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Abstract

 Background—Apamin sensitive small-conductance Ca2+-activated K+ (SK) channels are 

gated by intracellular Ca2+ through a constitutive interaction with calmodulin.

 Objective—We hypothesize that arrhythmogenic human calmodulin mutations impede 

activation of SK channels.

 Methods—We studied 5 previously published calmodulin mutations (N54I, N98S, D96V, 

D130G and F90L). Plasmids encoding either wild type (WT) or mutant calmodulin were 

transiently transfected into human embryonic kidney (HEK) 293 cells that stably express SK2 

channels (SK2 Cells). Whole-cell voltage-clamp recording was used to determine apamin-

sensitive current (IKAS) densities. We also performed optical mapping studies in normal murine 
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hearts to determine the effects of apamin in hearts with (N=7) or without (N=3) pretreatment with 

sea anemone toxin (ATX II).

 Results—SK2 cells transfected with WT calmodulin exhibited IKAS density (in pA/pF) of 33.6 

[31.4;36.5] (median and confidence interval 25%-75%), significantly higher than that observed for 

cells transfected with N54I (17.0 [14.0;27.7], p=0.016), F90L (22.6 [20.3;24.3], p=0.011), D96V 

(13.0 [10.9;15.8], p=0.003), N98S (13.7 [8.8;20.4], p=0.005) and D130G (17.6 [13.8;24.6], 

p=0.003). The reduction of SK2 current was not associated with a decrease in membrane protein 

expression or intracellular distribution of the channel protein. Apamin increased the ventricular 

APD80 (from 79.6 ms [63.4-93.3] to 121.8 ms [97.9-127.2], p=0.010) in hearts pre-treated with 

ATX-II but not in control hearts.

 Conclusion—Human arrhythmogenic calmodulin mutations impede the activation of SK2 

channels in HEK 293 cells.
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 Introduction

Small conductance calcium-activated potassium (SK) channels carry a repolarization current 

responsible for afterhyperpolarization of neurons in the nervous system and contributes to 

the modulation of intrinsic excitability, synaptic transmission and long-term changes that 

affect learning and memory formation.1, 2 SK also contributes significantly to the 

repolarization of atrial myocytes3, 4 and promotes automaticity and atrioventricular node 

conduction.5 SK is upregulated in atrial fibrillation, heart failure and myocardial 

infarction.4, 6-8 While SK current is difficult to detect in normal ventricular myocytes at 

normal pacing rates,3, 6, 9 it is important for ventricular repolarization during bradycardia 

and atrioventricular (AV) block.10 Apamin is a specific SK current blocker in both neuronal 

type and cardiac type ion channels.1, 11 SK current blockade by apamin can cause premature 

ventricular contraction, QT prolongation and torsades de pointes ventricular arrhythmia in 

normal rabbit ventricles.10 However, there are no reported cases of SK channel mutations in 

humans with cardiac arrhythmias. Therefore, the importance of SK current in human 

arrhythmogenesis remains unclear. Calmodulin mutations were reported to be associated 

with catecholaminergic polymorphic ventricular tachycardia (CPVT; N54I, N98S),12 

congenital long QT syndrome (LQTS) with recurrent cardiac arrest (D96V, D130G and 

F142L)13 and childhood and adolescent onset idiopathic ventricular fibrillation (VF) 

(F90L).14 Because SK channels are gated by intracellular Ca2+ through a constitutive 

interaction between the pore-forming subunits and calmodulin,1 it is possible that mutant 

calmodulin may impede the activation of the SK currents. We used human embryonic kidney 

(HEK) 293 cells that stably express subtype 2 of SK protein (SK2 cells) to test this 

hypothesis.
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 Methods

The study was approved by the Institutional Biosafety Committee and Institutional Animal 

Care and Use Committee of the Indiana University and the Methodist Research Institute, 

Indianapolis, Indiana. Detailed methods are included in an online supplement.

 Transfection of wild type and mutant calmodulins

SK2 cells were transfected with various plasmids. The amount of wild type calmodulin 

plasmids (WT-CaM/pIRES2-EGFP or WT-CaM/pIRES2-dsRED) or mutant calmodulin 

plasmids (N54I, F90L, D96V, N98S, D130G/pIRES2-EGFP) transfected was either 1 µg 

each or 1 µg total in combination (for co-expression experiments).

 Patch-clamp experiments

Whole cell voltage-clamp technique was performed.11 The Tyrode’s (bath) solution contains 

(in mM) NaCl 140, KCl 5.4, MgCl2 1.2, HEPES 5, NaH2PO4 0.33, CaCl2 1.8 and D-glucose 

10 (pH 7.4 adjusted with NaOH). The pipette solution contained (in mM) K-Gluconate 144, 

MgCl2 1.15, EGTA 1, HEPES 10 and different concentration of CaCl2 (pH 7.2 adjusted with 

KOH). Free Ca2+ concentration was 1.0 μmol/L for all experiments except when testing 

calcium sensitivities (0.1 to 10 μM). All experiments were carried out at 37°C. SK2 current 

density was calculated as the difference of current at 0 mV before and after exposure to 

apamin (500 nM).

 Immunofluorescence imaging

HEK 293 cells and SK2 cells were seeded and grown on coated glass coverslips. The cells 

were stained with anti-SK2 rabbit polyclonal antibody, incubated with Alexa Fluor 568 goat 

anti-rabbit IgG secondary and counterstained with DAPI. The cover glasses were then 

mounted onto a glass slide and imaged by a Leica TCS SP8 laser scanning confocal 

microscope. To minimize variability, we plated cells on the same day, introduced plasmids in 

the same way and immunostained all samples altogether. We used the same imaging 

conditions and acquired images within 2~3 hours to reduce photobleaching. We then 

compared cells side by side in the same region in the same sample.

 Western blot analysis

HEK 293 cells and SK2 cells were washed in cold PBS and subsequently lysed and 

homogenized in 10 mM cold sodium bicarbonate. The membrane fractions were harvested 

by centrifugation. The protein concentrations were measured with Lowry protein assay. 

Sixty µg of microsomes were subjected to a SDS-polyacrylamide gel electrophoresis and 

transferred to a nitrocellulose membrane. The blot was probed with a rabbit anti-SK2 

polyclonal antibody. Antibody-bound protein bands were visualized with 125I-protein A 

followed by autoradiography. The membrane was then scanned in a flat-bed scanner at 600 

dpi and the staining densities were analyzed using ImageJ 1.49b.
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 Optical mapping studies

We used 10 wild type (WT) mice for optical mapping of membrane potential. The hearts 

were Langendorff perfused with 37°C oxygenated Tyrode’s solution and stained with dye 

di-4-ANEPPS. Blebbistatin (10 mM) was added to the Tyrode’s solution. Hearts were 

illuminated with a solid-state laser. Seven hearts were first treated with 15 nM sea anemone 

toxin (ATX-II) to prolong QT interval, followed by 100 nM of apamin. The remaining 3 

hearts were treated with 100 nM of apamin only. The action potential duration measured to 

80% repolarization (APD80) was determined at pacing cycle lengths (PCL) of 200 ms.

 Statistical analysis

Data in text and figures are presented as median and confidence interval [25th percentile; 

75th percentile] except the figure of normalized calcium sensitivity curve which is presented 

as mean ± standard error. Nonparametric tests were used for data analyses. Mann-Whitney U 

test was conducted to compare SK2 current densities between groups with or without 

transfected calmodulins. Kruskal-Wallis test was performed to test the existence of a 

statistically significant difference among mutant calmodulins. Repeated measures analyses 

of variance (RMANOVA) was used to compare the effects of WT:D96V ratio on current 

density and APD changes in the optical mapping studies. A p value ≤ 0.05 was considered 

statistically significant. Statistical analyses were performed using SPSS (IBM, Chicago, IL, 

USA, version 21).

 Results

Figure 1A illustrates representative current tracings from an SK2 cell before (trace a) and 

after (trace b) apamin, respectively, obtained by the descending voltage ramp protocol shown 

in the inset. Trace b shows the small endogenous current (<100 pA). Figure 1B shows the 

time course of the entire experiment. The current was fully activated 4 min after break-in 

and was completely suppressed by apamin. In Figure 1C, immunofluorescence shows SK2 

protein (red fluorescence) expressed in all SK2 cells (left panel) while no detectable SK2 

fluorescence was observed in naïve HEK 293 cells (right panel). This examination also 

confirmed the specificity of the SK2 antibody in HEK 293 cells.

 Overexpression of wild type calmodulin increases SK2 current densities

Figure 2 shows a summary of SK2 current densities (i) in SK2 cells expressing one of 5 

mutant calmodulins or wild type calmodulin (WT-calmodulin), (ii) in SK2 cells transfected 

with GFP only, (iii) in SK2 cells without transfection and (iv) in naïve HEK 293 cells. The 

median current density of SK2 cells was 14.1 pA/pF [12.0;24.3], significantly higher than 

that of naïve HEK 293 cells, 0.16 pA/pF [0.07;0.18] (p=0.011). The SK2 current densities of 

SK2 cells transfected with GFP plasmids only (18.33 pA/pF [8.0;23.4]) were not 

significantly different from that in SK2 cells (p=0.806). When SK2 cells were transfected 

with wild type calmodulin, the current densities significantly increased to 33.6 pA/pF 

[31.4;36.5] (p=0.005 compared to SK2 cells transfected with GFP).
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 Mutant calmodulins reduce SK2 current densities compared to wild type calmodulin

We then determined the SK2 current densities of the cells transfected with mutant 

calmodulins. Compared with the cells transfected with WT calmodulin, the median SK2 

current density in cells transfected with mutant calmodulins was significantly reduced: N54I 

(17.0 pA/pF [14.0;27.7], p=0.016), F90L (22.6 pA/pF [20.3;24.3], p=0.011), D96V (13.0 

pA/pF [10.9;15.8], p=0.003), N98S (13.7 pA/pF [8.8;20.4], p=0.005) and D130G (17.6 

pA/pF [13.8;24.6], p=0.003). There were no significant differences in median current 

density among SK2 cells expressing mutant calmodulins (p=0.273) nor between SK2 cells 

expressing a mutant calmodulin and untransfected SK2 cells. These findings were consistent 

with loss-of-function calmodulin mutations.

To examine the possibility that calmodulin mutants exert a dominant-negative effect on SK2 

currents, we next measured SK2 currents in SK2 cells co-transfected with varying ratios of 

WT and D96V mutant calmodulin. The results of these measurements are summarized in 

Figure 3. A gradual increase in the proportion of D96V calmodulin plasmid caused a 

progressive decrease in SK2 current density (p<0.05). We also found that the SK2 current 

density measured in SK2 cells transfected with 0.5 µg WT calmodulin was not significantly 

different from the SK2 current density in cells co-transfected with the same amount of WT 

and D96V plasmid each, suggesting that the D96V mutant calmodulin lacked a dominant-

negative effect on endogenous WT calmodulin. However, whether mutant calmodulin 

competes with WT calmodulin for interaction with the SK channel itself remains unclear.

 Ca sensitivity of D96V

Figure 4 shows a calcium sensitivity curve for SK2 current measured in the presence of 

either WT or D96V calmodulin. The reduction of SK2 current density was observed at all 

intracellular calcium concentrations. The Kd of D96V was 0.36±0.07 µM, significantly 

lower than that of WT-calmodulin, 0.82±0.13 µM (p=0.018), implying a relatively higher Ca 

sensitivity of SK2 current in the SK2 cells transfected with D96V calmodulin. The Hill 

coefficients were not significantly different between D96V and WT-calmodulin (6.21±3.07 

vs. 3.48±1.91, p=0.662). The reason why a mutant calmodulin (D96V) that greatly reduced 

Ca2+ binding affinity caused enhanced Ca2+-affinity to activate SK current remained unclear.

 Mutant calmodulins do not affect SK2 cell surface expression

To investigate the underlying mechanisms, we performed confocal microscopy studies to 

determine intracellular SK2 protein distribution in the presence of mutant and WT 

calmodulins (Figure 5). Green fluorescence marked SK2 cells successfully transfected with 

calmodulin whereas red fluorescence indicated expression of SK2 protein. The nuclei were 

stained blue with DAPI. Neither extrinsic WT-calmodulin nor extrinsic mutant calmodulins 

had apparent effects on intracellular SK2 protein distribution. There were similar amounts of 

SK2 protein expression in GFP (+) and GFP (−) cells.

Next, we used western blot analysis to study if the SK2 protein expression was altered by 

co-expression of calmodulin in the HEK 293 cells (Figure 6, n=3). While there was no 

detectable SK2 protein in untransfected HEK 293 cells, all SK2 cells expressed SK2 protein. 

There were no significant differences of SK2 protein production among SK2 cells 
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transfected with WT or mutant calmodulin. Whether mutant calmodulins suppressed SK 

current by limiting channel trafficking to the plasma membrane was not determined.

 Relevance of SK current in long QT syndrome

We showed that apamin alone did not prolong the action potential duration (APD) (46.5 ms 

[45.8:47.7]) as compared with baseline (47.2 ms [46.3:48.2], p=0.120). However, in murine 

hearts pretreated with ATX-II to create a model of long QT syndrome,15, 16 apamin further 

prolonged the APD. With pacing cycle length of 200 ms, the APD was 52.0 ms [39.7-53.1] 

at baseline, 79.6 ms [63.4:93.3] after ATX-II and 121.8 ms [97.9-127.2] after ATX-II + 

apamin (p=0.001; Figure 7). These data indicate that suppression of SK current can 

potentiate the long QT phenotype.

 Discussion

Co-expression of WT calmodulin significantly enhanced the current density of the SK2 

cells, while mutant calmodulin abolished this effect. The cotransfection of WT and D96V 

calmodulins in cultured HEK 293 cells caused a dose-dependent loss-of-function in SK2 

gating, suggesting haploinsufficiency as its mechanism. The effect of D96V on SK2 gating 

is probably induced by a failure of the mutated calmodulin to fully open SK2 channels in 

response to elevated intracellular calcium.

 Calmodulin is a limiting factor in SK2 current regulation

The significant increase of SK2 current when SK2 cells are transiently transfected with WT 

calmodulin implies that the amount of WT calmodulin in the cell is a limiting factor of SK2 

current activation. Calmodulin had been shown to be a limiting factor in both naïve HEK 

293 cells and cardiomyocytes.17-20 In a series of studies using Fluorescent Resonance 

Energy Transfer (FRET)-based biosensors to investigate the dynamic changes of free 

calmodulin in HEK 293 cells, the available free apo- and calcified calmodulin concentration 

in the resting state was 8.8 µM, and it fell below the detectable limit for the biosensor when 

the free calcium concentration reached ~4 µM. Under this condition, almost all of the 

calmodulin became bound and not available. These findings indicate an overall excess of 

calmodulin-binding sites in the HEK 293 cells.17, 18 Similar results were later obtained in 

rabbit ventricular myocyte studies that showed only 1% (50-75 nM) of total calmodulin (6 

µM) was available at resting (100-150 nM) Ca2+ concentration, suggesting intense 

competition of targets for free calmodulin.19, 20 With only ~1% free calmodulin available in 

the cell, most calmodulin targets are likely to require pre-bound calmodulin for effective 

signaling.21 Because SK channels are constitutively bound to calmodulin,1 they are likely to 

operate through the same mechanism.

 D96V mutation results in loss-of-function calmodulin and impedes SK2 activities

When SK2 channels are produced and traffic to the cell membrane, calmodulin is already 

constitutively bound to the calmodulin binding domain (CaMBD) of SK2 channel.22, 23 The 

C-lobe of calmodulin is bound to SK2 CaMBD in a Ca2+-independent manner and this 

interaction is also required for surface expression of SK channels.23-26 The N-lobe of 

calmodulin is important for mediating SK channel gating by binding Ca2+ to the EF hand 
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motifs.23, 26 In in-vitro studies, the Ca2+ affinity of C-domain of D96V, N98S, F142L and 

D130G calmodulins was reduced, while Ca2+ affinity of N-domains was not changed 

compared to wild type.13, 27 However, in the SK2 channel complex, calmodulin is 

constitutively bound to the CaMBD of SK2 channel via C-domain of calmodulin. We do not 

know whether these mutations would hinder or enhance the binding between calmodulin and 

SK2 channels. A crystal structure study showed that the C-domain of the calmodulin in the 

SK2 channel complex was conformationally distinct from Ca2+-bound status in vitro.23 

Similarly, it is also not known whether the Ca affinity of N-domain in vitro represents the Ca 

affinity of N-domain when the C-domain is already bound on CaMBD of SK2 channel and 

already experiences conformational change. Therefore, the data from recently published in 

vitro Ca binding assay may not be directly relevant to our study. It is reasonable to 

hypothesize that the mutations of the C-lobe may hinder the binding of calmodulin onto SK2 

channel or impede the trafficking of SK2 protein onto cell membrane. Our confocal 

immunofluorescence experiments showed similar pattern of intracellular distribution of SK2 

protein among SK2 cells with or without WT or mutant calmodulin transfection. These 

findings imply that SK2 protein distribution is not affected by excess amount of calmodulin 

expression nor the presence of mutated calmodulin.

In the WT:D96V cotransfection study (figure 3), there was a progressive decrease in the SK 

current density with an increasing D96V:WT ratio, suggesting that D96V calmodulin lost its 

function on gating SK2 channel. The left shift of Ca-sensitivity curve of D96V indicates 

increased Ca2+ sensitivity (figure 4B). In vitro Ca2+ binding studies13 showed D96V 

reduced Ca2+ affinity in the C-domain but not in the N-domain. We postulate that, at lower 

total Ca2+ concentration, the reduced Ca2+ binding affinity of C domain (of D96V 

calmodulin) increases the availability of intracellular free Ca2+ for the EF hands in the N-

lobe of calmodulin, which results in conformational changes that increased Ca2+-sensitivity 

of the SK2 current. The same mechanism does not operate at higher Ca2+ concentration (1 

µM or higher), when Ca2+ is easily available to both N and C terminal domains.

Because of the existence of intrinsic calmodulin in D96V transfected SK2 cells, each SK2 

channel would be composed of different proportions of WT and mutant calmodulins. Our 

findings suggest that co-existence of D96V calmodulins in each SK2 channel complex 

increased SK2 channel Ca2+ sensitivity. In patients harboring heterozygous calmodulin 

mutations, we may expect the same mechanism with the SK2 current more easily activated, 

but producing a subnormal SK2 current in a cardiomyocyte or a neuron. Further detailed 

studies are warranted to decipher the complicated interaction between free cytosolic 

calcium, mutant calmodulin and SK2 subunits.

 Clinical Implications

Calmodulin is an important multifunctional Ca2+-binding messenger protein that regulates 

several functions in eukaryotic cells. Calmodulin mutation may be associated with multiple 

cardiac arrhythmic phenotypes, including LQTS, CPVT and idiopathic VF.28 Enhanced L-

type Ca2+ current and aberrant ryanodine receptor type 2 regulation are among the dominant 

mechanisms responsible for cardiac arrhythmogenesis.29, 30 Prior studies showed that SK 

currents are upregulated in pathogenic conditions while SK current blockade may be 
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proarrhythmic,10, 31 suggesting that SK current upregulation is a physiological response to 

reduced repolarization reserve and that SK current blockade might be arrhythmogenic in 

certain clinical conditions.32 The data obtained in our present study suggest that mutant 

calmodulin impedes the activation of SK current, which may play a role in the arrhythmic 

phenotypes experienced by patients with calmodulin mutations. However, despite dramatic 

differences in both Ca2+ affinity and clinical phenotypes (LQTS, CPVT and idiopathic VF), 

all mutations had similar effects on SK current density in HEK cells. Therefore, further 

studies are needed to confirm the relevance between the present study and 

calmodulinopathy.

 Limitations

In this study we used ATX-II to create an in vitro model of LQTS33 and showed that apamin 

administration potentiated APD prolongation. These results are relevant only to LQTS. 

Whether or not SK current is relevant to CPVT or idiopathic VF remains unclear. Li et al34 

recently demonstrated that mutation of the N-lobe not only reduced Ca2+ affinity but also 

disrupted the constitutive interaction between calmodulin and SK channels, leading to rapid 

dissociation of mutant calmodulin from the SK channel complex. In the in vitro affinity 

study, N54I did not lose its Ca2+ affinity on either C-lobe or N-lobe.27 These findings 

suggest that the mechanisms by which N54I impedes SK2 current activation might be 

different than that of D96V. Therefore, the results of the D96V studies may not be applicable 

to other calmodulin mutations. The exploration of detailed molecular interaction between 

SK2 channel and mutant calmodulin and the mechanism through which the regulation of SK 

current is impaired by mutant calmodulin is limited by the unavailability of calmodulin 

antibodies that can distinguish the WT- and mutant calmodulin at this moment and therefore 

is beyond the scope of the current study.

 Conclusion

We conclude that human arrhythmogenic calmodulin mutations impede the activation of 

SK2 channels in HEK 293 cells. The relevance of these results to calmodulinopathy remains 

unclear and deserves further study.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
HEK 293 cells that stably express SK2 current. (A) Representative tracings of SK2 currents 

obtained with ramp protocol shown in the inset at time points indicated by arrow a and b in 

(B). (B) The time course of SK2 current measured at 0 mV. (C) Immunofluorescence 

staining for SK2 protein (red) in SK2 cells (left panel) and HEK 293 cells without SK2 

(right panel). All cells express SK2 proteins. Blue shows DAPI stain that identifies the 

nuclei. Scale bar, 25 µm.
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Figure 2. 
SK2 current densities in HEK 293 cells expressing calmodulin alleles. As compared with 

SK2 cells, transfection of WT calmodulin significantly increased the current in SK2 cells, 

while transfection with green fluorescent protein (GFP) or mutant calmodulins failed to 

increase the current. Numbers in parentheses indicate the number of cells studied. * p<0.05.
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Figure 3. 
SK2 current densities as a function of WT to D96V ratio. Numbers in parentheses indicate 

the number of cells studied. SK2 current density was dependent on the amount of WT 

calmodulin transfected. * p<0.05.
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Figure 4. 
Steady-state calcium dependency of SK2 current transfected with WT- and D96V 

calmodulins in SK2 cells. (A) SK2 current densities with different intracellular calcium 

concentrations. (B) SK2 current densities were normalized to the maximal SK2 current with 

a free calcium of 10 µM and plotted as a function of calcium concentration. The data were 

fitted with Hill equation: y=1/(1+[Kd/x]n), where y indicates the normalized SK2 current 

and x is the intrapipette free calcium concentration; Kd is the concentration of intrapipette 

free calcium at half-maximal activation of SK2 current; n is the Hill coefficient. Error bars 

represent standard error. Numbers in parentheses indicate the number of cells patched. * 

p<0.05.
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Figure 5. 
Immunofluorescence of SK2 protein. Cells with and without green fluorescence represent 

SK2 cells with and without transfected calmodulin, respectively. Red fluorescence shows the 

staining of SK2 protein. Note that not all cells with SK2 protein express transfected 

calmodulin. Asterisks were used to label cells without calmodulin transfection. In cells 

expressing calmodulin, the protein was evenly distributed throughout the cell. Scale bar, 10 

µm.
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Figure 6. 
SK2 protein expression in SK2 cells transfected with different types of calmodulin plasmids. 

(A) A representative immunoblot showing the expression of SK2 proteins in SK2 cells 

transfected with either WT or mutant calmodulin plasmids (Top). (B) A plot showing 

normalized SK2 protein expression in different types of cells (based on at least 3 

experiments).
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Figure 7. 
Apamin prolongs APD80 in hearts pretreated with ATXII but not in untreated control (ctrl) 

hearts. (A) Typical examples of optical action potential at baseline (a), after ATX-II (b) and 

after apamin (c). (B) A summary of APD changes in 7 ATX-II pretreated and 3 control 

hearts. Bars indicates ranges from 25% percentile to 75% percentile. * p<0.05 comparing 

the APD between control and ATXII groups. †p<0.005 comparing the APD between 

baseline and after ATXII. ‡p<0.005 comparing the APDs between after ATXII and apamin.
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