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Abstract

The IL-9-secreting Th9 subset of CD4 T helper cells develop in response to an environment 

containing IL-4 and TGFβ, promoting allergic disease, autoimmunity, and resistance to pathogens. 

We previously identified a requirement for the ETS family transcription factor PU.1 in Th9 

development. In this report we demonstrate that the ETS transcription factor ETV5 promotes IL-9 

production in Th9 cells by binding and recruiting histone acetyltransferases to the Il9 locus at sites 

distinct from PU.1. In cells that are deficient in both PU.1 and ETV5 there is lower IL-9 

production than in cells lacking either factor alone. In vivo loss of PU.1 and ETV5 in T cells 

results in distinct affects on allergic inflammation in the lung, suggesting that these factors 

function in parallel. Together, these data define a role for ETV5 in Th9 development and extend 

the paradigm of related transcription factors having complementary functions during 

differentiation.

Introduction

A network of transcription factors governs the development of the effector T helper subsets 

that dominate during immunity to infectious disease and inflammation. The first 

transcription factors important for differentiation are part of the signal relay connecting the 

extracellular environment to changes in gene expression, which include STAT and SMAD 

proteins (1–3). These first signals lead to the expression of additional transcription factors 

that promote and maintain the expression of genes associated with a T helper cell lineage 

that is specialized to function during specific inflammatory responses. One of the most 

recently described subsets of T helper cells, Th9 cells, promote allergic disease, 

autoimmunity, tumor immunity, and immunity to parasites and develop in response to a 
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cytokine environment containing TGFβ and IL-4 (4). Downstream of IL-4, Th9 development 

requires early signals from STAT6, inducing the additional transcription factors BATF and 

IRF4 (5–7). The TGFβ signal requires multiple SMAD proteins, but also the SMAD-

independent induction of PU.1 (5, 8–11).

The ETS transcription factor PU.1 is responsible for the development of multiple lineages of 

myeloid cells, and contributes to the function of hematopoietic stem cells (12). During T cell 

development, PU.1 expression is extinguished, but it is re-expressed in peripheral T cells, 

with varying expression among T helper subsets (8, 13). In Th2 cells, PU.1 interferes with 

the function of GATA3 and IRF4, resulting in diminished Th2 cytokine production (13–15). 

PU.1 also limits expression of CD40L and IL-21, attenuating the function of Tfh cells (16). 

In Th9 cells, PU.1 promotes the expression of IL-9 by recruiting the Gcn5 histone 

acetyltransferase to the Il9 locus and also promotes the expression of additional genes 

enriched in Th9 cells (6, 8, 9). Although PU.1 is clearly an important transcription factor for 

the development of Th9 cells, IL-9 production is not entirely eliminated in the absence of 

PU.1. As ETS family factors often have overlapping functions, this suggested that another 

ETS factor might be able to regulate Il9 gene expression in the absence of PU.1.

ETS variant 5 (ETV5) is an ETS family member that has largely been examined for roles in 

development. ETV5 coordinates limb development, controls spermatogonial gene 

expression, and regulates epithelial-mesenchymal gene expression (17–20). ETV5 was also 

identified as an IL-12-induced Th1 gene, though recent work suggests it only has a minimal 

role in IFNγ production, contrary to the original report (21, 22). We reported that Etv5 is 

cytokine-inducible in a STAT-dependent manner, and that Etv5-deficient T cells have 

diminished Th17 cells but slightly increased Th2 development in vivo and in vitro (22). 

Based on the induction of Etv5 by the T helper cell polarizing cytokines IL-12 and IL-6, it 

seemed possible that Etv5 impacted other T helper subsets. In the current report, we tested 

the contribution of ETV5 to Th9 development.

EXPERIMENTAL PROCEDURES

Mice

C57BL/6 mice were purchased from Harlan Sprague Dawley (Indianapolis, IN, USA). 

Etv5fl/fl CD4-Cre+ mice (18, 22) were crossed with Sfpi1fl/fl mice (23), and Cre-negative 

littermates were used as control mice. Stat6−/−, Batffl/fl, and Irf4fl/fl mice were previously 

described (6, 24, 25). Mice were maintained under specific pathogen-free conditions. All 

experiments were performed with the approval of the Indiana University Institutional 

Animal Care and use Committee.

In vitro T cell differentiation

Naïve CD4+CD62L+ T cells were positively selected from the enriched CD4+ T cells from 

spleen and lymph nodes using MACS beads and columns (Miltenyi Biotec). Naive 

CD4+CD62L+ T cells were activated with plate-bound anti-CD3 (2 µg/ml 145-2C11 Bio X 

Cell) and soluble anti-CD28 (0.5 µg/ml BD Pharmingen) to generate Th0 or with additional 

cytokines (all from PeproTech) and antibodies (Bio X Cell) to generate Th1 (5 ng/mL IL-12 
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and 10 µg/mL anti-IL-4 (11B11)), Th2 (10 ng/ml IL-4 and 10 µg/ml anti-IFNγ (XMG)), 

Th9 (20 ng/ml IL-4; 2 ng/ml TGF-β; and 10 µg/ml anti-IFNγ (XMG)), Th17 (100 ng/mL 

IL-6; 2 ng/mL TGF-β; 10 ng/mL IL-23; 10 ng/mL IL-1β; 10 µ/mL anti-IFNγ (XMG); and 

10 µg/mL anti-IL-4 (11B11)), and Treg (50U hIL-2; 2 ng/mL TGFβ; 10 µg/mL anti-IFNγ 
(XMG), and anti-IL-4 (11B11)). Cells were expanded after 3 days with half concentration of 

the original cytokines in fresh medium. Cells were harvested on day 5 for analysis. The Etv5 
retroviral vector was previously described (22) and cells were transduced during 

differentiation as performed previously (26).

OVA-induced allergic airway inflammation

Mice were sensitized with OVA adsorbed to alum and challenged intranasally with aqueous 

OVA as previously described (8). Mice were euthanized by CO2 inhalation. BAL fluid was 

obtained by making an incision in the trachea and subsequently flushing the airways three 

times with a single use of 1 mL sterile PBS. We spun down the BAL fluid-associated cells 

and collected supernatants for ELISA. Lungs were perfused via the right ventricle of the 

heart with 3 mL PBS to remove blood lymphocytes from the vasculature. Some lung tissue 

was isolated for histology or RNA expression. Residual lung tissue was minced and 

enzymatically digested with type II collagenase (37°C for 30 min; Worthington), followed 

by passing through a steel screen. RBCs in the cell suspension were lysed using ammonium 

chloride. Cells were counted using a hemacytometer after exclusion of dead cells using 

Trypan blue dye.

Analysis of gene expression, ELISA and flow cytometry

Quantitative Reverse Transcriptase (qRT)-PCR and ELISA were performed as previously 

described (26). Gene expression was normalized to housekeeping gene expression (β2-

microglobulin). The relative gene expression was calculated by the change-in-threshold 

(−ΔΔCT) method. For cytokine staining, CD4+ T cells were stimulated with PMA and 

ionomycin for 2 h followed by monesin for a total 6 h, fixed, permeabilized with 0.2% 

saponin, and stained for IL-17A-PECy7, IFNγ-FITC or IL-4-Alexa Fluor 647 (BD 

Pharmingen) or IL-9-PE (Biolegend).

Chromatin Immunoprecipitation (ChIP)

ChIP assay was performed as described (27). In brief, resting Th cells were cross-linked for 

10 min with 1% formaldehyde and lysed by sonication. After pre-clearing with salmon 

sperm DNA, bovine serum albumin, and Protein Agarose bead slurry (50%), cell extracts 

were incubated with either rabbit polyclonal Etv5 H-100, p300 N-15, GCN5 H-75 (Santa 

Cruz), H3ac, H4K16ac, H4K5ac, H4K8ac, or normal rabbit IgG (all from Millipore) 

overnight at 4°C. The immunocomplexes were precipitated with protein Agarose beads at 

4°C for 2 h, washed, eluted and cross-links reversed at 65°C overnight. DNA was purified, 

resuspended in H2O and analyzed by qPCR. Primers were described previously (5, 8). 

Unless stated otherwise, the percentage input was calculated by subtracting the amount of 

immunoprecipitated DNA from the IgG control from the amount of immunoprecipated DNA 

from the specific antibody and normalized against the amount of input DNA.
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Histology

Lungs were perfused with PBS, excised from the thoracic cavity, inflated with 4% neutral 

buffered formaldehyde, and fixed overnight at room temperature. Tissues were embedded in 

paraffin, sectioned, and stained with hematoxylin and eosin (H&E) or via the Periodic acid-

Schiff (PAS) method. Lung histology was scored by a reader with experimental conditions 

masked. Lung pathology was scored on H&E stained slides from a range of 0–4 as follows: 

0: no visible inflammatory infiltrate; 1: patchy and/or light infiltrate into conducting 

airways; 2: widespread and/or intense infiltrate into conducting airways with little 

involvement in alveoli spaces; 3: widespread/intense infiltrate into conducting airways with 

patchy and/or light involvement in alveolar spaces; and 4: wide-spread/intense infiltrate into 

all aspects of the lung architecture. Goblet cell hyperplasia was scored by the average 

proportion of PAS staining in 20 randomly selected airways from two independent reads 

with a scoring range from 0 (no PAS+ epithelial cells) to 1 (100% PAS+ epithelial cells).

Statistical Analysis

Statistical analyses were performed using Prism5 software (for Macintosh; GraphPad 

Software, Inc.). A two tailed Student’s t-test or one-way ANOVA were used to generate p-

values data as specified in Figure Legends. A post-hoc Tukey test was used for multiple 

comparisons. p < 0.05 was considered statistically significant.

Results

Etv5 promotes Il9 production

Our recent results demonstrated that ETV5 promotes IL-17 production and is induced in 

response to STAT-activating cytokines (22). However, ETV5 had limited functions in Th1 

cells and seemed to repress IL-4 production. The repression of IL-4 was reminiscent of the 

phenotype observed in T cells that lack PU.1 expression (15). Thus, we were interested in 

determining the effects of ETV5 on Th9 development. To test this, we isolated naïve T cells 

from Etv5fl/fl mice that were either negative or positive for CD4-Cre (referred to in Figures 

as Etv5ΔCD4) and cultured them under Th2 or Th9 skewing conditions. By intracellular 

cytokine staining we observed a diminished percentage of IL-9-producing cells in Th2 and 

Th9 cultures lacking expression of ETV5 (Figure 1A). We also observed an increased 

percentage of IL-4-positive cells in Th2 and Th9 cultures lacking ETV5 (Figure 1A). This 

observation was consistent with decreased IL-9 and increased IL-4 in the supernatants of 

Th2 and Th9 cultures, and with mRNA expression of these cytokines (Figure 1B–C). We 

further observed that additional Th2 cytokines, including IL-5 and IL-13, were increased in 

the absence of ETV5 (Figure 1B).

To directly demonstrate the function of ETV5, we transduced developing Th9 cells with 

retroviruses containing either no cDNA or expressing ETV5. Ectopic expression of ETV5 in 

Th9 cells increased the production of IL-9 and further decreased the minimal production of 

IL-4 (Figure 1D). Similarly, ectopic expression of ETV5 in Th2 cells repressed IL-4 

production and increased the percentage of cell positive for IL-9 (Figure 1D). Thus, ETV5 

regulates production of IL-9.

Koh et al. Page 4

J Immunol. Author manuscript; available in PMC 2017 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Etv5 gene expression is induced following T cell activation. We compared the expression of 

Etv5 during the development of Th2, Th9, and iTreg cells and observed that although there 

is no induction of Etv5 during Treg development, Etv5 is dynamically regulated in Th2 and 

Th9 cells (Fig. 2A). We observed a rapid increase in Th2 cells and a slower increase in Th9 

cells that ultimately fell to similar levels after 5 days in culture (Fig. 2A–B). Following 

stimulation of Th9 cells after 5 days of culture, Etv5 mRNA is rapidly induced by 4 hours 

(Fig. 2C). Consistent with regulation dissimilar from Sfpi1, we observed Etv5 mRNA was 

dependent on STAT6 (Fig. 2D). Etv5 mRNA was also decreased in Th9 cultures by the 

absence of IRF4, suggesting Etv5 expression is downstream of a STAT6/IRF4 network. In 

contrast, Etv5 expression was increased in Th9 cultures that lacked expression of BATF or 

PU.1, suggesting that IL-4-dependent expression does not require BATF (Fig. 2D).

Specificity of ETS proteins in the promotion of IL-9 production

The similarity of phenotypes in Th9 cultures ectopically expressing ETV5 or PU.1 raised the 

question of whether any ETS protein had the capability to induce IL-9 production. To test 

this, we examined microarray and RNA-seq datasets (6, 28) to determine which ETS family 

members are expressed in appreciable amounts in Th9 cells. We examined the function of 

Elk3 and Etv6, both having enriched expression in Th9 cultures (Figure 3A–B), using the 

ectopic expression assay. Ectopic expression of either cDNA increased mRNA levels at least 

10-fold (data not shown). We observed that although PU.1 and ETV5 had similar abilities to 

induce IL-9 production (8, 9)(Fig. 1), Elk3 and Etv6 had no effect in this assay (Figure 3C 

and E). Etv6 has previously been linked to IL-17 production in Th17 cells (29), but we did 

not see induction of IL-17, which was expressed in only a small percentage of the Th9 

cultured cells (Fig. 3D). Thus, the ability to induce IL-9 expression is not shared among all 

ETS family proteins.

Chromatin remodeling at the Il9 locus by ETV5

Previous reports indicated that PU.1 bound to the Il9 promoter and recruited Gcn5-

containing complexes to alter the histone modifications at the Il9 locus (8, 9). We first tested 

whether ETV5 also bound to the Il9 locus at three conserved non-coding sequence (CNS) 

regions, CNS0, CNS1 (promoter), and CNS2 (30). ETV5 binding was significantly enriched 

at the CNS0 and CNS2 regions (Fig. 4A). This was in contrast to PU.1 binding that is 

enriched only at the CNS1 region (5, 8). Moreover, ETV5 binding at CNS2 was significantly 

greater in Th9 cells than in either Th2 or Th17 cells, and binding at CNS0 was significantly 

greater in Th9 than Th17, with a trend towards increased binding compared to Th2 cells 

(Fig. 4B). Binding of ETV5 to a non-conserved sequence in the Il9 locus was barely 

detectable (Fig. 4B). PU.1 and ETV5 also had differential effects on the recruitment of HAT 

proteins to the locus. In contrast to PU.1-deficient Th9 cells that had increased p300 

association and decreased Gcn5 association with the Il9 locus (9), ETV5-deficient cells had 

normal Gcn5 recruitment but significantly decreased p300 recruitment, correlating with 

significant decreases in the overall histone H3 acetylation and H4K16 acetylation at the Il9 
promoter (Fig. 4E–F). The histone acetylation events were specific as there was no 

difference in the acetylation of H4K5 or H4K8 between control and ETV5-deficient Th9 

cells (Fig. 4G–H). These results suggest that although PU.1 and ETV5 have overlapping 
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biological functions, they promote the expression of Il9 by acting on the Il9 locus through 

distinct binding sites.

Parallel effects of PU.1 and ETV5 in vitro

These results suggested that ETV5 has distinct and overlapping functions with PU.1 in the 

development of Th9 cells. To test this directly, we mated mice with a conditional PU.1-

expressing allele (Sfpi1) with the Etv5 fl/fl mice, in the context of the CD4-Cre transgene. 

Naïve CD4 T cells were isolated from control, Etv5 fl/fl CD4-Cre, Sfpi1 fl/fl CD4-Cre, and 

Sfpi1/Etv5 fl/fl CD4-Cre mice, and cultured under Th9 conditions. Consistent with our 

previous reports, Th9 cultures that were deficient in PU.1 had diminished IL-9 production 

(Fig. 5A). Similarly decreased levels of IL-9 were observed in Etv5-deficient Th9 cultures 

(Fig. 5A). This pattern was similar when IL-9 secretion were analyzed (Fig. 5B). 

Importantly, Th9 cultures that were doubly-deficient in PU.1 and ETV5 showed an additive 

effect of the deletion of each gene and had the lowest percentages of IL-9-positive, the 

lowest concentration of secreted IL-9 and the lowest Il9 mRNA among the cultures (Fig. 

5A–B). Interestingly, although deficiency in either PU.1 or ETV5 increases the production 

of IL-4 (Fig. 5B), there was not an additive effect of deficiency in both factors, with double-

deficient Th9 cultures having intermediate percentages of IL-4+ cells and concentrations of 

secreted IL-4 (Fig. 5A–B).

To determine if PU.1 and ETV5 have distinct effects on the expression of other genes 

enriched within Th9 cells, we performed qPCR analysis of cDNA from each of the Th9 

cultures. Consistent with our previous report, PU.1-deficiency impacted a small subset of 

Th9 genes relative to those affected by STAT6- and BATF-deficiencies in almost all genes 

indicated in Figure 5C (6). We observed no significant effect of PU.1 or ETV5-deficiency on 

the expression of Irf4, Maf, Gata3, Erg, Crem, Tnfsf13b, Ahr, Ccr4, or Fasl (Fig. 5C and 

data not shown). Expression of Sfpi1 (PU.1) was increased in the absence of ETV5, 

indicating that the phenotype observed in ETV5-deficient Th9 cells is not due to diminished 

PU.1 expression (Fig. 5C). This does suggest that increased PU.1 expression might be at 

least partially compensating for ETV5-deficiency in the expression of Th9 genes. Deficiency 

in both PU.1 and ETV5 was required to see decreases in Batf and Cxcl3 (Fig. 5C). In 

contrast, we observed Etv5 had significant effects on Il1rn expression, and PU.1 was 

somewhat repressive to Ccr8 (Fig. 5C). Thus, PU.1 and ETV5 have distinct effects on gene 

expression in Th9 cells.

Parallel effects of PU.1 and ETV5 in vivo

We then tested whether combined deficiency in PU.1 and ETV5 had distinct effects on IL-9 

production when tested in vivo. We used the OVA/alum allergic airway inflammation model 

that has previously been shown to be partially dependent on IL-9 and PU.1 expression in T 

cells (8). Mice were sensitized and challenged as portrayed in Fig. 6A. Overall, we observed 

that there were parallel effects of deficiency in both PU.1 and ETV5 in T cells, with each 

affecting distinct aspects of inflammation. We observed that PU.1 alone had a greater effect 

on total inflammation as assessed by histology, and eosinophils in the lung (Fig. 6B, D and 

H). ETV5-deficiency resulted in significant decreases in mucus staining, PMN infiltration, 

and mast cell accumulation (Fig. 6C, F, H and I). Among these parameters, the double-
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deficient mice were not significantly different than the respective single-deficient mice, 

suggesting that PU.1 and ETV5 were controlling separable aspects of inflammation. 

However, only the double-deficient mice were significantly lower than wild type mice in 

total lung cell accumulation, Muc5ac expression and Mcpt2 expression (Fig. 6E, G, and J). 

Moreover, double-deficient mice demonstrated Mcpt1 expression that was significantly 

lower than wild type and either of the single-deficient mice (Fig. 6J).

We then tested whether this corresponded to decreased IL-9 production in vivo. Although 

there was a similar reduction in total CD4 T cells in the lung in each single- or double-

deficient mouse (Fig. 7A), there was an overall decrease in the number and percentage of 

IL-9+ T cells in the lung, with T cells from double-deficient mice demonstrating IL-9 

reduced to background amounts (Fig. 7B and C), although these values were not 

significantly decreased compared to mice with PU.1-deficient T cells. This is in contrast to 

the numbers and percentages of lung Th2 cytokine-producing T cells that were respectively 

modestly decreased or unaffected (Fig. 7B–C). The number of IL-13-producing T cells in 

the lung was decreased in double-deficient mice, although the percentages in the lung were 

not decreased, suggesting a link to overall inflammation (Fig. 6). Moreover, in the periphery, 

Th2 responses developed normally. OVA stimulation of draining lymph node cells yielded 

normal or slightly increased production of Th2 cytokines (Fig. 7D). This was in contrast to 

OVA-stimulated IL-9 concentrations that were significantly decreased in cultures from mice 

with PU.1-deficient or double-deficient T cells (Fig. 7D). Together, these data demonstrate a 

role for ETV5 in regulating IL-9 production and Th9 development in vitro and regulating 

allergic inflammation in parallel with PU.1.

Discussion

Transcription factors play an obligate role in defining the phenotype and function of T 

helper cells. In this report, we have defined the contribution of the ETS family transcription 

factor ETV5 to the Th9 phenotype. ETV5 shares many functions with the ETS family factor 

PU.1 that we previously demonstrated was required for Th9 development (8, 9). Both ETV5 

and PU.1 regulate IL-9 production although they appear to work through different regulatory 

elements in the Il9 gene. Apart from IL-9, PU.1 and ETV5 regulate some common and some 

distinct genes associated with the Th9 phenotype. Moreover, T cells that lacked both ETV5 

and PU.1 had decreased IL-9 production in vitro.

The concept of transcription factors from the same family having overlapping functions is 

observed in other T cells. In Th17 cells, the loss of IL-17 production is more severe in mice 

that lack both RORγt and RORα than either factor individually (31). Similarly, Tc17 cells 

develop from CD8 T cells that are doubly-deficient in the T-box factors T-bet and 

Eomesodermin (32). This paradigm is also seen among ETS family factors that are divided 

into 4 classes based on binding sequence and 9 sub-families based on homology (33). The 

partial redundancy between PU.1 and Spi-B, two factors in the same sub-family, has been 

examined in several models including myeloid and lymphoid cell development, B cell 

function, and the development of leukemia (34–37). Other examples of factors from the 

same sub-family having overlapping function include ETV1 and ETV4 that cooperate in 

prostate cancer, ELK1 and ELK4 in thymocyte development, and FLI-1 and ERG in 
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hematopoiesis (38–40). However, PU.1 and ETV5 are from different sub-families. This is 

not without precedent and ETS2 and ELF5, factors from distinct sub-families, cooperate in 

development (41). Some of this redundancy is clearly dependent on overlapping binding 

specificities of the family-defining DNA binding domain (42). Yet, the protein sequences 

outside of the DNA binding domain are divergent and suggest that the partial redundancies 

observed are limited by the ability of each ETS family member to interact with other factors 

at gene regulatory elements (33).

Although ETV5 and PU.1 were clearly cooperating on IL-9 production within in vitro-

derived cells, we observed a trend but not a significant effect of ETV5-deficiency on IL-9 

production in vivo. This could be due to several reasons including compensation by 

increased expression of PU.1 (Fig. 5) or other signals in vivo that might bypass the 

requirement for ETV5 in the OVA/alum model. Despite these data, we observed distinct 

effects of PU.1 and ETV5 on the overall allergic inflammation, suggesting that PU.1 and 

ETV5 are not exerting effects in vivo strictly through IL-9. This is consistent with the effects 

of deficiency of either factor or both in T cells during the development of allergic 

inflammation. Although deficiency in either factor results in diminished inflammation, PU.

1-deficiency had a slightly greater effect on eosinophil accumulation during allergic 

inflammation than did deficiency in ETV5. Conversely, ETV5-deficiency had a greater 

effect on neutrophil recruitment, consistent with our previous studies (22). Importantly, 

while we and others have shown that the HDM model of airway inflammation is dependent 

on IL-17 (22, 43), the OVA-alum model is largely IL-17 independent (44), so that the effects 

of ETV5-deficiency on IL-17 should not impact the total cellular inflammation in our 

studies. Both ETV5 and PU.1 contribute to the ability of Th9 cells to promote accumulation 

and gene expression of mast cells in lung tissue, again consistent with our previous results 

on the role of Th9 cells in mast cell accumulation in multiple models of allergic airway 

disease (45). We did observe that IL-13-producing T cells in the lung were also decreased in 

mice with T cells lacking both ETV5 and PU.1, though the proportion of these cells was not 

different, suggesting the decrease in number was linked to decreased overall inflammation. 

IL-13 production from draining lymph node cells in mice with T cells lacking ETV5 and 

PU.1 were normal, supporting normal development of the Th2 response in these mice. Still, 

it is possible that the observed decrease in IL-13-producing T cells might contribute some 

aspect of the diminished inflammation observed in vivo.

Although we have focused on conventional CD4 T cells in this report, it is possible that 

ETV5 might be functioning in other types of cells. Other sources of IL-9 in the immune 

system include NKT cells, γδ T cells, and innate lymphoid cells (4). Among these, the CD4-

Cre should only affect expression in NKT cells. We previously suggested that PU.1 was not 

required for IL-9 production by NKT cells (45), but it is not clear if ETV5 might play a role 

within these cells. The role of NKT cells in asthma models is still debated, and what controls 

IL-9 within these cells is not yet clear.

As noted above, the ETS transcription factor family is divided based on binding specificity 

and homology (33). As we have shown that PU.1 and ETV5 preferentially bind different 

sites in the Il9 locus and recruit different HATs to the locus, they appear to have distinct 

functions at a convergent target gene. It is not clear if this is a common theme among 
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cooperating ETS factors. The ability of PU.1 and ETV5 to cooperate across sub-families 

suggests that redundancy of function is not restricted to family members that have similar 

binding site specificities or similar structures outside of the common ETS DNA binding 

domain. Further work will help to elucidate the rules governing the development of 

evolutionary cooperation among this family of transcription factors.

Acknowledgments

This work was supported by Public Health Service grants AI045515 and AI057459 to MHK. DP was supported by 
PHS T32 HL007910, MMH was supported by PHS T32 AI060519 and MRO was supported by PHS T32 
AR062495. Support provided by the HB Wells Center was in part from the Riley Children’s Foundation.

Abbreviations

ETV ETS variant

IRF interferon regulatory factor

References

1. Biancheri P, Giuffrida P, Docena GH, MacDonald TT, Corazza GR, Di Sabatino A. The role of 
transforming growth factor (TGF)-beta in modulating the immune response and fibrogenesis in the 
gut. Cytokine Growth Factor Rev. 2014; 25:45. [PubMed: 24332927] 

2. O'Shea JJ, Lahesmaa R, Vahedi G, Laurence A, Kanno Y. Genomic views of STAT function in 
CD4+ T helper cell differentiation. Nat Rev Immunol. 2011; 11:239. [PubMed: 21436836] 

3. Villarino AV, Kanno Y, Ferdinand JR, O'Shea JJ. Mechanisms of Jak/STAT signaling in immunity 
and disease. J Immunol. 2015; 194:21. [PubMed: 25527793] 

4. Kaplan MH, Hufford MM, Olson MR. The development and in vivo function of T helper 9 cells. 
Nat Rev Immunol. 2015; 15:295. [PubMed: 25848755] 

5. Goswami R, Jabeen R, Yagi R, Pham D, Zhu J, Goenka S, Kaplan MH. STAT6-dependent regulation 
of Th9 development. J Immunol. 2012; 188:968. [PubMed: 22180613] 

6. Jabeen R, Goswami R, Awe O, Kulkarni A, Nguyen ET, Attenasio A, Walsh D, Olson MR, Kim 
MH, Tepper RS, Sun J, Kim CH, Taparowsky EJ, Zhou B, Kaplan MH. Th9 cell development 
requires a BATF-regulated transcriptional network. J Clin Invest. 2013; 123:4641. [PubMed: 
24216482] 

7. Staudt V, Bothur E, Klein M, Lingnau K, Reuter S, Grebe N, Gerlitzki B, Hoffmann M, Ulges A, 
Taube C, Dehzad N, Becker M, Stassen M, Steinborn A, Lohoff M, Schild H, Schmitt E, Bopp T. 
Interferon-regulatory factor 4 is essential for the developmental program of T helper 9 cells. 
Immunity. 2010; 33:192. [PubMed: 20674401] 

8. Chang HC, Sehra S, Goswami R, Yao W, Yu Q, Stritesky GL, Jabeen R, McKinley C, Ahyi AN, 
Han L, Nguyen ET, Robertson MJ, Perumal NB, Tepper RS, Nutt SL, Kaplan MH. The 
transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic 
inflammation. Nat Immunol. 2010; 11:527. [PubMed: 20431622] 

9. Goswami R, Kaplan MH. Gcn5 is required for PU.1-dependent Interleukin-9 (IL-9) induction in 
Th9 cells. J Immunol. 2012; 189:3026. [PubMed: 22904310] 

10. Tamiya T, Ichiyama K, Kotani H, Fukaya T, Sekiya T, Shichita T, Honma K, Yui K, Matsuyama T, 
Nakao T, Fukuyama S, Inoue H, Nomura M, Yoshimura A. Smad2/3 and IRF4 play a cooperative 
role in IL-9-producing T cell induction. J Immunol. 2013; 191:2360. [PubMed: 23913959] 

11. Wang A, Pan D, Lee YH, Martinez GJ, Feng XH, Dong C. Cutting edge: Smad2 and Smad4 
regulate TGF-beta-mediated Il9 gene expression via EZH2 displacement. J Immunol. 2013; 
191:4908. [PubMed: 24108699] 

12. Dakic A, Wu L, Nutt SL. Is PU.1 a dosage-sensitive regulator of haemopoietic lineage 
commitment and leukaemogenesis? Trends Immunol. 2007; 28:108. [PubMed: 17267285] 

Koh et al. Page 9

J Immunol. Author manuscript; available in PMC 2017 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



13. Chang HC, Zhang S, Thieu VT, Slee RB, Bruns HA, Laribee RN, Klemsz MJ, Kaplan MH. PU.1 
expression delineates heterogeneity in primary Th2 cells. Immunity. 2005; 22:693. [PubMed: 
15963784] 

14. Ahyi AN, Chang HC, Dent AL, Nutt SL, Kaplan MH. IFN Regulatory Factor 4 Regulates the 
Expression of a Subset of Th2 Cytokines. J Immunol. 2009; 183:1598. [PubMed: 19592658] 

15. Chang HC, Han L, Jabeen R, Carotta S, Nutt SL, Kaplan MH. PU.1 regulates TCR expression by 
modulating GATA-3 activity. J Immunol. 2009; 183:4887. [PubMed: 19801513] 

16. Awe O, Hufford MM, Wu H, Pham D, Chang HC, Jabeen R, Dent AL, Kaplan MH. PU.1 
expression in T follicular helper cells limits CD40L-dependent germinal center B cell 
development. J. Immunol. 2015 In press. 

17. Oh S, Shin S, Janknecht R. ETV1, 4 and 5: an oncogenic subfamily of ETS transcription factors. 
Biochimica et biophysica acta. 2012; 1826:1. [PubMed: 22425584] 

18. Zhang Z, Sui P, Dong A, Hassell J, Cserjesi P, Chen YT, Behringer RR, Sun X. Preaxial 
polydactyly: interactions among ETV, TWIST1 and HAND2 control anterior-posterior patterning 
of the limb. Development. 2010; 137:3417. [PubMed: 20826535] 

19. Zhang Z, Verheyden JM, Hassell JA, Sun X. FGF-regulated Etv genes are essential for repressing 
Shh expression in mouse limb buds. Developmental cell. 2009; 16:607. [PubMed: 19386269] 

20. Wu X, Goodyear SM, Tobias JW, Avarbock MR, Brinster RL. Spermatogonial stem cell self-
renewal requires ETV5-mediated downstream activation of Brachyury in mice. Biology of 
reproduction. 2011; 85:1114. [PubMed: 21816850] 

21. Ouyang W, Jacobson NG, Bhattacharya D, Gorham JD, Fenoglio D, Sha WC, Murphy TL, Murphy 
KM. The Ets transcription factor ERM is Th1-specific and induced by IL-12 through a Stat4-
dependent pathway. Proc Natl Acad Sci U S A. 1999; 96:3888. [PubMed: 10097133] 

22. Pham D, Sehra S, Sun X, Kaplan MH. The transcription factor Etv5 controls TH17 cell 
development and allergic airway inflammation. J Allergy Clin Immunol. 2014; 134:204. [PubMed: 
24486067] 

23. Dakic A, Metcalf D, Di Rago L, Mifsud S, Wu L, Nutt SL. PU.1 regulates the commitment of adult 
hematopoietic progenitors and restricts granulopoiesis. J Exp Med. 2005; 201:1487. [PubMed: 
15867096] 

24. Betz BC, Jordan-Williams KL, Wang C, Kang SG, Liao J, Logan MR, Kim CH, Taparowsky EJ. 
Batf coordinates multiple aspects of B and T cell function required for normal antibody responses. 
J Exp Med. 2010; 207:933. [PubMed: 20421391] 

25. Kaplan MH, Schindler U, Smiley ST, Grusby MJ. Stat6 is required for mediating responses to IL-4 
and for the development of Th2 cells. Immunity. 1996; 4:313. [PubMed: 8624821] 

26. Stritesky GL, Muthukrishnan R, Sehra S, Goswami R, Pham D, Travers J, Nguyen ET, Levy DE, 
Kaplan MH. The transcription factor STAT3 is required for Th2 cell development. Immunity. 
2011; 34:39. [PubMed: 21215659] 

27. Yu Q, Thieu VT, Kaplan MH. Stat4 limits DNA methyltransferase recruitment and DNA 
methylation of the IL-18Ralpha gene during Th1 differentiation. Embo J. 2007; 26:2052. 
[PubMed: 17380127] 

28. Liao W, Spolski R, Li P, Du N, West EE, Ren M, Mitra S, Leonard WJ. Opposing actions of IL-2 
and IL-21 on Th9 differentiation correlate with their differential regulation of BCL6 expression. 
Proc Natl Acad Sci U S A. 2014; 111:3508. [PubMed: 24550509] 

29. Ciofani M, Madar A, Galan C, Sellars M, Mace K, Pauli F, Agarwal A, Huang W, Parkurst CN, 
Muratet M, Newberry KM, Meadows S, Greenfield A, Yang Y, Jain P, Kirigin FK, Birchmeier C, 
Wagner EF, Murphy KM, Myers RM, Bonneau R, Littman DR. A validated regulatory network for 
th17 cell specification. Cell. 2012; 151:289. [PubMed: 23021777] 

30. Perumal NB, Kaplan MH. Regulating Il9 transcription in T helper cells. Trends in immunology. 
2011; 32:146. [PubMed: 21371941] 

31. Yang XO, Pappu BP, Nurieva R, Akimzhanov A, Kang HS, Chung Y, Ma L, Shah B, Panopoulos 
AD, Schluns KS, Watowich SS, Tian Q, Jetten AM, Dong C. T helper 17 lineage differentiation is 
programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity. 2008; 28:29. 
[PubMed: 18164222] 

Koh et al. Page 10

J Immunol. Author manuscript; available in PMC 2017 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



32. Intlekofer AM, Banerjee A, Takemoto N, Gordon SM, Dejong CS, Shin H, Hunter CA, Wherry EJ, 
Lindsten T, Reiner SL. Anomalous type 17 response to viral infection by CD8+ T cells lacking T-
bet and eomesodermin. Science. 2008; 321:408. [PubMed: 18635804] 

33. Hollenhorst PC, McIntosh LP, Graves BJ. Genomic and biochemical insights into the specificity of 
ETS transcription factors. Annu Rev Biochem. 2011; 80:437. [PubMed: 21548782] 

34. Garrett-Sinha LA, Dahl R, Rao S, Barton KP, Simon MC. PU.1 exhibits partial functional 
redundancy with Spi-B, but not with Ets-1 or Elf-1. Blood. 2001; 97:2908. [PubMed: 11313289] 

35. Garrett-Sinha LA, Su GH, Rao S, Kabak S, Hao Z, Clark MR, Simon MC. PU.1 and Spi-B are 
required for normal B cell receptor-mediated signal transduction. Immunity. 1999; 10:399. 
[PubMed: 10229183] 

36. Xu LS, Sokalski KM, Hotke K, Christie DA, Zarnett O, Piskorz J, Thillainadesan G, Torchia J, 
DeKoter RP. Regulation of B cell linker protein transcription by PU.1 and Spi-B in murine B cell 
acute lymphoblastic leukemia. J Immunol. 2012; 189:3347. [PubMed: 22956576] 

37. Dahl R, Ramirez-Bergeron DL, Rao S, Simon MC. Spi-B can functionally replace PU.1 in myeloid 
but not lymphoid development. Embo J. 2002; 21:2220. [PubMed: 11980719] 

38. Costello P, Nicolas R, Willoughby J, Wasylyk B, Nordheim A, Treisman R. Ternary complex 
factors SAP-1 and Elk-1, but not net, are functionally equivalent in thymocyte development. J 
Immunol. 2010; 185:1082. [PubMed: 20554967] 

39. Kruse EA, Loughran SJ, Baldwin TM, Josefsson EC, Ellis S, Watson DK, Nurden P, Metcalf D, 
Hilton DJ, Alexander WS, Kile BT. Dual requirement for the ETS transcription factors Fli-1 and 
Erg in hematopoietic stem cells and the megakaryocyte lineage. Proc Natl Acad Sci U S A. 2009; 
106:13814. [PubMed: 19666492] 

40. Mesquita D, Barros-Silva JD, Santos J, Skotheim RI, Lothe RA, Paulo P, Teixeira MR. Specific 
and redundant activities of ETV1 and ETV4 in prostate cancer aggressiveness revealed by co-
overexpression cellular contexts. Oncotarget. 2015; 6:5217. [PubMed: 25595908] 

41. Donnison M, Broadhurst R, Pfeffer PL. Elf5 and Ets2 maintain the mouse extraembryonic 
ectoderm in a dosage dependent synergistic manner. Dev Biol. 2015; 397:77. [PubMed: 25446535] 

42. Hollenhorst PC, Shah AA, Hopkins C, Graves BJ. Genome-wide analyses reveal properties of 
redundant and specific promoter occupancy within the ETS gene family. Genes Dev. 2007; 
21:1882. [PubMed: 17652178] 

43. Lajoie S, Lewkowich IP, Suzuki Y, Clark JR, Sproles AA, Dienger K, Budelsky AL, Wills-Karp M. 
Complement-mediated regulation of the IL-17A axis is a central genetic determinant of the 
severity of experimental allergic asthma. Nature immunology. 2010; 11:928. [PubMed: 20802484] 

44. Suzukawa M, Morita H, Nambu A, Arae K, Shimura E, Shibui A, Yamaguchi S, Suzukawa K, 
Nakanishi W, Oboki K, Kajiwara N, Ohno T, Ishii A, Korner H, Cua DJ, Suto H, Yoshimoto T, 
Iwakura Y, Yamasoba T, Ohta K, Sudo K, Saito H, Okumura K, Broide DH, Matsumoto K, Nakae 
S. Epithelial cell-derived IL-25, but not Th17 cell-derived IL-17 or IL-17F, is crucial for murine 
asthma. J Immunol. 2012; 189:3641. [PubMed: 22942422] 

45. Sehra S, Yao W, Nguyen ET, Glosson-Byers NL, Akhtar N, Zhou B, Kaplan MH. TH9 cells are 
required for tissue mast cell accumulation during allergic inflammation. J Allergy Clin Immunol. 
2015; 136:433. [PubMed: 25746972] 

Koh et al. Page 11

J Immunol. Author manuscript; available in PMC 2017 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
ETV5 promotes IL-9 and inhibits Th2-associated cytokine production. A–D, Wild type or 

Etv5ΔCD4 naïve T cells were cultured in vitro under Th2 or Th9 conditions for five days. A, 

Representative FACS profiles of IL-9 and IL-4 producing cells following stimulation with 

PMA/ionomycin for six hours. Depicted cells were gated as FSCloSSCloCD4+. B, Cytokines 

secreted following stimulation with anti-CD3 for twenty-four hours. C, Il9 and Il4 
expression following stimulation with anti-CD3 for six hours. Data was normalized to β2m 
expression. Il9 expression was relative to wild type Th2, and Il4 was relative to wild type 

Th9. D, Wild type naïve T cells were cultured for five days in Th9 conditions and were 

transduced with control or Etv5-expressing RV on day two of culture. Representative FACS 

profiles of IL-9 and IL-4 producing transduced cells. Cells stimulated with PMA/ionomycin. 

Depicted cells were gated as FSCloSSCloCD4+Thy1.1+. Data represented as mean ± SEM. 

A–C, Data depicted are from two independent experiments (4–5 mice/experiment) D, Data 
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depicted are from three independent experiments (2 mice/experiment). A two tailed 

Student’s t-test was used for single comparisons. *p<0.05; **p<0.01.
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Figure 2. 
Etv5 expression in T helper cell subsets. A–C, Wild type naïve T cells were cultured in vitro 
under Treg, Th2, or Th9 conditions for five days. A, every 24h during the culture period 

RNA was isolated to assay for Etv5 expression by qRT-PCR in each culture condition. B, 

Comparison of Etv5 expression among the subsets at day 5 of culture. C, Etv5 mRNA levels 

in Th9 cells activated with anti-CD3 for the indicated time points. D, T cells from mice of 

the indicated genotypes were cultured in vitro under Th9 conditions over five days. Etv5 

expression was measured using qRT-PCR at day 5 of culture. A two tailed Student’s t-test 
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was used for single comparisons. *p<0.05; **p<0.01. A–D, Data represented as mean ± 

SEM from at least two independent experiments.
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Figure 3. 
ELK3 and ETV6 do not promote IL-9 production in Th9 cells. A–B, Elk3 and Etv6 
expression in T cells cultured in depicted Th subset conditions for five days. Data was 

normalized to β2m expression. C–E, Naïve T cells were cultured for five days in Th9 

conditions and were transduced with control, Elk3-expressing, or Etv6-expressing RV on 

day two of culture. Cells were re-stimulated with PMA/ionomycin. Accumulated data (C) 

and representative FACS profiles (E) of IL-9 producing transduced cells. Accumulated data 

(D) of IL-17 producing transduced cells from Th9 cultures. Depicted cells were gated as 

FSCloSSCloCD4+GFP+. Data represented as mean ± SEM from two to three independent 

experiments (3 mice/experiment).
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Figure 4. 
ETV5 binds and enhances histone acetylation at the Il9 CNS regions A–I, Wild type or 

Etv5ΔCD4 naïve T cells were cultured in vitro under Th9 conditions, unless depicted 

otherwise, for five days. A, ETV5 binding, with respective isotype controls, at the Il9 CNS 

regions. B, ETV5 binding within indicated Th cultured cells at the Il9 CNS regions and a 

−12kb region of the Il9 locus (negative control). C–D, p300 or GCN5 binding to the Il9 
CNS1. E–H, Depicted Ac-histone levels at the Il9 CNS1. B–H, Percent input depicted are 

the ETV5 ChIP values following subtraction of the control Ig ChIP values. Data represented 

as mean ± SEM from two to three independent experiments (3 mice/experiment). A two 

tailed Student’s t-test was used for single comparisons. One-way ANOVA with a post-hoc 

Tukey test was used to generate p-values for all multiple comparisons. *p<0.05; **p<0.01; 

***p<0.001.
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Figure 5. 
Effect of deficiency in Etv5 and Sfpi1 on Th9 differentiation. A–D, Wild type, Etv5ΔCD4, 

Sfpi1ΔCD4, or Etv5/Sfpi1ΔCD4 naïve T cells were cultured in vitro under Th9 conditions for 

five days. A, Representative FACS profiles of IL-9 and IL-4 producing cells. Cells 

stimulated with PMA/ionomycin. Depicted cells were gated as FSCloSSCloCD4+. B, 

Cytokine production following stimulation with anti-CD3 for twenty-four hours. C, Gene 

expression in day five cultured cells. C, Data was normalized to β2m expression and is 

relative to wild type cell expression. B–C Data represented as mean ± SEM from three 

independent experiments (2–3 mice/experiment). One-way ANOVA with a post-hoc Tukey 

test was used to generate p-values for all multiple comparisons. *p<0.05; **p<0.01; 

***p<0.001.
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Figure 6. 
Pathology of mice deficient in both Etv5 and Sfpi1 in an allergic disease model. A, 

Schematic of OVA/Alum model utilized to promote allergic inflammation. Unchallenged 

mice were sensitized with OVA/Alum but did not receive OVA challenge intranasally. 

Representative images of H&E (B) and PAS staining (C) of inflamed lung tissue. D, 

Tabulated pathology scores from H&E stained tissues. E, Absolute cell numbers of the 

lungs. F, Tabulated PAS scores. G, Muc5ac expression in the lung. Data was normalized to 

β2m expression. H–I, Eosinophil (FSCloSSCint/hiSigLecF+CD11cnegt), neutrophil 

(FSCloSSCintLy6G+CD11bhi), and mast cell (FSCintSSCintFcεR1+cKit+) absolute numbers 

in the lung. J, Mcpt1 and Mcpt2 expression in the lung. Data was normalized to β2m 
expression. (D–J) Data represented as mean ± SEM from two independent experiments (5–6 

mice/treatment/experiment). For values from challenged mice, one-way ANOVA with a 

post-hoc Tukey test was used to generate p-values for all multiple comparisons. *p<0.05; 

**p<0.01; ***p<0.001.
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Figure 7. 
CD4+ T cell responses in Etv5 and Sfpi1 deficient mice during allergic inflammation. 

Pulmonary allergic inflammation was generated as in Figure 6. A, Absolute number of 

CD4+ T cells (FSCloSSCloCD3ε+CD4+CD8negt) in the lung. Numbers (B) and percentage 

(C) of cytokine producing CD4+ T cells in the lung. D, Cells were collected from the lung 

draining lymph nodes in allergic mice. Equivalent numbers of cells were cultured with 

exogenous Ova for thirty-six hours. Supernatants were analyzed for depicted cytokines. Data 

represented as mean ± SEM from two independent experiments (5–6 mice/treatment /

experiment). For values from challenged mice, one-way ANOVA with a post-hoc Tukey test 
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was used to generate p-values for all multiple comparisons. *p<0.05; **p<0.01; 

***p<0.001.
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