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Abstract

Purpose—To investigate whether irradiated human endothelial progenitor cells (hEPCs) could 

induce bystander killing in the A549 non-small cell lung cancer (NSCLC) cells and help explain 

the improved radiation-induced tumor cures observed in A549 tumor xenografts co-injected with 

hEPCs.

Materials and Methods—We investigated whether co-injection of CBM3 hEPCs with A549 

NSCLC cells would alter tumor xenograft growth rate or tumor cure after a single dose of 0 or 5 

Gy of X-rays. We then utilized dual chamber Transwell dishes, to test whether medium from 

irradiated CBM3 and CBM4 hEPCs would induce bystander cell killing in A549 cells, and as an 

additional control, in human pancreatic cancer MIA PaCa-2 cells. The CBM3 and CBM4 hEPCs 

were plated into the upper Transwell chamber and the A549 or MIA PaCa-2 cells were plated in 

the lower Transwell chamber. The top inserts with the CBM3 or CBM4 hEPCs cells were 

subsequently removed, irradiated, and then placed back into the Transwell dish for 3 h to allow for 

diffusion of any potential bystander factors from the irradiated hEPCs in the upper chamber 

through the permeable membrane to the unirradiated cancer cells in the lower chamber. After the 3 

h incubation, the cancer cells were re-plated for clonogenic survival.

Results—We found that co-injection of CBM3 hEPCs with A549 NSCLC cells significantly 

increased the tumor growth rate compared to A549 cells alone, but paradoxically also increased 

A549 tumor cure after a single dose of 5 Gy of X-rays (P < 0.05). We hypothesized that irradiated 

hEPCs may be inducing bystander killing in the A549 NSCLC cells in tumor xenografts, thus 

improving tumor cure. Bystander studies clearly showed that exposure to the medium from 

irradiated CBM3 and CBM4 hEPCs induced significant bystander killing and decreased the 

surviving fraction of A549 and MIA PaCa-2 cells to 0.46 (46%) ± 0.22 and 0.74 ± 0.07 (74%) 

respectively (P < 0.005, P < 0.0001). In addition, antibody depletion studies demonstrated that the 
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bystander killing induced in both A549 and MIA PaCa-2 cells was mediated by the cytokines 

TNF-α and TGF-β (P < 0.05).

Conclusions—These data provide evidence that irradiated hEPCs can induce strong bystander 

killing in A549 and MIA PaCa-2 human cancer cells and that this bystander killing is mediated by 

the cytokines TNF-α and TGF-β.
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INTRODUCTION

Over the past few decades, the long-term survival rates for many cancers have increased 

dramatically, primarily as a result of significant advances in diagnostic and therapeutic 

techniques (Siegel, Ma et al. 2014). Unfortunately, this has not been case for non-small cell 

lung cancer (NSCLC), which is frequently diagnosed at an advanced stage and has an 

overall 5-year survival rate of approximately 15% (DeSantis, Lin et al. 2014, Siegel, Ma et 

al. 2014). Similarly, increases in the long-term survival rate for pancreatic cancer have been 

quite marginal during this time period and as a result, the 5-year survival rate for pancreatic 

adenocarcinoma remains below 5% (DeSantis, Lin et al. 2014, Siegel, Ma et al. 2014). 

Although the reasons that improvements in diagnostic and therapeutic techniques have not 

translated into significant increases in long-term survival for these particular cancers are 

complex and multifold, it is reasonable to postulate that a major factor behind the lack of 

improvement in prognosis for these cancers is that both lung and pancreatic cancers are 

highly resistant to current cancer treatments (Gannon 1998, Tse, Dawson et al. 2008, El 

Maalouf, Le Tourneau et al. 2009, DeSantis, Lin et al. 2014, Siegel, Ma et al. 2014). 

Therefore, a better understanding of the core principles behind current cancer treatment 

methods, such as radiation therapy, may prove useful in the development of novel, more 

effective methods of treating lung and pancreatic cancer patients (Gannon 1998). An 

example of one such core principle, within the field of radiobiology, is the bystander effect.

The bystander effect is a non-targeted effect of ionizing radiation, in which cells that are 

directly irradiated can signal to unirradiated “bystander” cells, resulting in a response to 

radiation that is observed not only in the irradiated cells, but also in the bystander cells 

(Nagasawa and Little 1992, Deshpande, Goodwin et al. 1996, Mothersill and Seymour 1997, 

Azzam, de Toledo et al. 1998, Gannon 1998, Lorimore, Kadhim et al. 1998, Mothersill and 

Seymour 1998, Prise, Belyakov et al. 1998, Zhou, Randers-Pehrson et al. 2000, Belyakov, 

Malcolmson et al. 2001, Sawant, Randers-Pehrson et al. 2001, Goldberg and Lehnert 2002, 

Mothersill and Seymour 2002, Prise, Folkard et al. 2003, Maguire, Mothersill et al. 2005, 

Liu, Mothersill et al. 2006). A great deal of time and effort has been invested to investigate 

the specific factors and mechanisms that might mediate bystander-induced killing including: 

cell-cell communication via gap junctions, reactive oxygen species, and various cytokines 

such as TNF-α and TGF-β (Lehnert and Goodwin 1997, Narayanan, Goodwin et al. 1997, 

Azzam, de Toledo et al. 1998, Prise, Belyakov et al. 1998, Narayanan, LaRue et al. 1999, 

Iyer, Lehnert et al. 2000, Matsumoto, Hayashi et al. 2000, Seymour and Mothersill 2000, 
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Zhou, Randers-Pehrson et al. 2000, Belyakov, Malcolmson et al. 2001, Bishayee, Hill et al. 

2001, Matsumoto, Hayashi et al. 2001, Mothersill and Seymour 2002, Azzam, de Toledo et 

al. 2003, Shao, Furusawa et al. 2003, Azzam, de Toledo et al. 2004, Edwards, Botchway et 

al. 2004, Moore, Marsden et al. 2005, Kadhim, Hill et al. 2006, Little 2006, Hamada, 

Matsumoto et al. 2007, Matsumoto, Hamada et al. 2007, Ryan, Smith et al. 2008, Burr, 

Robinson et al. 2010, Al-Mayah, Irons et al. 2012). However, there is evidence of significant 

heterogeneity within the bystander effect, as different cell types display not only differences 

in their ability to induce bystander effects, but also in their ability to respond to bystander 

signals (Mothersill and Seymour 1997, Burr, Robinson et al. 2010). Because of this 

heterogeneity, there is no guarantee that cells of one type can induce bystander killing in 

cells of another type, even if a bystander effect has been observed in both types of cells 

individually (Mothersill and Seymour 1997, Burr, Robinson et al. 2010). Furthermore, 

potential bystander signaling between stromal cells such as endothelial progenitor cells 

(EPCs) and cancers cells in tumors appears to be complex and requires further investigation. 

In this study, we tested whether subcutaneous co-injection of CBM3 human endothelial 

progenitor cells (hEPCs) with A549 NSCLC cells in nude mice would alter tumor xenograft 

growth and/or alter sensitivity to treatment with X-rays. We found that co-injection of 

CBM3 hEPCs with A549 cells compared to A549 cells alone significantly increased the 

tumor xenograft growth rate. However, after 5 Gy of X-rays, co-injection of CBM3 hEPCs 

with A549 cells compared to A549 cells alone significantly decreased tumor growth and 

increased tumor xenograft cure. We hypothesized and then investigated whether the 

increased X-ray-induced cell killing and tumor cure observed in the tumor xenografts co-

injected with the CBM3 hEPCs and A549 cells could be due to cytotoxic bystander 

signaling between the irradiated normal stromal hEPCs and the A549 NSCLC cells.

MATERIALS AND METHODS

Cell lines

A549 (p53 wild type) NSCLC and MIA PaCa-2 (p53 mutant) pancreatic adenocarcinoma 

cell lines were obtained from Dr. John Turchi and Dr. Michele Yip-Schneider, Indiana 

University School of Medicine, respectively (Estabrook, Chin-Sinex et al. 2011). A549 was 

grown in Dulbecco’s Modification of Eagle’s Medium (DMEM), 1X (Mediatech, Herndon, 

VA, USA), 10% Fetal Bovine Serum (HyClone, Logan, UT, USA), and 1% penicillin/

streptomycin (Mediatech). MIA PaCa-2 was grown in DMEM, 1X (Mediatech, Herndon, 

VA, USA), 10% Bovine Calf Serum (HyClone, Logan, UT, USA), and 1% penicillin/

streptomycin (Mediatech). Stock cultures were plated with 7.5 × 105 cells on T-75 cell 

culture flasks (Corning, Corning, NY, USA) and were then grown to 70-100% confluency at 

37° C, 5% CO2, and 85% humidity. (These conditions were also used in all subsequently 

mentioned incubations, unless noted otherwise.) A549 population doubling time was 17.2 

± 2.4 h. MIA PaCa-2 population doubling time was 17.1 ± 2.5 h.

CBM3 and CBM4 hEPCs were derived from human umbilical cord blood and were obtained 

from Dr. David A. Ingram and Dr. Merv Yoder, Indiana University School of Medicine and 

were grown in endothelial cell growth medium-2 (EGM-2) (Lonza, Walkersville, MD, 

USA). Stock cultures were plated with 3.5 × 105 cells on T-75 cell culture flasks (Corning) 
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that were previously coated with type I rat-tail collagen (BD Biosciences, Bedford, MA, 

USA). (All subsequently mentioned plasticware used to grow hEPCs was coated with type I 

rat-tail collagen prior to plating the cells.) Cells were then grown to 70-100% confluency. 

CBM3 and CBM4 population doubling times were 17.6 ± 1.1 h and 17.8 ± 1.1 h, 

respectively.

X-ray machine dosimetry

Measurement of absolute dose on the Precision Model XRAD 320 X-ray unit and Faxitron 

Model CP160 unit used for these studies were performed according to AAPM Task Group 

61 report, following the AAPM protocol for 40–300 kV x-ray beam dosimetry in 

radiotherapy and radiobiology, Med Phys, 28 (6), 2001. The dosimetry setup used for 

calibration included a PTW N30001 ion chamber and an electrometer calibrated by the 

University of Wisconsin Accredited Dosimetry Calibration Laboratory (UW-ADCL). The 

ion chamber was calibrated at energies UW120, 250M and Cs137. Dose measurements were 

performed for a standard setup in air and corrected for experimental setup.

A549 in vivo xenograft tumor growth studies in athymic nude mice

In vivo A549 NSCLC subcutaneous human xenografts with and without CBM3 hEPCs were 

established in female athymic nude mice (Harlan Laboratories, Indianapolis, IN, USA) by 

our standard procedures (Estabrook, Chin-Sinex et al. 2011). All experiments were 

conducted in accordance with university-approved IACUC protocols. Mice were injected in 

the flank on day 0 of the experiment with a cell preparation containing one of the following 

ratios of CBM3 cells to A549 cells (in millions of cells): 0:2, 1:2, 2:2, 4:2. Tumors were 

then allowed to grow for 1 week. On day 7 of the experiment, mice in the irradiated groups 

received a single 5-Gy dose of radiation using a X-RAD 320 Precision X-ray machine 

(Precision X-ray, North Branford, CT, USA) ) operated at 250-kVp with the collimator set to 

produce a field size of 2.0 × 2.0 cm. Additional settings for the X-ray machine were as 

follows: 2.0 mm Al filter, d = 50.0 cm, and dose rate = 1.46 Gy/min. Tumor progression was 

monitored over 73 days, with weekly measurements to determine the oblong sphere volume 

of each tumor versus time and also the number of tumor sites that were successfully cleared/

cured for each cell mixture and treatment group (Estabrook, Chin-Sinex et al. 2011).

In order to facilitate analysis, data was compiled into four different groups, as follows: A549 

(mice injected with the 0:2, 1:2, or 2:2 CBM3:A549 cell preparations), R - A549 (mice 

injected with the 0:2 CBM3:A549 cell preparation and then irradiated on day 7 of the 

experiment), CBM3:A549 (mice injected with the 4:2 CBM3:A549 cell preparation), and R 

- CBM3:A549 (mice injected with the 4:2 CBM3:A549 cell preparation and then irradiated 

on day 7 of the experiment). Because data was not all collected simultaneously, nor by the 

same researcher on the same days after tumor implantation, it was necessary to use 

regression analysis to estimate tumor volume at a given time post-implantation in some 

instances and to normalize the volume data both with respect to oblong sphere volume and 

time. This data was then used to create a tumor growth curve and an independent, one-tailed, 

Student’s t-test was performed to determine the statistical significance of oblong sphere 

tumor volume at each day of measurement. In addition, the number of tumors cleared/cured 

Turchan et al. Page 4

Int J Radiat Biol. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



by radiation for each condition (R - A549 and R - CBM3: A549) was measured and then a 

one-tailed chi-squared test was used to determine statistical significance.

Assessment of bystander-induced killing by clonogenic survival assays

Unirradiated bystander target cells were plated in the bottom chamber of the 6-well cell 

culture plates (Corning), while cells to be irradiated were plated in upper Transwell 

permeable inserts, with a membrane pore-size of 0.4 μm, that fit into the 6-well cell culture 

plates (Corning). Plates or inserts with cancer cells were plated with 1.0 × 105 cells, while 

those with hEPCs were plated with 2.0 × 105 cells. After plating, cells were cultured for 24 

h. Cells in the upper inserts were then irradiated using a 160-kVp Faxitron X-ray machine 

(Faxitron Bioptics, Tucson, AZ, USA). Settings for the X-ray machine were as follows: 0.5 

mm Cu filter, d = 33.0 cm, and dose rate = 62.4 cGy/min. Following irradiation, the upper 

inserts were transferred to the lower wells containing the target cells (Fig. 1). After 3 h of 

incubation to allow for the potential production and diffusion of bystander signals between 

the upper and lower chambers, the upper inserts were removed and target cells in the bottom 

well were counted using a Z1 Coulter Counter (Beckman Coulter, Indianapolis, IN, USA). 

These cells were then plated on T-25 cell culture flasks (Corning). The flasks were plated 

with 300 cells and incubated for 10-12 days, while flasks in experiments with hEPCs as 

target cells were plated with 600 cells and incubated for 6-8 days. Three flasks were plated 

per condition, per experiment. Following incubation, colonies were stained with crystal 

violet (Sigma-Aldrich, St. Louis, MO, USA) and colonies with greater than 50 cells were 

scored as clonogenic survivors (Estabrook, Chin-Sinex et al. 2011, Mendonca, Chin-Sinex et 

al. 2011). In experiments where antibodies were used to titrate out the candidate cytokines 

TNF-α and TGF-β, the anti-TNF-α antibody (R&D Systems, Minneapolis, MN, USA) or 

the anti-TGF-β antibody (R&D Systems) was added to the irradiated medium in the upper 

irradiated well to achieve a concentration of 0.5 μg/mL or 7.0 μg/mL, respectively. Target 

cells in the lower chambers were then incubated for 3 h with the irradiated upper inserts 

containing the irradiated cells.

Clonogenic survival assays were performed with each of the following combinations of 

irradiated cells to target cells: CBM3 or CBM4 to A549 and CBM3 or CBM4 to MIA 

PaCa-2 cells. At least 3 trials of each experimental condition were performed. Since the 

bystander results were very similar for both CBM3 and CBM4 hEPCs, we only report the 

results for the CBM4 cells here. Data was graphed with respect to survival fraction and then 

an independent, one-tailed, Student’s t-test was performed to determine statistical 

significance.

Flow cytometry based propidium iodide and Annexin V-EGFP apoptosis assays

Medium transfer experiments were performed utilizing Transwell permeable inserts 

(Corning), as previously described, with CBM3 or CBM4 hEPCs as the irradiated cells and 

A549 or MIA PaCa-2 cells as the target cells. 5.0 × 105 target cells were then placed in a 

centrifuge tube (Corning) for each trial and centrifuged for 4 minutes at 4000 rpm using a 

clinical centrifuge (International Equipment Company, Needham Heights, MA, USA). Cells 

were then washed, resuspended and then centrifuged again using the aforementioned 

settings. Following the second centrifugation, the pelleted cells were resuspended in 0.5 mL 
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of 1X Binding Buffer (BioVision, Milpitas, CA, USA). 5.0 μL of Annexin V-EGFP 

(BioVision) and 5.0 μL of Propidium Iodide (PI) were then added to the cell suspensions, 

which were then incubated at room temperature and in the dark for 10 minutes. Flow 

cytometry was performed using a FACSCalibur cell analyzer with no APC (BD Biosciences) 

3 h after the inserts containing the irradiated cells were removed from the target cells. Data 

was collected from the flow cytometer using CellQuest Pro (BD Biosciences). Flow 

cytometry was performed as described above, with the following combinations of irradiated 

cells to target cells: CBM4 to A549, MIA PaCa-2 to MIA PaCa-2, and CBM4 to MIA 

PaCa-2, with the irradiated cells receiving a 2-Gy dose of radiation. At least 3 trials of each 

experimental condition were performed.

Data obtained from flow cytometry apoptosis/necrosis analysis was used to create a dot plot 

in CellQuest Pro (BD Biosciences) with the Annexin V stain on the x-axis, and the PI stain, 

on the y-axis. The resulting plot was then divided into 4 quadrants which were labeled as 

follows: lower left, viable cells; lower right, early apoptotic cells; upper right, late apoptotic 

cells; upper left, necrotic cells. Flow cytometry data was then graphed with respect to the 

percentage of cells in each quadrant and then an independent, one-tailed, Student’s t-test was 

performed to determine statistical significance of differences in the percentage of cells 

undergoing apoptosis after bystander treatment versus unirradiated controls (Estabrook, 

Chin-Sinex et al. 2011, Mendonca, Chin-Sinex et al. 2011).

RESULTS

Subcutaneous co-injection of CBM3 hEPCs with A549 cells in nude mice improved tumor 
xenograft growth but increased X-ray sensitivity

The addition of CBM3 hEPCs to A549 cells in a 4:2 ratio resulted in a significant increase in 

subcutaneous tumor xenograft growth in nude mice from days 38 to 73 after implantation 

compared to injection of the A549 cells alone (Fig. 2, *P <0.05, **P < 0.01). However, after 

5 Gy of irradiation, tumor volume appeared to be consistently smaller in mice that were 

injected with a combination of A549 cells with CBM3 hEPCs versus mice that were injected 

with A549 cells alone. Linear regression analysis was performed to determine the rate of 

tumor volume growth per day after 5 Gy of X-rays. The analysis showed that in mice that 

received the injection of CBM3 hEPCs with A549 cells, tumors grew significantly more 

slowly following radiation (rate of tumor growth = −0.0278 mm3/day), compared to mice 

that were injected with A549 cells alone (rate of tumor growth = 0.3415 mm3/day) (*P < 

0.01). Moreover, after 5 Gy of irradiation 7 of the 8 mice that received the injection of 

CBM3 hEPCs with A549 cells had their tumors’ cleared/cured versus only 3 of the 8 mice 

injected with A549 cells alone (P < 0.05).

Irradiated CBM4 hEPCs induced bystander killing in A549 NSCLC cells

Exposure to medium from CBM4 hEPCs that received a 2-Gy dose of radiation induced 

significant bystander killing in A549 cells, decreasing the mean survival fraction of these 

A549 cells to 0.46 ± 0.22 or 46 ± 22% (P < 0.005) (Fig. 3).
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Irradiated CBM4 hEPCs induced bystander killing in MIA PaCa-2 pancreatic cancer cells

Exposure to medium from CBM4 hEPCs that received a 2-Gy dose of radiation induced 

significant bystander killing in MIA PaCa-2 cells, decreasing the mean survival fraction of 

these MIA PaCa-2 cells to 0.74 ± 0.07 or 74 ± 7 % (P < 0.0001) (Fig. 4).

Bystander killing induced by irradiated CBM4 hEPCs in A549 and MIA PaCa-2 cells is 
mediated by TNF-α and TGF-β

The addition of the antibodies against TNF-α and TGF-β to the upper chamber containing 

irradiated CBM4 hEPCs, completely inhibited the bystander killing in the A549 cells with 

survivals of 1.02 ± 0.44 (P < 0.01) and 0.98 ± 0.23 (P < 0.05), respectively (Fig. 3). 

Moreover, the addition of the antibodies against TNF-α and TGF-β to the upper chamber 

containing irradiated CBM4 hEPCs, also completely inhibited bystander killing in MIA 

PaCa-2 cells with survivals of 1.00 ± 0.04 (P < 0.005) and 0.97 ± 0.12 (P < 0.05), 

respectively (Fig. 4).

Bystander killing induced by irradiated CBM4 hEPCs involves the induction of apoptosis in 
MIA PaCa-2 cells but not in A549 cells

No increase in Annexin V positive apoptotic cells was evident in the A549 cells after a 3-

hour exposure to the medium of irradiated CBM4 hEPCs; however, exposure of MIA 

PACA-2 cells to the irradiated hEPC medium did significantly increase the mean percentage 

of MIA PaCa-2 cells undergoing apoptosis from 12.53% ± 3.13% to 20.25% ± 2.90% (P < 

0.05).

DISCUSSION

A great deal of evidence suggests that EPCs facilitate tumor growth by promoting 

vasculogenesis and angiogenesis (Lorimore, Coates et al. 2003, Ingram, Mead et al. 2004, 

Ingram, Caplice et al. 2005, Ingram, Mead et al. 2005, Broxmeyer, Srour et al. 2006, 

Ingram, Krier et al. 2007, Ding, Kumar et al. 2008, Sieveking, Buckle et al. 2008). The 

results of our A549 tumor xenograft growth studies in nude mice support this notion, as 

mice that were co-injected with CBM3 hEPCs and A549 cells in a 4:2 ratio developed 

significantly larger tumors than mice that were injected with the 0:2, 1:2, or 2:2 preparations 

(Fig. 2). However, surprisingly the addition of hEPCs to the A549 cells in a 4:2 ratio 

appeared to increase the subcutaneous tumor xenograft X-ray sensitivity and tumor cure 

after 5 Gy of X-rays (Fig. 2). We hypothesized that irradiated hEPCs may be inducing 

bystander killing in the A549 cancer cells in tumor xenografts, thus improving tumor cure. 

We utilized dual chamber Transwell dishes to test whether medium from irradiated CBM3 or 

CBM4 hEPCs would induce bystander cell killing in A549 NSCLC cells and as an 

additional control in another cancer cell type, namely MIA PaCa-2 pancreatic cancer cells.

We demonstrated that irradiated CBM3 and CBM4 hEPCs are able to induce significant 

bystander killing in both A549 and MIA PaCa-2 cells (Figs. 3 & 4). The reduction in mean 

survival fraction that was observed in MIA PaCa-2 cells following exposure to the medium 

of irradiated hEPCs was consistent with the approximately 25% reduction in survival 

fraction as a result of bystander killing that has been reported in the literature (Lyng, 
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Seymour et al. 2000, Gomez-Millan, Katz et al. 2012). Although the reduction in mean 

survival fraction seen in A549 cells following exposure to the medium of irradiated hEPCs 

was somewhat larger than expected, there is published evidence of heterogeneity with 

respect to the magnitude of bystander-mediated cell killing in different types of cells and our 

data would concur with this observation (Anzenberg, Chandiramani et al. 2008, Byeon, Choi 

et al. 2014). Interestingly, we only observed a significant increase in apoptosis in MIA 

PaCa-2 bystander cells, but not in A549 bystander cells following exposure to medium from 

irradiated CBM4 hEPCs, indicating that bystander killing can be mediated via apoptosis or 

other forms of cell death such as mitotic failure, which appears to be the case in A549 cells. 

Finally, bystander killing in both cancer cell lines appears to be mediated by the production 

of TNF-α and TGF-β by the irradiated CBM3 and CBM4 hEPCs, as bystander killing was 

significantly attenuated when antibodies against TNF-α and TGF-β were added to the 

medium of the irradiated hEPCs prior to incubation with the target cancer cells in the lower 

Transwell chamber. This observation supports the general consensus that both TNF-α and 

TGF-β play a significant role in the signaling necessary for the induction of bystander 

killing in the target cells (Lehnert and Goodwin 1997, Bishayee, Hill et al. 2001, 

Matsumoto, Hayashi et al. 2001, Moore, Marsden et al. 2005, Kadhim, Hill et al. 2006, 

Hamada, Matsumoto et al. 2007, Ryan, Smith et al. 2008). In the future, experiments need to 

be conducted to determine whether our observations can be generalized to other types of 

stromal cells and what range of cancer cell types are receptive to these cytotoxic bystander 

signals produced by irradiated stromal cells.

Our observation that irradiated normal hEPCs can induce bystander killing in cancer cells 

may give some insight into how cancer cells that do not directly receive lethal doses of 

radiation can still be killed by bystander signaling from the surrounding normal stromal cells 

that have been irradiated. Perhaps novel techniques in radiation oncology could be 

developed that maximize bystander cytotoxic signaling from the surrounding normal tissue, 

that could potentially result in better long-term success rates in treating patients with cancers 

that are currently rather resistant to radiation therapy (Widel, Przybyszewski et al. 2009). To 

put the potential for new treatment methods that better utilize bystander killing into 

perspective, it should be noted that the reduction in mean survival fraction in the cell lines 

studied resulting from exposure to the medium of hEPCs that received a 2-Gy dose of 

radiation was the equivalent of the reduction in survival fraction that would be expected 

following an approximately 1.1-Gy dose of direct radiation to the cancer cells. Thus, 

decreases in survival fraction as a result of bystander killing can potentially exceed 50% of 

the decreases in survival fraction accounted for by direct irradiation, making better 

utilization of the bystander effect a powerful potential paradigm in radiation therapy. 

Moreover, a better understanding of the mechanism that facilitates bystander killing could be 

used to develop novel combinations of chemotherapy and radiation therapy that maximize 

synergistic tumor killing. On the other hand, evidence that irradiated

cancer cells can induce a bystander effect in normal hEPCs is relevant in light of recent data 

that suggests that bystander signals may be responsible for increased genomic instability and 

increased risk of carcinogenesis in unirradiated normal tissues (Lewis, Mayhugh et al. 2001, 

McIlrath, Lorimore et al. 2003, Morgan 2011, Siegel, Ma et al. 2014). In order to reap the 

potential benefits of this information, future studies need to be conducted to determine how 
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bystander killing can be maximized in cancer cells, while minimizing the number of 

unirradiated normal cells that are affected by bystander signaling.
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Figure 1. 
Diagram of experimental setup using Transwell culture dishes with irradiated CBM4 human 

endothelial progenitor cells plated in upper Transwell permeable insert and the target cancer 

cells (either A549 or MIA PaCa-2, shown here as “A549”) plated in the lower compartment. 

Illustrations that were used to create this diagram were obtained from the Corning website.

Turchan et al. Page 13

Int J Radiat Biol. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Athymic nude mice were injected with either a combination of CBM3 human endothelial 

progenitor cells (hEPCs) with A549 cells in a 0:2, 1:2, or 2:2 ratio (A549 and R - A549) or a 

combination of CBM3 hEPCs with A549 cells in a 4:2 ratio (CBM3:A549 and R - 

CBM3:A549) on Day 0. Mice that received radiation (R - A549 and R - CBM3:A549) were 

irradiated on Day 7. On each day of measurement after the first 5 weeks of the experiment, 

tumor volume was significantly larger in mice that were injected with a combination of 

CBM3 hEPCs with A549 cells in a 4:2 ratio than in mice in the A549 cohort (0:2, 1:2, and 

2:2 cell preparations) (*P < 0.05, **P < 0.01). However, after 5 Gy of irradiation, tumor 

volume appeared to be consistently smaller in mice that were injected with a combination of 

CBM3 hEPCs with A549 cells in a 4:2 ratio versus mice that were injected with A549 cells 

alone. Linear regression was performed to determine the rate of tumor volume growth per 

day and showed that mice that received the injection of CBM3 hEPCs with A549 cells was 

significantly lower (rate of tumor growth = −0.0278 mm3/day) compared to mice that were 

injected with A549 cells alone (rate of tumor growth = 0.3415 mm3/day) (*P < 0.01).
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Figure 3. 
A549 cells that were exposed to the medium of CBM4 human endothelial progenitor 

(hEPCs) cells that received a 2-Gy dose of radiation had a significantly lower mean survival 

fraction compared to A549 cells that were exposed to the medium of unirradiated CBM4 

hEPCs (*P < 0.005). The addition of antibodies against TNF-α and TGF-β to the media of 

irradiated CBM4 hEPCs significantly increased the mean survival fraction of A549 cells 

exposed to these media compared to A549 cells that were exposed to the medium of 

irradiated CBM4 hEPCs that were not treated with antibodies (*P < 0.01, **P < 0.005).
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Figure 4. 
MIA PaCa-2 cells that were exposed to the medium of CBM4 human endothelial progenitor 

cells (hEPCs) that received a 2-Gy dose of radiation had a significantly lower mean survival 

fraction compared to MIA PaCa-2 cells that were exposed to the medium of unirradiated 

CBM4 hEPCs (*P < 0.0001). The addition of antibodies against TNF-α and TGF-β to the 

media of irradiated CBM4 hEPCs significantly increased the mean survival fraction of MIA 

PaCa-2 cells exposed to these media compared to MIA PaCa-2 cells that were exposed to the 

medium of irradiated CBM4 hEPCs that were not treated with antibodies (*P < 0.05, **P < 

0.005, ***P < 0.0001).
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