of the 

protein.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Examples of proteins with both ENZ and PPI binding sites
Proteins are represented in cartoon format. The monomer structure with identified binding 

sites is in white. SiteMap binding sites are shown as spheres, bound ligands are shown as 

ball-and-sticks. A, The homodimeric structure of CDA (PDB: 1mq0.B) with a bound 

inhibitor at a binding site classified as both ENZ and PPI. B, The homodimeric structure of 

NAMPT (PDB: 4o0z.B) with an ENZ (peach, bound inhibitor) and a PPI (blue) binding site 

on the same domain. C, D, The protein kinase (PDB: 2vwy.A) and ligand binding domain 

(PDB: 2hle.A) of EPHB4 featuring an ENZ and a PPI binding site on separate domains. The 

binding site on the protein kinase domain is not shown as spheres, but is occupied by the 

bound inhibitor (green).
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Figure 2. Examples of proteins with potentially allosteric OTH binding sites
Proteins are represented in cartoon format. The monomer structure with identified binding 

sites is in white. SiteMap binding sites are shown as spheres, bound ligands are shown as 

ball-and-sticks. A, SULT2B1 (PDB: 1q1q.A) with an ENZ binding site occupied by a 

nucleotide and three additional OTH binding sites (green, blue, yellow). B, RET (PDB: 

2iiv.A) with an ENZ binding site occupied by the bound inhibitor and an additional OTH 

binding site (green). C, CHP2 (PDB: 2bec.A) with two PPI binding sites (green, blue) at the 

interface with SL9CA1 (PDB: 2bec.B) and an additional OTH binding site (peach). D, The 

superimposed structure of PLAUR (PDB: 1ywh.M) with two PPI binding sites at the 

interfaces with VTN (PDB: 3bt1.B, green) and PLAU (PDB: 3bt1.A, yellow) and an 

additional OTH binding site (peach).
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Figure 3. Binding sites in cancer related signaling pathways
Proteins with binding sites were mapped to 27 cancer related signaling pathways in KEGG. 

Identified binding sites were divided based on whether the protein was exclusive to one 

signaling pathway or occurred in multiple signaling pathways. A, Identified binding sites 

had DrugScore greater than 0.8 on proteins with log2 fold change greater than 1.5. B, 

Identified binding sites had DrugScore greater than 1.0 and log2 fold change greater than 2.

Xu et al. Page 27

Mol Biosyst. Author manuscript; available in PMC 2017 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Proteins with binding sites that are both overexpressed and correlate with patient 
outcome
A, Fold change versus hazard ratio across all cancer types on proteins with log2FC ≥ 1.5, 

HR > 1.0, and DrugScore > 0.8. B, SiteScore and DrugScore of binding sites by functional 

annotation for proteins in A. C, Degree versus betweenness centrality from PPI network for 

all proteins with log2FC ≥ 1.5 and HR > 1. Proteins are colored coded based on whether 

there was a high quality crystal structure (blue), a crystal structure but no identifiable 

binding sites (orange), binding sites with DrugScore between 0.8 and 1.0 (gray), and 

druggable binding site with DrugScore greater than 1.0 (yellow). D, Fold change versus 

hazard ratio across all cancer types on proteins with druggable binding sites with log2FC ≥ 

2.0, HR > 1.0, and DrugScore > 1.0. E, SiteScore versus DrugScore of druggable binding 

sites with log2FC ≥ 2.0, HR > 1.0, and DrugScore > 1.0. F, Degree versus betweenness 

centrality from PPI network for all proteins with log2FC ≥ 2.0, HR > 1.0, and DrugScore > 

1.0.
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Figure 5. Proteins with missense mutations
A, Missense mutations were mapped to patients in 7 of 10 diseases (COAD, THCA, and 

UCEC not included). Individual mutations were mapped to the protein structure and 

classified as being adjacent to the binding site, elsewhere on the protein surface, or buried in 

the interior of the protein structure. B, Percentage of samples with missense mutations 

adjacent to a binding site in a given disease, showing the top 20 proteins rank-order using 

the sum of frequencies. C, The W167L (green stick) mutation on the PPI interface between 

MAD2L1 (white) and MAD1L1 (cyan) is shown in cartoon (PDB ID: 1GO4). The PPI 

binding site is shown as transparent spheres. D, The R121P (green stick) mutation adjacent 

to the DNA-binding OTH site (tan, transparent spheres) on EXO1 (white cartoon) (PDB ID: 

3QEB). DNA in the binding site from the crystal structure is also shown as cartoon. E, The 

counts of missense mutations at the amino acid level divided classified as being adjacent to 

the binding site, elsewhere on the surface of the protein, or buried in the protein interior. The 

original amino acid is listed row-wise and the subsequent mutation is listed column-wise.

Xu et al. Page 29

Mol Biosyst. Author manuscript; available in PMC 2017 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xu et al. Page 30

Ta
b

le
 1

St
ru

ct
ur

al
 C

ov
er

ag
e 

of
 T

C
G

A
 a

nd
 th

e 
H

um
an

 P
ro

te
om

e

T
C

G
A

 D
ru

gg
ab

le
 B

in
di

ng
 S

it
es

 (
lo

g 2
F

C
 ≥

 2
.0

, D
S 

≥ 
1.

0)
T

C
G

A
 B

in
di

ng
 s

it
es

 (
lo

g 2
F

C
 ≥

 1
.5

, D
S 

≥ 
0.

8)
A

ll 
P

ro
te

in
s

To
ta

l N
um

be
r 

of
 P

ro
te

in
s

5,
21

8
7,

04
4

20
,1

92

Pr
ot

ei
ns

 w
ith

 S
tr

uc
tu

re
1,

21
8

1,
62

4
4,

12
4

Pr
ot

ei
ns

 w
ith

 D
ru

gg
ab

le
 B

in
di

ng
 S

ite
s

40
5

1,
04

4
2,

60
7

N
um

be
r 

of
 D

ru
gg

ab
le

 B
in

di
ng

 S
ite

s
50

2
2,

21
4

5,
49

8

 
E

N
Z

12
6

43
4

 
PP

I
55

23
1

 
O

T
H

33
1

1,
57

6

Mol Biosyst. Author manuscript; available in PMC 2017 October 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xu et al. Page 31

Ta
b

le
 2

D
is

tr
ib

ut
io

n 
of

 P
ro

te
in

 S
tr

uc
tu

re
s 

an
d 

D
ru

gg
ab

le
 B

in
di

ng
 S

ite
s 

A
m

on
g 

C
an

ce
r 

Ty
pe

s 
(l

og
2F

C
 ≥

 2
.0

, D
S 

≥ 
1.

0)

C
an

ce
r 

T
yp

e
C

an
ce

r 
N

am
e

To
ta

l N
um

be
r 

of
 

P
ro

te
in

s
P

ro
te

in
s 

W
it

h 
St

ru
ct

ur
e

P
ro

te
in

s 
W

it
h 

D
ru

gg
ab

le
 

B
in

di
ng

 S
it

es
N

um
be

r 
of

 D
ru

gg
ab

le
 

B
in

di
ng

 S
it

es

B
in

di
ng

 S
it

e 
T

yp
e

E
N

Z
P

P
I

O
T

H

B
R

C
A

B
re

as
t i

nv
as

iv
e 

ca
rc

in
om

a
13

14
28

0
79

93
29

14
54

C
O

A
D

C
ol

on
 a

de
no

ca
rc

in
om

a
97

1
18

7
47

64
15

8
45

G
B

M
G

lio
bl

as
to

m
a 

m
ul

tif
or

m
e

11
68

42
9

16
1

14
5

34
13

99

H
N

SC
H

ea
d 

an
d 

ne
ck

 s
qu

am
ou

s 
ce

ll 
ca

rc
in

om
a

69
7

12
8

28
34

10
4

21

K
IR

C
K

id
ne

y 
re

na
l c

le
ar

 c
el

l c
ar

ci
no

m
a

14
37

37
6

13
2

15
8

32
19

10
9

L
U

A
D

L
un

g 
ad

en
oc

ar
ci

no
m

a
17

80
36

3
11

4
16

9
38

15
11

7

L
U

SC
L

un
g 

sq
ua

m
ou

s 
ce

ll 
ca

rc
in

om
a

20
96

40
2

11
1

15
8

49
16

96

T
H

C
A

T
hy

ro
id

 a
de

no
ca

rc
in

om
a

88
8

20
7

65
10

3
27

7
72

T
N

B
C

T
ri

pl
e-

ne
ga

tiv
e 

br
ea

st
 c

ar
ci

no
m

a
83

9
21

1
51

64
21

10
38

U
C

E
C

U
te

ri
ne

 c
or

po
us

 e
nd

om
et

ri
oi

d 
ca

rc
in

om
a

14
49

33
2

95
13

6
37

17
86

Mol Biosyst. Author manuscript; available in PMC 2017 October 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xu et al. Page 32

Ta
b

le
 3

Pr
ot

ei
ns

 w
ith

 B
in

di
ng

 S
ite

 th
at

 is
 b

ot
h 

E
N

Z
 a

nd
 P

PI

Sy
m

bo
l

N
am

e

In
te

ra
ct

io
n 

P
ar

tn
er

P
D

B
Sy

m
bo

l
N

am
e

A
N

PE
P

A
m

in
op

ep
tid

as
e 

N
4F

Y
SC

A
G

T
A

ng
io

te
ns

in
og

en

C
D

A
C

yt
id

in
e 

de
am

in
as

e
1M

Q
0A

C
D

A
C

yt
id

in
e 

de
am

in
as

e

C
T

SV
C

at
he

ps
in

 L
2

3K
FQ

C
†

C
ST

A
C

ys
ta

tin
-A

D
D

R
1

E
pi

th
el

ia
l d

is
co

id
in

 d
om

ai
n-

co
nt

ai
ni

ng
 r

ec
ep

to
r 

1
3Z

O
SA

D
D

R
1

E
pi

th
el

ia
l d

is
co

id
in

 d
om

ai
n-

co
nt

ai
ni

ng
 r

ec
ep

to
r 

1

D
N

M
1

D
yn

am
in

-1
2X

2E
D

D
N

M
1

D
yn

am
in

-1

G
A

PD
H

G
ly

ce
ra

ld
eh

yd
e-

3-
ph

os
ph

at
e 

de
hy

dr
og

en
as

e
1Z

N
Q

R
†

G
A

PD
H

G
ly

ce
ra

ld
eh

yd
e-

3-
ph

os
ph

at
e 

de
hy

dr
og

en
as

e

G
L

A
A

lp
ha

-g
al

ac
to

si
da

se
 A

3H
G

3B
G

L
A

A
lp

ha
-g

al
ac

to
si

da
se

 A

G
SG

2
Se

ri
ne

/th
re

on
in

e-
pr

ot
ei

n 
ki

na
se

 h
as

pi
n

4O
U

C
B

†
H

IS
T

2H
3A

H
is

to
ne

 H
3.

2

H
D

C
H

is
tid

in
e 

de
ca

rb
ox

yl
as

e
4E

1O
E

†
H

D
C

H
is

tid
in

e 
de

ca
rb

ox
yl

as
e

H
O

G
A

1
4-

hy
dr

ox
y-

2-
ox

og
lu

ta
ra

te
 a

ld
ol

as
e,

 m
ito

ch
on

dr
ia

l
3S

O
5A

†
H

O
G

A
1

4-
hy

dr
ox

y-
2-

ox
og

lu
ta

ra
te

 a
ld

ol
as

e,
 m

ito
ch

on
dr

ia
l

K
IF

3C
K

in
es

in
-l

ik
e 

pr
ot

ei
n 

K
IF

3C
3B

6V
B

K
IF

3C
K

in
es

in
-l

ik
e 

pr
ot

ei
n 

K
IF

3C

M
M

P1
4

M
at

ri
x 

m
et

al
lo

pr
ot

ei
na

se
-1

4
3M

A
2B

T
IM

P1
M

et
al

lo
pr

ot
ei

na
se

 in
hi

bi
to

r 
1

PC
SK

9
Pr

op
ro

te
in

 c
on

ve
rt

as
e 

su
bt

ili
si

n/
ke

xi
n 

ty
pe

 9
3B

PS
P†

PC
SK

9
Pr

op
ro

te
in

 c
on

ve
rt

as
e 

su
bt

ili
si

n/
ke

xi
n 

ty
pe

 9

PG
C

G
as

tr
ic

si
n

1A
V

FQ
PG

C
G

as
tr

ic
si

n

PG
D

6-
ph

os
ph

og
lu

co
na

te
 d

eh
yd

ro
ge

na
se

, d
ec

ar
bo

xy
la

tin
g

2K
JV

C
PG

D
6-

ph
os

ph
og

lu
co

na
te

 d
eh

yd
ro

ge
na

se
, d

ec
ar

bo
xy

la
tin

g

PK
L

R
Py

ru
va

te
 k

in
as

e 
PK

L
R

4I
M

A
C

PK
L

R
Py

ru
va

te
 k

in
as

e 
PK

L
R

PN
L

IP
R

P2
Pa

nc
re

at
ic

 li
pa

se
-r

el
at

ed
 p

ro
te

in
 2

2P
V

SB
†

PN
L

IP
R

P2
Pa

nc
re

at
ic

 li
pa

se
-r

el
at

ed
 p

ro
te

in
 2

PN
P

Pu
ri

ne
 n

uc
le

os
id

e 
ph

os
ph

or
yl

as
e

4E
C

E
E

†
PN

P
Pu

ri
ne

 n
uc

le
os

id
e 

ph
os

ph
or

yl
as

e

R
E

N
R

en
in

3G
72

A
†

R
E

N
R

en
in

R
N

A
SE

2
N

on
-s

ec
re

to
ry

 r
ib

on
uc

le
as

e
2B

E
X

B
R

N
H

1
R

ib
on

uc
le

as
e 

in
hi

bi
to

r

R
R

M
1

R
ib

on
uc

le
os

id
e-

di
ph

os
ph

at
e 

re
du

ct
as

e 
la

rg
e 

su
bu

ni
t

2H
N

C
B

R
R

M
1

R
ib

on
uc

le
os

id
e-

di
ph

os
ph

at
e 

re
du

ct
as

e 
la

rg
e 

su
bu

ni
t

SE
PT

3
N

eu
ro

na
l-

sp
ec

if
ic

 s
ep

tin
-3

3S
O

PB
SE

PT
3

N
eu

ro
na

l-
sp

ec
if

ic
 s

ep
tin

-3

T
D

O
2

T
ry

pt
op

ha
n 

2,
3-

di
ox

yg
en

as
e

4P
W

8E
†

T
D

O
2

T
ry

pt
op

ha
n 

2,
3-

di
ox

yg
en

as
e

U
C

H
L

1
U

bi
qu

iti
n 

ca
rb

ox
yl

-t
er

m
in

al
 h

yd
ro

la
se

 is
oz

ym
e 

L
1

3I
FW

B
U

B
C

Po
ly

ub
iq

ui
tin

-C

† T
he

 id
en

tif
ie

d 
bi

nd
in

g 
si

te
 is

 d
ru

gg
ab

le
 (

D
S 

≥ 
1.

0)

Mol Biosyst. Author manuscript; available in PMC 2017 October 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xu et al. Page 33

Ta
b

le
 4

Pr
ot

ei
ns

 w
ith

 b
ot

h 
E

N
Z

 a
nd

 P
PI

 B
in

di
ng

 S
ite

s

Sy
m

bo
l

N
am

e

In
te

ra
ct

io
n 

P
ar

tn
er

P
D

B
Sy

m
bo

l
N

am
e

A
C

M
SD

2-
am

in
o-

3-
ca

rb
ox

ym
uc

on
at

e-
6-

se
m

ia
ld

eh
yd

e 
de

ca
rb

ox
yl

as
e

4I
H

3A
A

C
M

SD
2-

am
in

o-
3-

ca
rb

ox
ym

uc
on

at
e-

6-
se

m
ia

ld
eh

yd
e 

de
ca

rb
ox

yl
as

e

A
D

H
1C

A
lc

oh
ol

 d
eh

yd
ro

ge
na

se
 1

C
1H

SO
A

A
D

H
1C

A
lc

oh
ol

 d
eh

yd
ro

ge
na

se
 1

C

A
L

O
X

12
A

ra
ch

id
on

at
e 

12
-l

ip
ox

yg
en

as
e,

 1
2S

-t
yp

e
3D

3L
B

†
A

L
O

X
12

A
ra

ch
id

on
at

e 
12

-l
ip

ox
yg

en
as

e,
 1

2S
-t

yp
e

A
O

C
1

A
m

ilo
ri

de
-s

en
si

tiv
e 

am
in

e 
ox

id
as

e 
[c

op
pe

r-
co

nt
ai

ni
ng

]
3M

PH
B

A
O

C
1

A
m

ilo
ri

de
-s

en
si

tiv
e 

am
in

e 
ox

id
as

e 
[c

op
pe

r-
co

nt
ai

ni
ng

]

B
H

M
T

B
et

ai
ne

--
ho

m
oc

ys
te

in
e 

S-
m

et
hy

ltr
an

sf
er

as
e 

1
1L

T
7B

B
H

M
T

B
et

ai
ne

--
ho

m
oc

ys
te

in
e 

S-
m

et
hy

ltr
an

sf
er

as
e 

1

C
T

SE
C

at
he

ps
in

 E
1T

Z
SP

C
T

SE
C

at
he

ps
in

 E

D
D

C
A

ro
m

at
ic

-L
-a

m
in

o-
ac

id
 d

ec
ar

bo
xy

la
se

3R
B

FB
D

D
C

A
ro

m
at

ic
-L

-a
m

in
o-

ac
id

 d
ec

ar
bo

xy
la

se

D
D

X
39

A
A

T
P-

de
pe

nd
en

t R
N

A
 h

el
ic

as
e 

D
D

X
39

A
1T

6N
B

D
D

X
39

A
A

T
P-

de
pe

nd
en

t R
N

A
 h

el
ic

as
e 

D
D

X
39

A

E
PH

B
2

E
ph

ri
n 

ty
pe

-B
 r

ec
ep

to
r 

2
2Q

B
X

D
A

nt
ag

on
is

t p
ep

tid
e 

(E
ph

ri
n 

bi
nd

in
g 

si
te

)

E
PH

B
4

E
ph

ri
n 

ty
pe

-B
 r

ec
ep

to
r 

4
2H

L
E

B
E

FN
B

2
E

ph
ri

n-
B

2

G
A

D
1

G
lu

ta
m

at
e 

de
ca

rb
ox

yl
as

e 
1

3V
P6

A
G

A
D

1
G

lu
ta

m
at

e 
de

ca
rb

ox
yl

as
e 

1

G
PI

G
lu

co
se

-6
-p

ho
sp

ha
te

 is
om

er
as

e
1J

IQ
B

G
PI

G
lu

co
se

-6
-p

ho
sp

ha
te

 is
om

er
as

e

H
K

2
H

ex
ok

in
as

e-
2

2N
Z

TA
H

K
2

H
ex

ok
in

as
e-

2

H
M

G
C

S2
H

yd
ro

xy
m

et
hy

lg
lu

ta
ry

l-
C

oA
 s

yn
th

as
e,

 m
ito

ch
on

dr
ia

l
2W

Y
A

D
H

M
G

C
S2

H
yd

ro
xy

m
et

hy
lg

lu
ta

ry
l-

C
oA

 s
yn

th
as

e,
 m

ito
ch

on
dr

ia
l

N
A

M
PT

N
ic

ot
in

am
id

e 
ph

os
ph

or
ib

os
yl

tr
an

sf
er

as
e

4O
0Z

A
N

A
M

PT
N

ic
ot

in
am

id
e 

ph
os

ph
or

ib
os

yl
tr

an
sf

er
as

e

N
R

1I
2

N
uc

le
ar

 r
ec

ep
to

r 
su

bf
am

ily
 1

 g
ro

up
 I

 m
em

be
r 

2
3C

T
B

B
†

N
R

1I
2

N
uc

le
ar

 r
ec

ep
to

r 
su

bf
am

ily
 1

 g
ro

up
 I

 m
em

be
r 

2

N
T

R
K

1
H

ig
h 

af
fi

ni
ty

 n
er

ve
 g

ro
w

th
 f

ac
to

r 
re

ce
pt

or
1W

W
W

V
N

G
F

B
et

a-
ne

rv
e 

gr
ow

th
 f

ac
to

r

PL
K

1
Se

ri
ne

/th
re

on
in

e-
pr

ot
ei

n 
ki

na
se

 P
L

K
1

1Q
4K

E
Ph

os
ph

op
ep

tid
e

PY
G

L
G

ly
co

ge
n 

ph
os

ph
or

yl
as

e,
 li

ve
r 

fo
rm

2Z
B

2B
PY

G
L

G
ly

co
ge

n 
ph

os
ph

or
yl

as
e,

 li
ve

r 
fo

rm

R
H

O
C

R
ho

-r
el

at
ed

 G
T

P-
bi

nd
in

g 
pr

ot
ei

n 
R

ho
C

3K
Z

1A
A

R
H

G
E

F1
1

R
ho

 g
ua

ni
ne

 n
uc

le
ot

id
e 

ex
ch

an
ge

 f
ac

to
r 

11

SU
LT

1C
2

Su
lf

ot
ra

ns
fe

ra
se

 1
C

2
3B

FX
A

SU
LT

1C
2

Su
lf

ot
ra

ns
fe

ra
se

 1
C

2

T
H

Ty
ro

si
ne

 3
-m

on
oo

xy
ge

na
se

2X
SN

C
T

H
Ty

ro
si

ne
 3

-m
on

oo
xy

ge
na

se

T
PH

2
T

ry
pt

op
ha

n 
5-

hy
dr

ox
yl

as
e 

2
4V

O
6B

T
PH

2
T

ry
pt

op
ha

n 
5-

hy
dr

ox
yl

as
e 

2

U
PP

1
U

ri
di

ne
 p

ho
sp

ho
ry

la
se

 1
3E

U
FB

U
PP

1
U

ri
di

ne
 p

ho
sp

ho
ry

la
se

 1

† B
ot

h 
E

N
Z

 a
nd

 P
PI

 b
in

di
ng

 s
ite

s 
ar

e 
dr

ug
ga

bl
e 

(D
S 

≥ 
1.

0)

Mol Biosyst. Author manuscript; available in PMC 2017 October 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xu et al. Page 34

Ta
b

le
 5

Pr
ot

ei
ns

 w
ith

 P
ot

en
tia

l P
PI

 B
in

di
ng

 S
ite

s 
Id

en
tif

ie
d 

fr
om

 S
ea

rc
h 

A
ga

in
st

 P
re

PP
I

Sy
m

bo
l

N
am

e
B

in
di

ng
 s

it
e

P
re

di
ct

ed
 P

P
I

M
od

el
Sy

m
bo

l
N

am
e

A
K

3
G

T
P:

A
M

P 
ph

os
ph

ot
ra

ns
fe

ra
se

 A
K

3,
 m

ito
ch

on
dr

ia
l

1Z
D

8A
2

2B
W

J
A

K
5

A
de

ny
la

te
 k

in
as

e 
is

oe
nz

ym
e 

5

A
N

K
1

A
nk

yr
in

-1
1N

11
A

3
2J

A
B

IL
K

In
te

gr
in

-l
in

ke
d 

pr
ot

ei
n 

ki
na

se

C
H

N
1

N
-c

hi
m

ae
ri

n
3C

X
L

A
3

1O
W

3
R

A
C

1
R

as
-r

el
at

ed
 C

3 
bo

tu
lin

um
 to

xi
n 

su
bs

tr
at

e 
1

H
O

G
A

1
4-

hy
dr

ox
y-

2-
ox

og
lu

ta
ra

te
 a

ld
ol

as
e,

 m
ito

ch
on

dr
ia

l
3S

5O
A

1†
3D

A
Q

H
O

G
A

1
4-

hy
dr

ox
y-

2-
ox

og
lu

ta
ra

te
 a

ld
ol

as
e,

 m
ito

ch
on

dr
ia

l

H
PD

4-
hy

dr
ox

yp
he

ny
lp

yr
uv

at
e 

di
ox

yg
en

as
e

3I
SQ

A
1†

1S
Q

I
H

PD
L

4-
hy

dr
ox

yp
he

ny
lp

yr
uv

at
e 

di
ox

yg
en

as
e-

lik
e 

pr
ot

ei
n

H
PD

4-
hy

dr
ox

yp
he

ny
lp

yr
uv

at
e 

di
ox

yg
en

as
e

3I
SQ

A
5

1S
Q

I
H

PD
L

4-
hy

dr
ox

yp
he

ny
lp

yr
uv

at
e 

di
ox

yg
en

as
e-

lik
e 

pr
ot

ei
n

L
C

N
L

ip
oc

al
in

-1
3E

Y
C

A
1†

2F
91

O
V

C
H

1
O

vo
ch

ym
as

e-
1

N
C

S1
N

eu
ro

na
l c

al
ci

um
 s

en
so

r 
1

1G
8I

B
1

1A
U

I
PP

P3
C

A
Se

ri
ne

/th
re

on
in

e-
pr

ot
ei

n 
ph

os
ph

at
as

e 
2B

 c
at

al
yt

ic
 s

ub
un

it 
al

ph
a 

is
of

or
m

N
C

S1
N

eu
ro

na
l c

al
ci

um
 s

en
so

r 
1

1G
8I

B
2†

1A
U

I
PP

P3
C

A
Se

ri
ne

/th
re

on
in

e-
pr

ot
ei

n 
ph

os
ph

at
as

e 
2B

 c
at

al
yt

ic
 s

ub
un

it 
al

ph
a 

is
of

or
m

R
A

P1
G

A
P

R
ap

1 
G

T
Pa

se
-a

ct
iv

at
in

g 
pr

ot
ei

n 
1

1S
R

Q
A

1
3B

R
W

R
A

P1
A

R
as

-r
el

at
ed

 p
ro

te
in

 R
ap

-1
A

R
H

C
G

A
m

m
on

iu
m

 tr
an

sp
or

te
r 

R
h 

ty
pe

 C
3H

D
6A

1
2N

U
U

R
H

A
G

A
m

m
on

iu
m

 tr
an

sp
or

te
r 

R
h 

ty
pe

 A

R
H

C
G

A
m

m
on

iu
m

 tr
an

sp
or

te
r 

R
h 

ty
pe

 C
3H

D
6A

4
2N

U
U

R
H

A
G

A
m

m
on

iu
m

 tr
an

sp
or

te
r 

R
h 

ty
pe

 A

R
H

C
G

A
m

m
on

iu
m

 tr
an

sp
or

te
r 

R
h 

ty
pe

 C
3H

D
6A

5
2N

U
U

R
H

A
G

A
m

m
on

iu
m

 tr
an

sp
or

te
r 

R
h 

ty
pe

 A

SH
M

T
2

Se
ri

ne
 h

yd
ro

xy
m

et
hy

ltr
an

sf
er

as
e,

 m
ito

ch
on

dr
ia

l
3O

U
5A

1
3G

B
X

SH
M

T
2

Se
ri

ne
 h

yd
ro

xy
m

et
hy

ltr
an

sf
er

as
e,

 m
ito

ch
on

dr
ia

l

ST
X

B
P2

Sy
nt

ax
in

-b
in

di
ng

 p
ro

te
in

 2
4C

C
A

A
2

3C
98

ST
X

1A
Sy

nt
ax

in
-1

A

T
H

E
M

5
A

cy
l-

co
en

zy
m

e 
A

 th
io

es
te

ra
se

 T
H

E
M

5
4A

E
7A

1
1Q

4T
T

H
E

M
4

A
cy

l-
co

en
zy

m
e 

A
 th

io
es

te
ra

se
 T

H
E

M
4

Z
B

T
B

32
Z

in
c 

fi
ng

er
 a

nd
 B

T
B

 d
om

ai
n-

co
nt

ai
ni

ng
 p

ro
te

in
 3

2
3M

5B
B

1
3B

IM
B

C
L

6
B

-c
el

l l
ym

ph
om

a 
6 

pr
ot

ei
n

† T
he

 b
in

di
ng

 s
ite

 is
 d

ru
gg

ab
le

 (
D

S 
≥ 

1.
0)

Mol Biosyst. Author manuscript; available in PMC 2017 October 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xu et al. Page 35

Ta
b

le
 6

E
st

ab
lis

he
d 

ca
nc

er
 ta

rg
et

s 
w

ith
 d

ru
gg

ab
le

 b
in

di
ng

 s
ite

Sy
m

bo
l

P
ro

te
in

N
et

w
or

k

Si
gn

al
in

g 
P

at
hw

ay
s

C
an

ce
r

B
in

di
ng

 S
it

e

N
am

e
D

eg
re

e
B

et
w

ee
nn

es
s 

(×
10

6 )
D

is
ea

se
F

C
H

R
 (

95
%

 C
I)

P
ub

lic
at

io
ns

St
ru

ct
ur

e
A

ll
E

N
Z

P
P

I
O

T
H

PL
K

1
Se

ri
ne

/th
re

on
in

e-
pr

ot
ei

n 
ki

na
se

 P
L

K
1

74
58

76
.7

C
el

l c
yc

le
B

R
C

A
K

IR
C

L
U

A
D

3.
7

2.
3

3.
5

1.
8 

(1
.2

 –
 2

.7
)

2.
4 

(1
.7

 –
 3

.3
)

1.
8 

(1
.2

 –
 2

.6
)

77
6

2O
W

B
A

1†
1

0
0

C
D

C
20

C
el

l d
iv

is
io

n 
cy

cl
e 

pr
ot

ei
n 

20
 

ho
m

ol
og

37
13

79
.5

C
el

l c
yc

le
, U

bi
qu

iti
n 

m
ed

ia
te

d 
pr

ot
eo

ly
si

s
L

U
A

D
4.

0
1.

6 
(1

.1
 –

 2
.3

)
29

6
4G

G
D

B
1

0
0

1

C
C

N
B

1
G

2/
m

ito
tic

-s
pe

ci
fi

c 
cy

cl
in

-B
1

34
93

4.
3

C
el

l c
yc

le
, p

53
B

R
C

A
L

U
A

D
2.

6
3.

0
1.

6 
(1

.1
 –

 2
.3

)
1.

8 
(1

.2
 –

 2
.6

)
22

14
2B

9R
B

1
0

0
1

A
U

R
K

A
A

ur
or

a 
ki

na
se

 A
28

16
84

.1
B

R
C

A
L

U
A

D
3.

2
2.

8
1.

6 
(1

.1
 –

 2
.3

)
1.

5 
(1

.0
 –

 2
.1

)
68

6
2J

4Z
B

1†
1

0
0

M
A

D
2L

1
M

ito
tic

 s
pi

nd
le

 a
ss

em
bl

y 
ch

ec
kp

oi
nt

 
pr

ot
ei

n 
M

A
D

2A
27

11
94

.3
C

el
l c

yc
le

L
U

A
D

2.
7

1.
7 

(1
.2

 –
 2

.4
)

22
1

2V
64

F
1

0
1

0

A
U

R
K

B
A

ur
or

a 
ki

na
se

 B
25

11
99

.7
K

IR
C

L
U

A
D

2.
9

3.
8

2.
7 

(1
.9

 –
 3

.8
)

1.
5 

(1
.0

 –
 2

.1
)

50
0

4A
F3

A
2†

1
0

1

N
E

K
2

Se
ri

ne
/th

re
on

in
e-

pr
ot

ei
n 

ki
na

se
 N

ek
2

21
60

6.
0

L
U

A
D

3.
9

1.
8 

(1
.2

 –
 2

.6
)

11
5

2X
K

4A
1

0
0

1

B
U

B
1

M
ito

tic
 c

he
ck

po
in

t s
er

in
e/

th
re

on
in

e-
pr

ot
ei

n 
ki

na
se

 B
U

B
1

21
40

1.
1

B
R

C
A

K
IR

C
L

U
A

D

3.
6

2.
3

3.
0

1.
6 

(1
.1

 –
 2

.4
)

2.
1 

(1
.5

 –
 2

.9
)

1.
8 

(1
.2

 –
 2

.6
)

39
7

4R
8Q

A
3

1
0

2

Z
A

P7
0

Ty
ro

si
ne

-p
ro

te
in

 k
in

as
e 

Z
A

P-
70

19
27

8.
3

R
as

K
IR

C
3.

2
1.

6 
(1

.2
 –

 2
.3

)
70

2
4K

2R
A

2
0

0
2

C
H

E
K

1
Se

ri
ne

/th
re

on
in

e-
pr

ot
ei

n 
ki

na
se

 C
hk

1
18

58
0.

9
C

el
l c

yc
le

, p
53

L
U

A
D

2.
2

1.
5 

(1
.0

 –
 2

.1
)

77
2R

0U
A

1†
1

0
0

C
C

N
E

1
G

1/
S-

sp
ec

if
ic

 c
yc

lin
-E

1
13

11
1.

8
C

el
l c

yc
le

, p
53

, 
PI

3K
-A

kt
B

R
C

A
L

U
A

D
3.

0
3.

5
2.

1 
(1

.4
 –

 3
.2

)
1.

5 
(1

.1
 –

 2
.2

)
28

0
1W

98
B

1
0

1
0

C
3

C
om

pl
em

en
t C

3
9

11
91

.2
K

IR
C

3.
4

1.
5 

(1
.1

 –
 2

.0
)

34
68

2W
II

A
;2

W
II

B
6

0
2

4

F2
Pr

ot
hr

om
bi

n
9

44
3.

3
K

IR
C

3.
8

2.
5 

(1
.8

 –
 3

.4
)

33
38

4N
Z

Q
A

1
0

0
1

T
F

Se
ro

tr
an

sf
er

ri
n

9
35

3.
3

H
IF

-1
K

IR
C

4.
4

2.
0 

(1
.5

 –
 2

.8
)

25
56

3V
8X

B
2

0
0

2

Mol Biosyst. Author manuscript; available in PMC 2017 October 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xu et al. Page 36

Sy
m

bo
l

P
ro

te
in

N
et

w
or

k

Si
gn

al
in

g 
P

at
hw

ay
s

C
an

ce
r

B
in

di
ng

 S
it

e

N
am

e
D

eg
re

e
B

et
w

ee
nn

es
s 

(×
10

6 )
D

is
ea

se
F

C
H

R
 (

95
%

 C
I)

P
ub

lic
at

io
ns

St
ru

ct
ur

e
A

ll
E

N
Z

P
P

I
O

T
H

C
C

N
A

2
C

yc
lin

-A
2

9
80

.6
C

el
l c

yc
le

K
IR

C
L

U
A

D
2.

1
3.

0
2.

2 
(1

.6
 –

 3
.0

)
2.

1 
(1

.4
 –

 3
.0

)
31

2
2B

PM
D

1
0

0
1

H
N

F4
A

H
ep

at
oc

yt
e 

nu
cl

ea
r 

fa
ct

or
 4

-a
lp

ha
9

55
.7

H
N

SC
2.

3
1.

4 
(1

.0
 –

 1
.9

)
17

3
4I

Q
R

E
1

0
0

1

C
T

L
A

4
C

yt
ot

ox
ic

 T
-l

ym
ph

oc
yt

e 
pr

ot
ei

n 
4

8
46

.5
K

IR
C

3.
0

1.
7 

(1
.2

 –
 2

.4
)

16
03

2X
44

D
1

0
0

1

T
T

K
D

ua
l s

pe
ci

fi
ci

ty
 p

ro
te

in
 k

in
as

e 
T

T
K

6
11

.2
C

el
l c

yc
le

B
R

C
A

L
U

A
D

3.
1

3.
8

1.
5 

(1
.0

 –
 2

.3
)

1.
7 

(1
.2

 –
 2

.5
)

15
5

2Z
M

D
A

1†
1

0
0

A
L

O
X

5
A

ra
ch

id
on

at
e 

5-
lip

ox
yg

en
as

e
5

26
8.

6
K

IR
C

2.
1

1.
7 

(1
.2

 –
 2

.3
)

40
3

3O
8Y

A
5

1
0

4

K
IF

11
K

in
es

in
-l

ik
e 

pr
ot

ei
n 

K
IF

11
4

0.
9

L
U

A
D

2.
9

1.
6 

(1
.1

 –
 2

.3
)

14
4

4A
P0

A
1

1
0

0

IT
G

A
M

In
te

gr
in

 a
lp

ha
-M

3
16

06
.8

K
IR

C
2.

1
1.

4 
(1

.0
 –

 1
.9

)
12

06
4M

76
B

1
0

0
1

A
D

A
A

de
no

si
ne

 d
ea

m
in

as
e

3
50

.2
K

IR
C

2.
4

2.
1 

(1
.5

 –
 2

.9
)

18
38

3I
A

R
A

1
0

0
1

T
O

P2
A

D
N

A
 to

po
is

om
er

as
e 

2-
al

ph
a

3
13

.2
K

IR
C

L
U

A
D

2.
1

4.
1

1.
7 

(1
.3

 –
 2

.4
)

1.
5 

(1
.0

 –
 2

.1
)

36
7

4F
M

9A
3

0
0

3

N
N

M
T

N
ic

ot
in

am
id

e 
N

-m
et

hy
ltr

an
sf

er
as

e
2

1.
8

K
IR

C
4.

0
1.

7 
(1

.3
 –

 2
.4

)
76

2I
IP

A
1

1
0

0

M
M

P9
M

at
ri

x 
m

et
al

lo
pr

ot
ei

na
se

-9
2

0.
0

K
IR

C
4.

3
1.

8 
(1

.3
 –

 2
.5

)
62

30
1L

6J
A

1
1

0
0

IT
G

A
X

In
te

gr
in

 a
lp

ha
-X

1
0.

0
K

IR
C

3.
4

1.
5 

(1
.1

 –
 2

.1
)

73
3

4N
E

N
A

1
0

0
1

FA
B

P5
Fa

tty
 a

ci
d-

bi
nd

in
g 

pr
ot

ei
n,

 e
pi

de
rm

al
1

0.
0

PP
A

R
K

IR
C

2.
1

1.
7 

(1
.3

 –
 2

.4
)

88
4L

K
PA

1
0

0
1

A
K

R
1B

10
A

ld
o-

ke
to

 r
ed

uc
ta

se
 f

am
ily

 1
 m

em
be

r 
B

10
1

0.
0

K
IR

C
2.

8
2.

0 
(1

.4
 –

 2
.7

)
11

8
4J

II
X

1†
1

0
0

C
Y

P2
D

6
C

yt
oc

hr
om

e 
P4

50
 2

D
6

0
0.

0
K

IR
C

2.
8

1.
7 

(1
.2

 –
 2

.3
)

91
5

3Q
M

4A
4†

0
0

4

M
M

P1
2

M
ac

ro
ph

ag
e 

m
et

al
lo

el
as

ta
se

0
0.

0
K

IR
C

2.
9

1.
7 

(1
.2

 –
 2

.3
)

11
3

3B
A

0A
1

0
0

1

Mol Biosyst. Author manuscript; available in PMC 2017 October 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xu et al. Page 37

Ta
b

le
 7

U
nc

om
m

on
 c

an
ce

r 
ta

rg
et

s 
w

ith
 d

ru
gg

ab
le

 b
in

di
ng

 s
ite

P
ro

te
in

N
et

w
or

k

Si
gn

al
in

g 
P

at
hw

ay
s

C
an

ce
r

B
in

di
ng

 s
it

e

Sy
m

bo
l

N
am

e
D

eg
re

e
B

et
w

ee
nn

es
s 

(×
10

6 )
D

is
ea

se
F

C
H

R
 (

95
%

 C
I)

P
ub

lic
at

io
ns

St
ru

ct
ur

e
A

ll
E

N
Z

P
P

I
O

T
H

K
PN

A
2

Im
po

rt
in

 s
ub

un
it 

al
ph

a-
1

50
31

52
.3

B
R

C
A

L
U

A
D

2.
2

2.
0

1.
8 

(1
.2

 –
 2

.7
)

1.
5 

(1
.0

 –
 2

.1
)

55
4E

4V
B

1
0

0
1

FB
P1

Fr
uc

to
se

-1
,6

-b
is

ph
os

ph
at

as
e 

1
16

82
0.

8
G

B
M

2.
6

1.
5 

(1
.0

 –
 2

.3
)

34
2F

H
Y

A
1

0
0

1

K
IF

23
K

in
es

in
-l

ik
e 

pr
ot

ei
n 

K
IF

23
10

61
.5

L
U

A
D

2.
9

1.
6 

(1
.1

 –
 2

.4
)

25
3V

H
X

H
1

0
0

1

O
R

M
1

A
lp

ha
-1

-a
ci

d 
gl

yc
op

ro
te

in
 1

7
59

.0
K

IR
C

6.
1

1.
4 

(1
.0

 –
 1

.9
)

25
3K

Q
0A

1
0

0
1

PT
PN

22
Ty

ro
si

ne
-p

ro
te

in
 p

ho
sp

ha
ta

se
 n

on
-r

ec
ep

to
r 

ty
pe

 2
2

6
12

.7
K

IR
C

2.
2

1.
5 

(1
.1

 –
 2

.1
)

23
4J

51
B

1
0

0
1

E
PH

A
8

E
ph

ri
n 

ty
pe

-A
 r

ec
ep

to
r 

8
5

99
.1

U
C

E
C

5.
4

4.
7 

(1
.0

 –
 2

1.
5)

14
3K

U
L

B
1

1
0

0

E
R

O
1L

E
R

O
1-

lik
e 

pr
ot

ei
n 

al
ph

a
4

10
.7

L
U

A
D

2.
2

1.
7 

(1
.2

 –
 2

.4
)

13
3A

H
Q

A
2

1
0

1

PK
M

Y
T

1
M

em
br

an
e-

as
so

ci
at

ed
 ty

ro
si

ne
-a

nd
 th

re
on

in
e-

sp
ec

if
ic

 c
dc

2-
in

hi
bi

to
ry

 k
in

as
e

4
6.

1
C

el
l c

yc
le

K
IR

C
2.

9
1.

9 
(1

.4
 –

 2
.7

)
14

3P
1A

A
1

1
0

0

T
D

O
2

T
ry

pt
op

ha
n 

2,
3-

di
ox

yg
en

as
e

3
40

3.
6

K
IR

C
2.

7
1.

5 
(1

.1
 –

 2
.1

)
52

4P
W

8F
1

1
1

0

G
C

K
R

G
lu

co
ki

na
se

 r
eg

ul
at

or
y 

pr
ot

ei
n

2
20

0.
8

K
IR

C
2.

9
2.

5 
(1

.8
 –

 3
.5

)
15

4O
L

H
A

3
0

0
3

SE
R

PI
N

B
3

Se
rp

in
 B

3
2

4.
6

L
U

A
D

2.
2

1.
7 

(1
.2

 –
 2

.4
)

35
2Z

V
6A

3
0

0
3

A
D

A
M

T
S4

A
 d

is
in

te
gr

in
 a

nd
 m

et
al

lo
pr

ot
ei

na
se

 w
ith

 th
ro

m
bo

sp
on

di
n 

m
ot

if
s 

4
2

2.
2

K
IR

C
2.

0
1.

6 
(1

.2
 –

 2
.2

)
18

2R
JP

C
1†

1
0

0

SE
R

PI
N

B
4

Se
rp

in
 B

4
2

1.
7

L
U

A
D

U
C

E
C

4.
0

5.
0

1.
5 

(1
.0

 –
 2

.1
)

4.
6 

(1
.2

 –
 1

7.
1)

7
2Z

V
6A

3
0

0
3

M
E

L
K

M
at

er
na

l e
m

br
yo

ni
c 

le
uc

in
e 

zi
pp

er
 k

in
as

e
1

0.
0

B
R

C
A

L
U

A
D

K
IR

C
U

C
E

C

3.
9

2.
7

4.
0

3.
9

1.
6 

(1
.0

 –
 2

.3
)

1.
7 

(1
.2

 –
 2

.3
)

1.
5 

(1
.0

 –
 2

.1
)

3.
6 

(0
.9

 –
 3

.6
)

63
4U

M
U

A
2†

1
0

1

PL
C

B
2

1-
ph

os
ph

at
id

yl
in

os
ito

l 4
,5

-b
is

ph
os

ph
at

e 
ph

os
ph

od
ie

st
er

as
e 

be
ta

-2
1

0.
0

C
al

ci
um

, W
nt

, P
ho

sp
ha

tid
yl

in
os

ito
l

K
IR

C
2.

2
1.

5 
(1

.1
 –

 2
.0

)
8

2Z
K

M
X

4
0

0
4

PC
K

1
Ph

os
ph

oe
no

lp
yr

uv
at

e 
ca

rb
ox

yk
in

as
e,

 c
yt

os
ol

ic
 [

G
T

P]
1

0.
0

C
itr

at
e,

 P
PA

R
, P

I3
K

-A
kt

L
U

A
D

3.
8

1.
5 

(1
.0

 –
 2

.1
)

15
2G

M
V

A
1

0
0

1

Mol Biosyst. Author manuscript; available in PMC 2017 October 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xu et al. Page 38

P
ro

te
in

N
et

w
or

k

Si
gn

al
in

g 
P

at
hw

ay
s

C
an

ce
r

B
in

di
ng

 s
it

e

Sy
m

bo
l

N
am

e
D

eg
re

e
B

et
w

ee
nn

es
s 

(×
10

6 )
D

is
ea

se
F

C
H

R
 (

95
%

 C
I)

P
ub

lic
at

io
ns

St
ru

ct
ur

e
A

ll
E

N
Z

P
P

I
O

T
H

T
N

FA
IP

8L
2

T
um

or
 n

ec
ro

si
s 

fa
ct

or
 a

lp
ha

-i
nd

uc
ed

 p
ro

te
in

 8
-l

ik
e 

pr
ot

ei
n 

2
1

0.
0

K
IR

C
2.

4
1.

6 
(1

.1
 –

 2
.2

)
3

3F
4M

A
1

0
0

1

A
N

X
A

8L
2

A
nn

ex
in

 A
8-

lik
e 

pr
ot

ei
n 

2
0

0.
0

K
IR

C
2.

1
1.

7 
(1

.3
 –

 2
.4

)
0

1W
45

B
1

0
0

1

G
SG

2
Se

ri
ne

/th
re

on
in

e-
pr

ot
ei

n 
ki

na
se

 h
as

pi
n

0
0.

0
B

R
C

A
2.

0
1.

6 
(1

.1
 –

 2
.4

)
5

3D
L

Z
A

1†
1

1
0

R
N

A
SE

T
2

R
ib

on
uc

le
as

e 
T

2
0

0.
0

K
IR

C
3.

2
1.

9 
(1

.3
 –

 2
.6

)
27

3T
0O

A
1

0
0

1

N
C

F1
C

Pu
ta

tiv
e 

ne
ut

ro
ph

il 
cy

to
so

l f
ac

to
r 

1C
0

0.
0

G
B

M
2.

5
1.

8 
(1

.2
 –

 2
.7

)
0

1N
G

2A
;1

K
Q

6A
2

0
2

0

X
D

H
X

an
th

in
e 

de
hy

dr
og

en
as

e/
ox

id
as

e
0

0.
0

K
IR

C
L

U
A

D
2.

2
4.

5
1.

5 
(1

.0
 –

 2
.1

)
1.

9 
(1

.4
 –

 2
.7

)
34

2E
1Q

D
9

1
0

8

C
H

I3
L

2
C

hi
tin

as
e-

3-
lik

e 
pr

ot
ei

n 
2

0
0.

0
G

B
M

K
IR

C
4.

8
2.

5
1.

9 
(1

.3
 –

 2
.9

)
2.

0 
(1

.5
 –

 2
.8

)
5

4P
8X

A
1

0
0

1

A
L

D
H

1L
1

C
yt

os
ol

ic
 1

0-
fo

rm
yl

te
tr

ah
yd

ro
fo

la
te

 d
eh

yd
ro

ge
na

se
0

0.
0

L
U

SC
2.

5
1.

4 
(1

.0
 –

 1
.9

)
23

2C
FI

A
1

1
0

0

A
K

R
1D

1
3-

ox
o-

5-
be

ta
-s

te
ro

id
 4

-d
eh

yd
ro

ge
na

se
0

0.
0

K
IR

C
4.

5
1.

6 
(1

.2
 –

 2
.2

)
5

3U
Z

W
B

1
1

0
0

SE
R

PI
N

D
1

H
ep

ar
in

 c
of

ac
to

r 
2

0
0.

0
K

IR
C

3.
8

1.
6 

(1
.2

 –
 2

.2
)

5
1J

M
O

A
2

0
0

2

T
C

N
1

T
ra

ns
co

ba
la

m
in

-1
0

0.
0

L
U

A
D

6.
9

1.
5 

(1
.0

 –
 2

.1
)

10
4K

K
JA

1
0

0
1

PA
R

P1
5

Po
ly

 [
A

D
P-

ri
bo

se
] 

po
ly

m
er

as
e 

15
0

0.
0

K
IR

C
3.

1
1.

5 
(1

.1
 –

 2
.1

)
5

3G
E

Y
A

1†
1

0
0

† H
as

 a
 b

in
di

ng
 s

ite
 th

at
 h

as
 a

 c
o-

cr
ys

ta
lli

ze
d 

sm
al

l m
ol

ec
ul

e 
in

hi
bi

to
r.

Mol Biosyst. Author manuscript; available in PMC 2017 October 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xu et al. Page 39

Ta
b

le
 8

M
ut

at
io

ns
 in

 b
in

di
ng

 s
ite

 o
n 

ov
er

ex
pr

es
se

d 
an

d 
cl

in
ic

al
ly

 r
el

ev
an

t g
en

es

Sy
m

bo
l

N
am

e
C

an
ce

r 
T

yp
e

M
ut

at
io

n
P

oc
ke

t
T

yp
e

A
D

H
1C

A
lc

oh
ol

 d
eh

yd
ro

ge
na

se
 1

C
L

U
A

D
G

20
5C

1H
SZ

A
1

E
N

Z

A
D

O
R

A
2A

A
de

no
si

ne
 r

ec
ep

to
r 

A
2a

B
R

C
A

R
29

3P
3V

G
9A

5
PP

I

C
3

C
om

pl
em

en
t C

3
K

IR
C

C
87

3Y
2W

II
B

4
O

T
H

C
A

6
C

ar
bo

ni
c 

an
hy

dr
as

e 
6

L
U

SC
H

11
3Q

3F
E

4A
1

E
N

Z

C
C

N
A

2
C

yc
lin

-A
2

L
U

A
D

L
34

1F
2B

PM
D

1
O

T
H

C
C

N
E

1
G

1/
S-

sp
ec

if
ic

 c
yc

lin
-E

1
B

R
C

A
A

33
8T

1W
98

B
2

O
T

H

C
H

E
K

1
Se

ri
ne

/th
re

on
in

e-
pr

ot
ei

n 
ki

na
se

 C
hk

1
L

U
A

D
V

46
A

2R
0U

A
1

E
N

Z

C
Y

P2
A

6
C

yt
oc

hr
om

e 
P4

50
 2

A
6

L
U

A
D

V
30

6I
2P

G
6B

1
O

T
H

C
Y

P2
D

6
C

yt
oc

hr
om

e 
P4

50
 2

D
6

K
IR

C
L

21
3P

3Q
M

4A
1

O
T

H

E
X

O
1

E
xo

nu
cl

ea
se

 1
L

U
A

D
R

12
1P

3Q
E

B
Z

1
O

T
H

F2
Pr

ot
hr

om
bi

n
K

IR
C

R
54

3L
4N

Z
Q

A
3

O
T

H

K
IF

15
K

in
es

in
-l

ik
e 

pr
ot

ei
n 

K
IF

15
L

U
SC

G
41

A
4B

N
2C

2
O

T
H

K
IF

C
1

K
in

es
in

-l
ik

e 
pr

ot
ei

n 
K

IF
C

1
L

U
A

D
G

56
8W

2R
E

PA
1

E
N

Z

M
A

D
2L

1
M

ito
tic

 s
pi

nd
le

 a
ss

em
bl

y 
ch

ec
kp

oi
nt

 p
ro

te
in

 M
A

D
2A

L
U

A
D

W
16

7L
2V

64
F1

PP
I

M
E

L
K

M
at

er
na

l e
m

br
yo

ni
c 

le
uc

in
e 

zi
pp

er
 k

in
as

e
B

R
C

A
L

U
A

D
Q

11
5R

V
27

1A
4U

M
U

A
2

4U
M

U
A

2
O

T
H

O
T

H

N
E

K
2

Se
ri

ne
/th

re
on

in
e-

pr
ot

ei
n 

ki
na

se
 N

ek
2

L
U

A
D

R
14

0L
2X

K
4A

1
E

N
Z

PC
K

1
Ph

os
ph

oe
no

lp
yr

uv
at

e 
ca

rb
ox

yk
in

as
e,

 c
yt

os
ol

ic
 [

G
T

P]
L

U
A

D
R

13
7H

A
28

7S
G

28
9W

2G
M

V
A

3
2G

M
V

A
1

O
T

H
E

N
Z

PS
PH

Ph
os

ph
os

er
in

e 
ph

os
ph

at
as

e
L

U
SC

M
52

T
1L

8O
A

1
E

N
Z

R
H

C
G

A
m

m
on

iu
m

 tr
an

sp
or

te
r 

R
h 

ty
pe

 C
L

U
A

D
Q

10
7H

3H
D

6A
1

PP
I

R
R

M
2

R
ib

on
uc

le
os

id
e-

di
ph

os
ph

at
e 

re
du

ct
as

e 
su

bu
ni

t M
2

L
U

A
D

E
20

7Q
2U

W
2A

2
O

T
H

SE
R

PI
N

B
3

Se
rp

in
 B

3
L

U
A

D
A

45
T

2Z
V

6A
3

O
T

H

SE
R

PI
N

B
4

Se
rp

in
 B

4
L

U
A

D
S3

3N
2Z

V
6A

2
O

T
H

SU
LT

4A
1

Su
lf

ot
ra

ns
fe

ra
se

 4
A

1
K

IR
C

M
80

R
1Z

D
1A

1
E

N
Z

T
O

P2
A

D
N

A
 to

po
is

om
er

as
e 

2-
al

ph
a

L
U

A
D

E
71

2V
R

73
6L

4F
M

9A
4

4F
M

9A
7

O
T

H
O

T
H

Mol Biosyst. Author manuscript; available in PMC 2017 October 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xu et al. Page 40

Sy
m

bo
l

N
am

e
C

an
ce

r 
T

yp
e

M
ut

at
io

n
P

oc
ke

t
T

yp
e

T
T

K
D

ua
l s

pe
ci

fi
ci

ty
 p

ro
te

in
 k

in
as

e 
T

T
K

L
U

A
D

B
R

C
A

C
60

4F
G

66
6E

2Z
M

D
A

1
2Z

M
D

A
1

E
N

Z
E

N
Z

X
D

H
X

an
th

in
e 

de
hy

dr
og

en
as

e/
ox

id
as

e
L

U
A

D
C

43
F

N
46

1T
2E

1Q
D

3
2E

1Q
D

8
O

T
H

O
T

H

Mol Biosyst. Author manuscript; available in PMC 2017 October 20.


	Abstract
	Graphical Abstract
	INTRODUCTION
	RESULTS
	Three-Dimensional Structures of Proteins Encoded by Differentially-Expressed Genes
	Identification of Binding Sites on Protein Structures at the PDB
	Classification of Binding Sites
	Cavities at Enzyme Active Sites
	Cavities at Protein-Protein Interaction Interfaces
	Proteins with Binding Sites Located at Both Enzyme Active Sites and Protein-Protein Interaction Interfaces
	Unclassified Binding Sites
	A Search of Protein-Protein Interaction Networks to Identify OTH Binding Sites Located at PPI Interfaces
	Cancer Signaling Pathways
	Correlation with Patient Survival for Proteins Encoded by Differentially-Expressed Genes
	Protein-Protein Interaction Network
	New Unexplored Targets for the Development of Small-Molecule Probes and Cancer Therapeutics
	Missense Mutations on Protein Structures

	DISCUSSION
	MATERIALS AND METHODS
	Gene Expression
	Protein Structures
	Binding Site Identification
	Binding Site Annotation
	Survival Analysis
	Signaling Pathway
	Protein-Protein Interaction Network
	Missense Mutations

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7
	Table 8

