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Abstract

Approximately 30% of Americans suffer from chronic pain disorders, such as fibromyalgia (FM), 

which can cause debilitating pain. Many pain-killing drugs prescribed for chronic pain disorders 

are highly addictive, have limited clinical efficacy, and do not treat the cognitive symptoms 

reported by many patients. The neurobiological substrates of chronic pain are largely unknown, 

but evidence points to altered dopaminergic transmission in aberrant pain perception. We sought to 

characterize the dopamine (DA) system in individuals with FM. Positron emission tomography 

(PET) with [18F]fallypride (FAL) was used to assess changes in DA during a working memory 

challenge relative to a baseline task, and to test for associations between baseline D2/D3 

availability and experimental pain measures. Twelve female subjects with FM and eleven female 

controls completed study procedures. Subjects received one FAL PET scan while performing a “2-

back” task, and one while performing a “0-back” (attentional control, “baseline”) task. FM 

subjects had lower baseline FAL binding potential (BP) in several cortical regions relative to 

controls, including anterior cingulate cortex. In FM subjects, self-reported spontaneous pain 

negatively correlated with FAL BP in the left orbitofrontal cortex and parahippocampal gyrus. 
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Baseline BP was significantly negatively correlated with experimental pain sensitivity and 

tolerance in both FM and CON subjects, although spatial patterns of these associations differed 

between groups. The data suggest that abnormal DA function may be associated with differential 

processing of pain perception in FM. Further studies are needed to explore the functional 

significance of DA in nociception and cognitive processing in chronic pain.
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INTRODUCTION

Nociception is a normal process that is crucial for an organism’s survival. However, in 

conditions such as fibromyalgia (FM), there is likely a dysfunction in perceptual processing 

which results in constant (or chronic) pain. An estimated 30.7% of Americans suffer from 

various chronic pain disorders (Johannes et al. 2010), which can negatively affect multiple 

facets of everyday life, often to the point of debilitation. Depression, anxiety, and cognitive 

complaints are highly comorbid with chronic pain disorders (Asmundson and Katz 2009; 

Berryman et al. 2013; Gureje 2007). Unfortunately, many of the pain-killing medications 

prescribed to individuals with chronic pain are highly addictive, have limited clinical 

efficacy, and do not treat the cognitive symptoms reported by patients (Ballantyne and Shin 

2008; Kuijpers et al. 2011). Therefore, there is a critical need to elucidate the neural 

substrates of pain perception in order to inform development of more effective therapeutic 

strategies.

Recent evidence from human imaging studies in healthy controls implicates a regulatory role 

for dopamine (DA) in nociception during experimentally evoked pain (Hagelberg et al. 

2002; Wood et al. 2007; Martikainen et al. 2005; Pertovaara et al. 2004; Scott et al. 2006). 

Given this evidence, it is possible that aberrant DA signaling may be linked to the perception 

of moderate to severe chronic pain. Indeed, alterations of DA function have been 

documented in several chronic pain disorders, including FM (Wood et al. 2009; Wood et al. 

2007), restless legs syndrome (Cervenka et al. 2006), burning mouth syndrome (Hagelberg 

et al. 2003b), and atypical facial pain (Hagelberg et al. 2003a). Whereas these studies 

focused on striatal DA function, very little is known about the role of cortical DA function in 

chronic pain.

In addition to a putative role in nociception, DA is essential for cognitive function (for a 

comprehensive review, see Nieoullon 2002). Therefore, it is possible that DA may mediate 

the cognitive complaints often reported by chronic pain patients (McCracken and Iverson 

2001; Williams et al. 2011). Consistent with this hypothesis, recent BOLD fMRI data 

suggest that individuals with FM have a significantly lower level of working memory-

induced brain activation compared to controls (Seo et al. 2012), which is supportive of the 

concept that cortical cognitive processing may be altered in FM. However, the 

neurochemical basis for these observations is unclear.
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In order to help elucidate the dopaminergic (DAergic) contributions to the pain experience 

and potential cognitive compromise in chronic pain disorders, we conducted a pilot study in 

individuals with FM using positron emission tomography (PET) and [18F]fallypride (FAL). 

The primary objective of the current study was to ascertain how striatal and extrastriatal DA 

signaling might differ in individuals with chronic pain. Although many pain disorders may 

share common neurological substrates, the literature suggests that neurochemical differences 

exist among various pain populations (Apkarian et al. 2009). Thus, in order to reduce 

variance within our sample, we chose to study individuals that fit diagnostic criteria for FM 

syndrome.

We hypothesized that: (1) FM and CON groups would have different central DA tone 

(reflected by differences in baseline DA D2/D3 receptor binding); (2) relative to controls, 

FM subjects would exhibit different patterns of DA release in response to a working memory 

(WM) task; and (3) baseline DA D2/D3 availability would be associated with spontaneous 

self-reported pain levels in FM subjects, and with experimental pain measures in both FM 

and CON subjects.

METHODS

All study procedures were approved by the Indiana University Institutional Review Board 

and performed in accordance with the ethical standards of the Belmont Report. Written 

informed consent was obtained from all patients prior to participation in the study. Subjects 

were recruited by local advertising in the greater Indianapolis area. Twelve female subjects 

with fibromyalgia (FM) and twelve control female subjects (CON) completed all study 

procedures. Subjects underwent a screening interview that included the Structured Clinical 

Interview for DSM-IV disorders (SCID) I and II, the Beck Depression Inventory (BDI; Beck 

et al. 1961), the State-Trait Anxiety Scale (STAI; Spielberger 1983), the Positive and 

Negative Affect Scale (PANAS; Watson et al. 1988), the Edinburgh Handedness Inventory 

(Oldfield 1971), the Fagerström Test for Nicotine Dependence (Pomerleau et al. 1994), and 

the Time Line Follow Back calendar for recent drinking (TLFB; Sobell et al. 1986). Two FM 

subjects endorsed current major depressive episode and were taking prescription 

antidepressants. The control group included two subjects matched for diagnosis of current 

major depressive episode and medication status. Exclusion criteria were: age less than 18 or 

greater than 45, history of Axis I disorders (excluding mood and anxiety disorders), history 

of seizures, intake of >14 alcoholic drinks per week, current use of illicit drugs (sporadic 

marijuana use excepted), current use of medications with known dopaminergic interactions 

(including selective norepinephrine reuptake inhibitors and daily use of prescription opiates), 

contraindication for MRI, and a positive urine toxicology screen (Q-10, Proxam) on 

screening and/or PET imaging days. Two FM subjects reported sporadic, as-needed use of 

prescription opiate painkillers, and another reported as-needed use of benzodiazepines. 

However, no subjects tested positive for either drug class on either scan day. FM-specific 

exclusion criteria were: failure to meet diagnostic criteria for FM (Wolfe et al. 1990) as 

determined by a pain specialist (co-author P.M.), and presentation of any comorbid pain 

disorder(s). Subjects received two [18F]fallypride (FAL) PET scans, conducted on separate 

days. Scan order was counterbalanced across subjects. The baseline FAL scan was acquired 
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while subjects performed a control attention task (BL; 0-back task). The challenge FAL scan 

was acquired while subjects performed a working memory task (WM; 2-back task).

Subjective Pain Ratings

Questionnaires—Multiple self-reported pain assessments were conducted. At the 

beginning of each scan day, subjects completed the short-form McGill Pain Questionnaire 

(MPQ; Melzack 1987), Fibromyalgia Impact Questionnaire (FIQ; Burckhardt et al. 1991), 

and the Brief Pain inventory (BPI; Cleeland and Ryan 1994). Additionally, to characterize 

self-reported pain intensity during scanning, subjects periodically rated their current pain on 

a computerized visual analog scale (VAS), anchored by 0 (no pain at all) and 100 (worst 

pain possible). Subjects were prompted to respond to the VAS query every ten minutes 

throughout scanning, for a total of 15 responses. For each subject and each scan, the average 

VAS score over the entire scan session was calculated.

Pressure Sensitivity Testing—Six of the 18 FM “tender points” were selected for 

determination of each subject’s mechanical pain sensitivity and tolerance: bilateral second 

rib, bilateral trapezius muscle, and the bilateral medial fat pads of the knee (Wolfe et al. 

1990). A JTech Commander Algometer (JTech Medical, Salt Lake City, UT) with a rubber 

disc of 1cm2 was applied at 90° to each of these points. Pressure was initially applied at an 

approximate rate of 3 Newtons/cm2/s to determine subjects’ sensitivity (that is, the level of 

pressure at which the subject initially perceives the sensation of pain). To assess pain 

tolerance, pressure was gradually increased until the pain was almost unbearable. Pressure 

was withdrawn immediately after subjects indicated their tolerance point. Both sensitivity 

and tolerance were recorded in N/cm2. Mechanical sensitivity and tolerance were assessed 

the morning of each scan day. Measurements of sensitivity and tolerance, respectively, were 

averaged across all six tender points for each day.

Cognitive Testing

N-back Task—“0-back” (BL) and “2-back” (WM) tasks were modified versions used by 

McDonald et al. (2012), and programmed in E-prime 2.0 software (Psychology Software 

Tools Inc., Sharpsburg, PA).

For each run of the “0-back” task, subjects were given a target letter prior to initiation of the 

task, and instructed to respond each time a stimulus letter matched the target letter.

For each run of the “2-back” task, subjects were instructed to respond when a stimulus letter 

matched a stimulus presented two back in the letter sequence.

During both tasks, subjects were presented with stimulus letters (all consonants, excluding 

L, W, and Y) for 2s with a blank screen inter-stimulus interval of 1.5s. Each task run 

consisted of 90 stimulus presentations, with 23 potential correct responses. Tasks were 

presented to subjects on a computer monitor situated outside the gantry, in full view of the 

subject. Initiation of tasks began five minutes prior to FAL injection. Individual task runs 

were presented four times, with a ~5 minute break between runs. Prior to tracer injection, 

study personnel ensured that the subject was able to easily see, read, and perform the task 

without significant head movement. Short practice sessions were conducted prior to 
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scanning to ensure the subject understood task requirements. Task responses were made via 

a wireless mouse located on a table next to the scanner bed. Responses were given by 

clicking the left mouse button.

The number of correct responses, false positive responses, omitted responses, and respective 

reaction times were automatically recorded. Percent correct (adjusted for guessing) and 

average reaction time were calculated as outcome variables.

Additional Cognitive Tests—Three additional cognitive tests were administered prior to 

scanning on the baseline (“0-back”) scan day. The Paced Auditory Serial Addition Task 

(Gronwall 1977), and age-scaled scores from the Arithmetic and Digit Span subtests of the 

WAIS-III (Wechsler 1997) were administered to assess attention and working memory 

performance.

Image Acquisition

A magnetized prepared rapid gradient echo (MP-RAGE) magnetic resonance image (MRI) 

was acquired using a Siemens 3T Trio-Tim for anatomic coregistration and processing of 

PET data. Acquisition of [18F]fallypride (FAL) data was similar to that described previously 

(Albrecht et al. 2014). Briefly, FAL was synthesized in the Department of Radiology and 

Imaging Sciences radiochemistry facilities (Gao et al. 2010). FAL PET scans were acquired 

on a Siemens ECAT HR+ (3D mode; septa retracted). FAL PET scans were initiated with an 

IV FAL infusion into the antecubital vein over the course of 1.5 minutes. The dynamic PET 

acquisition was split into two segments for subject comfort (Christian et al. 2006). The first 

half of dynamic acquisition was 70 min (6 × 30s, 7 × 60s, 10 × 120s, 10 × 300s). Following 

this segment, the subject was removed from the scanner for a ~20 min break period to 

stretch and use the restroom if needed. The second half of dynamic acquisition lasted 80 min 

(16 × 300s). A schematic of the scan day timeline is shown in Online Resource 1.

Image Processing

Processing of FAL data has been described previously (Albrecht et al. 2014). Dynamic FAL 

PET data were reconstructed with Siemens ECAT software, v7.2.2. Three-dimensional data 

were rebinned into 2D sinograms with Fourier rebinning. Data were corrected for 

attenuation, randoms, and scatter. PET images were generated via filtered back-projection of 

sinograms, using a 5mm Hanning filter. MRI and dynamic PET images were converted to 

Neuroimaging Informatics Technology Initiative (NIfTI) format (http://nifti.nimh.nih.gov/) 

and processed with SPM8. A mean PET image that contained a mixture of blood flow and 

specific binding (i.e. showed good gray to white matter contrast in both cortical and sub-

cortical regions) was created using the realignment algorithm. This mean PET image was 

coregistered to the subject’s anatomic MRI using the mutual information algorithm in 

SPM8. Motion correction was implemented with frame-by-frame coregistration, using the 

MRI-coregistered mean PET as the target image. Each subject’s MRI was spatially 

normalized to Montreal Neurological Institute (MNI) space and the transformation matrix 

obtained from the spatial normalization step was then applied to the motion-corrected PET 

data from each subject.
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Voxel-wise Analysis

Dopamine (DA) D2/D3 receptor binding was indexed with binding potential relative to 

nondisplaceable binding (BPND; for notational simplicity, we will use the term BP), which is 

operationally defined as fND*Bavail/KD (Innis et al. 2007). FAL BP can be influenced by 

both the amount of DA D2/D3 receptors available for binding (Bavail) and endogenous DA 

concentration (which affects both Bavail and KD, the dissociation constant for FAL). fND is a 

term that represents unbound radioligand in tissue (please see Innis et al., 2007, for explicit 

tracer kinetic modeling definitions). Cerebellar gray matter (vermis excluded) was used as 

the reference region (tissue that contains few to no D2/D3 receptors). Individual cerebellar 

regions of interest (ROIs) were created for each subject in order to extract cerebellar time 

activity curves. BP was estimated at each brain voxel with Logan reference graphical 

analysis (Logan et al. 1996) using the cerebellar time activity curve as the input function. t* 

was set at 25 data points in “stretched” time. The resulting parametric BP images were 

smoothed with an 8mm Gaussian kernel (Costes et al. 2005; Picard et al. 2006; Ziolko et al. 

2006). Voxels in the parametric BP images that had values < 0.1 were excluded from further 

analysis to ensure that only reliably estimated BP values from both scans were considered.

Statistical Analysis

To assess group differences in demographic, affective, pain, and cognitive variables, 

independent t-tests were conducted for continuous and ordinal data; frequency was assessed 

with chi-squared tests. Tracer parameters were analyzed with a one-way ANOVA with 

group, scan, and group*scan as factors. Analyses were conducted with SPSS 21, with a two-

tailed significance threshold of p < 0.05.

To analyze FAL BP data, parameteric images were entered into a 2-scan (BL, WM) × Group 

(CON, FM) full factorial model in SPM8. Model contrasts tested for baseline differences in 

FAL BP between groups, and for main effects of the working memory task. Voxel-wise 

regression models were used to test for relationships between baseline BP and pain metrics 

(in-scan VAS ratings, experimental pain tolerance, experimental pain sensitivity). In all 

analyses, an average gray matter map across all subjects was used to create an inclusive 

mask. Given the exploratory nature of the study, statistical threshold was set at p < 0.005, 

uncorrected, with cluster extent threshold k = 10. BLBP refers to BP during the baseline (“0-

back”) condition, and WMBP refers to BP during the working memory (“2-back”) condition. 

Any putative differences in BP between BL and WM scan conditions would be attributed to 

changes in endogenous DA concentration (i.e., decreases in task BP relative to baseline 

indicate increases in DA; conversely, increases in BP indicate decreases in DA). Significant 

clusters from the voxel-wise analyses were defined as regions of interest (ROI). To describe 

the effect sizes, average ROI BP values for the clusters were extracted from parametric 

images using the MarsBaR toolbox (http://marsbar.sourceforge.net/).

Baseline image data for one control subject were unusable. This subject was subsequently 

excluded from all analyses reported herein.
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RESULTS

Subject Characteristics

Subject demographics and affective characteristics are shown in Table 1. Groups were 

balanced for age, race, education, tobacco-smoking status, Axis I disorders, and medication 

status. FM subjects reported significantly higher depressive symptoms than CON subjects (p 
< 0.05). There were no group differences in the other affective scales.

FAL Tracer Characteristics

There were no effects of group, scan, or group*scan on either injected radioactivity (FM BL: 

193.4 ± 14.8 MBq; FM WM: 192.8 ± 13.7 MBq; CON BL: 188.6 ± 14.4 MBq; CON WM: 

187.6 ± 23.9 MBq) or injected mass (FM BL: 0.058 ± 0.04 nmol/kg; FM WM: 0.056 ± 0.04 

nmol/kg; CON BL: 0.053 ± 0.03 nmol/kg; CON WM: 0.064 ± 0.03 nmol/kg).

Pain Metrics

Pain metrics for FM and CON subjects are displayed in Table 2. Compared to CON, FM 

subjects reported significantly higher pain on every pain questionnaire, had higher VAS pain 

ratings during scanning, and had lower mechanical pain sensitivity and tolerance. Group 

differences were significant on both baseline and working memory scan days. Within-group 

paired-t tests revealed no significant effects of scan day (BL, WM) on any pain metric for 

either FM or CON groups (p > 0.05).

Cognitive Performance

Cognitive task results are presented in Online Resource 2. Relative to controls, FM subjects 

responded significantly more quickly during the 0-back task. However, there were no 

significant groups differences in %correct for either the 0-back or the 2-back task. FM 

subjects had significantly lower scores on the WAIS Digit Span subtest than controls (p < 

0.05). There was a trend for FM subjects to have lower scores on the Arithmetic subtest (p = 

0.06). All scores were within the normal range of cognitive function.

Group Differences in Baseline FAL BP

Voxel-wise analyses revealed several cortical regions in which FM FAL BLBP was 

significantly lower than CON FAL BLBP (Figure 1; Online Resource 3), including the 

anterior cingulate cortex (ACC) and fusiform gyrus. On average, FM BLBP was 29.6% lower 

than CON BLBP in these regions. There were no regions where FM BLBP was significantly 

higher than CON BLBP.

Effects of Working Memory Task on FAL BP

The working memory task did not induce any detectable changes in DA transmission as 

measured by FAL PET imaging. Across all subjects, there were no main effects of working 

memory task on FAL BPND (p > 0.005, uncorrected; k > 10).
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Baseline FAL BP is Negatively Associated with Current Subjective Pain in FM

Results from the voxel-wise multiple linear regression indicated that, in FM subjects, FAL 

BLBP was significantly negatively associated with average BL VAS pain ratings (Figure 2, 

Online Resource 4). FAL BLBP in the left orbitofrontal cortex and parahippocampal gyrus 

was significantly negatively correlated with VAS pain during BL scanning.

Baseline FAL BP is Negatively Associated with Experimental Pain – FM and CON

Sensitivity and tolerance to experimentally-induced pressure pain was significantly 

negatively correlated with FAL BLBP in several brain regions for both FM and CON 

subjects. In FM, the largest anatomic extent of the correlation between FAL BLBP and 

average sensitivity (onset of pain perception) was in bilateral parahippocampal gyrus, 

whereas in CON, the largest clusters were found in the cingulate gyrus and amygdala 

(Figure 3; see Online Resource 5 for a complete listing of regions with significant 

correlations). Pain tolerance in FM subjects was negatively related to FAL BLBP in 

hippocampus, ACC, bilateral striatum, and inferior frontal gyrus (IFG; Figure 4; see Online 

Resource 6 for a list of significant regions; see Online Resource 7 for a graphical 

representation in a selected region). Similarly, CON subjects also had negative correlations 

between tolerance and BLBP in the ACC and IFG, as well as in the thalamus and insula 

(Figure 4; Online Resources 6 and 7).

DISCUSSION

The principle finding from this pilot dataset is that extrastriatal dopamine (DA) transmission 

may be altered in fibromyalgia (FM). We found that FM subjects have lower cortical 

dopamine (DA) D2/D3 receptor binding availability relative to healthy controls. We also 

provide novel evidence that subjective rating of spontaneous pain in FM is negatively 

correlated with FAL BP in several brain regions. Finally, we show that sensitivity and 

tolerance to experimentally evoked pain is associated with baseline D2/D3 receptor 

availability. To our knowledge, this is the first demonstration that individuals with FM may 

have aberrant cortical DA function.

Our finding that FM subjects have lower baseline cortical DA receptor binding builds on 

existing evidence of differing striatal DA receptor binding in chronic pain populations 

(Cervenka et al. 2006; Hagelberg et al. 2003a; Hagelberg et al. 2003b; Wood et al. 2009; 

Wood et al. 2007). The present study revealed several cortical regions in which D2/D3 BP is 

lower in individuals with FM relative to healthy controls (Figure 1, Online Resource 3). 

Importantly, we detected effects in the ACC. This area is thought to be involved in the 

processing and regulation of emotional and affective components of pain (Lamm et al. 2011; 

Etkin et al. 2011). This has implications for chronic pain syndromes like FM, which have 

high comorbity of affective dysregulation. The presence of affective disorders in FM could 

influence both how individuals experience pain (Clauw 2009; van Middendorp et al. 2010) 

and how they self-report pain intensity (Johnson et al. 2010). Our data are consistent with 

the possibility that aberrant DA transmission within the ACC could potentially be associated 

with emotional disturbances and enhanced pain perception in FM. Somewhat less 

expectedly, we observed group differences in FAL BLBP in fusiform gyrus. Although the 
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fusiform gyrus is predominantly known for its role in face recognition (Kanwisher et al. 

1997), more recent evidence indicates involvement in emotional regulation (Fonville et al. 

2014; Harry et al. 2013). More germane to pain, empathy for pain (rather than being in pain 

oneself) has been shown to activate the fusiform gyrus in healthy controls (Gu et al. 2013; 

Singer et al. 2004). Taken together, the data suggest that the fusiform gyrus may be an area 

of interest of future research in FM and other chronic pain disorders.

The relatively lower cortical DA receptor binding in FM subjects reported here could also be 

relevant for cognitive processing in FM. Complaints of cognitive deficits are common in FM 

(Glass 2008), although not all reports have detected consistent differences in cognitive 

performance (Grace et al. 1999; Landro et al. 1997; Suhr 2003). Anterior cingulate regions 

are known to be involved with brain networks relevant for memory and perceptual function, 

including the default mode, executive, and cortical salience networks (Greicius et al. 2003; 

Seeley et al. 2007). Additionally, proper function of the ACC during cognition involves DA 

transmission (Aalto et al. 2005; Kodama et al. 2014). Taken together, it is perhaps not 

surprising that we detected differences in D2/D3 receptor binding in the ACC between FM 

subjects and controls. Subsequent work is necessary to further understand how cingulate DA 

transmission contributes to cognitive complaints in chronic pain syndromes.

We also observed that, in FM subjects, there were negative correlations between subjective 

spontaneous pain ratings during baseline scanning and FAL BLBP in OFC and 

parahippocampal gyrus (Figure 2; Online Resource 4). To the best of our knowledge, the 

current report represents the first evidence of a relationship between DA receptor availability 

and spontaneously-occurring pain in a chronic pain population. It may not be intuitively 

obvious that a relationship was observed between FAL BLBP and spontaneous pain in the 

OFC (known more for its role in stimulus valuation (Seymour and McClure 2008)) instead 

of established central pain nodes such as insula or S1. However, results from a recent fMRI 

study indicate that OFC activation during pain perception may encode relative pain valuation 

rather than pain intensity (Winston et al. 2014). Thus, it is possible that DAergic activity in 

FM is more related to assigning contextual value of pain rather than to the actual 

interoceptive signaling, raising the possibility that a dysregulation of pain valuation may 

underlie FM symptoms. Similarly, the parahippocampal gyrus is not typically included in 

discussions of traditional pain pathways (Apkarian et al. 2005). However, it is thought to be 

involved in the emotional regulation of pain and pain-related unpleasant stimuli (Fallon 

2013; Forkmann et al. 2013; Gosselin et al. 2006; Ploghaus et al. 2001; Stancak et al. 2013). 

Taken together, the data suggest that dopaminergic activity in the OFC and parahippocampal 

gyrus may be linked with the experience of spontaneous pain in individuals with FM.

Our final observations were correlations between experimentally administered pressure pain 

and FAL BLBP in both FM and CON groups (Figures 3 and 4, Online Resources 5, 6, and 7). 

In FM subjects, we observed a significantly negative association between pain tolerance and 

dorsal caudate FAL BLBP (Figure 4), which replicates previous findings in both healthy 

controls and chronic pain patients (Martikainen et al. 2005; Scott et al. 2006; Martikainen et 

al. 2015). However, we did not find a similar correlation in the caudate of our healthy 

control sample, which may be due to differences in group characteristics (see below). Of 
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note, Martikainen et al. (2015) also reported a significant negative correlation in chronic 

pain subjects but not healthy controls.

Of additional interest are the distinct anatomic patterns of the correlations between FAL 

BLBP and pain sensitivity and tolerance between groups. In CON subjects, FAL BLBP was 

mainly associated with pain sensitivity and tolerance in regions whose function is thought to 

be primarily nociceptive, e.g. cingulate, thalamus, insula, and precentral gyrus (Figures 3 

and 4; Online Resources 5, 6, and 7; Apkarian et al. 2005; Tracey 2008). However, in FM 

subjects, FAL BLBP was associated with pain sensitivity and tolerance in regions more 

involved in emotional and stress regulation, e.g. parahippocampal gyrus, temporal pole, and 

hippocampus (Forkmann et al. 2013; Mutso et al. 2012; Olson et al. 2007; Ploghaus et al. 

2001). This spatial discrepancy is consistent with previous studies that have shown that 

individuals with FM exhibit markedly different patterns of brain activation and connectivity 

in response to pain than healthy controls (Gracely et al. 2002; Kim et al. 2015; Loggia et al. 

2014; Jensen et al. 2012). Taken together, the evidence suggests that differential DA function 

in FM patients may contirbute to the perception of chronic pain in this disorder.

We did not detect significant changes in DA transmission during performance of a working 

memory task, whereas a previous study reported DA release in healthy controls during 2-

back performance (Aalto et al. 2005). It is possible that differences in task presentation, 

duration of task, and response requirements could account for the apparent discrepant results 

between the respective samples.

There are several limitations to the current study. The sample size is relatively small 

(although not uncommon for neuroligand PET studies), which introduces the risk of both 

Type I and II errors. We acknowledge that this is a preliminary analysis, and replication in a 

larger cohort will be necessary to substantiate our results. However, our findings are 

generally consistent with previous work, lending credence to our interpretation. Specifically, 

group differences in baseline FAL BP in the ACC are in line with evidence that these regions 

are associated with chronic pain pathologies (Baliki et al. 2006; Luerding et al. 2008). 

Additionally, as mentioned above, significant negative correlations between striatal FAL 

BLBP and experimental pain tolerance was observed both here and in previously published 

work (Martikainen et al. 2005; Martikainen et al. 2015; Scott et al. 2006).

Another potential concern in the current study is that we did not replicate the group 

differences in striatal D2/D3 receptor binding in previous studies of FM (Wood et al. 2007) 

and related chronic pain disorders (Cervenka et al. 2006; Hagelberg et al. 2003a; Hagelberg 

et al. 2003b; Martikainen et al. 2005; Pertovaara et al. 2004; Martikainen et al. 2015). One 

potential explanation for this apparent discrepancy is that the population samples across 

these studies had different pain disorders. As indicated previously, the various pain 

syndromes may not have equivalent neurochemical profiles. Additionally, the previous 

studies excluded for psychiatric disorders, which, while reducing variance within the 

sample, may select for individuals whose pathology is different from the clinical average 

(Clauw 2009). In our study, we did not exclude FM subjects with past or present affective 

disorders (e.g. depression, generalized anxiety disorder). Therefore, our results may be a 

function of a sample that is more phenotypically representative of this chronic pain 
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population. We also acknowledge that the use of different D2/D3 radioligands across studies 

could lead to discrepant results.

There are two additional limitations that warrant mention. First, some of our FM subjects 

were taking medication specifically indicated for FM (e.g., pregabalin). Although there are 

no known associations between these medications and FAL BLBP, we were unable to match 

the control sample for these medications, which could be a potential confound. Second, we 

elected to use an “attentional baseline” scan, which does not allow comparison of the FAL 

WMBP from our N-back challenge with a “true” resting baseline (wherein the subject does 

not perform a task). Instead, we elected to control for motor activation and attentional 

processing with the 0-back task. Although obtaining a third, resting scan would have been 

the ideal study design, the cost of a third FAL scan was prohibitive for this pilot study.

In conclusion, the present work is the first to investigate extrastriatal D2/D3 receptor 

availability in individuals with FM. We provide evidence of: 1) differences in baseline FAL 

BP between FM and CON groups, 2) negative associations between D2/D3 availability and 

spontaneous pain FM subjects, and 3) negative correlations between D2/D3 availability and 

pain sensitivity and tolerance, with anatomical differences in these relationships between 

FM and CON. The results herein demonstrate the utility of [18F]fallypride PET for 

characterization of putative dysfunction in the DA circuitry of fibromyalgia subjects and 

othe chronic pain disorders.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Voxel-wise results from the CON BLBP > FM BLBP full factorial model contrast. Display 

threshold is p < 0.005, k > 10.
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Figure 2. 
Voxel-wise results from the linear regression between baseline VAS pain and baseline FAL 

BP. Display threshold is p < 0.005, k > 10.
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Figure 3. 
Voxel-wise results from the linear regression between FAL BLBP and average algometry 

sensitivity in FM (left) and CON (right) subjects. Display threshold is p < 0.005, k < 10. For 

each group, slice selection was chosen to illustrate results from the largest cluster extent (see 

Online Resource 5).
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Figure 4. 
Voxel-wise results from the linear regression between FAL BLBP and average algometry 

tolerance in FM (left) and CON (right) subjects. Display threshold is p < 0.005, k < 10. For 

each group, slice selection was chosen to illustrate results from the largest cluster extent (see 

Online Resources 6 and 7).
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Table 1

Subject Demographics and Affective Measures

Variable FM (n = 12) CON (n = 11)

Age 28.3 ± 6.2 28.4 ± 7.3

Race 10C; 2AA 10C; 1AA

Handedness 11R; 1L 10R; 1L

Education 14.8 ± 2.4 15.7 ± 2.1

Tobacco smokers 3 2

Presence of Axis I disorder 2 2

Medications

Antidepressantsa 2 2

Pregabalin 2 0

Benzodiazepines (as needed) 1 0

Opiates (as needed) 2 0

Affective inventories

BDI 7.40 ± 4.6* 2.40 ± 3.2

STAI – state 28.9 ± 9.1 26.7 ± 7.0

STAI – trait 32.4 ± 10 28.5 ± 6.7

PANAS – positive 34.6 ± 7.4 36.8 ± 8.5

PANAS – negative 17.4 ± 8.3 14.1 ± 5.8

All variables are presented as average ± s.d. unless otherwise specified. FM: fibromyalgia; CON: control; BDI: Beck Depression Inventory; STAI: 
State-Trait Anxiety Inventory; PANAS: Positive and Negative Affect Scale; C: Caucasian; AA: African American; R: right-handed; L: left-handed

*
indicates significant group differences at p < 0.05

a
Selective norepinephrine reuptake inhibitors were not permitted on this study
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Table 2

Subjective Pain Metrics

Variable FM (n = 12) CON (n = 11)

BL WM BL WM

MPQ

Sensory (0 – 33) 12.3 ± 5.5* 12.5 ± 6.8** 0.18 ± 0.4 0.18 ± 0.4

Affective (0 – 12) 4.25 ± 2.7* 3.75 ± 2.7** 0.09 ± 0.3 0.09 ± 0.3

Present pain (0 – 100) 44.3 ± 25* 43.4 ± 27** 0.18 ± 0.6 0.09 ± 0.3

FIQ (0 – 100) 51.8 ± 14* 49.7 ± 16** 5.23 ± 12 4.80 ± 12

BPI

Worst pain (0 – 10) 6.83 ± 1.1* 6.54 ± 1.9** 0.36 ± 0.7 0.45 ± 0.8

Least pain (0 – 10) 2.83 ± 1.6* 3.33 ± 2.3** 0.09 ± 0.3 0.18 ± 0.6

Average pain (0 – 10) 5.21 ± 1.6* 5.25 ± 1.9** 0.36 ± 0.9 0.0

Pain interference (0 – 10) 4.68 ± 2.5* 4.94 ± 2.4** 0.35 ± 1.1 0.34 ± 1.0

Algometry (N/cm2)

Average sensitivity 9.28 ± 5.3* 9.05 ± 5.5** 22.2 ± 6.5 22.5 ± 9.0

Average tolerance 17.3 ± 5.8* 16.5 ± 4.4** 39.9 ± 9.4 41.7 ± 11

Average VAS pain (0 – 100) 43.6 ± 24* 42.8 ± 25** 0.88 ± 1.4 0.93 ± 2.0

All variables are presented as average ± s.d. The anchor scores for each pain index are displayed to the right of the variable, if available. FM: 
fibromyalgia; CON: control; BL: baseline day; WM: working memory day; MPQ: McGill Pain Questionnaire; FIQ: Fibromyalgia Impact 
Questionnaire; BPI: Brief Pain Inventory. Note that VAS measures are taken during the PET scans

*
indicates significant difference from control subjects during the baseline scan day (p < 0.05)

**
indicates significant difference from control subjects during the working memory scan day (p < 0.05)
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