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Abstract

The negative binomial distribution is adopted for analyzing asbestos fiber counts so as to account 

for both the sampling errors in capturing only a finite number of fibers and the inevitable human 

variation in identifying and counting sampled fibers. A simple approximation to this distribution is 

developed for the derivation of quantiles and approximate confidence limits. The success of the 

approximation depends critically on the use of Stirling’s expansion to sufficient order, on exact 

normalization of the approximating distribution, on reasonable perturbation of quantities from the 

normal distribution, and on accurately approximating sums by inverse-trapezoidal integration. 

Accuracy of the approximation developed is checked through simulation and also by comparison 

to traditional approximate confidence intervals in the specific case that the negative binomial 

distribution approaches the Poisson distribution. The resulting statistics are shown to relate 

directly to early research into the accuracy of asbestos sampling and analysis. Uncertainty in 

estimating mean asbestos fiber concentrations given only a single count is derived. Decision limits 

(limits of detection) and detection limits are considered for controlling false-positive and false-

negative detection assertions and are compared to traditional limits computed assuming normal 

distributions.
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Introduction

Airborne asbestos fiber concentrations are often determined in terms of total fiber counts n 
obtained manually by counting fibers on a microscope slide within a specific area A (often 

100 fields with total area 0.785 mm2). The value n differs from the true mean number N of 

fibers per area A, since the number of fibers to be counted in the finite area A varies around 

N. This variation follows the Poisson distribution. Furthermore, counter variation introduces 

uncertainty, leading to observations over-dispersed relative to the Poisson distribution where 

the variance equals the mean. A great variety of count data have been analyzed in this 

situation using the negative binomial distribution as extension of the Poisson distribution 

(for instance, see Cameron and Trivedi, 2013). This is the approach adopted in this paper.

Specifically, given a single count n, simple expressions for confidence limits enclosing the 

unknown N at specified probability are derived. Such limits are vital in establishing 

exceedance or, conversely, an upper bound on the true mean count. Furthermore, confidence 

in the presence or absence of fibers can be quantified.

Background

Confidence intervals about N

The earliest reported confidence intervals for asbestos fiber counting originated with an 

experiment at the Health and Safety Laboratory, Cricklewood, England (Ogden, 1982). The 

experiment provided data from 66 filters analyzed by ~10 counters with a variety of mean 

asbestos fiber counts N. These data were modeled with variance σ2 approximated by:

(1)

determining an estimate s ≈ 20% representing the count variation at large N. The term in 

equation (1) linear in N represents Poisson variation in the number of fibers that appear 

within the microscope fields searched.

This value for s is consistent with a recent evaluation from Lee et al. (2015), who analyzed 

the capabilities of laboratory counters in the analysis of chrysotile fibers. Six slides were 

analyzed independently by seven laboratories, using a single counter in each. The slides 

were relocatable, meaning that identical fields were examined by each counter and that 

Poisson sampling error was absent. Oneway analysis of the data was carried out, assuming 

that (unknown) true counts for each slide were represented by consensus lab means and that 

inter-laboratory relative variances were approximately constant over the slides and therefore 

that the variance was estimable by their averages with 6*(7−1) degrees of freedom. The 

result was an inter-laboratory relative standard deviation equal to 22%. This figure is close to 

the intra-laboratory (in this case, inter-counter) estimate, 20%, found by Ogden (1982). How 

these figures would vary with asbestos type is unknown.
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Confidence limits were determined (Ogden, 1982) by identifying an approximate pivot (i.e. 

a function of N whose distribution is known and is independent of N). The distribution of the 

function

(2)

where n are measured counts, was found to only weakly depend on N. The distribution of 

the ~660 values of the pivot in the Cricklewood experiment was plotted as in Fig. 1.

The graph is composed of a range of mean values N, and therefore, both right and left 

single-sided 95% confidence limits (−1.5, 2.0) can be read off from the graph. In other 

words, 95% of the measurements  have

(3a)

and 95% have:

(3b)

Squaring both sides of the inequality in equation (3a) and in equation (3b) results in 

inequalities quadratic in N, which are easily solved for N in terms of functions—upper 

confidence limit, UCL[n], and lower confidence limit, LCL[n]—of single-count values n as:

(4a)

and

(4b)

where

(5a)

(5b)
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Note that NIOSH Method 7400 (NIOSH, 1994) and ASTM Method D7201 (ASTM, 2011) 

adopt the formalism presented above.

Limit of detection (decision limit) and detection limit

The limit of detection (LOD) is a figure defined to provide a means of limiting the false-

positive rate (controlling ‘Type I errors’, null hypothesizing no significant asbestos fibers) in 

claiming the presence of a substance if actually absent or negligible. LOD can be defined as 

the bias-corrected signal level that is exceeded at probability < 0.1% when the substance is 

absent. Note that LOD as defined here is denoted a ‘decision limit’ by Currie (1984). Also, a 

‘detection limit DL’ may be defined as the mean asbestos fiber density which gives a signal 

> LOD at given confidence level [controlling false negatives (Type II errors)].

For many sampling/analytical methods the signal fluctuation approaches a constant as the 

presence of a substance becomes negligible. For example, in sampling unknown M (e.g. 

mass captured by a filter) the bias-corrected signal m may vary as:

(6)

where σ0 is a constant and ε varies about zero with a normal distribution and unit variance. 

With the variance of the signal m given by:

(7)

the constant s is therefore the ‘true relative standard deviation (i.e. the standard deviation 

relative to true values) for values of M large enough that the fractional difference 

 between s and  is negligible. In the limit M 
→ 0, the constant σ0 determines the fluctuation, and LOD can be defined as:

(8)

giving ~0.1% probability that m > LOD if M = 0.

A value for LOD was published by NIOSH (1994), within NIOSH Method 7400 regarding 

asbestos fiber sampling and analysis using equation (8), even though equation (7) is not 

consistent with equation (1) at N small enough that the fractional difference (equal to about 

−100% + sN1/2) between Ns [from equation (7) at σ0 = 0 and replacing M by N] and σ 
[equation (1)] is significantly negative. Furthermore, LOD was defined as the signal from 

asbestos fibers plus background filter fibers needed to claim the presence of at least an 

asbestos fiber at high confidence. The value was therefore ‘not’ bias corrected.

Specifically, in the development of NIOSH 7400, many counts ni of interference fibers on 

blank filters indicated [with primes denoting densities (mm−2)] that
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(9)

Then, LOD7400 was taken to equal:

(10)

The term with factor 3 is as in equation (8), while the value 2.5 mm−2 refers to mean 

interference not related to the asbestos fibers sampled. Note that this value may be 

subtracted out from raw counts to give a bias-less signal if interfering fiber counts are stable. 

The quantitative difference between using equation (1) versus equation (7) is presented 

below in the section Applications.

Proposed

In this paper, we approach the issue of confidence intervals by adopting a specific 

distribution, namely the ‘negative binomial distribution’ [equation (A1)], rather than an 

empirically determined distribution as mea sured by Ogden (1982). As described in 

Supplementary Appendix A, available at Annals of Work Exposures and Health online, the 

negative binomial distribution is capable of describing the situation in which the variance σ2 

in a discrete variable n is given by equation (1) and for which the Poisson distribution results 

if s → 0 (Johnson et al., 1993). The negative binomial distribution then makes contact with 

the distribution of Ogden (1982) and is adopted here for analyzing the distribution of counts. 

Johnson et al. (1993) and Hilbe (2011) discuss the statistical adoption of the negative 

binomial distribution for modeling discrete random variables that ideally reflect the Poisson 

distribution, but which exhibit overdispersion.

In order to obtain useful expressions for the confidence intervals, an approximation to the 

negative binomial distribution is worked out. The details of this derivation are generally not 

of interest to those applying the results and are therefore relegated to Supplementary 

Appendix A, available at Annals of Work Exposures and Health online. The body of the 

paper then summarizes results, and the accuracy of the confidence intervals is derived.

Confidence Intervals

This paper develops simple single-sample confidence intervals surrounding population mean 

counts small enough that vestiges of the Poisson distribution are present. If larger counts are 

encountered, counting may be stopped at fewer than 100 fields. For example, Roggli et al. 
(1992) suggests stopping at 200 fibers. In such cases, Poisson-distribution effects are 
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negligible, and the relative standard deviation is approximately constant. This situation is not 

discussed further in the paper.

Approximate quantiles of the negative binomial distribution

We first consider simply the distribution quantile, namely the upper limit on a single count n 
at specified probability β (e.g. 95%) given measured counter variability s and specified mean 

count N. This limit may be defined for discrete (rather than continuous) random variables as 

follows. The (upper) quantile nβ[N, s] is the smallest integer for which

(11)

As derived in Supplementary Appendix A, available at Annals of Work Exposures and 
Health online, the quantile nβ for the negative binomial distribution after smoothing discrete 

discontinuities may be approximated simply as [equation (A22)]:

(12)

where σ is given by equation (1) and zβ is the normal-distribution quantile (e.g. zβ = −1.645 

at β = 0.05 and zβ = +1.645 at β = 0.95).

Comparison of exact and approximate quantiles

So as to illustrate accuracy, the above approximating functions were plotted along with exact 

functions, computed numerically, in a number of circumstances. Deviation of the quantile 

from mean count N was plotted versus N and normalized as given by Ogden (1982) and as 

in equation (2) by dividing by  so as to plot a reasonable range on a single figure.

Figure 2 shows 5 and 95% quantiles at ‘true relative standard deviation s’ equal to 20% (as 

with data of Ogden, 1982). Figure 3 shows quantiles at s = 40%. Figure 4 presents 

comparisons for the Poisson distribution (s = 0).

Naturally, the approximations improve with decreasing s, considering the reliance on 

expansions [equation (A16)] about the mode of the probability distribution. Regardless, the 

accuracy is surprising in view of the simplicity of the approximating functions. Note that for 

some applications, only the averaging (indiscrete) quantiles of equation (A22) (also 

indicated in the figures) may be needed.

Single-sided confidence limits

Given the above simple expressions for the distribution quantile, we now consider 

confidence intervals limiting the true but unknown mean count N. Because of the discrete 

character of counts n (just as with the Poisson distribution), exact confidence limits at 

specified confidence do not exist. However, approximate limits result from the smoothed 

expression of equation (12), similar to the chi-square approximation for the Poisson 

distribution (Johnson et al., 1993). Equation (12) indicates that nβ is an increasing function 
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of N. Therefore, a single-sided confidence limit on N can be determined by solving for N[nβ, 

s]. Then, equation (11) implies that

Note that the count n, not N, is the random variable in equation (13), expressing the sense of 

a lower confidence limit, LCL[n]:

(14)

The function N[nβ, s] can be easily obtained by solving equation (12) for σ2, resulting in a 

quadratic equation in N upon using equation (1).

Yet simpler and useful is to break up the domain of interest into cases s = 0 (corresponding 

to the Poisson distribution) and s > 0 where an approximate pivot may be adopted (a 

function of N and n with distribution known and independent of N). Ogden (1982) 

considered as approximate pivot the function (n − N)/σ[N] [equation (2)], with σ2 given by 

equation (1) and where then ideally, with quantile nβ, (nβ − N)/σ would be nearly 

independent of N.

The constancy of this function within the above approximation to the negative binomial 

distribution was determined by using the smoothed quantile  [equation (A22)] and 

plotting  versus N at various values of s (namely s = 0, 20, and 40%). The results 

are shown in Fig. 5.

Note that as N becomes large, equation (12) implies that

(15)

which clarifies the approximate pivot of equation (2) (Ogden, 1982). Figure 5 indicates that 

the normalized quantile [the left-hand side of equation (15)] rapidly approaches the limit lβ 
as N increases if s ≥ 20%. This means that N[nβ, s] may be approximated by simply solving 

equation (15) for N (by squaring both sides and solving the quadratic equation). The result, 

eliminating a spurious root, is:

(16a)

The same reasoning yields an upper single-sided confidence limit UCL[n] at probability, β 
(e.g. 95%):
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(16b)

noting the sign change in front of the square root. The above expressions also result in two-

sided confidence intervals in the sense that:

(17)

The Poisson distribution (at s = 0) is obtained using equation (12) directly. Details are given 

in Supplementary Appendix A, available at Annals of Work Exposures and Health online. 

Comparison is made to traditional confidence intervals involving a relation to the chi-square 

distribution.

Simulations

In order to judge the accuracy of the above expressions when applied to discrete random 

variables, many simulations were carried out. At each of mean number, N = 5.1, 5.1, …, 30, 

a random number generator produced 10 000 negative binomial distributed values for 

checking the above inequalities. Results are given in Figs 6 and 7 for s = 20% and s = 40%.

If strict confidence limits existed, the data would fall close to horizontal straight lines. The 

scatter about these lines is evident in Figs 6 and 7. However, the scatter is strictly limited. In 

fact, the limits lim[N] in the single-sided case may be approximated by considering how the 

confidence level β must change in order to increase the quantile nβ of equation (12) by 1. 

The result is that:

(18)

where σ[N] is given by equation (1). The two-sided case of equation (18) is approximated 

by summation, as the upper and lower frequencies are generally not commensurate.

Note that though scatter is significant, no bias is evident in the confidence levels. The effect 

of discrete scatter on confidence limits can be estimated by computing the shifts in equation 

(16) induced by shifts in β. For example, at s = 20% and N = 10, the upper confidence limit 

shifts by only about ±5%.

A further set of simulations was carried out, solving equation (12) for N exactly, rather than 

using the pivot as in equation (15). The results differ insignificantly from Figs 6 and 7. We 

conclude that at least for s ≥ 20%, the simpler expressions of equation (16) are adequate.
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Applications

Derivation of the early intuitive confidence limits

One application of the negative binomial formulism is derivation of the results published by 

Ogden (1982). This is done directly using equation (15). At s = 20%, equation (15) indicates 

that

(19)

The limits (−1.5, 1.8) are consistent with the published values (−1.5, 2.0), noting that very 

few experimental data points were available at large mean count N. Agreement with 

experiment thus lends support to the utility of the negative binomial distribution.

Uncertainty

Limits (−1.8, 2.1) at the 97.5% level may be obtained by replacing 1.645 by 1.960 in 

equation (19). This results in 95% confidence limits are given by equation (16) as indicated 

in Fig. 8.

The expanded uncertainty (ISO Guide 98-3:2008) in an estimate of N on the basis of a 

single count can be read directly from this figure, with the understanding that the uncertainty 

is unusual in its asymmetry about zero. Note that with interfering fibers present on sampling 

filters, fibers present and variable on filters (e.g. blanks) prior to sampling which may affect 

false-positive rates, the above confidence limits refer to ‘total’ mean fiber numbers in a given 

area, rather than specifically asbestos fibers. A table of lower and upper two-sided 95% 

confidence limits is given in Table 1 (and the values can be compared with the similar table 

in HSG248, 2005).

Limit of detection (decision limit) and detection limit

Specification of LOD can be improved over NIOSH Method 7400 by using the negative 

binomial distribution rather than the normal approximation of equations (8) and (10). 

Description of the experimental design that resulted in the variance in equation (9) no longer 

exists. For instance, it is not known whether exactly 100 fields were always examined or 

whether the filters came from different batches. The mean value, however, given in equation 

(9) is less problematic. In the following, the above mean value is accepted, whereas the 

variance is computed assuming intra-laboratory relative standard deviation for large counts 

is approximated as 20% as from the experiments of Ogden (1982).

The standard deviation arising from considering count variance in a sample of area A may 

be calculated as:
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(20)

with s = 20%, and with the mean background count density  taken as 2.5 mm−2, as in 

equation (20). Setting Na to zero and A = 0.785 mm2 for 100 fields, results in

(21)

a result not inconsistent with the value 1.5 mm−2, especially if a variety of filter areas was 

sometimes assessed. The variation, filter to filter, in the number of interfering fibers was 

evidently found insignificant relative to the uncertainty in reading them. Henceforth, the 

figure 1.5 mm2 is ignored aside from indicating consistency.

The cumulative negative binomial distribution and normal distribution giving equation (20) 

are illustrated in Fig. 9 at , TRSD = 20%, , and A = 0.785 mm2.

Now the quantile at confidence equal to 0.999 is easily computed for the negative binomial 

distribution with the result:

(22)

Thus, finally, LOD is given by:

(23)

This value compares to

(24)

[which is identical to LOD7400 = 7 mm−2, remembering that the values in equations (24) and 

(25) refer to bias-less signals (unlike the published NIOSH value)]. The meaning of LOD is 

that the probability < 0.001 that the signal > 7.7 mm2 in the case of negligibly sampled 

asbestos. In other words, the false-positive rate in claiming the presence of asbestos is < 

0.001 if 7.7 mm2 is taken as the threshold value for making such a claim. Note that the 

claimed confidence level equal to 0.999 may be misleading in view of uncertainty in the 

distribution of interfering non-asbestos fibers present on the sampling filters. How to handle 

this source of uncertainty in terms of prediction intervals is described in ISO 15767 (2009).

Analysis using the negative binomial distribution therefore is seen to give a qualitatively 

distinct result from the usual normal assumptions for computing the limit of detection. 

Calculation of a detection limit DL (for controlling false negatives) would similarly differ. 

Bartley et al. Page 10

Ann Work Expo Health. Author manuscript; available in PMC 2017 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Calculation as above indicates that DL = 12 mm−2 (~10 counts in 0.785 mm2) at 80% 

confidence.

Conclusions

A simple approximation to the negative binomial distribution has been developed. The aim 

has been the statistical analysis of asbestos fiber counts accounting for Poisson variation 

associated with errors in sampling a finite number of fibers as well as counter variability in 

analysis. This approach has been shown to connect with early studies of count statistics 

reported by Ogden (1982). Estimation of the uncertainty in measuring a mean fiber 

concentration given a single count has been established. Specification of upper or lower 

confidence limits on fiber concentrations is also possible, relevant to proving that an 

occupational exposure limit has or has not been exceeded.

Decision and detection limits for specifying false-positive and false-negative detection rates 

are also possible. Traditional specification using the normal distribution is shown to differ 

significantly from accounting for the discrete sampling problem. For example, the decision 

limit computed from the negative binomial distribution is found to be almost twice as large 

as from the normal distribution.

The negative binomial approximation is so simple that other applications are no doubt 

possible. For example, perhaps analysis of how best to use field blanks so as to minimize the 

effect of spurious fibers is feasible. The variety of possible applications and corresponding 

experimental designs is large, as seen in disparate approaches of sampling and analysis 

described in NIOSH 7400, ASTM 7201, HSG 248, and ISO 8672. Simplicity in the 

statistical analysis is vital.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Distribution of pivot[N] from the Cricklewood experiment (M = N). Solid circles include all 

the data, whereas open circles refer to N < 5, and ‘x’ to N > 25 and indicate rough 

independence of the distribution on N (UK Crown Copyright, 1982; reproduced from 

Ogden, 1982, by permission).
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Figure 2. 

Normalized negative binomial quantiles– –for large-N true relative 

standard deviation s = 20% at levels β = 5 and 95% plotted versus population mean count N. 

Exact values (blue); approximations [red, equation (A21)] shifted slightly left for graphical 

visibility; smooth curve [red, equation (A22)] neglecting the discontinuities of the discrete 

values.
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Figure 3. 
Normalized negative binomial quantiles at s = 40% at levels β = 5 and 95% plotted versus 

population mean count N. Exact values (blue); approximations (red).
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Figure 4. 
Normalized Poisson distribution quantiles at levels β = 5 and 95% plotted versus population 

mean count N. Exact values (blue); approximations (red).
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Figure 5. 
Normalized 95% quantiles versus the mean N at several values of true relative standard 

deviation s. The horizontal lines represent asymptotic values lβ at N → ∞.
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Figure 6. 
Negative binomial confidence interval levels at s = 20% at nominal single-sided levels = 5% 

and two-sided interval with nominal level = 10%. Solid curves are approximate limits on the 

discrete variation [equation (18)].
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Figure 7. 
Negative binomial confidence interval levels at s = 40%. Solid curves are approximate limits 

on the discrete variation [equation (18)].
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Figure 8. 
Relative [i.e. (nβ − n)/n × 100%] confidence limits at the 95% level at intra-lab imprecision s 
= 0.20.
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Figure 9. 
Cumulative normal and negative binomial distributions of background counts in 100 fields, 

assuming the mean value  as published in NIOSH 7400 and intra-counter 

variability = 20%. The LOD values indicated refer to bias-less signals from a single filter, 

i.e., with 2.5 mm2 subtracted out.
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Table 1

Lower and upper two-sided 95% confidence limits (CL). Standard deviation (RSD) relative to count 

approaches 20% in large-count limit. Values at count < 5 as derived from an asymptotic continuum model are 

only suggestive.

Count RSD (%) Lower CL Upper CL

1 102 0 6

3 61 1 10

5 49 2 13

7 43 3 16

10 37 5 21

20 30 11 37

50 24 32 85

100 22 67 163

200 21 137 319

Ann Work Expo Health. Author manuscript; available in PMC 2017 September 28.


	Abstract
	Introduction
	Background
	Confidence intervals about N
	Limit of detection (decision limit) and detection limit

	Proposed
	Confidence Intervals
	Approximate quantiles of the negative binomial distribution
	Comparison of exact and approximate quantiles
	Single-sided confidence limits

	Simulations
	Applications
	Derivation of the early intuitive confidence limits
	Uncertainty
	Limit of detection (decision limit) and detection limit

	Conclusions
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Table 1

