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Abstract

Objective—We conducted an exposure chamber study in humans using a simulated clinical 

procedure lasing porcine tissue to demonstrate evidence of effects of exposure to laser generated 

particulate matter (LGPM).

Methods—We measured pre- and post-exposure changes in exhaled nitric oxide (eNO), 

spirometry, heart rate variability (HRV), and blood markers of inflammation in five volunteers.

Results—Change in pre- and post-exposure measurements of eNO and spirometry were 

unremarkable. Neutrophil and lymphocyte counts increased and fibrinogen levels decreased in 

four of the five subjects. Measures of HRV showed decreases in the standard deviation of normal 

between beat intervals and sequential five-minute intervals.

Conclusion—These data represent the first evidence of human physiologic response to LGPM 

exposure. Further exploration of coagulation effects and HRV are warranted.
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Background

In the United States, an estimated half million healthcare professionals were exposed to 

surgical smoke in 2008 (2), and the rapid development of new clinical laser technologies and 

their applications, as well as growth in the sale of medical lasers (3) promises continued 

growth of human exposure. Medical laser-generated aerosol is created from the heating of 

the target tissue leading to the vaporization, pyrolysis, and combustion of cellular material, 

and the release of steam, cell content, and combustion by-products (4, 5). Our preliminary 
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work measuring the concentration of gases and particulate matter present in the laser 

generated aerosol has directed us to focus specifically on the particulate matter fraction (6, 

7), and we have demonstrated that operational parameters (e.g., power, beam diameter) 

impact size-specific laser generated particulate matter (LGPM) emission rates (8) which 

may be important in determining possible health implications and designing control 

strategies.

The current evidence-based understanding of LGPM exposure health effects has been 

limited to animal studies, which have demonstrated inflammatory responses in pulmonary 

tissue defined by interstitial pneumonia, bronchiolitis, and emphysema (9–12). One study 

noted a decreased response with increased air filtration, indicating a potential dose-response 

relationship (9). Long-term outcomes of human exposure associated with the chronic 

inhalation of the aerosol have not been studied. This pilot study measured for the first time 

the human physiological response to LGPM aerosol exposure by measuring exhaled nitric 

oxide (eNO), spirometry, heart rate variability (HRV), and blood biomarkers including white 

blood cell counts, fibrinogen, and platelets. A symptom survey was also used to document 

any noticeable effects the participants may have experienced.

Measures of cardiopulmonary response to particulate matter exposures

Nitric oxide is produced by the endothelial and epithelial cells in lung tissue, and its 

concentration in exhaled breath has been demonstrated to increase with airway inflammation 

(13, 14). Real-time eNO analyzers have been developed, tested and approved for medical 

use (15, 16) and studies examining the repeatability of eNO measurements have shown low 

variability not impacted by season, food intake, body weight, or height (17). The utility of 

eNO for measuring particulate matter (PM)-associated airway inflammation has been 

demonstrated in studies of ambient air pollution in which increased eNO was measured after 

short trips along high-density roadways, after exercise activities in urban locations, and after 

normal activities on days with high ambient PM concentrations (16, 18–22).

Spirometry studies have measured forced expiratory volume in one second (FEV1) and 

forced vital capacity (FVC) and demonstrated an inverse relationship with PM concentration 

in susceptible populations, including elderly and asthmatics, after short-term ambient PM 

exposures such as walking in urban settings during heavy traffic (23–25).

While heart rate remains fairly constant in most normal individuals, the time between two 

successive beats can vary significantly (26). Time-domain measures of HRV have been 

established to measure response to environmental exposures, including the standard 

deviation of all normal RR intervals (SDNN, representing overall HRV); standard deviation 

of sequential five-minute intervals (SDANN, long-term changes in HRV); and root mean 

square of the successive differences (RMSSD, short term changes in HRV) (27). Heart rate 

variability is a predictor of cardiovascular mortality and morbidity after exposure to high 

levels of ambient PM (28–31); disruption of the autonomic nervous system, activation of 

pro-inflammatory pathways and accelerated atherosclerosis, are linked to HRV and the 

increased risk of cardiovascular events. Reductions in heart rate variability from PM 

exposure has been demonstrated in animals and humans, even when signs of hypoxia and 

respiratory distress are absent (32, 33).
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It has been proposed that ultrafine particles may penetrate into the blood stream and cause a 

systemic inflammatory response that can be measured by biomarkers present in blood (34). 

The particles interact with platelets in the bloodstream, increasing coagulability (35). It has 

also been demonstrated that changes occur in plasma fibrinogen (36–39) and peripheral 

neutrophils (40–42) in animals and humans; both conditions are associated with coronary 

heart disease and myocardial infarction (43, 44) and are believed to be responses to 

oxidative stress and systemic inflammation caused by exposure to ambient PM (35, 39, 45, 

46). Other studies have demonstrated increases in lymphocytes and eosinophils in animals 

with exposure to outdoor PM (47); the increases were noticed six hours after exposure, and 

peaked at 12 hours post-exposure before declining (47).

Methods

We measured pre- and post-exposure changes in eNO, spirometry, HRV, and blood markers 

of systemic inflammation in five volunteer participants under controlled laboratory 

conditions. Study subjects were healthy men and women with no current pulmonary or 

cardiovascular illness or disease, self-described as non-smokers, sedentary, and between 35 

and 55 years of age. We used an Ultra MD™ 60 Laser System (max power = 60 W, λ= 

10,600 nm, pulsed) (Laser Engineering Inc., Franklin, Tennessee) in a simulated laser 

clinical procedure, and lased porcine skin in the hood of an exposure chamber in a controlled 

manner. Size-selective particle concentration was measured. The study design was reviewed 

and approved by the Indiana University Institutional Review Board, protocol #1505847764.

Exposure chamber

The exposure chamber was a hybrid design of the emission chamber described in Lippert et 

al. (2014) (48) and an exposure chamber designed by Morawska et al. (2009) (Figure 1) 

(49). The chamber system is composed of a rectangular glass hood, connected via the 

transition section to an aluminum duct. An opening in the glass hood allows participants to 

comfortably position their heads in the system and maintain eye contact with the research 

team.

Exposure concentrations

Two previously reported field studies that simulated medical laser procedures in hospital 

operating rooms documented concentrations of laser generated particulate matter ranging 

from 590–1,690 μg/m3 (50, 51). We used 1,690 μg/m3 as upper limit to establish the range of 

exposures in the chamber study, performing our evaluations at 0%, 50% and 100% of 1,690 

μg/m3. Our earlier work demonstrated that our system is capable of reliably generating 

predictable mean concentrations inside the exposure chamber through manipulation of 

operational parameter settings (Power: 2 and 3 W; PRF: 5 Hz; pulse duration: 0.1 seconds; 

beam diameter: 1.0 mm). Real-time monitoring of LGPM concentration in the chamber was 

measured using a Aerotrak® 9306 (TSI® Inc. Shorewood, Minnesota), and a P-Trak® 8525 

(TSI® Inc. Shorewood, Minnesota) as described in Lopez et al. (2015) (7). At the start of 

each day, we verified background concentration of particulate matter and air-flow rate in the 

exposure chamber. We recognize that gases and vapors are also present in laser generated 

aerosol, but our previous work has demonstrated these contaminants are transient and, when 
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present, have extremely low concentrations, so we have focused on the particulate matter 

fraction. (52).

Human exposure events

Since cardiopulmonary response to LGPM exposure has never been measured 

systematically, it was unclear at what level of exposure a response would be noticed. We 

used an accelerated study design with two phases (phase 1 and phase 2), with a new set of 

study participants in each phase. Five participants (one male, four female) comprised the 

study group. All participants wore laser eye protection during the lasing procedure.

In phase 1, we performed a response range-finding experiment with two subjects. In their 

first session, each participant sat in the exposure chamber for 15-minutes, but no lasing was 

performed (zero exposure). Three days later, study subjects returned and were exposed to 

four sequential 15-minute sessions, with a 10-minute break between sessions; the first two 

sessions were at ~850 μg/m3 (50% exposure) and the latter two sessions were at ~1690 

μg/m3 (100% exposure). The initial range-finding experiment in phase 1 was intended to 

scale up exposure concentrations and to monitor for any unanticipated acute adverse reaction 

as a safety measure. Exposure time of 15 minutes for each session was chosen because it is 

considered a typical duration for many clinical laser procedures (53), and it is typical for 

several procedures to be performed in a single day.

Similarly, in phase 2, three new subjects were first exposed to a control session (zero 

exposure), then three days later study subjects returned and were exposure to four sequential 

15-minute sessions, with a 10-minute break between sessions, at ~1690 μg/m3 (100% 

exposure).

Measuring a response

Exhaled NO—Participants provided pre- and post-exposure exhaled breath samples using a 

Niox Vero® eNO monitor (Aerocrine, Solna, Sweden) (17). Participants had 20 minutes to 

adjust to the laboratory environment before two pre-exposure eNO measurements were 

made. Post-exposure eNO measurements were made immediately after the exposure event, 

and then 20 minutes after the event concluded. In phase 2, additional post-exposure 

measurements were collected every 20 minutes for 1 hour and 20 minutes.

Spirometry—Pulmonary function testing was performed in accordance with the guidelines 

of the American Thoracic Society/European Respiratory Society Task Force: 

Standardization of Spirometry (54). A Spirodoc® Spirometer (MIR, Waukesha, WI) with 

logging capabilities was used to measure FVC and FEV1, and the study participants were 

coached by our team pulmonologist. Each participant completed the spirometry tests 

immediately before the exposure event(s), and again five minutes post-exposure.

Heart rate variability—Heart rate variability was measured using a Datrix VX3 Holter 

(Biomedical Systems, Brussels, Belgium) with seven lead attachments. Our team 

cardiologist prepped and connected the monitors and participants wore the devices for two 
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consecutive 24-hour monitoring sessions that represented pre- and post-exposure event. 

Post-exposure monitoring began at the start of the exposure event.

Blood analysis—Participants provided peripheral venous blood 20 minutes before the 

exposure event, and three hours post-exposure. Samples were collected by a certified 

phlebotomist and analyzed by the Indiana University Health Pathology Laboratory for white 

blood cells (total, monocytes, neutrophils, lymphocytes, eosinophils, and basophils), 

fibrinogen and platelets.

Symptom survey—A short survey was verbally administered to participants pre- and 

post-exposure, and in the evening after the exposure event. The questionnaire was based on a 

tool developed by the National Institute for Occupational Safety and Health to assess 

possible occupational exposure health outcomes from medical laser aerosol exposure (55). 

Participants were asked if they were experiencing symptoms including irritation, headache, 

dizziness, cough, and noticeable lung problems.

Results

For all measures of response, no material changes were observed in the control (zero-

exposure) sessions. Tabulated results present pre- and post-measures of response from actual 

exposure sessions.

Exhaled nitric oxide

There was no notable change in eNO measurements for any participant (Table 1); change in 

post-exposure measures varied within ±4 ppb, similar to measures observed in control 

exposure sessions. During phase 2, additional post-exposure eNO measures were made, but 

again no material change was observed.

Spirometry

Spirometry results were unremarkable for all participants (Table 2). The data demonstrate no 

change from pre- to post-exposure for all five study participants.

Heart rate variability

Three measures of heart rate variability were calculated for each 24-hour time interval: 

SDNN, SDANN, and RMSSD (27). All participants demonstrated a post-exposure decrease 

in SDNN and SDANN, and three of five participants demonstrated a post-exposure decrease 

in RMSSD (Table 3). Control session measurement showed greater change both above and 

below baseline measurements.

Biomarkers in blood

There was a general increase in white blood cell counts from pre- to post-exposure in four of 

the five participants; three participants demonstrated increases between 20 to 25% (Table 4). 

Neutrophils and lymphocytes had the greatest post-exposure change. Changes in monocyte 

and eosinophil counts were unremarkable.
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Post-exposure fibrinogen levels decreased between 6 and 10% in four out of five 

participants. One participant experienced a 22% post-exposure increase in fibrinogen during 

the control exposure.

Post-exposure platelet counts increased 5 to 12% in three out of five participants; the two 

other participants showed modest decreases.

Symptom survey

One participant reported feeling dizzy and lightheaded for 3 to 5 minutes immediately post-

exposure. No other participants reported any noticeable effects.

Discussion

Exhaled nitric oxide is an effective measure of inflammatory response in asthmatic patients, 

but studies related to ambient air pollution have been inconclusive, with increases in eNO 

demonstrated in some studies, and no change in other studies. Most of these investigations 

involve longer exposure periods than our study (19–21, 56). Our investigation looked at 

short exposures of 15-minutes, with a total one hour of exposure, for a single day. We were 

uncertain if a change would occur instantaneously, or if there was lag time between exposure 

and outcome. During phase 2, participants provided exhaled breath samples every twenty 

minutes post-exposure for 80 minutes but no change was observed. Future exploration to 

determine if a response is dose- or time-dependent is warranted.

In our study, concentration of fibrinogen decreased and platelet count increased post-

exposure for most subjects. In a previous chamber study, human subjects were exposed to 

airborne particle concentrations up to 200 μg/m3 for two hours; measures of fibrinogen 

showed an increase18 hours post-exposure, but measures immediately after exposure 

showed no change (36). A second study measured fibrinogen after exposure to welding 

fume, and noticed a significant decrease in fibrinogen concentration six and 24 hours post-

exposure (57). In our study, it was unclear when a response began or when it peaked since 

we collected a single blood sample 3-hours post-exposure. The change in levels of 

fibrinogen and platelets may be explained by the coagulation cascade. Endothelial damage 

activates the increased synthesis of platelets and fibrinogen, and the conversion of fibrinogen 

to fibrin fibers, to reduce blood loss and stabilizes platelet plugs (58). Since this is a time-

dependent process, when a post-exposure blood sample is collected may affect the observed 

fibrinogen and platelet count. In future studies, additional blood samples may elucidate time-

dependent effects.

We noted post-exposure increases of neutrophils, lymphocytes, monocytes and total WBC, 

similar to increases seen in ambient PM studies as an inflammatory response from oxidative 

stress (28, 40, 45, 57, 59). In our study, one participant (#4) demonstrated a high pre-

exposure WBC count and a post-exposure decrease in WBC count; in a follow-up 

conversation with the participant, he suggested he was developing a cold at that time, which 

may explain this specific result.
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Other biomarkers in blood exist that may also be helpful in determining response to PM 

exposures. C-reactive protein is believed to be a marker of inflammation, and is associated 

with risk of myocardial infarctions (44), and in some studies has been found to be elevated 

with high PM exposures (60–62). Interluekin-6 is believed to be stimulated as an immune 

and inflammatory response, and also has been demonstrated to increase with high levels of 

PM (62, 63). Future studies should explore these additional potential indicators of response.

A high degree of heart rate variability is normal for healthy individuals. The observed 

decline in HRV measures, including SDNN and RMSSD, are similar to those found in other 

studies comparing changes in HRV to levels of PM in ambient air, or from activities at home 

that produce PM, and they generally noted decreases in measures of HRV with increasing 

PM exposure (64–67).

The purpose of our study was to determine a human exposure-response from LGPM 

exposure, and the efficacy of respiratory protection was outside the scope of this pilot study, 

so participants did not use respiratory protection during exposure events. It has been 

reported that healthcare professionals do use surgical masks during laser use, but these are 

not filtering respirators (68, 69)

Conclusion

Our pilot study is the first attempt to measure a response to short-term LGPM exposure in 

humans. The clearest evidence of response was demonstrated by decreased HRV, increased 

WBC counts, decreased fibrinogen, and limited evidence of increased platelets. Under our 

experimental conditions, eNO, and spirometry did not prove to be effective measures of 

response. These lines of investigation were highly exploratory, and the limits of our study 

design mean we may have missed detecting a response that may be time- or dose-dependent. 

Further exploration of eNO and spirometry is warranted since if we determine a study 

strategy that demonstrates a response, these measures are relatively inexpensive and 

noninvasive. Other blood biomarkers should also be explored.

These results warrant further investigation in exploring human responses to workplace 

LGPM exposure as the implications for risk management of the health effects are critical for 

ensuring safe work environments. Improved understanding of human health implications 

will make more compelling risk communication and the need for improved control 

strategies.
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Figure 1. 
Glass exposure chamber for lasing of tissue and exposure to study participants, air is pulled 

through the exposure chamber and exhausted to a fume cabinet.

Lopez et al. Page 12

J Occup Environ Med. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lopez et al. Page 13

Ta
b

le
 1

Pr
e-

 &
 p

os
t-

ex
po

su
re

 le
ve

ls
 o

f 
ex

ha
le

d 
N

O
 in

 P
PB

P
ar

ti
ci

pa
nt

 I
D

P
re

P
os

t
20

 m
in

 P
os

t
40

 m
in

 P
os

t
60

 m
in

 P
os

t
80

 m
in

 P
os

t

P
ha

se
 1

1
19

17
16

-
-

-

2
29

.5
32

31
-

-
-

P
ha

se
 2

3
21

21
20

20
21

20

4
34

.5
29

29
32

28
31

5
36

33
33

28
29

38

* Po
st

-e
xp

os
ur

e 
m

ea
su

re
m

en
ts

 a
ft

er
 th

e 
fi

rs
t 2

0 
m

in
ut

es
 w

er
e 

no
t m

ad
e 

du
ri

ng
 p

ha
se

 1

J Occup Environ Med. Author manuscript; available in PMC 2017 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lopez et al. Page 14

Ta
b

le
 2

Pr
e-

 &
 p

os
t-

ex
po

su
re

 le
ve

ls
 o

f 
sp

ir
om

et
ry

 in
 li

te
rs

P
ar

ti
ci

pa
nt

 I
D

F
E

V
1

F
V

C

P
re

P
os

t
P

re
P

os
t

P
ha

se
 1

1
2.

93
2.

86
3.

4
3.

3

2
2.

18
2.

07
2.

84
2.

82

P
ha

se
 2

3
2.

15
2.

54
2.

92
2.

56

4
4.

35
4.

39
4.

49
4.

47

5
4.

43
4.

42
5.

21
5.

0

FE
V

1,
 f

or
ce

d 
ex

pi
ra

to
ry

 v
ol

um
e 

in
 1

 s
ec

on
d;

 F
V

C
, f

or
ce

d 
vi

ta
l c

ap
ac

ity
.

J Occup Environ Med. Author manuscript; available in PMC 2017 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lopez et al. Page 15

Ta
b

le
 3

Pr
e-

 &
 p

os
t-

 e
xp

os
ur

e 
le

ve
ls

 o
f 

H
R

V
 m

ea
su

re
s

P
ar

ti
ci

pa
nt

 I
D

SD
N

N
SD

A
N

N
R

M
SS

D

P
re

P
os

t
P

re
P

os
t

P
re

P
os

t

P
ha

se
 1

1
15

4
13

4
14

0
12

0
33

28

2
13

9
13

5
12

0
11

9
61

42

P
ha

se
 2

3
11

0
97

99
79

27
35

4
11

6
10

1
10

6
85

35
44

5
11

0
92

87
68

35
33

SD
N

N
, s

ta
nd

ar
d 

de
vi

at
io

n 
of

 a
ll 

no
rm

al
 R

R
 in

te
rv

al
s;

 S
D

A
N

N
 s

ta
nd

ar
d 

de
vi

at
io

n 
of

 s
eq

ue
nt

ia
l f

iv
e-

m
in

ut
e 

in
te

rv
al

s;
 R

M
SS

D
, r

oo
t m

ea
n 

sq
ua

re
 o

f 
th

e 
su

cc
es

si
ve

 d
if

fe
re

nc
e.

J Occup Environ Med. Author manuscript; available in PMC 2017 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lopez et al. Page 16

Ta
b

le
 4

Pr
e-

 &
 p

os
t-

ex
po

su
re

 le
ve

ls
 o

f 
fi

br
in

og
en

 a
nd

 w
hi

te
 b

lo
od

 c
el

l c
ou

nt
s 

on
 d

ay
s 

w
ith

 a
n 

ex
po

su
re

P
ar

ti
ci

pa
nt

 I
D

F
ib

ri
no

ge
n 

(m
g/

dl
)

To
ta

l W
B

C
 (

#/
μl

)
N

eu
tr

op
hi

ls
 (

#/
μl

)
L

ym
ph

oc
yt

es
 (

#/
μl

)
P

la
te

le
ts

 (
# 

K
/ μ

l)
*

P
re

P
os

t
P

re
P

os
t

P
re

P
os

t
P

re
P

os
t

P
re

P
os

t

P
ha

se
 1

1
29

5
26

3
53

00
66

00
33

00
43

00
16

00
20

00
24

4
26

2

2
33

3
31

1
56

00
67

00
36

00
44

00
14

00
17

00
21

5
22

7

P
ha

se
 2

3
30

2
34

2
67

00
73

00
44

00
45

00
12

00
20

00
20

1
22

6

4
41

4
37

8
97

00
83

00
58

00
50

00
27

00
23

00
27

9
25

7

5
44

0
40

6
59

00
73

00
31

00
42

00
21

00
22

00
25

4
24

5

* Pl
at

el
et

 c
ou

nt
 in

 [
# 

* 
10

00
]

J Occup Environ Med. Author manuscript; available in PMC 2017 September 01.


	Abstract
	Background
	Measures of cardiopulmonary response to particulate matter exposures

	Methods
	Exposure chamber
	Exposure concentrations
	Human exposure events
	Measuring a response
	Exhaled NO
	Spirometry
	Heart rate variability
	Blood analysis
	Symptom survey


	Results
	Exhaled nitric oxide
	Spirometry
	Heart rate variability
	Biomarkers in blood
	Symptom survey

	Discussion
	Conclusion
	References
	Figure 1
	Table 1
	Table 2
	Table 3
	Table 4

