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Abstract

Pancreatic ductal adenocarcinomas (PDAC) are aggressive with frequent lymphatic spread. By 

analysis of data from The Cancer Genome Atlas, we determined that ∼35% of PDACs have a pro-

angiogenic gene signature. We now show that the same PDACs exhibit increased expression of 

lymphangiogenic genes and lymphatic endothelial cell (LEC) markers, and that LEC abundance in 

human PDACs correlates with endothelial cell microvessel density. Lymphangiogenic genes and 

LECs are also elevated in murine PDACs arising in the KRC (mutated Kras; deleted RB) and KIC 

(mutated Kras; deleted INK4a) genetic models. Moreover, pancreatic cancer cells (PCCs) derived 

from KRC tumors express and secrete high levels of lymphangiogenic factors, including the EGF 

receptor ligand, amphiregulin. Importantly, TGF-β1 increases lymphangiogenic genes and 

amphiregulin expression in KRC PCCs but not in murine PCCs that lack SMAD4, and 

combinatorial targeting of the TGF-β type I receptor (TβRI) with LY2157299 and EGFR/HER2 

with lapatanib suppresses tumor growth and metastasis in a syngeneic orthotopic model, and 

attenuates tumor lymphangiogenesis and angiogenesis while reducing lymphangiogenic genes and 

amphiregulin and enhancing apoptosis. Therefore, this combination could be beneficial in PDACs 

with lymphangiogenic or angiogenic gene signatures.
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 1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related 

death in the United States, with a 5-year survival rate of 7% [1]. PDAC is associated with 

frequent of major driver mutations (KRAS, TP53, CDKN2A and SMAD4), numerous low 

frequency driver mutations, marked chemoresistance, and extensive desmoplasia [2-4]. 

Moreover, PDAC is often diagnosed at advanced stages that are locally invasive and/or 

widely metastatic which precludes the possibility for potentially curative resection. In cases 

that are resectable, lymph node involvement is common, and cancer cell invasion or spread 

into peripancreatic or distant lymph nodes is associated with increased risk of disease 

recurrence and a poor prognosis [5, 6].

PDACs overexpress vascular endothelial growth factors (VEGFs) including VEGF-C and 

VEGF-D, and several [7-10] but not all studies [11] have correlated high VEGF-C and 

VEGF-D levels with increased intratumoral lymphatic vessel density, and a propensity for 

lymph node invasion and metastasis. Both growth factors exert effects through VEGF-

receptor 2 (VEGF-R2) or VEGF-receptor 3 (VEGF-R3), and VEGF-R2 is overexpressed in 

PDAC, is present in both cancer cells and stromal cells, and is associated with tumor 

aggressiveness and decreased patient survival [8, 12-14]. By contrast, VEGF-R3 expression 

is restricted to stromal and tumor lymphatic endothelial cells (LECs), and does not correlate 

with shorter survival times [8, 15]. Nonetheless, studies using subcutaneous or orthotopic 

models of PDAC have suggested that targeting VEGF-R2 with vatalanib, VEGF-R2 and 

VEGF-R3 with lenvatinib, or all three VEGF receptors with axitinib suppresses tumor 

growth and lymphatic metastasis [16-18]. Moreover, suppression of VEGF-C or VEGF-D 

expression in vivo impedes tumor growth and cancer cell spread to lymph nodes [19, 20].

VEGF receptor signaling is also pro-angiogenic [21] but in contrast to findings in preclinical 

models, the benefit of targeting the lymphangiogenic or angiogenic effects of these pathways 

in PDAC patients is ambiguous. For example, inhibiting VEGF receptor kinase activity with 

axitinib, or the angiogenic actions of VEGF-A with bevacizumab or VEGF Trap does not 

prolong patient survival [22-24], yet in a recent Phase II study, vatalanib slightly extended 

the survival of patients with metastatic PDAC [25]. Although the reasons for the overall 

failure of these therapies are not completely understood, they could conceivably be due to 

the heterogeneous nature of PDAC [3, 26] and/or the dense stroma that impedes intratumoral 

drug delivery as suggested by studies using certain genetically engineered mouse models 

(GEMMs) of PDAC [27-29]. Moreover, PDACs overexpress additional lymphangiogenic 

and angiogenic factors [21, 30] that may interfere with the effectiveness of single pathway-

targeted therapies.

Based on an analysis of PDAC data from The Cancer Genome Atlas (TCGA), we previously 

reported that ∼35% of patients have a strong angiogenic signature [31]. We now show that 

these same PDACs as well as murine PDACs from the KRC and KIC GEMMs in which 

mutated Kras is expressed in the pancreas together with deleted RB or INK4a, respectively, 

due to Pdx1-driven Cre recombination are enriched in lymphangiogenic genes and LECs. 

Lymphangiogenic genes are also up-regulated in pancreatic cancer cells (PCCs) derived 

from KRC tumors, and these cells secrete high levels of lymphangiogenic factors. Moreover, 
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in an orthotopic model these PCCs produce tumors that frequently metastasize and exhibit 

lymphangiogenesis and angiogenesis, and these events are suppressible by targeting TGF-β 

together with EGFR/HER2. Therefore, this combination could be useful in PDAC patients 

whose tumors exhibit a lymphangiogenic gene expression profile.

 2. Materials and Methods

 2.1 TCGA and array analyses

Analysis of TCGA PDAC data was previously described [31, 32]. DESeq was performed for 

differential expression analysis [33], and genes were identified based on lymphangiogenesis 

gene ontology (GO) terms and recent reviews on tumor lymphangiogenesis [34, 35].

Arrays from KRC and KPC tumors was performed by Miltenyi Biotec as described [32]. 

Briefly, whole genome microarrays were hybridized with RNA from tumors or normal 

pancreata. Intensities were converted to log2-scale and LOESS normalization was 

performed. Heatmaps reflect normalized intensity values. Unpaired t-tests with equal 

variance were used to test for significant differences. P-values were subjected to multiple 

testing (Benjamini-Hochberg) correction to reduce false discovery rate (FDR). Fold change 

>1.5, P<0.01 and FDR<0.05 was considered statistically significant.

 2.2 Mice

KRC, KPC, KIC and KSC GEMMs were generated and maintained as described [32, 

36-38]. For orthotopic, 200,000 KRC cells were injected into the pancreata of 40 (20 males; 

20 females) 8 week-old syngeneic mice. After 10 days, mice were randomized into four 

groups (10 mice/group) and imaged using a Vevo2100 high resolution ultrasound (Visual 

Sonics, Inc.) to confirm that tumors had similar volumes before treatment. Volumes were 

calculated using 3D abdominal scans and Vevo2100 System software (v1.6.0). The mean 

tumor volume/group was ∼35±5.1 mm3 before treatment when there were no significant 

differences between the groups (one-way ANOVA; P>0.8). Mice were gavaged daily with 

LY2157299 [50 mg/kg], lapatinib [50 mg/kg], LY2157299 and lapatinib, or an equivalent 

volume of vehicle (0.5% hydroxypropylmethyl cellulose). All mice were re-imaged 10 days 

later to assess for changes in tumor volume. Mice were sacrificed when moribund and 

tissues were subjected to immunohistochemistry as described below. All studies were 

approved by the Institutional Animal Care and Use Committee of Indiana University.

 2.3 Immunohistochemistry

Tissues were fixed (10% formalin), paraffin-embedded and 4 μm sections were prepared 

using a HM355S microtome (Thermo Scientific). The tissue microarray (TMA) of 54 

different human PDACs was previously described [32]. After de-paraffinization and tissue 

rehydration, antigen retrieval was performed with antigen unmasking solution (Vector Labs). 

Following overnight incubation with primary antibodies, immunohistochemical detection 

was performed using biotinylated secondary antibodies and a NOVA RED detection kit 

(Vector Labs), or Alexa-Fluor conjugated secondary antibodies for immunofluorescence 

(Life Technologies). Antibodies: LYVE-1, CD31 (Abcam); CK19 (DSHB); p-Histone H3, 

Cleaved Caspase-3 (Cell Signaling Technology). For quantitation, images from 5 fields/
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mouse with at least 4 mice/group were acquired at 20× magnification using an Olympus 

BX60 microscope and QImaging ExiBlue camera. Images were analyzed using CellProfiler 

(v.2.1.1) and a DAB Pipeline [39]. Proliferating cells were counted using ImageProPlus 

software (v7.0Media Cybernetics).

 2.4 Elisa

KRC cells were cultured [36], confirmed as mycoplasma-free (Mycoalert kit; Lonza) and 

seeded in 6-well plates. After 24h, cells were serum-starved overnight, and incubated with 

control media or TGF-β1 ([0.5nM], 24h). Medium was collected, centrifuged, filtered 

through a 0.22 μm filter, and cytokine levels were determined using a Milliplex ELISA kit 

(Millipore).

 2.5 Quantitative PCR and Immunoblotting

Total RNA was isolated from cells using Trizol (Life Technologies) or tissues using 

guanidine thiocyanate [36]. cDNA was prepared with a high capacity RNA-to-cDNA kit, 

and quantitative PCR (qPCR) was performed for the indicated mRNAs using Taqman gene 

expression assays (Life Technologies). Rps6 served as the endogenous control. 

Immunoblotting was performed using flash-frozen human PDAC tissues or cell lysates as 

described [32]. Antibodies: LYVE-1, CD31 (Abcam); PARP, Caspase-3, Cleaved Caspase-3 

(Cell Signaling Technology); ERK2 (Santa Cruz).

 2.6 Statistical Analysis

One-way ANOVA with Tukey's post-hoc test or one-tailed Student's t-test was used to test 

for significant differences (Sigma Plot v.11.0; Systat Software). P<0.05 was considered 

statistically significant, and asterisks denote significant differences.

 3. Results

 3.1 Lymphangiogenesis is associated with angiogenesis in PDAC

By analyzing 135 PDAC transcriptomes from TCGA, we recently determined that ∼35% of 

patient tumors harbor an angiogenic gene signature in which multiple pro-angiogenic genes 

are increased [31]. Moreover, within this gene set, the lymphangiogenic receptors VEGF-R2 

(KDR) and VEGF-R3 (FLT4) are up-regulated by 3-fold and 2.5-fold, respectively [31]. We 

therefore sought to determine whether PDACs with an angiogenic signature exhibit 

increased lymphangiogenic gene expression. Accordingly, we compared the transcriptomes 

of angiogenic PDACs with those that lacked this signature, and assessed the levels of 

lymphangiogenesis-associated genes. This analysis revealed that 30 lymphangiogenesis 

genes were significantly up-regulated in angiogenic PDACs, including lymphangiogenic 

factors and the lymphatic endothelial cell (LEC) markers LYVE1, PDPN and PROX1 (Table 

1). Thus, angiogenic PDACs could be lymphangiogenic and harbor more LECs than PDACs 

without these signatures. To explore this possibility, we used a TMA and assessed for the 

presence of LECs in 54 PDACs. 27 PDACs (50%) contained vessels that were positive for 

the LEC marker, LYVE-1 (Fig. 1A). Moreover, in these tumors, higher LYVE-1 mRNA and 

protein levels were associated with increased expression of the blood vessel endothelial 
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marker, CD31 (Fig. 1B-D), pointing to a correlation between lymphatic and blood vessel 

endothelial cell density in PDAC.

 3.2 Lymphangiogenic genes are elevated in KRC tumors

Oncogenic KRAS and inactivating CDKN2A/INK4a mutations are frequent in PDAC (95% 

and 90%, respectively) along with overexpression of CyclinD1 and multiple tyrosine kinase 

receptors and their corresponding ligands that together could facilitate RB dysfunction 

[40-43]. Indeed, RB inactivation is common in PDAC and in several genetically engineered 

mouse models (GEMMs) of PDAC [44]. In a GEMM that combines oncogenic Kras with 

RB deletion (KRC mice) PDACs form rapidly, and are rich in CD31-positive endothelial 

cells and functional blood vessels [32, 36]. Moreover, these tumors and tumors from KIC 

mice (mutated Kras; deleted INK4a) have pro-angiogenic transcriptomes that resemble the 

signature present in angiogenic PDACs [32, 37]. Thus, we sought to determine whether 

KRC or KIC tumors exhibit enhanced lymphangiogenic gene expression. Overall, 12/30 

lymphangiogenic genes were up-regulated in KRC tumors, including the same LEC markers 

and lymphangiogenic genes that were increased in angiogenic human PDAC (Table 2; Fig. 

2A). Quantitative PCR (qPCR) confirmed that LEC markers (Lyve1; Pdpn) and 

lymphangiogenic genes (Nrp1; Vegfc; Vegfd; Vegfr3) were significantly increased in KRC 

and KIC tumors (Supplementary Fig. 1A-B). By contrast, no lymphangiogenic genes were 

up-regulated in the KPC GEMM of PDAC (mutated Kras and p53) which lacks an 

angiogenic signature [32].

Because LEC-specific mRNAs were elevated in KRC and KIC tumors, we next assessed 

these GEMMs for the presence of LECs. At postnatal month 1, KRC mice exhibited 

LYVE-1 immunoreactivity on sinusoidal-like vessels surrounding the stroma adjacent to 

pancreatic intraepithelial neoplasia (PanIN), and by 4 months these vessels were abundant 

and often present within the stroma adjacent to CK19-positive PanIN lesions and cancer 

cells (Fig. 2B-C). A similar pattern occurred in KIC mice in which intratumoral LYVE-1-

positive LECs were abundant (Fig. 2B). By contrast, LECs were not detectable in the stroma 

of KPC tumors (Fig. 2C). Therefore, KRC and KIC tumors harbor LECs and have 

lymphangiogenic profiles that resemble the signature in 35% of human PDACs.

 3.3 KRC cells produce lymphangiogenic factors

Pancreatic cancer cells (PCCs) derived from KRC tumors express and secrete angiogenic 

factors, and akin to KRC tumors and angiogenic human PDACs, they have a transcriptome 

that reflects constitutive TGF-β pathway activation [32]. Moreover, they secrete high levels 

of VEGF-C under TGF-β-stimulated conditions [32], suggesting that TGF-βs could be 

involved in PDAC lymphangiogenesis. Therefore, we compared KRC PCCs with PCCs from 

KC mice which express oncogenic Kras, but retain RB and do not exhibit TGF-β activation 

[44]. This analysis revealed that 6 lymphangiogenic factors (Ccbe1; Cxcl12; Edn1; Pdgfa; 

Pdgfb; Vegfc) [34, 35], were up-regulated in KRC PCCs (Supplementary Table 1), and 

qPCR confirmed that Pdgfa, Vegfc and Vegfd mRNA levels were higher in KRC PCCs 

compared with KC PCCs (Supplementary Fig. 2A). Some genes were also elevated in 

human PCCs, but only Hs766T cells which originated from a lymph node metastasis [45] 

exhibited up-regulation of all 6 (Supplementary Fig. 3). By contrast, PCCs from KSC mice 
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(mutated Kras; deleted SMAD4) lack canonical TGF-β signaling [38] and had a paucity of 

PanIN-associated and intratumoral LECs, did not exhibit Pdgfa, Vegfc or Vegfd up-

regulation (Supplementary Fig. 2A-B). Moreover, these genes were not up-regulated by 

TGF-β 1 in KSC cells, whereas all 3 were TGF-β 1-responsive in KRC cells (Supplementary 

Fig. 2C). Together, these data suggest that TGF-βs contribute to enhanced lymphangiogenic 

gene expression.

 3.4 Targeting TGF-β and EGFR/HER2 attenuates tumor growth and metastasis

In addition to TGF-β, the EGF receptor (EGFR) is lymphangiogenic [46] and KRC PCCs 

expressed and secreted the EGFR ligand, amphiregulin in the basal state (Fig. 3A-B). 

Moreover, TGF-β 1 up-regulated amphiregulin in KRC PCCs but not in KSC PCCs, and 

markedly increased amphiregulin levels in KRC conditioned medium (Fig. 3A-B). By 

contrast, other EGFR ligands (EGF, HB-EGF and betacellulin) were not detectable in KRC 

medium under basal or TGF-β 1-stimulated conditions. Amphiregulin also localized to PCCs 

in human PDACs (Fig. 3C) which commonly exhibit active canonical TGF-β signaling [44]. 

Therefore, inhibiting TGF-βs could suppress lymphangiogenesis by reducing expression of 

amphiregulin or other lymphangiogenic factors, or by blocking direct effects of TGF-βs on 

LECs [47].

In order to assess the role of TGF-β in tumor lymphangiogenesis, we used KRC PCCs in a 

syngeneic orthotopic model to target this pathway in a metastatic model [44]. We initiated 

therapy after tumor formation and used LY2157299 to inhibit TGF-βs. LY2157299 is a TGF-

β type I receptor (TβRI) kinase inhibitor that is currently in clinical trials for several cancers, 

and is tolerable and stable unlike other TβRI inhibitors that also target other TGF-β-related 

receptors [48]. Although tumor size was not reduced by LY2157299 or by lapatinib which is 

an FDA-approved dual EGFR/HER2 kinase inhibitor that could interfere with EGFR 

activation by amphiregulin or the lymphangiogenic effects of both receptors [46, 49-51], the 

combination of LY2157299 together with lapatanib markedly attenuated tumor growth (Fig. 

3D-E). Moreover, LY2157299 and lapatinib suppressed ascites formation and the 

development of metastatic disease since only one mouse exhibited hepatic metastasis, 

whereas 90% of mice in the control group had metastatic lesions (P=0.018) that contained 

phospho-Histone H3 (p-H3)-positive cancer cells (Fig. 3F-H). By contrast, metastatic cells 

in the mouse receiving LY2157299 and lapatinib were rarely positive for p-H3 but exhibited 

strong immunoreactivity for cleaved caspase-3 (Fig. 3G-H), suggesting that TβRI and 

EGFR/HER2 inhibition suppresses metastatic cancer cell proliferation while enhancing their 

apoptosis.

 3.4 LY2157299 and lapatanib suppress lymphangiogenesis and angiogenesis

Cleaved caspase-3 immunoreactivity was also abundant in tumors from mice receiving 

LY2157299 and lapatinib, whereas tumors in the control group contained small areas of 

cleaved caspase-3 positivity (Fig. 4A). Moreover, LY2157299 together with lapatinib 

enhanced cleaved PARP and cleaved caspase-3 levels in KRC cells (Fig. 4B-C), suggesting 

that this combination enhances PCC apoptosis. To determine whether LY2157299 and 

lapatinib decreased intratumoral angiogenesis or lymphangiogenesis, we next assessed for 

differences in vessel density. LYVE-1-positive vessels were present in control tumors along 
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with an abundance of CD31 -positive cells (Fig. 4D-E), indicating that these tumors harbor 

lymphatic and blood vessel endothelial cells. By contrast, tumors from LY2157299 and 

lapatinib-treated mice had a paucity of lymphatic vessels, and exhibited decreased CD31 

immunoreactivity and Nrp1, Vegfc, Vegfd and Vegfr3 mRNA levels (Fig. 4D-F). Moreover, 

the combination of LY2157299 and lapatinib markedly attenuated amphiregulin mRNA 

levels and immunoreactivity in the PCCs (Fig. 5A-B). Analysis of serial sections revealed 

that lymphatic vessels and blood vessels in control tumors contained p-H3-positive 

endothelial cells that were mostly absent in these vessel types in LY2157299 and lapatinib-

treated tumors (Fig. 6A-C). Therefore, targeting TGF-β together with EGFR/HER2 increases 

apoptosis while suppressing tumor angiogenesis and lymphangiogenesis, and attenuating 

lymphangiogenic gene expression and LEC and blood vessel endothelial cell proliferation.

 Discussion

Increased lymphangiogenesis in pancreatic tumors or their draining nodes is generally 

believed to relate directly to the extent of lymphatic involvement [52, 53]. However, some 

studies suggest that intratumoral lymphatic vessel density (LVD) is not associated with 

lymphatic invasion or metastasis [11, 54]. Moreover, LVD is heterogeneous and PDACs can 

have collapsed lymphatic vessels which may interfere with cancer cell infiltration of lymph 

nodes [15, 54]. Nevertheless, some patients develop lymphatic metastases in the absence of 

robust lymphangiogenesis [11]. Thus, LVD does not necessarily predict potential for 

lymphatic spread, which underscores the need for a better understanding of 

lymphangiogenesis and lymphatic metastasis-promoting pathways in PDAC.

In two independent but complementary studies [31, 32], we analyzed PDAC RNA-seq data 

from TCGA and determined that there are three groups of PDAC that differ in relation to 

angiogenic gene expression. Whereas some PDACs (∼35%) exhibit increased expression of 

many angiogenic genes, others (∼18%) do not. In the present study, we determined that the 

tumors enriched in angiogenic genes also exhibit increased expression of lymphangiogenic 

genes and all three lymphatic endothelial cell (LEC) makers, pointing to congruence 

between angiogenesis and lymphangiogenesis in PDAC. In support of this conclusion, we 

determined that there is a correlation between LEC and blood vessel endothelial cell density 

in PDAC tissues. Moreover, patients with lymphangiogenic tumors tended to have a higher 

frequency of positive lymph nodes and an overall higher lymph node ratio (Supplementary 

Table 2). Therefore, genes within this signature could be useful for identifying patients who 

are likely to develop lymphatic metastases.

Lymphangiogenic genes were also elevated in murine PDACs from the KRC and KIC 

GEMMs, and several were the same as those up-regulated in angiogenic human PDACs. For 

example, VEGF-C, VEGF-D and VEGF-R3 which stimulate lymphatic vessel growth and 

are often associated with lymphatic invasion and metastasis in PDAC [7-9] were high in 

KRC, KIC and human PDACs, along with NRP1 which interacts with VEGFs and VEGF-

R3 to enhance VEGF receptor signaling and LEC motility and vessel maturation [55-57]. By 

contrast, none of these genes were elevated in KPC tumors. Given that KRC and KIC tumors 

harbor an abundance of lymphatic and blood vessels and have an angiogenic profiles [32, 

37], these findings highlight similarities between the angiogenic/lymphangiogenic subgroup 
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of PDACs and KRC and KIC mice, and the usefulness of these GEMMs for studying 

lymphangiogenic pathways.

To assess for factors contributing to enhanced PDAC lymphangiogenesis, we utilized KRC 

PCCs and determined that several lymphangiogenic factors were up-regulated, including 

Ccbe1 and Cxcl12. CCBE1 facilitates VEGF-C cleavage into its active form thereby 

stimulating LEC sprouting [58], whereas CXCL12 enhances LEC migration [34]. 

Importantly, both genes along with the CXCL12 receptor, CXCR4, were up-regulated in 

lymphangiogenic human PDACs. Moreover, KRC and KIC PCCs expressed high levels 

Pdgfa, Vegfc and Vegfd which enhance tumor lymphangiogenesis and lymphatic metastasis 

[34, 35]. Together, these findings point to the presence of multiple lymphangiogenic 

pathways in PDAC, which may explain why VEGF-targeted therapies were unsuccessful in 

patients [22-24].

Angiogenic PDACs have a pro-inflammatory and TGF-β-activated transcriptome [31], and 

these pathways intersect in relation to lymphangiogenesis and metastasis in several ways. 

First, TGF-β can directly stimulate LEC sprouting and these effects depend on intact 

receptor signaling [47]. Second, TGF-β enhances cancer cell epithelial-to-mesenchymal 

transition (EMT) and up-regulates CCR7 and CCL21 through non-canonical pathways to 

promote lymphatic metastasis [59]. TGF-β activates non-canonical pathways in PCCs and its 

ability to induce EMT depends on SMAD4 or intact canonical signaling, and angiogenic 

PDACs tend to have cancer cells with wild-type SMAD4 and increased expression of CCR7 

[31, 38, 44, 60]. Thus, these PDACs could have enhanced lymphangiogenesis. Indeed, both 

EMT and a CCR7/CCL21 axis are associated with lymphatic invasion and metastasis in 

PDAC [61-63]. Third, TGF-β increases sphingosine-1 phosphate (S1P) production [64, 65], 

and in the present study we determined that three S1P receptors (S1PR1-3) were part of the 

lymphangiogenic signature. S1P contributes to lymphatic metastasis by activating NF-kB 

and STAT3, the latter of which primes draining nodes for cancer cell seeding [66, 67]. 

Fourth, TGF-β is immune-modulating and activates regulatory T-cells (Tregs) while 

polarizing neutrophils and macrophages into their respective (N2 and M2) tumor-promoting 

phenotypes [68]. Treg, neutrophil and M2 macrophage markers (FOXP3, ELANE and 

CD163) are elevated in angiogenic PDACs [31], and each of these cells are associated with 

increased PDAC lymphatic metastasis [69-71]. Moreover, Tregs suppress cancer-directed 

immunity in pancreatic cancer-associated lymph nodes [72]. Together, these observations 

further underscore the complexity of lymphangiogenesis in PDAC, and highlight the 

importance of TGF-β in this process.

KRC tumors and their PCCs also have intact and activated TGF-β signaling, and overexpress 

many pro-inflammatory cytokines, some of which are enhanced by TGF-β 1 [32, 44]. Here, 

we determined that TGF-β 1 up-regulated lymphangiogenic genes and enhanced 

amphiregulin expression and secretion from KRC PCCs, and that amphiregulin was 

expressed by the cancer cells in human PDACs which often exhibit activated TGF-β 

pathways [44]. By contrast, none of these genes were TGF-β-inducible in SMAD4-deficient 

KSC PCCs, underscoring the importance of TGF-β in lymphangiogenesis. Previous studies 

have suggested that inhibiting TGF-β suppresses human and murine PCC EMT and invasion, 

and growth and metastasis in orthotopic tumor models [44, 73], most likely due to 
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suppression of TGF-β-dependent paracrine actions within the tumor microenvironment. In 

this study, however, LY2157299 monotherapy did not suppress tumor growth in a syngeneic 

orthotopic model using KRC PCCs. While the reasons for these differences are not entirely 

clear, it is conceivable that suppressing TβRI alone leads to up-regulation of deleterious 

signaling pathways. In support of this conclusion, combining lapatinib with LY2157299 

markedly inhibited tumor growth and suppressed lymphangiogenesis and lymphangiogenic 

gene expression, while attenuating tumor angiogenesis, ascites and metastasis and 

interfering with the growth-promoting effects of amphiregulin [74]. Thus our findings 

underscore the need to consider the benefits of combinatorial strategies for suppressing 

TGF-β actions in PDAC.

In summary, our study highlights overlap between angiogenic and lymphangiogenic 

pathways in PDAC, and suggests that targeting pathways common to several 

lymphangiogenic factors is beneficial. Thus, in an immune-competent orthotopic model 

generated with murine PCCs from a GEMM that reflects lymphangiogenic human PDACs, 

targeting TGF-β pathways together with EGFR and HER2 attenuated tumor growth, and 

tumor angiogenesis and lymphangiogenesis while suppressing cancer cell spread. EGFR 

correlates with lymphatic metastasis [49], but such an association has not been reported for 

HER2 in PDAC. Nevertheless, HER2 is associated with increased lymphatic metastasis in 

gastric and esophageal cancers [50, 51], and a poor prognosis in lymph-node positive breast 

cancers [75]. Moreover, HER2 is overexpressed in PDAC and correlates with metastasis and 

decreased patient survival [41]. Therefore, this combination could be advantageous in 

PDAC, and be especially useful in patients whose tumors have angiogenic or 

lymphangiogenic gene signatures.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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 Abbreviations

AREG Amphiregulin

EGFR EGF receptor

GEMM Genetically engineered mouse model

HER2 Human epidermal growth factor receptor 2

LEC Lymphatic endothelial cell

LVD Lymphatic vessel density

PCC Pancreatic cancer cell

PDAC Pancreatic ductal adenocarcinoma

TCGA The Cancer Genome Atlas

TβRI Transforming growth factor-β type I receptor

TGF-β Transforming growth factor-β

TMA Tissue microarray

VEGF Vascular endothelial growth factor
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Highlights

• PDACs with an angiogenic gene signature are enriched in lymphangiogenic 

genes.

• Tumors from the KRC PDAC model harbor LECs and have a 

lymphangiogenic profile.

• Pancreatic cancer cells from KRC tumors express and secrete 

lymphangiogenic factors.

• Targeting TβRI and EGFR/HER2 pathways together is beneficial in KRC 

mice.
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Fig. 1. Correlation between lymphatic and blood vessel endothelial cells in PDAC
(A) Immunofluorescence for LYVE-1 (red) on a TMA of human PDAC tissues shows that 

LYVE-1-positive lymphatic vessels are present in some PDACs (left) but absent in others 

(right). Shown are representative images from 4 different PDACs, and nuclei are marked 

with DAPI (blue). Scale bar, 50 μm. (B) Immunoblots using lysates from 10 different 

LYVE-1 positive PDACs show that higher LYVE-1 levels (PDACs 6-10) tend to associate 

with higher CD31 levels. ERK2 served as a loading control. (C) qPCR with RNA from the 

same tissues as in (B) shows that LYVE1 mRNA levels are significantly higher in PDACs 

6-10 (open bar). (D) Quantification of the immunoblots in (B) confirms that CD31 (top) and 

LYVE-1 (bottom) protein levels are high in PDACs 6-10 (open bars) compared with PDACs 

1-5 (closed bar). **, P<0.01.
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Fig. 2. KRC and KIC tumors exhibit lymphangiogenesis
(A) A heatmap of array data comparing KRC mice with normal controls shows that out of 

19 lymphangiogenic genes, 12 are up-regulated in the tumors. (B) LYVE-1 

immunoreactivity is abundant in KRC (left) and KIC pancreata (right). Insets show 

magnified images of boxed areas. Quantification (bottom) shows that the overall intensity of 

LYVE-1 immunoreactivity increases significantly in KRC mice (open bars) from postnatal 

months 2 to 4, and in KIC mice at postnatal month 3 (hatched bar), whereas there is no 

difference in age-matched controls (closed bars). *P<0.05; **P<0.01. (C) Double 

immunofluorescence for CK19 (green) and LYVE-1 (red) shows that tumors (left panels) in 

4 month-old KRC mice harbor LYVE-1-positive vessels adjacent to CK19-positive cells, but 

these vessels are absent in age-matched KPC tumors (right panels). Shown are representative 

images from two different mice per GEMM. Scale bars, 50 μm.
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Fig. 3. LY2157299 and lapatinib suppress tumor growth and metastasis
(A) qPCR shows that TGF-β1 (open bars, [0.5nM], 24 h) up-regulates amphiregulin mRNA 

levels (Areg) in KRC cells but not in KSC cells. (B) An ELISA for amphiregulin (AREG) 

shows that compared with basal levels (closed bar), TGF-β1 ([0.5 nM], open bar) 

significantly increases AREG in conditioned media from KRC cells (PCCs). Data in (A-B) 

are mean±SEM from three independent experiments. *P<0.05, **P<0.01. (C) Human PDAC 

tissues exhibit strong AREG immunoreactivity in the PCCs. Shown are representative low 

(top) and high (bottom) magnification images. (D-E) In a syngeneic orthotopic model with 

KRC PCCs, the combination of LY2157299 and lapatinib (LY+Lap, green bar) significantly 

decreases the growth of established tumors compared with mice receiving vehicle control 

(C, closed bar), or LY2157299 (yellow bar) or lapatinib (blue bar) alone. *P<0.05. The 

panels in (E) are representative ultrasound images showing that tumors (outlined) in mice 

receiving LY+Lap are smaller than in mice receiving vehicle (C), or LY or Lap alone. (F) A 
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table showing the total number of control or LY+Lap mice that developed ascites or gross 

metastasis. (G-H) Metastatic lesions in livers from control mice (top) are highly 

proliferative, as evidenced by an abundance of p-Histone H3-positive cells (middle), but 

have a paucity of cleaved caspase-3 immunoreactivity (CC3, right). Shown are 

representative images from 1 of 9 mice. By contrast, in the one LY+Lap mouse with 

metastasis (bottom), p-Histone H3-positive cells are mostly absent, and there is strong CC3 

immunoreactivity (right). Quantification (H) confirms that p-Histone H3 is decreased in LY

+Lap metastatic lesions, whereas CC3 is significantly increased. *P<0.05, **P<0.01. Scale 

bars, 50 μm.
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Fig. 4. LY2157299 and lapatinib enhances apoptosis and decreases lymphangiogenesis and 
angiogenesis
(A) Immunohistochemistry and quantification of cleaved caspase-3 (CC3) immunoreactivity 

shows that LY+Lap tumors have large CC3-positive areas (green bar) by comparison with 

control tumors (closed bar). (B-C) Immunoblots show that LY+Lap ([100 nM] each, 48h) 

enhances PARP cleavage, and decreases total caspase-3 (C3) while increasing cleaved 

caspase-3 (CC3) levels. ERK2 confirms equivalent lane loading. Shown are representative 

immunoblots. Quantification (C) of two experiments with two different KRC cell lines 

confirms that LY+Lap (green bars) significantly increases cleaved PARP and CC3 levels. 

(D-E) Immunohistochemistry for LYVE-1 (D) and CD31 (E) shows that tumors from 

control mice have an abundance of LYVE-1-positive vessels and CD31-positive endothelial 

cells. By contrast, tumors from mice receiving LY+Lap have weak LYVE-1 and CD31 

immunoreactivity. Quantification (right panels) confirms that LY+Lap (green bars) decreases 

the number of LYVE-1-positive vessels and CD31-positive cells. Scale bars in (A, D-E), 100 

μm. (F) qPCR reveals that tumors from LY+Lap mice (green bars) have attenuated 

expression of the indicated mRNAs by comparison with controls (C, closed bars). Data are 

mean±SEM of five tumors/group. *P<0.05, **P<0.01.
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Fig. 5. LY2157299 and lapatinib suppress amphiregulin expression
(A-B) qPCR and immunohistochemistry for amphiregulin (AREG) reveals that tumors from 

LY+Lap mice have markedly decreased amphiregulin mRNA levels (A) and protein 

expression in the PCCs (B) by comparison with control (C) tumors. Insets in (B) show 

magnified images of boxed areas. Scale bars, 50 μm. (C) Quantification confirms that 

amphiregulin immunoreactivity is markedly decreased in LY+Lap tumors. Data are mean

±SEM of two mice/group. **P<0.01.
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Fig. 6. LY2157299 and lapatinib suppress lymphatic and blood vessel endothelial cell 
proliferation
(A-B) Immunohistochemistry for LYVE-1 and p-Histone H3 (A), or CD31 and p-Histone 

H3 (B) in serial sections from control tumors (C, left panels) or tumors from mice receiving 

LY2157299 and lapatinib (LY+Lap, right panels) shows that control tumors harbor p-

Histone H3-positive endothelial cells in regions that exhibit LYVE-1 or CD31 

immunoreactivity, whereas p-Histone H3 is absent in similar regions in LY+Lap tumors. The 

lower set of panels in (A) and (B) are high magnification images of the boxed areas. Scale 

bars, 50 μm. (C) Quantification confirms that the number of proliferating (p-Histone H3-

positive) LECs (left) and blood vessel endothelial cells (BVECs, right) are attenuated in LY

+Lap tumors. **P<0.01.
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Table 1

Lymphangiogenic genes are up-regulated in PDACs with an angiogenic signature.

Number Gene Symbol Fold Change P-value FDR

1 IGF1 12.2 1.92E-18 2.31E-16

2 LYVE1 6.23 3.24E-15 2.08E-13

3 VEGFD 6.08 1.01E-05 8.95E-05

4 CXCL12 5.96 1.62E-33 6.47E-30

5 HGF 5.95 6.49E-19 8.30E-17

6 ZAP70 4.71 5.67E-06 5.34E-05

7 EDNRB 4.04 4.99E-24 1.95E-21

8 S1PR1 3.82 3.13E-24 1.42E-21

9 PDGFRA 3.69 3.37E-20 5.81E-18

10 CXCR4 3.41 1.93E-06 2.06E-05

11 LPAR 3.21 1.09E-15 7.90E-14

12 CCBE1 2.79 1.44E-02 4.69E-02

13 S1PR3 2.59 1.04E-12 4.19E-11

14 STAB1 2.52 4.05E-13 1.76E-11

15 NFATC1 2.46 1.27E-01 2.67E-01

16 ELMO1 2.46 1.36E-05 1.17E-04

17 FLT4 2.13 2.20E-07 2.91E-06

18 EDNRA 2.05 1.36E-08 2.38E-07

19 VASH1 2.04 1.87E-08 3.19E-07

20 NRP1 2.03 2.69E-09 5.43E-08

21 PDPN 1.96 4.95E-05 3.64E-04

22 ACVRL1 1.94 1.72E-07 2.34E-06

23 PROX1 1.94 6.54E-04 3.46E-03

24 PDGFRB 1.94 1.92E-08 3.26E-07

25 STAB2 1.93 3.11E-01 5.16E-01

26 FGF2 1.89 2.49E-03 1.09E-02

27 VEGFC 1.83 2.63E-04 1.55E-03

28 NOTCH2 1.67 2.24E-05 1.81E-04

29 S1PR2 1.63 5.30E-04 2.87E-03

30 BMPR2 1.53 3.56E-04 2.03E-03

Genes are ranked by fold change (FC), P-value and false discovery rate (FDR). A FC>1.5, P<0.01 and FDR<0.05 was considered statistically 
significant.
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Table 2

Lymphangiogenic genes are up-regulated in KRC tumors.

KRC Tumors

Number Symbol FC P-value FDR

1 Pdpn 9.83 7.25E-06 9.41E-04

2 Vegfd 8.91 9.15E-06 1.00E-03

3 Igf1 7.40 8.00E-05 2.54E-03

4 Pdgfra 6.49 6.82E-07 4.38E-04

5 Pdgfrb 5.02 1.36E-05 1.18E-03

6 Lyve1 4.65 2.89E-04 4.92E-03

7 S1pr2 3.96 2.32E-04 4.36E-03

8 Ednra 2.67 3.16E-02 1.10E-01

9 Vegfc 2.55 4.42E-03 2.63E-02

10 Prox1 2.35 2.18E-03 1.62E-02

11 Ednrb 2.12 5.13E-03 2.91E-02

12 Nrp1 1.82 1.36E-03 1.20E-02

Genes are ranked by fold change (FC), P-value and false discovery rate (FDR), and genes with FC>1.5; P<0.01; FDR<0.05 were considered 
statistically significant.
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