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Abstract

Background—Cue-evoked drug seeking behavior likely depends on interactions between frontal 

activity and ventral striatal (VST) dopamine transmission. Using [11C]raclopride (RAC) positron 

emission tomography (PET), we previously demonstrated that beer flavor (absent intoxication) 

elicited VST dopamine (DA) release in beer drinkers, inferred by RAC displacement. Here, a 

subset of subjects from this previous RAC-PET study underwent a similar paradigm during 

functional magnetic resonance imaging (fMRI) to test how orbitofrontal cortex (OFC) and VST 

BOLD responses to beer flavor are related to VST DA release and motivation to drink.

Methods—Male beer drinkers (n=28, age=24±2, drinks/week=16±10) from our previous PET 

study participated in a similar fMRI paradigm wherein subjects tasted their most frequently 

consumed brand of beer and Gatorade® (appetitive control). We tested for correlations between 

blood oxygenation level dependent (BOLD) activation in fMRI and VST DA responses in PET, 

and drinking-related variables.

Results—Compared to Gatorade, beer flavor increased wanting and desire to drink, and induced 

BOLD responses in bilateral OFC and right VST. Wanting and desire to drink correlated with both 

right VST and medial OFC BOLD activation to beer flavor. Like the BOLD findings, beer flavor 

(relative to Gatorade) again induced right VST DA release in this fMRI subject subset, but there 

was no correlation between DA release and the magnitude of BOLD responses in frontal regions 

of interest.
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Conclusions—Both imaging modalities showed a right lateralized VST response (BOLD and 

DA release) to a drug-paired conditioned stimulus, whereas fMRI BOLD responses in the VST 

and medial OFC also reflected wanting and desire to drink. The data suggest the possibility that 

responses to drug-paired cues may be rightward biased in the VST (at least in right-handed males), 

and that VST and OFC responses in this gustatory paradigm reflect stimulus wanting.
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Introduction

Drug conditioned stimuli (CS) elicit craving and physiological arousal (Carter and Tiffany, 

1999), addiction relapse (Cooney et al., 1997, Grüsser et al., 2004), and promote drug-

seeking in animals (Crombag et al., 2008). Given the power of CS to bias behavior toward 

drug seeking (Berridge, 2007), they remain important in addiction research.

Human fMRI shows that alcohol CS activate striatal and limbic prefrontal areas (Schacht et 

al., 2013 for meta-analysis), but it remains unclear how limbic frontal areas interact with DA 

transmission in the ventral striatum (VST). VST DA is widely implicated in addiction-

related processes, including abuse potential (Di Chiara and Imperato, 1988), salience 

attribution (Berridge, 2007), learning (Schultz et al., 1997), and anticipation/craving (Evans 

et al., 2006, Melendez et al., 2002). The striatum is heavily innervated by glutamatergic 

prefrontal cortical (PFC) projection neurons (Haber and Knutson, 2010), particularly from 

limbic areas that process reward and assign value, such as ventromedial prefrontal (vmPFC) 

and orbitofrontal cortex (OFC). Activation in the vmPFC/medial OFC correlates with 

imagined reinforcer value at the time of choice (i.e. "goal value", Plassmann et al., 2010), 

with primary reinforcers represented more laterally and posterior in OFC (for meta-analysis, 

see Kringelbach et al., 2003). Both the OFC and VST are, in turn, major targets of midbrain 

dopaminergic projections, with this circuit comprising part of the mesocorticolimbic 

pathways (Sesack and Grace, 2010). Using positron emission tomography (PET) with the 

D2/D3 radioligand [11C]raclopride (RAC), we previously demonstrated that, in heavy 

drinkers, the alcohol CS of beer flavor alone (Oberlin et al., 2013), or in combination with 

alcohol intoxication (Oberlin et al., 2015), causes displacement of RAC in the right VST— 

usually interpreted as DA release (Endres et al., 1997). Although RAC-PET is useful for 

tracking striatal DA, it is nevertheless insensitive to neural activity in the PFC, which can be 

broadly indexed by changes in BOLD (a nonspecific proxy for neural activity; Kwong et al., 

1992).

To investigate the relationship between alcohol CS-induced VST DA activity and cortical 

BOLD changes, we performed an fMRI study in a subset of the parent sample from Oberlin 

et al., (2013), employing similar flavor cue paradigms in both modalities. Combining data 

from the current fMRI study with the previous PET study, we hypothesized that beer flavor 

would: 1) induce activation in right VST, 2) activate medial and bilateral OFC primary 

reinforcer valuation sites (Plassmann et al., 2010, Kringelbach and Rolls, 2004), 3) produce 

PFC/OFC BOLD activation that correlated with right VST DA release (from PET), and 4) 
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increase wanting and desire for beer. To our knowledge, this study is the first to administer 

preferred alcohol drink stimuli during both fMRI and PET, allowing a determination of the 

degree to which BOLD responses correspond with VST DA release.

Materials and Methods

Subjects

Twenty-nine healthy right-handed male beer drinkers who previously participated in a RAC-

PET study (n=49; Oberlin et al., 2013) underwent a similar paradigm in fMRI 49 ± 38 days 

later (range 2–160). One subject was excluded for excessive motion in fMRI. Although the 

RAC-PET data from the parent sample are published, some procedures and data from these 

(n=28) will be reviewed here for clarity; see Table 1 for subject details. Subjects signed 

informed consents prior to study procedures, and all procedures were approved by the 

Indiana University Institutional Review Board. The 90-day Timeline Followback self-report 

(TLFB: Sobell et al., 1986) from the initial in-person interview for the PET study was used 

to estimate recent drinking (if > 60 days had elapsed since that interview, the fMRI study 

day TLFB was used instead). The Alcohol Use Disorders Identification Test (AUDIT: 

Saunders et al., 1993) assessed alcohol-related problems. The Semi-Structured Assessment 

for the Genetics of Alcoholism (Bucholz et al., 1994) screened for DSM-IV alcohol use 

disorder (AUD); two subjects met criteria for probable AUD. Drinking ranged from social to 

heavy (drinks/week range 2–37). Regular cigarette smoking was exclusionary, although two 

subjects reported infrequent use (≤ 3 cigarettes or cigars per week).

Procedure

The fMRI flavor paradigm resembled what these subjects had previously experienced during 

PET (Oberlin et al., 2013 for detail). The PET study, in brief, presented Gatorade® 

(PepsiCo, Inc., Purchase, NY) and preferred beer in two separate scans (15 flavor trials per 

scan) using a computer-controlled gustometer. Subjects made subjective ratings (wanting, 

desire, etc.) after baseline water sprays prior to each PET imaging session, and then again 

during imaging after 5, 10, and 15 flavor sprays.

The subsequent fMRI paradigm, performed on a later day, delivered Gatorade and preferred 

beer flavor sprays in six counterbalanced scans (three scans for each flavor; Figure 1). As in 

the PET study, no alcohol was administered, except for trace amounts in the beer sprays. 

Individual scans included only one flavor (to mirror the PET procedure) plus intervening 

water sprays, with 12 flavor and 12 water sprays per scan. While in the MRI scanner, and 

just prior to imaging, water was delivered to familiarize subjects with the procedure, and to 

acquire baseline ratings (see below). Subjects’ preferred beer was determined during the 

interview and purchased locally. Preferred beer, Gatorade, and water were chilled with an ice 

water jacket during administration through the gustometer.

Gustatory stimulus delivery: fMRI

During fMRI, a computer-controlled gustometer and spray nozzle delivered ~0.75 ml of 

beer, Gatorade, or water onto subjects’ tongues, with fluid delivery visually signaled by 

“Ready 2… 1… Sip” as projected onto a screen. The fluid spray duration was one second, 
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followed by a 350ms water purge to clear the nozzle head. Flavor and water sprays were 

delivered with a fixed interstimulus interval of 11 seconds. The general design of the flavor 

presentation (Figure 1) was chosen to be the best analog of flavor delivery during PET. In 

fMRI, we acquired multiple but shorter flavor scans with more trial numbers for optimal 

signal detection within an event related design.

Subjective ratings: fMRI

Subjects responded to computerized rating scales immediately before imaging (baseline), 

and between each fMRI scan. ‘Wanting’ was indicated by ratings of the number of beers 

subjects wanted at the moment (assuming a standard 12 oz. beer), with responses in 0.5 beer 

increments. ‘Desire’ to drink alcohol was calculated as the mean of ratings from 4 items 

from the Alcohol Craving Questionnaire (Singleton et al., 2000) on a 7-point visual analog 

scale (VAS; 1=strongly disagree, 7=strongly agree). Flavor pleasantness was measured on a 

VAS (1=“Least Pleasant Ever”, 7=“Most Pleasant Ever”), and flavor intensity was indexed 

with Green’s Labeled Magnitude scale (Green et al., 1996), anchored by “barely detectable” 

and “strongest imaginable” (labels portrayed on y-axis in Figure 2A with proportional from 

psychophysical scaling, and as seen by subjects in proportion to visual presentation).

Image Acquisition and Processing

RAC-PET acquisition—RAC PET scans were acquired on a Siemens EXACT HR+ 

(Siemens Healthcare, Erlangen, Germany), with intravenous infusion of 550 ± 39 MBq RAC 

(mass dose 0.124 ± 0.064 nmol/kg) over 1.5 min, and dynamic acquisition over 45 min 

(Oberlin et al., 2013).

RAC-PET Processing—In brief, PET frames were registered to each subject’s high-

resolution anatomical brain volume (see parameters below), and normalized to the canonical 

Montreal Neurological Institute (MNI) space using SPM8 (Wellcome Trust Centre for 

Neuroimaging, London, UK). Binding potential (BPND; Innis et al. 2007) was estimated 

using the multilinear reference tissue model (MRTM2; Ichise et al., 2003) for all striatal 

voxels, with the cerebellar time-activity curve as the input function. Voxels with BPND ≤ 

0.75 were excluded from analyses (Joutsa et al., 2012, Oberlin et al., 2013) by using a 

conjunct group mask that included only voxels reporting BPND > 0.75 in both conditions in 

all subjects. Parametric images were smoothed with a 4 mm full width at half maximum 

(FWHM) Gaussian kernel. The conjunct group mask of all contiguous striatal voxels was 

eroded by one voxel to minimize edge effects (e.g., spill-out/spill-in). Voxel-wise changes in 

BPND, expressed as a percentage of control condition, were calculated as:

fMRI acquisition—Functional imaging was performed with a 12-channel head coil array 

in a Siemens 3T Magnetom Trio-Tim scanner across six echo planar imaging scans (125 

BOLD volumes, 2250/29ms repetition/echo time, 78° flip angle, 2.5×2.5×3.0 mm3 voxels, 

220×220 mm field-of-view, GRAPPA acceleration factor 2). Head motion was minimized 

with deformable foam pads on both sides of the participants’ head, and by employing a real-
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time prospective acquisition correction (Thesen et al., 2000). T1-weighted 3D Magnetization 

Prepared Rapid Acquisition Gradient Echo (MP-RAGE; 160 sagittal slices, 1.0×1.0×1.2 

mm3 voxels) images were acquired for transforming the BOLD volumes into MNI 

stereotactic space.

fMRI Processing—SPM8 pre-processing included slice-timing acquisition correction, 

rigid-body realignment, segmentation of and co-registration to subjects’ own high-resolution 

anatomical brain volume, transformation to MNI space (2 mm/side voxels), and 6 mm 

FWHM isotropic Gaussian kernel smoothing.

Residual head motion during BOLD scans was evaluated using the ArtRepair toolbox 

version 5b http://cibsr.stanford.edu/tools/human-brain-project/artrepair-software.html, 

(Mazaika et al., 2009). BOLD volumes with large (> 1.4%) volume-to-volume global signal 

intensity changes were classified as outliers and individual flavor scans with more than 40% 

outlier volumes were excluded from subsequent analyses. Based on this criterion, one 

subject’s entire fMRI dataset was discarded yielding the final n=28 sample. Twenty-five 

subjects provided 3 beer and 3 Gatorade scans, with the remaining three subjects each 

contributing 2 beer and 2 Gatorade scans. The percentage of outlier volumes in the final 

sample did not differ between beer and Gatorade scans, 9.2 ± 9.7% and 9.2 ± 8.5%, 

respectively; p > 0.9 by t-test.

Statistics: Ratings

Mean ratings in PET and fMRI were tested with repeated measures ANOVA (Modality × 

Flavor). Only the ratings from the fMRI experiment are reported here (unless a significant 

main effect of Modality was detected), as PET ratings were previously described (subsample 

of n=49; Oberlin et al., 2013). Detection of significant effects in ratings during fMRI were 

followed by paired t-tests between flavors. All in-text means are plus/minus the standard 

deviation unless otherwise noted.

Statistics: Imaging

Regions of interest (ROIs)—In the parent sample, the right VST (but not the left) 

showed a DA response to beer flavor, so this region was used to assess BOLD activation and 

any correlations between BOLD and other variables of interest. Three a priori ROIs were 

defined in all: 1) the same anatomical right VST ROI (A-P center at y=12) used in Oberlin et 

al., (2013) that showed a CS-elicited DA response to beer flavor; 2) left and right OFC (two 

8 mm radius spheres, excluding white matter, centered on [±24, 30, −16]; Kringelbach and 

Rolls, 2004, Kareken et al., 2013), identified by meta-analysis as sensitive to primary 

reinforcers; 3) medial OFC/ventromedial PFC (8 mm radius sphere centered on [0, 32, 

−20]), where responses are thought to reflect “goal value” (Plassmann et al., 2010, 

Plassmann et al., 2007)—the imagined value of a reinforcer at the time of choice. Peaks in 

these a priori regions were considered significant at pFWE<0.05, as corrected by region 

volume. Individual BOLD flavor effects, that is ([beer > water] and [Gatorade > water]), are 

presented in Supporting Information for completeness, but not included in the primary 

analyses (which instead focuses on differential responses between beer and Gatorade).
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PET: DA response to alcohol-paired cues—The RAC-PET data were a subset (n=28) 

of a larger group (n=49), which showed a right VST DA response to beer flavor (Oberlin et 

al., 2013). The analysis of the current n=28 subset used the same anatomically-defined a 
priori right VST region to identify voxels in which ΔBPND was significantly greater than 

zero (one-sample t-test).

fMRI: BOLD responses to alcohol-paired cues—Within-subject fixed effects of 

BOLD response to fluid delivery trials were estimated using SPM’s canonical hemodynamic 

response function, with an autoregressive AR(1) model accounting for serial correlations. 

The six movement parameters from realignment were included as regressors, and a high-

pass filter (1/128 Hz) removed low-frequency noise. As each scan captured one flavor plus 

water, use of the [flavor > water] contrasts minimized between-scan baseline drifts of the 

BOLD signal. To maximize flavor-water differentiation, water sprays immediately following 

a flavor spray (3 water sprays per scan) were separately modeled due to concerns about 

residual flavor effects (see Kareken et al., 2013). The [beer > water] and [Gatorade > water] 

contrast differences were tested against zero with SPM8’s one sample t-test. This allowed us 

to compare beer and the appetitive control [beer > Gatorade] responses, by contrasting each 

against the within-scan water baseline. Drinking behavior (at the time of interview), i.e. 

Drinks/week, drinks/drinking day, heavy drinking days/week, AUDIT, and self-reported 

wanting and desire were tested for correlations with the [beer > Gatorade] response. 

Drinking behavior assessed on the fMRI study day was also tested (note that four subjects 

whose fMRI study day was within 10 days of the PET study were not administered new 

TLFBs.) Craving measures were the differences between the ratings during beer flavor and 

Gatorade flavor.

PET-fMRI Correlation—For each subject, mean ΔBPND values were extracted from the 

responding region within right VST in PET for subsequent voxel-wise correlation with 

BOLD fMRI in SPM8 constrained to our identified regions of interest. To assess possible 

effects from other factors, we added other covariates separately: 1) PET-fMRI delay time in 

days, 2) drinks/week, 3) drinks/drinking day, and 4) heavy drinking days/week. To explore 

all possible correlations of imaging measures from both modalities within the right VST, we 

also extracted BPND[Flavor] (PET) and [flavor > water] contrast values (fMRI) to assess 

correlations between mean ROI values from each modality (e.g. between BPND[beer] and 

[beer > water]); results reported in Table 3.

Results

Stimuli

The total fluid volumes delivered were 26.3 ± 2.3 (beer), 29.7 ± 3.3 (Gatorade), and 97.2 

± 9.0 mL (water). Slightly less beer was delivered than Gatorade (mean difference: 1.1 ml/

scan; t(27) = 7.2, p < 0.001), which we attributed to residual carbonation in the beer.

Subjective Ratings

Stimulus qualities—Subjects rated beer and Gatorade flavors as more intense than water 

ts(27) > 7.0, ps < 0.001, but their perceived intensities did not differ from each other (p>0.8), 
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Figure 2A. Beer was not more pleasant than water (p=0.6), but Gatorade was perceived as 

more pleasant than water or beer (ts(27) > 2.2, ps < 0.037), Figure 2B.

Wanting for beers and desire to drink—Beer flavor and Gatorade both increased 

number of beers wanted (ts(27) > 2.4, ps < 0.022), but beer flavor had a greater effect than 

Gatorade (t(27) = 2.9, p = 0.007). Desire to drink showed a similar pattern (ps < 0.012), 

Figure 2C.

Flavorants were more pleasant in PET (beer= 5.0 ± 1.1; Gatorade= 5.4 ± 0.9) than fMRI 

(beer= 4.5 ± 1.2; Gatorade= 5.0 ± 1.0; ts(27) > 2.0, ps < 0.05). Other ratings did not differ 

by modality.

fMRI: Whole brain flavor effects

flavor > water—Both beer and Gatorade flavors, compared to water, activated primary 

gustatory cortex (anterior insula/frontal operculum), amygdala, and caudate; although beer 

activation was bilateral while Gatorade activation was weaker and left-dominant. In contrast, 

only beer flavor activated OFC. These results are illustrated in Supporting Information 
Figure S1 and detailed in Tables S1 and S2.

fMRI: Alcohol CS effects

beer > Gatorade—Compared to Gatorade, beer flavor showed greater activation in the 

right VST (peak voxel at [6, 6, −4], Z = 3.19, pFWE = 0.029) and bilateral OFC, with the 

peak in the right OFC ([22, 36, −14]) achieving corrected significance (Z = 3.39, pFWE = 

0.038); while the left OFC peak reached only an uncorrected puncorr = 0.001 height, figures 

3A and B. No effects were detected in the medial OFC or other ROIs for the opposite 

contrast of [Gatorade > beer]. Whole-brain effects of appetitive flavor contrasts are shown in 

Table 2.

fMRI: Correlated factors

The [beer > Gatorade] BOLD contrast correlated positively with “number of beers wanted” 

in right VST ([6, 16, −4], Z = 3.54, pFWE = 0.011) and medial OFC ([−6, 30, −18], Z = 4.78, 

pFWE < 0.001); Figure 4 A–B. Similarly, desire to drink correlated positively with the BOLD 

contrast in right VST ([6, 16, −4], Z = 3.10, pFWE = 0.037) and medial OFC ([−2, 26, −16], 

Z = 4.33, pFWE = 0.001; not illustrated). Neither negative correlations, nor correlations with 

recent drinking/problems, were present for either interview-day or fMRI study day recent 

drinking (TLFB).

PET: DA release in response to beer flavor

Consistent with the parent sample results (n=49; Oberlin et al., 2013), beer flavor in this 

subsample significantly increased DA relative to Gatorade (ΔBPND > 0; n=28; [8, 14, −6], 

Z=3.12, pFWE = 0.021), Figure 5. ΔBPND was 5.5 ± 8.8% in the cluster formed by voxels 

exceeding p<0.01 within the right VST, and 3.3 ± 7.7% for the entire anatomical right VST 

region. For comparison, ΔBPND was 0.2 ± 8.0% in the left anatomic VST.
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fMRI: DA correlations

The [beer > Gatorade] BOLD contrast was neither positively nor negatively correlated with 

right VST ΔBPND in any of the fMRI search regions. Including the time between the PET 

and fMRI scan days and the drinking variables did not change this outcome. The non-

significant relationships between the mean right VST values during PET (binding potential) 

and fMRI (BOLD contrast) are presented in Table 3 for completeness.

Discussion

This multi-modal imaging study sheds new light on the relationships between drug cue-

induced human limbic frontal activity and VST dopamine changes. As hypothesized, alcohol 

flavor cues evoked right VST and OFC BOLD responses in fMRI while enhancing wanting 

and desire for beer. Medial OFC, a locus of reinforcer valuation, positively correlated with 

wanting and desire for beer. BOLD responses to beer flavor did not, as hypothesized, 

correlate with right VST DA release to beer flavor in this subset of subjects from a larger 

RAC-PET sample.

A large body of literature implicates the VST in aspects of CS-signaled reward anticipation 

(Berridge, 2007). The VST (right in particular) shows activation to alcohol CS and reduced 

alcohol cue-elicited activation after treatment across a range of behavioral and 

pharmacotherapies (Schacht et al., 2013 for meta-analysis) suggesting its importance in 

clinical outcomes. The VST is positioned at the nexus of descending cortical information 

regarding reward motivational states and action planning that either facilitates or inhibits 

reward seeking (Sesack and Grace, 2010). For example, retro- and anterograde tract tracing 

in monkeys (Haber et al., 2006) showed that the VST receives substantial input from the 

OFC, which codes primary reinforcers and reward value (Kringelbach et al., 2003, 

Plassmann et al., 2010), and mediates reward learning (Clark et al., 2004). Furthermore, 

human VST and OFC are functionally coupled at rest (Di Martino et al., 2008). Germane to 

addiction, the higher order learning that leads to CS enhancement of operant reward seeking 

(e.g. Pavlovian-to-Instrumental Transfer) relies on the OFC (Ostlund and Balleine, 2007).

We demonstrated that an alcohol flavor CS enhanced motivation to drink alcohol more than 

an appetitive flavor control. Both imaging modalities showed that the alcohol CS altered 

right-sided VST activity by increasing the BOLD response (fMRI) and inducing DA release 

(PET). These findings are consistent with the incentive sensitization hypothesis (Berridge, 

2007), which posits that VST activity reflects drug wanting. However, it was also case that 

the number of beers wanted and the desire for “a drink” correlated with activity in the 

ventromedial OFC, a region that both projects to the VST and codes for subjective valuation 

(Plassmann et al., 2010, Hare et al., 2009). Our findings thus cohere with a neuro-behavioral 

literature that implicates these frontal limbic and striatal dopaminergic systems in the 

motivational processes that govern addiction behaviors.

Few alcohol cue-reactivity studies have employed actual preferred alcohol drinks during 

imaging, which is arguably the most proximal and best learned cue for testing conditioned 

responses to an orally-consumed, flavored liquid drug. Two notable fMRI studies that did 

administer preferred alcohol drinks during scanning demonstrated both striatal and 
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vmPFC/OFC activation to alcohol-flavor CS (Claus et al., 2011, Filbey et al., 2008) 

compared to control. The latter study showed that craving correlated with activation to 

alcohol cues in the right OFC. Although our results generally align with these findings, the 

main effect of [Alcohol cue > control] in the Claus et al. (2011) study was dorsal, rather than 

ventral striatal, and the Filbey et al. (2008) correlation results were more right-lateralized in 

OFC than ours. Of note, these prior studies used lychee (litchi) juice as an appetitive control; 

this flavor may be a novel taste for many Westerners and could conceivably affect the 

localization of the neural responses.

The current fMRI results of right-dominant BOLD response in the VST mirror both the 

current DA results, as well as our prior findings. Using RAC-PET in a separate sample of 

heavy beer drinkers (n=26), we demonstrated DA release in right VST (but not left) to beer 

flavor cues during alcohol intoxication (Oberlin et al., 2015), suggesting a special role for 

the right VST in responding to drug-paired cues. In addition to meta-analytic evidence of a 

right-lateralized VST response to alcohol cues (Schacht et al., 2013), other support comes 

from two prior fMRI studies indicating that right VST responses to alcohol cues are 

attenuated by treatment with naltrexone and ondansetron (Myrick et al., 2008) and 

aripiprazole (Myrick et al., 2010). However, this paradigm (a sip of alcohol, then visual 

alcohol images during scanning) did not always elicit striatal responses (Myrick et al., 

2004). Gender may modulate lateralization of VST DA responses, as one study using 

unanticipated monetary reinforcers showed right VST DA response in men, but bilateral 

effects in women (Martin-Soelch et al., 2011). The all-male composition of the current study 

and Oberlin et al. (2015), along with the 73% (combined) male composition of Myrick et al. 

(2008, 2010) leaves open the question of potential gender-by-hemisphere interactions of 

VST responses to drug cues.

We did not detect the hypothesized correlation between ΔBPND and BOLD responses to 

beer flavor, even when the delay between the two types of scans and the subjects’ drinking 

behavior were taken into account. Reports of significant relationships between dopaminergic 

measures from PET and BOLD brain activity vary greatly across the literature. A similar 

multimodal study of alcohol cues in 11 alcoholics and 13 healthy men failed to detect 

correlations between baseline BP and BOLD response to alcohol cues in the VST (Heinz et 

al., 2004); however, it did detect correlations between baseline VST BP and BOLD 

responses in rostral anterior cingulate and mPFC in the alcoholic group. The Heinz et al. 

study differed from the present study’s findings in several important ways: 1) they found 

dopaminergic-BOLD correlations in alcoholic subjects only, and not controls, 2) they did not 

conduct a cue challenge study in the PET paradigm, and 3) the correlations were only with 

baseline VST DA D2 availability. There are two multimodal studies with the monetary 

incentive delay task in which ΔBPND and BOLD responses correlated during feedback 

indicating winning (Weiland et al., 2016) or anticipation of reward (Schott et al., 2008). The 

former study found correlations between left nucleus accumbens ΔBPND and BOLD 

responses in mPFC, superior frontal cortex, and several other cortical areas, but not the 

nucleus accumbens. The latter study found that for reward anticipation, ΔBPND in the left 

nucleus accumbens correlated with left nucleus accumbens BOLD. This was established by 

using the peak effect coordinates in PET [−6, 10, −6] to locate the nearest local maxima for 

placing individualized 6mm radius spheres from which the mean BOLD values were then 
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extracted. Therefore, the data used for the multimodal comparisons did not sample precisely 

the same space within the VST of each subject, and potentially included non-VST 

contributions.

The lack of the hypothesized ΔBPND–BOLD correlation in our data may not be unexpected, 

as brain areas affected by the VST may not respond in a 1:1 manner to DA release (even 

though group effects from both DA and BOLD were each present in the right VST). Indeed, 

BOLD signal changes (reflecting a sum of neural events; Kwong et al., 1992) and ΔBPND 

(an indirect measure of endogenous neurotransmitter displacement; Endres et al., 1997) do 

not measure precisely the same type of neural event, and may be only loosely correlated. 

Our power to detect ΔBPND–BOLD correlations may also be limited by the modest 

magnitude of inferred DA release. Specifically, the subjects who agreed to return for fMRI 

showed a more limited dynamic range of ΔBPND than did the parent sample. Urban et al., 

(2012) were similarly unable to detect correlations between RAC-PET and fMRI and also 

attributed the absence of such a relationship to the small effect sizes in ΔBPND.

Some considerations temper our interpretations. Although the PET and fMRI paradigms 

were designed to be as similar as the corresponding modalities would permit, they were not 

perfect analogs. Pleasantness ratings were lower in fMRI than PET, an effect we attribute to 

the larger number of flavor sprays in fMRI (72 vs. 30 in PET). Although a sample size of 28 

is reasonable for fMRI, previous cue reactivity studies obtained greater power with larger 

samples (Claus et al., 2011), albeit without data that speak directly to DA release. Our fMRI 

results are in general agreement with similar prior studies, and also add novel information 

about relationships between limbic prefrontal reward/valuation regions and cue-induced 

VST DA release. Finally, the study was limited to men (due to the difficulty of recruiting 

nonsmoking female heavy beer drinkers).

In conclusion, we believe this to be the first multi-modal demonstration in humans of 

alcohol cue related BOLD and DA responses. The results support the idea that (right) 

lateralized VST may be of special import to addiction research. Although such in vivo 
approaches remain indirect measures of neural activity, we hope that studies like these will 

be performed in larger cohorts and extended to further clarify how the neural circuits 

subserving drug-related cue associations contribute to the development and maintenance of 

alcoholism in both sexes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. fMRI: Paradigm
Following a water baseline, six scans alternated beer or Gatorade flavor administration, with 

water interspersed within-scan. Subjective ratings followed the water baseline and each scan, 

indicated by vertical arrows (↑). Scan length=4:48, w=3 water sprays, B=4 preferred beer 

sprays, G=4 Gatorade sprays. Spray vol. ~0.75 ml each; flavor order counterbalanced 

between subjects (beer first shown here).
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Figure 2. fMRI: Subjective ratings
Subjects (n=28) rated perceptions of flavor stimuli and wanting/desire for beer. (A) Beer and 

Gatorade were perceived as equally intense; note that the y-axis mirrors the rating scale. (B) 

Beer flavor was less pleasant than Gatorade, but similar to water. (C) Beer flavor increased 

wanting for beer and desire to drink. Baseline (water) was rated before scanning; beer and 

Gatorade ratings shown here are means of three ratings collapsed across scans of the same 

tastant. VAS = visual analog scale, #p<0.05 compared to water, *p<0.05 compared to 

Gatorade.
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Figure 3. Response to beer flavor compared to appetitive control
Voxelwise t-statistic map illustrating (A) right VST and (B) orbitofrontal cortex (OFC) 

BOLD response to alcohol flavor CS in n=28 male drinkers. Search regions are outlined in 

green. Effects illustrated at a voxel-wise display threshold, p<0.01, uncorrected; k=100.
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Figure 4. Correlations between wanting and [beer flavor > Gatorade] BOLD contrast
Voxelwise t-statistic map shows significant positive correlation with “number of beers 

wanted” in (A) right VST and (B) medial OFC (search regions in green). Effect illustrated at 

a display threshold, p<0.01, uncorrected; k=100.
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Figure 5. PET
Right VST DA response to beer flavor compared to Gatorade [ΔBPND > 0] in (n=28) male 

drinkers, display height threshold p<0.01, uncorrected, k=5.
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Table 1

Subject Characteristics (n = 28)

Mean (SD) Range n(%)

Age 23.8 (2.3) 21–29

Caucasian - - 28(100%)

Education 16.0 (1.3) 12–19

Drinks per week1,a 15.8 (10.4) 2–37

Drinks per drinking day1,a 5.0 (3.0) 1–10

Heavy drinking days per week1,2,a 1.5 (1.4) 0–5.7

AUDIT3 10.7 (6.2) 3–28

1
From the Timeline Followback (TLFB) Interview.

2
Five or more drinks per day.

3
Alcohol Use Disorders Identification Test.

a
From the interview, preceeding PET. TLFB Interview data on fMRI study day: Drinks/week 14.6 (9.6); Drinks/drinking day 4.8 (2.9); Heavy 

drinking days/week 1.3 (1.3)
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Table 3

Correlation coefficients by modality in right VST1

BPbeer BPGatorade ΔBP

[beer > water] 0.05 0.05 −0.03

[Gatorade > water] −0.16 −0.31 −0.21

[beer > Gatorade] 0.18 0.30 0.15

1
Spatial extent defined by cluster exceeding puncorr<0.01 within the anatomical VST.

Pearson’s r for the correlation between binding potential (BP) of [11C]raclopride (columns, PET) and flavor contrasts (rows, fMRI). All ps > 0.1.
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