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Abstract

PRL oncoproteins are phosphatases overexpressed in numerous types of human cancer. Elevated 

levels of PRL associate with metastasis and poor clinical outcomes. In principle, PRL 

phosphatases offer appealing therapeutic targets, but they remain underexplored due to the lack of 

specific chemical probes. In this study, we address this issue by exploiting a unique property of 

PRL phosphatases, namely, that they may function as homotrimers. Starting from a sequential 

structure-based virtual screening and medicinal chemistry strategy, we identified Cmpd-43 and 

several analogs which disrupt PRL1 trimerization. Biochemical and structural analyses 

demonstrate that Cmpd-43 and its close analogs directly bind the PRL1 trimer interface and 

obstruct PRL1 trimerization. Cmpd-43 also specifically blocks the PRL1-induced cell proliferation 

and migration through attenuation of both ERK1/2 and Akt activity. Importantly, Cmpd-43 exerted 

potent anticancer activity both in vitro and in vivo in a murine xenograft model of melanoma. Our 

results validate a trimerization-dependent signaling mechanism for PRL and offer proof-of-

concept for trimerization inhibitors as candidate therapeutics to treat PRL-driven cancers

Introduction

Reversible and coordinated protein tyrosine phosphorylation is central to diverse signal 

pathways regulating cell growth, migration and survival. Disturbance of the normal pattern 

of tyrosine phosphorylation, due to perturbed balance between the activities of protein 

tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs), causes abnormal cell 
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signaling and has been linked to the etiology of many human diseases including cancer (1). 

Thus there is vast interest in targeting dysfunctional pathways driven by aberrant tyrosine 

phosphorylation for therapeutic interventions. Notable success has been achieved by 

targeting the PTKs, as shown by the more than two-dozen small molecule inhibitors already 

in the clinic (2). However, resistance to kinase inhibitor treatments prevents durable 

responses. Therefore, there is heightened interest to modulate disease progression at the 

level of PTPs.

The PRL (phosphatase of regenerating liver) phosphatases constitute a unique group of 

PTPs, with three closely related members (PRL1, 2 and 3) (3-6). Unlike other PTPs, the 

PRLs function as positive signal transducers capable of activating both ERK1/2 (7-11) and 

Akt (12-15), two of the major pathways that are aberrantly up-regulated in cancer (16, 17). 

PRL1 was initially identified as an immediate early gene induced during liver regeneration 

upon partial hepatectomy (18). Subsequent studies found that exogenous expression of PRLs 

accelerates cell proliferation and anchorage-independent growth (7, 18-21). Constitutive 

PRL expression also promotes cell migration and invasion (7, 8, 11, 22-25). Moreover, PRL 

overexpressing cells form tumors with high metastatic potential when injected into mice (9, 

22, 23, 26), whereas PRL knockdown reduces cell proliferation and migration as well as 

tumorigenesis in vivo (9, 11, 25, 27-30) Most significantly, PRL level is elevated in human 

cancers of colon (31, 32), liver (23, 33), ovarian (27, 34), prostate (35), gastric (36, 37), 

pancreatic (13), and breast (9, 38), as well as in melanoma (20, 39), multiple myeloma (40) 

and acute myeloid leukemia (41, 42), and PRL overexpression strongly correlates with late 

stage metastasis and poor clinical outcomes. Taken together, the data implicate PRLs as 

novel molecular markers and therapeutic targets for metastatic cancers. Consequently, PRLs 

have garnered considerable interest for drug discovery (6). Unfortunately, the rather flat PRL 

active site and its structural similarity to other members of the PTP family present 

significant challenge for PRL inhibitor design. Indeed, reported active site directed PRL 

inhibitors are neither sufficiently potent nor selective, and so are not suitable for in vivo 
pharmacological study and therapeutic development (6).

We describe a novel approach to inhibit PRL function by targeting a unique structural and 

regulatory property of the PRLs. One of the most striking features of PRL1 is that it exists as 

a trimer in the crystalline state and has a high propensity to form trimer in solution and 

inside the cell (8, 10, 43, 44). Moreover, trimer formation is essential for PRL1-mediated 

cell growth and migration, suggesting that small molecules targeting the trimeric interface of 

PRLs could potentially have therapeutic value (8). To capitalize on these findings, we used a 

computer-based virtual screen to search the available chemical databases for compounds 

capable of disrupting PRL trimerization. Biochemical and structural analyses demonstrate 

that Cmpd-43 and its close analogs bind the PRL1 trimer interface and block PRL1 

trimerization. Cmpd-43 also specifically abrogates the PRL1-induced cell proliferation and 

migration through attenuation of both ERK1/2 and Akt activity. Importantly, Cmpd-43 

exhibits excellent anti-cancer activity both in vitro and in a xenograft mouse model of 

melanoma. The study provides pharmacological validation that trimerization is important for 

PRL1 function and targeting PRL trimerization is a viable approach for therapeutic 

development.
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Materials and Methods

Materials

Anti-HA, anti-tubulin and anti-GAPDH antibodies were purchased from Santa Cruz 

Biotechnology. Anti-ERK1/2, anti-pERK1/2 (Thr202/Tyr204), anti-Akt, anti-pAkt (Ser473) 

and anti-LSD1 antibodies were obtained from Cell Signaling. Dulbecco's modified Eagle's 

medium (DMEM), fetal bovine serum, penicillin, and streptomycin were from Invitrogen. 

HEK293, MeWo and MCF7 cell lines were purchased directly from ATCC between 2008 

and 2015. The ATCC cell lines were characterized by short tandem repeat (STR) DNA 

profiling. MCF10A cell was received as a gift from Dr. Mircea Ivan's lab in Indiana 

University School of Medicine, and was authenticated by morphology. All cell lines were 

passaged for fewer than 6 months after resuscitation.

Virtual screening

Asinex and ChemBridge subsets in ZINC (45) database were downloaded from ZINC 

website (http://zinc.docking.org) and used for virtual screening. The monomer B in PRL1 

trimer structure (PDBID: 1ZCK) (44) was used as receptor, and the coordinates were 

retrieved from the Protein Data Bank. The DOCK6.2 program (46) was used for rigid 

docking to generate a potential subset of molecules binding at PRL1 trimer interface, and 

then AutoDock4.01 software (47) was used for flexible docking to get the most potent hits.

In the first stage docking, the structure of monomer B was processed using the “Dock Prep” 

module in UCSF CHIMERA, then the docking region was defined through a standard 

pipeline of running dms, sphgen, sphere_selector and showbox program, and the energy 

scoring values were calculated by grid program. About 560,000 small molecules 

(downloaded in 28 mol2 files, ∼20,000 molecules in each file) were submitted to the 

dock6.mpi program to perform docking calculations simultaneously. During each docking, 

the small molecule was positioned with 1,000 orientations, the lowest interaction energy and 

corresponding conformation was recorded. All ligands in each mol2 file were ranked 

according to their lowest interaction energy, and the top 2,000 were kept for the second stage 

docking, thus 56,000 (2,000 × 28) molecules were picked out for next stage screening.

In the second stage docking, the structure of monomer B was processed in 

AutoDockTools1.4 software, Gasteiger charge was added and non-polar hydrogens were 

merged. The docking area was designated around the BA- or BC-interface, and the energy 

grids of 51 × 51 × 73 points with 0.375 Å spacing on each axis were calculated for 17 atom 

types (H, HD, HS, C, A, N, NA, NS, OA, OS, F, P, SA, S, Cl, Br and I), as well as the 

electrostatic and desolvation potential using autogrid4 program; On the other hand, each 

ligand structure was used to generate pdbqt and dpf files using prepare_ligand4.py and 

prepare_dpf4.py scripts. Based on these prepared files, molecular docking was carried out in 

autodock4 program as follows: 10 separate docking runs were performed for each ligand. In 

each docking run, the optimal binding conformation was achieved by Lamarckian Genetic 

Algorithm with Local Search (LGALS) method. After all ligands were docked, the lowest 

binding free energy of each ligand was extracted and ranked, and hit molecules were picked 
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out through binding free energy comparisons, structure similarity analyses and binding mode 

inspections.

Cell culture and transfection

HEK293, MeWo, and MCF7 cells were grown in DMEM supplemented with 10% fetal 

bovine serum, penicillin (50 units/mL), and streptomycin (50 μg/mL) in a 37°C incubator 

containing 5% CO2. MCF10A cells were grown in MEBM medium supplemented with 

MEGM Single Quots and 100 ng/mL cholera toxin (Lonza, Basel, Switzerland). HEK293 

cells were seeded at 40% confluence in antibiotic-free medium and grown overnight. 

Transfection was performed using Lipofectamine 2000 from Invitrogen according to the 

manufacturer's recommendations.

Wound healing assay

Cells were grown to 90% confluence in a 12-well plate at 37 °C in an atmosphere of 5% 

CO2. A wound was created by scratching cells with a sterile 200 μL pipette tip. Cells were 

washed with PBS to remove the floating cells, and then treated with fresh medium 

containing 20 μM compound or DMSO. The wounds were photographed at 0 hour and 24 

hours under ×10 magnitude microscope. Wound healing magnitude was quantified by 

measuring the relative wound closure compared with control cells at 24 hours.

MTT assay

Cells were seeded in a 96-multiwell plate (3000 cells/well) containing DMEM, 10% fetal 

bovine serum at 37 °C in an atmosphere of 5% CO2 overnight. Cells were then treated with 

various concentrations of compounds or DMSO for 24 and 48 hours. Cell proliferation was 

then determined by MTT assay as described previously (8) using a multiwall 

spectrophotometer. Data are presented as relative proliferation rate compared with control 

cells.

Cell migration assay

Cell migration was determined as described previously (10) with some modifications. The 

assay was performed with Transwells (6.5 mm diameter; 8 μM pore size polycarbonate 

membrane) obtained from Corning (Costar, Acton, MA). Cells (3.75 × 105) in 1.5 mL of 

serum-free medium were placed in the upper chamber, whereas the lower chamber was 

loaded with 2.5 mL of medium containing 10% FBS. Cells were then treated with 10 μM of 

different compounds as indicated. After 24 hour incubation (37 °C, 5% CO2), the total 

number of cells that had migrated into the lower chamber was counted with a 

hemacytometer. Data are presented as relative migration rate compared with control cells. 

Cell motility of MeWo cells was also measured using live-cell imaging. 5×103/well of 

MeWo cells were seeded in a 96-well plate for overnight and then treated with 5 μM of 

Cmpd-43 for 4 hours. 1μg/mL of Hoechst 33342 was used to label the nuclei, and Thermo 

Scientific ArrayScan XTI Live High Content Platform was then used for live-cell tracking to 

measure the motility in the presence of Cmpd-43. Motility of the cells was assessed over 6 h 

and image data were collected every 30 min.
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Animal experiments

NSG (NOD/scid/IL2Rgnull) mice were purchased from In Vivo Therapeutics Core at Indiana 

University Simon Cancer Center. Experiments on mice were carried out in accordance with 

the regulations of The Institutional Animal Care and Use Committees at Indiana University. 

All mice were housed under pathogen-free conditions in the animal facility and received 

autoclaved water and food. 10-12 weeks old NSG mice were used in the study. MeWo cells 

were suspended in phosphate-buffered saline (PBS) at 8×107 cells/ml. A total of 8×106 cells 

(100 μl) were subcutaneously implanted into both left and right flank (n=24) using a 27-

gauge needle. Once the tumor volume reaches 200 mm3, daily intraperitoneal injection of 

either control or 30 mg/kg Cmpd-43 was performed, and the tumor growth was monitored 

for 3 weeks. Tumor volume was calculated using the formula V=(W2×L)/2 for caliper 

measurements. Mice were sacrificed after injection for 21 days, and organs were collected 

for immunohistological and biochemical analysis.

Statistics

For cell-based proliferation, migration and wound healing assays, the Student's t test was 

used to measure the significance. For MeWo cell xenograft tumors, tumor volumes at 

different time and final tumor weights were compared using the Student's t test. In 

comparing the mRNA level of PRLs in human normal skin and melanoma samples, 

Student's t test was used assess the significance of differences between groups. Survival 

analysis was performed according to the Kaplan-Meier method and the log-rank test, a p-

value of less than 0.05 was considered statistically significant.

Results and Discussion

Identification of small molecule PRL1 detrimerizers

Given the functional requirement of PRL trimerization, disruption of PRL trimerization was 

proposed as a potential therapeutic approach for PRL-based drug discovery (8), but this 

strategy has not been validated with pharmacologic approaches. As revealed by the 

homotrimeric PRL1 crystal structure (44), each PRL1 monomer (e.g. monomer B) has two 

dimer interfaces, namely the BA- (residues from 125 to 150) and BC-interfaces (residues 

from 11 to 18, 36 to 41, and 92 to 98), which are 18 and 19 Å away from the active site 

Cys104 in the catalytic P-loop C104VAGLGR110 (Figure 1A). To discover small molecules 

capable of blocking PRL1 trimerization, we used structure-based virtual screening to 

identify compounds that bind to the dimer interfaces in each PRL1 monomer. We employed 

a sequential screening strategy, starting with rigid docking in DOCK6.2 (46) to sample a 

total of 560,000 compounds (Asinex and ChemBridge subsets in the ZINC database) (45) to 

each dimer interface and score protein–ligand complexes based on the calculated interaction 

energies, which was followed by flexible docking in AutoDock4.01 (47) to analyze the top 

10% hits obtained from rigid docking (Figure 1B). This process led to the selection of 100 

top-ranked compounds for each interface. Upon further binding mode verification and 

structural similarity analyses, 56 structurally diverse compounds were purchased for further 

experimental evaluation.
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The ability of the 56 compounds to disrupt PRL1 trimerization was initially assessed by in 
vitro cross-linking experiments using recombinant PRL1 protein (44). Ten out of the 56 

compounds exhibited significant activity in blocking PRL1 trimerization. To further confirm 

the efficiency of these compounds to disrupt PRL1 trimer formation, we also evaluated them 

in an in vivo cell-based cross-linking assay. HA-tagged PRL1 expressing HEK293 cells 

were treated with the compounds, fixed with 1% formaldehyde, and the HA-tagged PRL1 

was immunoprecipitated with HA antibodies, analyzed by SDS-PAGE and visualized by 

immunoblotting with anti-HA antibodies. As shown in Figure 1C, the top three compounds, 

Cmpd-3, Cmpd-26 and Cmpd-43, significantly decreased PRL1 trimer formation inside the 

cell, with Cmpd-43 being the most potent PRL1 detrimerizer (Figure 1D). Importantly, 

Cmpd-43 at 20 μM did not inhibit the phosphatase activity of PRL1 as well as a large panel 

of PTPs including receptor-like PTPs, PTPμ, PTPε, LAR, PTPσ and PTPγ, cytosolic PTPs, 

PTP1B, Lyp, SHP1, PTPH1, HePTP, STEP, and PEZ, the dual specificity phosphatase VHR, 

VHZ, MKP5, CDC14A, and the low molecular weight PTP.

Given that PRL1 trimerization is essential for the PRL1 mediated cell proliferation and 

migration (8), Cmpd-43 is expected to suppress both cellular processes if it disrupts PRL1 

trimerization inside the cell. To test this hypothesis, we determined the effect of Cmpd-43 on 

cell proliferation and migration in PRL1 expressing HEK293 cells. As expected, Cmpd-43 

inhibited PRL1 induced cell proliferation in a dose dependent manner (Figure 1E). In 

addition, Cmpd-43 also markedly delayed the wound closure induced by PRL1 

overexpression (Figure 1F). To delineate the structural features of Cmpd-43 important for 

inhibiting PRL1 mediated cellular processes, a series of Cmpd-43 derivatives were either 

purchased (Analogs 1 to 4) or synthesized (Analogs 5 to 7) (Figure 2A). As shown in Figure 

2B&C, Analog-3 displayed similar efficacy as Cmpd-43 in attenuating PRL1 induced cell 

proliferation and migration, while Analogs 2 and 4-7 appeared slightly less effective than 

Cmpd-43. Interestingly, Analog-1 exerted no effect on either cell proliferation or migration, 

suggesting that the iminomethyl-aromatic moiety, which is missing in Analog-1, is critical 

for the inhibitory activity of Cmpd-43 and the other 6 analogs. Collectively, through a two-

stage virtual screening strategy, biochemical and cell based evaluation, and a limited 

structure and activity analysis, we identified Cmpd-43 and several analogs as potential 

disruptors of PRL1 trimerization. We also found a structurally related but inactive Analog 1, 

which could serve as a negative control in mechanistic studies.

Cmpd-43 specifically blocks PRL1 mediated signaling, cell proliferation and migration

Before Cmpd-43 can be used as a chemical probe to address PRL1's roles in normal 

physiology and in cancer and serve as a lead for therapeutic development, it is important to 

establish whether Cmpd-43 exerts its effect inside the cell through disruption of PRL1 

trimerization and inhibition of PRL1-mediated signaling. To this end, we first compared the 

effect of Cmpd-43 and its inactive Analog-1 on PRL1 trimerization. As shown in Figure 3A, 

Cmpd-43 effectively blocked PRL1 trimerization in HEK293 cells while at the same 

concentration Analog-1 had no effect, consistent with its lack of inhibition in PRL1 

mediated cell proliferation and migration (Figure 2B&C). To further evaluate the specificity 

of Cmpd-43, we utilized a trimerization deficient mutant PRL1/G97R, which is incapable of 

promoting cell growth and migration (8). Thus Cmpd-43 would not be expected to affect the 
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growth and migration of PRL1/G97R expressing cells if its main mode of action is 

disrupting PRL1 trimerization. We first confirmed that PRL1/G97R was defective in trimer 

formation (Figure 3B). We also confirmed that while ectopic expression of PRL1 increased 

both cell proliferation and migration, the rates for the PRL1/G97R cells were similar to 

those of the vector control cells (Figure 3C&D), again validating the functional importance 

of PRL1 trimerization. We then measured the effect of Cmpd-43 and Analog-1 on the 

proliferation and migration of both wild-type PRL1 and PRL1/G97R expressing cells. As 

expected, treatment with Cmpd-43, but not Analog-1, attenuated PRL1-induced cell 

proliferation in a dose-dependent manner, while neither Analog-1 nor Cmpd-43 had any 

effect on PRL1/G97R expressing cell proliferation (Figure 3C). Similarly, Cmpd-43, but not 

Analog-1, was capable of reducing wild-type PRL1 induced cell migration, whereas neither 

Cmpd-43 nor Analog-1 was able to alter the cell migration behavior of the PRL1/G97R 

expressing cells (Figure 3D). Finally, we evaluated Cmpd-43 in mouse embryo fibroblast 

(MEF) derived from either wild-type or PRL1 deficient mice. As expected, Cmpd-43 

preferentially inhibited wild-type over PRL1-/- MEF cells (Supplemental Figure 1), 

indicating that Cmpd-43 exerted its anti-proliferative activity through blocking PRL1 

trimerization.

PRL1 promotes cell proliferation and migration through activation of ERK1/2 and Akt 

pathways (8, 13, 24). To delineate the biochemical mechanism by which Cmpd-43 exerts its 

inhibitory activity on cell growth and migration, we analyzed the effect of Cmpd-43 and 

Analog-1 on ERK1/2 and Akt activity in both wild-type PRL1 and the trimerization 

impaired PRL1/G97R mutant expressing cells. Consistent with the results from the 

phenotypic assays, expression of PRL1 increased ERK1/2 and Akt activity by 3.4 and 2.5-

fold, respectively, whereas the activation status of ERK1/2 and Akt in PRL1/G97R cells was 

similar to that of the vector control cells (Figure 3E). As expected, Cmpd-43 effectively 

abrogated the PRL1-induced ERK1/2 and Akt activation whereas the negative control 

Analog-1 had no effect on ERK/1/2 and Akt activity. In line with PRL1/G97R being a loss 

of function mutant, neither Cmpd-43 nor Analog-1 had any effect on ERK1/2 and Akt 

signaling in PRL1/G97R cells. Collectively, these mechanistic studies provide additional 

strong evidence that Cmpd-43 inhibits PRL1-mediated cellular signaling as well as cell 

proliferation and migration by blocking PRL1 trimerization.

Analog-3 binds to the PRL1 trimer interfaces and blocks PRL1 trimerization

To provide direct evidence that Cmpd-43 binds to the PRL1 trimer interfaces and to 

determine the molecular basis of PRL1 detrimerization by Cmpd-43, we sought to co-

crystallize PRL1 with Cmpd-43 as well as Analog-3. We obtained co-crystals of PRL1 

bound with Analog-3. The 3D structure of PRL1•Analog-3 complex was solved by 

molecular replacement using monomer A in the PRL1 trimer structure (PDBID: 1ZCK) (44) 

as a search model and refined to 1.90 Å resolution. The final atomic model encompasses 

residues 4-160 of PRL1 and the intact Analog-3, which is unambiguously identified by the 

unbiased Fo-Fc omit density map (Figure 4A). The details of data collection and structure 

refinement are summarized in Table 1. The complex structure belongs to the C2221 space 

group with one PRL1 molecule per asymmetric unit. Remarkably, while a homotrimeric 

arrangement was always observed in previous crystal structures of wild-type PRL1 (43, 44), 
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the PRL1/C104S mutant in complex with sulfate in the active site (44), and PRL1 in 

complex with a peptide ligand (10), the PRL1•Analog-3 complex crystallized as a monomer. 

The overall structure of PRL1•Analog-3 is quite similar to the initial search model used for 

molecular replacement. PRL1 adopts a compact α+β structure comprising a central five-

stranded β sheet surrounded by four α helixes on one side and two α helixes on the other 

side (Figure 4A). The PTP signature motif (C104VAGLGR110) forms a loop (P-loop) 

between β5 and α4 located at the base of the active site pocket. The binding site for 

Analog-3 is situated at the backside of the PRL1 active site, which is defined by residues 

within the α5 helix, α4-α5 loop, β1-β2 hairpin and the C-terminus (Figure 4A). 

Interestingly, residues involved in binding Analog-3 come from both the BC- and BA-dimer 

interfaces in the resolved complex crystal structure, with the majority of the contact area in 

the BC-interface (Figure 4B).

Figure 4C shows the detailed interactions between PRL1 and Analog-3. The dimethyl-

isoindoline moiety is placed within a hydrophobic pocket defined by Tyr14, Met124, Phe132 

and the aliphatic carbon atoms in Asp128. Specifically, the two methyl groups interact with 

Asp128 and Phe132 respectively, while the isoindoline moiety makes contacts with Tyr14, 

Met124 and Phe132. The adjacent benzohydrazide motif has several van der Waals contacts 

with residues Thr13, Tyr14 and Lys15, and the oxygen atom provides an additional polar 

interaction with terminal amine of Lys15. The furan ring extends into a cavity constituted by 

Lys15, Asn16 and Arg159, making van der Waals interactions with these residues as well as 

a polar interaction between the oxygen atom and the side chain of Asn16.

To further substantiate the molecular interactions between PRL1 and Analog-3, we mutated 

Tyr14 and Phe132, which have strong hydrophobic contacts with Analog-3 (Figure 4C). 

Analyses of the buried surface area in the dimer interfaces indicated that these two residues 

make very limited, if any, contribution to PRL1 trimerization. Thus we predicated that 

substitutions at Tyr14 and Phe132 would weaken the interaction between PRL1 and 

Analog-3/Cmpd-43, without interference with PRL1 trimerization. As expected, 

replacement of Tyr14 and Phe132 by an Ala had no effect on PRL1 trimerization and PRL1-

mediated cell migration (Figure 4D&E). Importantly, the PRL1/Y14A and PRL1/F132A 

mutants were resistant to Cmpd-43 treatment. Indeed, while Cmpd-43 blocked wild-type 

PRL1 trimerization as well as PRL1-mediated cell migration, it failed to inhibit PRL1/Y14A 

and PRL1/F132A trimer formation and had little effect on PRL1/Y14A or PRL1/F132A 

mediated cell migration (Figure 4D&E). These results are in complete agreement with the 

structural observations that residues Tyr14 and Phe132 are involved in binding Analog-3. 

Taken together, the structural and mutagenesis data provide direct evidence that Analog-3 

and Cmpd-43 bind at the PRL1 trimer interface and prevents PRL1 trimerization.

PRL1 detrimerizer Cmpd-43 exhibits anti-cancer activity

As mentioned in the introduction, PRLs are overexpressed in many tumor cell lines. To 

investigate the clinical relevance of PRL overexpression and tumor progression, we analyzed 

the Gene Expression across Normal and Tumor tissue (GENT) database, a publicly available 

microarray dataset containing more than 34,000 human cancer and normal samples (48). We 

found that samples from melanoma patients (n=302) had significantly higher PRL1 and 
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PRL2 mRNA expression compared to normal skin samples (n=141) (Figure 5A&B). To 

further evaluate the significance of PRL1 overexpression in predicting survival in patients 

with melanoma, we analyzed The Cancer Genome Atlas (TCGA) skin cutaneous melanoma 

dataset. Consistent with the oncogenic role of PRL1 in human melanoma samples, patients 

with high PRL1 mRNA expression had significantly decreased survival (n=53, median 

survival=72.8 months) compared with those with low PRL1 mRNA expression in the 

melanoma (n=57, median survival=362.3 months), with a hazard ratio (HR) of 0.46 (95% CI 

of ratio=0.24 to 0.88, p=0.019) (Figure 5C). These clinical data suggest that inhibition of 

PRL1 could be beneficial for melanoma treatment. Thus we hypothesized that the PRL1 

detrimerizer Cmpd-43 may exhibit anti-melanoma activity, possibly via downregulating the 

activity of both ERK1/2 and Akt pathways. To directly test this hypothesis, we examined 

whether Cmpd-43 could suppress human melanoma MeWo cell growth and motility. As 

shown in Figure 5D, Cmpd-43 dose-dependently decreased MeWo cell proliferation as 

measured by the MTT assay. Live-cell tracking was used to measure the motility of MeWo 

cells in the presence of Cmpd-43. As shown in Figure 5E, the total distance traveled over 6 

hours for Cmpd-43 treated MeWo cells was significantly less than that of the control cells. 

To determine whether Cmpd-43 preferentially inhibits cancer cell growth, we treated both 

mammary carcinoma cell line MCF7 and normal mammary epithelial cell line MCF10A 

with Cmpd-43. As observed with MeWo cells, Cmpd-43 dose-dependently suppressed the 

growth of MCF7 breast cancer cells, but the inhibitory effect of Cmpd-43 was significantly 

compromised towards non-tumorigenic MCF10A cells (Supplemental Figure 2A). In 

addition, the anti-proliferative activity of Cmpd-43 to MEF cells was also significantly 

reduced when compared to the MeWo cells (Supplemental Figure 2B). These data indicate 

that Cmpd-43 displays significantly lower cell toxicity toward normal cells.

Importantly, Cmpd-43 treatment dose-dependently reduced HGF-induced ERK1/2 and Akt 

phosphorylation (Figure 5F). To make certain that the effect of Cmpd-43 in MeWo cells is 

also mediated by blocking PRL1 trimerization, we overexpressed either wild-type PRL1 or 

the trimerization deficient mutant PRL1/G97R mutant in MeWo cells. Similar to what we 

observed in HEK293 cells (Figure 3E), we found that overexpression of PRL1 but not 

PRL1/G97R significantly enhanced both ERK1/2 and Akt phosphorylation by about ∼2 fold 

(Figure 5G). More importantly, Cmpd-43 but not Analog-1 suppressed PRL1-induced 

ERK1/2 and Akt activation. However, neither Cmpd-43 nor Analog-1 were able to reduce 

pERK1/2 and pAkt levels in PRL1/G97R expressing MeWo cells (Figure 5G), suggesting 

that Cmpd-43 inhibits PRL1-induced ERK1/2 and Akt activation in MeWo cells by blocking 

PRL1 trimerization.

The PRL1 crystal structure revealed that residues at the trimer interface are conserved 

among all three PRLs (44, Supplemental Figure 3A). We previously showed that like PRL1, 

PRL3 could also form trimer in solution and inside the cells (8, 44). Amino acid sequence 

alignment shows that key residues involved in Analog-3 binding are also highly conserved 

among all three PRLs (Supplemental Figure 3A). Therefore, we hypothesized that 

trimerization is a general property for all PRLs and Cmpd-43 should inhibit trimerization of 

all PRLs. Indeed, both PRL2 and PRL3 can form trimer, and Cmpd-43 but not Analog-1 

significantly reduces PRL2 and PRL3 trimer formation (Supplemental Figure 3B).
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To further validate the specificity of Cmpd-43 for PRLs in MeWo cells, we knocked down 

both PRL1 and PRL2, which are the major PRL isoforms expressed in MeWo cells. We first 

demonstrated that knocking down both PRL1 and PRL2 significantly reduced ERK1/2 and 

Akt activation in MeWo cells (Supplemental Figure 4). In addition, the dose-dependent 

inhibition of both pERK1/2 and pAkt by Cmpd-43 in scramble siRNA treated MeWo cells 

was significantly compromised in PRL1 and PRL2 knocked down cells (Figure 5H&I). 

These data suggest that Cmpd-43 inhibits both ERK1/2 and Akt signaling pathways in 

MeWo cells specifically through targeting both PRL1 and PRL2. Overall, these results 

demonstrate that pharmacologic inhibition of PRL trimerization in MeWo cells attenuates 

both the ERK1/2 and Akt pathway activation and inhibits cell proliferation and motility.

Given the promising activity of Cmpd-43 in cell-based assays, we next aimed to establish 

the therapeutic potential of targeting PRL with Cmpd-43. First, we characterized the 

pharmacokinetic properties of Cmpd-43 in mice. Cmpd-43 displayed a very respectable 

pharmacokinetic profile in mouse with a plasma compound exposure Cmax=0.3 μM and a 

half-life t1/2=15.8 h at a single 20 mg/kg intraperitoneal dosage. We then assessed the effect 

of Cmpd-43 on in vivo tumor growth in a mouse xenograft model using MeWo cells 

subcutaneously implanted into immunodeficient NSG mice. Once the tumor volume reached 

200 mm3, we started daily intraperitoneal injection of either vehicle control or 30 mg/kg 

Cmpd-43 and monitored the tumor growth for 3 weeks. Mice treated with Cmpd-43 

displayed reduced tumor growth throughout the experiment compared with mice treated 

with vehicle control (Figure 6A). At 21 days post treatment, we collected the tumors 

(Supplemental Figure 5), and observed a ∼62% shrinkage in tumor volume and ∼48% 

reduction in tumor weight (Figure 6A&B). Dissection and histological analyses revealed no 

apparent toxicity in major organs when the mice were treated with Cmpd-43 at 30 mg/kg 

(Supplemental Figure 6A&B). Furthermore, biochemical studies performed in samples 

isolated from the melanoma tumors revealed substantial reduction in both ERK1/2 and Akt 

phosphorylation, upon treatment with Cmpd-43 (Figure 6C). Immunohistological analyses 

of tumor tissues revealed significantly reduced proliferation and increased apoptosis in 

Cmpd-43 treated MeWo tumors (Figure 6D). Taken together, the reduction in tumor growth 

correlated with a decrease in ERK1/2 and Akt activity, validating the on-target activities of 

Cmpd-43.

In summary, recent studies expose an oncogenic role of PRLs in many cancers (3-6), raising 

the possibility that inhibition of these phosphatases might have broader therapeutic 

applications in oncology. Interestingly, the oncogenic potential of PRLs is always associated 

with their overexpression, which should increase the propensity of PRL trimerization inside 

the cell. Given the functional requirement of PRL trimerization, pharmacologic disruption of 

PRL trimerization represents an innovative approach for the treatment of human cancers 

with elevated PRL expression. By targeting the unique, noncatalytic trimerization interfaces 

that are unrelated to any other member of the PTP family, such PRL detrimerizers would be 

highly specific to the PRL. Starting from a sequential structure-based virtual screening 

strategy, we have identified Cmpd-43 and several analogs that are capable of preventing PRL 

trimerization. Biochemical and structural analyses demonstrate that Cmpd-43 and its close 

analogs directly bind the PRL1 trimer interface and obstruct PRL1 trimerization. Cmpd-43 

also specifically blocks the PRL-induced cell proliferation and migration through attenuation 
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of both ERK1/2 and Akt activity. Importantly, Cmpd-43 exhibits excellent anti-cancer 

activity both in vitro and in a xenograft mouse model of melanoma. The results not only 

further validate the importance of trimerization for PRL function but also support the clinical 

potential of compounds that inhibit PRL trimerization. Although additional medicinal 

chemistry optimization is required, these PRL detrimerizers represent valuable tools for 

elucidating PRL signaling and for developing novel agents for cancer therapy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Identification of small molecules disrupting PRL1 trimerization
A. The representation of PRL1 trimer arrangement and the two interfaces, namely BA 

(purple, residues K125, Y126, E127, D128, V130, Q131, F132, R134, Q135, K136, R138, 

G139, L146, and E150) and BC (blue, residues E11, V12, T13, Y14, K15, N16, M17, R18, 

E36, K39, Y40, G41, F92, R93, P96, G97, C98, K136, and F160) interface within monomer 

B, which were defined as two separate docking sites in the virtual screening. The active site 

pocket is highlighted in red (residues C104VAGLGR110), and the distances between each 

dimer interface and the catalytic Cys104 are indicated by dash lines. B. The overall strategy 

to identify PRL1 trimer disruptor. C. Chemical structures of the top three hits from cross-

linking assay. D. Effect of compounds 3, 26 and 43 on PRL1 trimerization inside the cells. 

E. Cmpd-43 inhibited PRL1 mediated cell proliferation. F. Cmpd-43 (10 μM) delayed the 

wound closure induced by PRL1 overexpression in HEK293 cells. Upper panel: 

representative microscopic images at different time (magnification, x100). Lower panel: 

quantification of the wound healing assay by measuring the relative wound closure. #p<0.05 

(Student's t test) compared with control group; *p<0.05 (Student's t test) compared with 

PRL1 overexpressing HEK293 cells. Data represent mean (SD) of 3 independent 

experiments.
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Figure 2. Structure and activity analysis of Cmpd-43 and its analogs
A. Chemical structures of Cmpd-43 and its analogs. B. The relative proliferation rate of 

PRL1 overexpressing cells treated with 10 μM of Cmpd-43 and its analogs. C. The relative 

migration rate of PRL1 overexpressing cells pretreated with 10 μM of Cmpd-43 and its 

analogs. #p<0.05 (Student's t test) compared with the control group; *p<0.05 (Student's t 
test) compared with PRL1 overexpressing HEK293 cells. Data represent mean (SD) value 

from 3 independent experiments.
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Figure 3. Specific inhibition of PRL1-mediated signaling, cell proliferation and migration by 
Cmpd-43
A. Cmpd-43, but not its inactive Analog-1, blocked PRL1 trimerization in HEK293 cells. B. 

PRL1/G97R has impaired trimer formation compared to wild-type PRL1. In vitro cross-

linking assay was performed by incubating recombinant PRL1 or PRL1/G97R with 0.005% 

glutaraldehyde for either 10 min at RT (Condition 1) or 30 min on ice (Condition 2). C. 

Cmpd-43 specifically and dose-dependently suppressed the cell viability of wild-type PRL1 

overexpressing HEK293 cells. D. Cmpd-43 (10 μM) specifically inhibited the migration of 

wild-type PRL1 overexpressing HEK293 cells. E. Cmpd-43 (5 μM) specifically inhibited 

PRL1 mediated ERK1/2 and Akt activation in HEK293 cells. #p<0.05 (Student's t test) 

compared with control group; *p<0.05 (Student's t test) compared with PRL1 

overexpressing HEK293 cells. Data represent mean (SD) value from 3 independent 

experiments.
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Figure 4. Analog-3 and Cmpd-43 bind to the PRL1 trimer interfaces and block PRL1 
trimerization
A. The overall structure of PRL1•Analog-3. The PRL1 is shown in ribbon with secondary 

structure labeled. Analog-3 and the catalytic Cys104 are shown in stick. Unbiased Fo-Fc 

omit map of Analog-3 contoured at +2.5s is shown in green mesh. B. Analog-3 binds to an 

area at the backside of PRL1 active site, with the majority contact area in BC-interface and 

the minority in BA-interface. C. The close-view of Analog-3 binding with PRL1. Analog-3 

and the residues within 5 Å distance of Analog-3 are shown in stick, with carbon atom 

colored in yellow and gray respectively. Two polar interactions are indicated by yellow dash 

lines. D. Effect of 20 μM Cmpd-43 on PRL1/Y14A and PRL1/F132A trimerization by in 
vitro cross-linking assay. E. The relative migration rate of PRL1/Y14A and PRL1/F132A in 

the presence of 10 μM Cmpd-43. *p<0.05 (Student's t test) compared with wild-type PRL1 

with Cmpd-43 treatment group. Data represent mean (SD) value of 3 independent 

experiments.
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Figure 5. Cmpd-43 exhibits anti-cancer activity towards melanoma cell line MeWo
A and B. Differential expression of PRL1 (A) or PRL2 (B) mRNA between normal skin 

samples (n=141) and melanoma patient samples (n=302). C. Kaplan-Meier survival analysis 

of 110 melanoma patients, grouped by their status of PRL1 mRNA expression level. D. 
Cmpd-43 does-dependently suppressed MeWo cell proliferation. E. Cmpd-43 significantly 

reduced MeWo cell motility. Total distance is the average of full track length of more than 

600 cells over 6 h. F. Cmpd-43 dose-dependently inhibited the HGF-induced ERK1/2 and 

Akt activation in MeWo cells. G. Cmpd-43 (2.5 μM) suppressed PRL1-overexpression 
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induced ERK1/2 and Akt activation. H. The inhibitory effect of Cmpd-43 towards HGF-

induced ERK1/2 and Akt activation was significantly compromised in MeWo cells treated 

with siRNAs for both PRL1 and PRL2. I. The quantification of ERK1/2 and Akt activation 

in MeWo cells treated with either scramble siRNA or siRNAs for both PRL1 and PRL2. 

*p<0.05 (Student's t test) compared with DMSO control group. Data are representative of 

three independent experiments (mean and SD).
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Figure 6. Cmpd-43 suppresses melanoma xenograft growth in vivo
A. The tumor volume of MeWo xenograft treated with either vehicle control or Cmpd-43 for 

21 days. B. The final tumor weight of MeWo xenograft at 21 days. C. Cmpd-43 treatment 

inhibited both ERK1/2 and Akt activation in MeWo xenograft tumors. Numbers from 1 to12 

indicate different tumor samples either from DMSO group (1-6) or Cmpd-43 treatment 

group (7-12). D. Cmpd-43 treatment significantly reduced proliferation and enhanced 

apoptosis in MeWo xenograft tumors. *p<0.05 (Student's t test) and *** p<0.001 (Student's t 
test) compared with control group.
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Table 1
Data collection and refinement statistics

Crystal parameters PRL1•Analog-3

Space group C2221

Cell Dimensions

 a (Å) 47.07

 b (Å) 76.47

 c (Å) 86.87

Data Collection

 resolution range (Å) 50.0 – 1.84

 no. of unique reflections 13768

 completeness (%) 98.0

 redundancy 5.7

 Rmerge a 0.113

Refinement

 resolution range (Å) 50.0 – 1.90

 no. of reflections used 11091

 completeness (%) 87.2

 no. of protein atoms 1230

 no. of inhibitors 1

 no. of ions 2

 no. of waters 102

 Rwork b/Rfree c 19.48/23.94

 RMSD bond length (Å) 0.007

 RMSD bond angle (°) 1.23

a
Rmerge = ΣhΣi|I(h)i − 〈I(h)〉 |/ΣhΣiI(h)i.

b
Rwork = Σh|F(h)calcd − F(h)obsd|/ΣhF(h)obsd, where F(h)calcd and F(h)obsd were the refined calculated and observed structure factors, 

respectively.

c
Rfree was calculated for a randomly selected 3.6% of the reflections that was omitted from refinement.
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