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Abstract

It is unclear if proximal and distal traditional adenomas present with differences in molecular 

events which contribute to cancer heterogeneity by tumor anatomical subsite. Participants from a 

colonoscopy-based study (n=380) were divided into subgroups based on the location of their most 

advanced adenoma: proximal, distal, or “equivalent both sides”. Eight biomarkers in the most 

advanced adenomas were evaluated by immunohistochemistry (Ki-67, COX-2, TGFβRII, EGFR, 

β-catenin, cyclin D1, c-Myc) or TUNEL (apoptosis). After an adjustment for pathological 

features, there were no significant differences between proximal and distal adenomas for any 

biomarker. Conversely, expression levels did vary by other features, such as their size, villous 

component, and synchronousness. Large adenomas had higher expression levels of 

Ki-67(P<0.001), TGFβRII (P<0.0001), c-Myc (P<0.001), and cyclin D1 (P<0.001) in comparison 

to small adenomas, and tubulovillous/villous adenomas also were more likely to have similar 

higher expression levels in comparison to tubular adenomas. Adenoma location is not a major 

determinant of the expression of these biomarkers outside of other pathological features. This 

study suggests similarly important roles of Wnt/β-catenin and TGF-β pathways in carcinogenesis 

in both the proximal and distal colorectum.
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INTRODUCTION

The colorectum is dichotomized as proximal and distal based on its embryonic origin and 

varying physiological functions and gene expression [1–3]. Data suggest that colorectal 

cancer (CRC), one of most common cancers [4], is highly heterogeneous by tumor subsite. 

For example, in comparison to distal CRCs, proximal CRCs exhibit a higher incidence in 

women and the elderly, a higher mortality [5,6], a different histopathological appearance [7], 

and a higher prevalence of some distinct molecular alterations such as microsatellite 

instability (MSI) [8,9]. Some of these differences may be attributed to sessile serrated 

adenomas (SSA), the presumed precursor for most MSI-high CRCs, which is more prevalent 

on the right colon than on the left colorectum [10,11]. However, it remains unclear whether 

there are molecular events that also affect the more common traditional or conventional 

adenoma and contribute to subsite heterogeneity in CRC.

Proximal adenoma prevalence is greater than distal adenomas among some subgroups, such 

as older adults, African-Americans and women [12–17]. Although small adenomas (< 10 

mm) are evenly distributed [18,19], advanced adenomas are more predominant in the distal 

colorectum [20–24]. A recent analysis of more than 1.2 million CRC cases suggested that 

adenoma initiation rates were higher for proximal tumors, whereas growth rates were higher 

for distal tumors [25]. However, despite substantial data regarding the correlation of 

adenoma localization with age, race, gender, and stage, little is known about possible 

underlying molecular events which may differentially contribute to the tumorigenic process. 

In this study, we compared a panel of biomarkers between proximal and distal adenomas. 

These biomarkers were selected because they have been reported to be important factors or 

pathways in colorectal tumorigenesis [26], including cell proliferation (Ki-67), apoptosis 

(terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)), 

cyclooxygenase-2 (COX-2), transforming growth factor beta receptor II (TGFβRII), 

epidermal growth factor receptor (EGFR), and Wnt/β-catenin pathway (β-catenin, cyclin D1 

and c-Myc).

MATERIALS AND METHODS

Participants

The subset of participants is from a retrospective cohort study, the Tennessee-Indiana 

Adenoma Recurrence Study [27]. Out of the 1643 eligible individuals, 1020 (62.1%) 

participated. Eligibility criteria were: their first adenoma diagnosis during index 

colonoscopy had to have taken place between January 1996 to December 2002; they had an 

index diagnosis of synchronous (>1) or advanced (≥1.0 cm in diameter, villous/

tubulovillious subtype, or high-grade dysplasia) adenoma; they were between the ages of 40 

and 75; there was an absence of familial adenomatous polyposis or previous history of 

cancer, except for non-melanoma skin cancer; they were not already participating in an 
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intervention trial to prevent adenoma recurrence; they had the ability to speak English and 

provide informed consent; they could not be a current resident in a correctional facility. 

Included in this analysis were the first 380 participants. In comparison to the entire cohort, 

individuals selected for this study were more likely to be female (39.2% vs 31.1%), white 

(89.5% vs. 80.6%), and less likely to have a large adenoma (28.7% vs. 34.8%). There were 

no statistically significant differences for age, the presence of synchronous adenomas, the 

location of the adenomas, the presence of the worst subtype, or the presence of high-grade 

dysplasia. Committees for the use of human subjects in research at each institution approved 

the study protocol.

Diagnosis data were abstracted from medical records. Formalin-fixed, paraffin-embedded, 

adenoma tissue blocks were obtained. 5 μm sections were made and placed on charged 

slides. Serial tissue sections were coated with a thin layer of paraffin and placed in a vacuum 

desiccator cabinet (Terra Universal Company, CA) at 4°C. The diagnosis was reviewed and 

confirmed by an experienced research pathologist (T.S.).

An analytic index adenoma was selected for each participant. If the participant had 

synchronous adenomas, the most advanced adenoma tissue was used, and was defined in the 

following order: 1) the presence of high-grade dysplasia, 2) the most villous component, or 

3) the largest size. According to the index adenoma location, the participant was defined as 

“predominant proximal” (in which the index adenoma was proximal to the splenic flexure) 

or “predominant distal” (in which the index adenoma was in the splenic flexure or distal to 

it). Fifty-eight participants with histopathologically equivalent adenomas on both sides were 

categorized as “equivalent both sides”, and both adenomas were used in the analysis.

Immunohistochemistry

The optimized staining protocols for Ki-67, cyclin D1, COX-2, EGFR, c-Myc, and TGFβRII 

are summarized in Supplementary Table 1. For negative controls, phosphate buffered saline 

(PBS) replaced primary antibodies. Both positive and negative control slides were processed 

with each batch of staining. The semi-quantitative scoring criteria for Ki-67, cyclin D1, 

COX-2 and EGFR were previously described [28]. The cut-off value for each biomarker was 

determined based on the protein expression level in adenoma tissue, as used in previous 

reports [29–33]. Briefly, Ki-67 was 0 (0–20% cells positive) and 1 (>20%) [28,29]. Cyclin 

D1 was recorded as 0 (<5% cells positive), 1 (5–30%), and 2 (>30%) [30]. COX-2 and 

TGFβRII were scored using a modified All red scoring system, which combines the 

estimated proportion of positive staining tumor cells with the average estimated intensity of 

staining [28,34]. EGFR was recorded as 0 (<10%), 1 (10–50%), and 2 (>50% )[31,32]. C-

Myc was scored 0 (0%), 1 (<10%); 2 (10–50%), and 3 (>50%) [35]. The superficial, middle 

and basal thirds of polyps were also scored separately for zonal scores, using the same 

criteria as for the entire polyp.

Immunohistofluorescence

Our previous validation study showed a complex subcellular localization of β-catenin, which 

may exist in the nucleus, in the cytoplasm, or on the cell membrane [28]. It is generally 

accepted that β-catenin can function as an oncogene when it is translocated from membrane 
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to nucleus, when it binds to T cell factor (TCF) or lymphocyte enhance family members, and 

when it transactivates its target genes [33]. In this study, fluorescence immunohistochemistry 

was performed to determine β-catenin nuclear accumulation and co-expression of 

transcription factor 4 (TCF4), so that the nuclear localization of β-catenin could be more 

clearly visualized than is possible with the conventional immunohistochemistry method. An 

optimized double immunofluorescent labeling protocol was performed. The deparaffinized 

slides were placed in R-buffer A and heated with a pressure cooker for antigen retrieval. The 

sections were incubated with 5% normal donkey serum for 10 min at 37°C, then by the 

primary antibody mixture of goat anti-TCF4 (Santa Cruz, Cat# sc-8631, 1:80) and mouse 

anti-β-catenin (BD Transduction Lab, Clone 14,1:200 ) for 1 hour at room temperature. 

After a rinse in PBS, sections were incubated with biotin conjugated anti-mouse (R&D, Cat# 

CTS002) for 30 minutes to amplify the β-catenin signal. After a thorough rinse in PBS, 

sections were incubated with a mixture of streptavidin-FITC (Zymed, Cat# 43-8311, 1:80) 

and Cy3 conjugated donkey anti-goat (Chemicon, Cat# AP180C, 1:100) for 30 minutes. 

After another thorough rinse, the sections were coverslipped with ProLong Gold Antifade 

Reagent with DAPI (Invitrogen, Cat# P36935) and stored in the dark at 4 °C. Known 

positive adenoma tissue was used as a positive control. Negative controls were made by 

replacing primary antibodies with PBS. Nuclear or cytoplasmic immunostaining were 

considered equally as positive signals. Nuclear β-catenin accumulation in tumor cells was 

scored according to a four-category (0–3) method (Supplementary Figure 1). Nuclear TCF4 

was not recorded because of its widespread expression in all nuclei of adenoma epithelial 

cells.

Apoptosis Assay

Apoptosis was detected with the Promega DeadEndTM Colorimetric Apoptosis Detection 

System (Promega BioScience, CA), which is based on a modified TUNEL assay. The 

positive control was human liver, and the negative control was obtained by omitting the TdT 

enzyme after peroxidase inactivation. To accurately record the apoptotic index (the 

percentage of TUNEL-positive cells versus the total number of cells) [36], computer-aided 

quantitative analysis was performed with an Olympus BX40 microscope, a Retiga FAST 

1394 color digital camera and BioQuant NOVA Prime imaging software (BioQuant, TN). 

Positive cells in the adjacent stroma were excluded, or if they were into the luminal space, if 

they were blank, folding, hemorrhaging, experiencing necrosis, poorly stained, and if they 

were in stromal areas. The quantitative imaging analysis method is summarized in 

Supplementary Figure 2.

Statistical Analysis

The chi-square test and the student’s t-test were used to analyze the characteristics of 

participants and the expression of biomarkers between predominant proximal and 

predominant distal adenomas. To compare the expression between proximal and distal 

adenomas in the “equivalent both sides” subgroup, Wilcoxon-signed rank tests or paired 

students’ t-tests (TUNEL only) were used. Analysis of variance was used for the 

comparisons involving more than three groups. The intraclass correlation coefficient was 

used to evaluate intra-observer variations of TUNEL. The correlations of the eight markers 

were also analyzed using Spearman correlation coefficients. In analyses including all 
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participants, the mean scores of distal and proximal adenomas were calculated for the 

“equivalent both sides” subgroup. All analyses were two-sided, with a significance level of 

5% and performed using SAS statistical software (v9.3).

RESULTS

Most participants had traditional and synchronous adenomas (Table 1). The predominant 

distal group was more likely than the predominant proximal group to have a large or 

advanced adenoma (P<0.001) or villous histology (P=0.03), and was less likely to have 

synchronous adenomas (P<0.001).

The typical distribution of positive cells and subcellular localization patterns had apparent 

differences by zonal location (Figure 1 and Supplementary Table 2). Except for c-Myc, 

EGFR and TUNEL, biomarker expression varied by adenoma characteristics (Table 2). 

When there were differences between adenoma types, in general, the more severe phenotype 

had a higher expression level than the less severe phenotype. For example, compared to 

small adenomas, large adenomas had higher expression levels of Ki-67, TGFβRII, c-Myc, 

and cyclin D1 (all P<0.001), as well as a higher Wnt pathway score (P=0.008). Adjustment 

for their location in the colon did not alter results (data not shown). To evaluate the 

individual contributions of synchronousness and histology to the observed differences, we 

compared the expression between individuals with synchronous non-advanced adenomas 

with a single advanced adenoma, and with at least one advanced adenoma in addition to 

synchronous adenomas. Ki-67, COX-2, TGFβRII β-catenin, c-Myc, Cyclin D1, and the Wnt 

pathway score were significantly different between the groups. Expression levels of these 

markers were higher among those with advanced adenomas regardless of the number of 

adenomas, with the exception of TGFβRII.

Compared to the predominant proximal group, the predominant distal group had 

significantly stronger expression of cyclin D1 (P=0.01) and EGFR (P=0.05) (Table 3). There 

was no significant difference between the groups for the other markers. After an adjustment 

for pathological features, there were no significant differences in expression for all markers 

between predominant proximal and predominant distal adenomas. This was also confirmed, 

with one exception, in an exploratory analysis comparing colon versus rectum differences. 

This was done by evaluating the proximal colon versus the distal colon (i.e. excluding rectal 

adenoma, data not shown) or by comparing the proximal colon, distal colon, and rectum. C-

Myc levels were higher in rectum adenomas versus distal and proximal adenomas (P=0.02; 

data not shown). In a model in which all five biomarkers with a P <0.20 from the unadjusted 

models (c-Myc, cyclin D1, EGFR, β-catenin, and TGFβRII) were mutually adjusted for 

each other, there were no significant differences in expression between predominant 

proximal and predominant distal adenomas for all five of the markers.

Within the “equivalent both sides” group, the expression levels of all markers were similar 

between distal and proximal adenomas(Table 4), except for cyclin D1, which showed a 

higher expression level in the predominant distal adenoma in unadjusted analysis (P=0.03) 

and its Wnt pathway score (P=0.045). However, after an adjustment for adenoma size, 

subtype, degree of dysplasia, and synchronousness, there were no differences between 
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proximal and distal adenomas (data not shown in table). Most biomarkers were significantly 

correlated with each other, except for nuclear β-catenin, which only correlated with c-Myc 

expression (P=0.03) (Table 5).

DISCUSSION

We found no differences between proximal and distal adenomas in a panel of eight 

biomarkers involved in colorectal tumorigenesis after adjusting for other adenoma features. 

This held true whether comparing adenomas from different individuals or different 

adenomas within the same person, indicating a similar tumorigenesis process within 

traditional adenoma subtypes regardless of tumor location. The tumorigenesis process might 

be similar throughout the colorectum for sporadic traditional adenomas, at least as it relates 

to this panel of biomarkers. This study suggests that the TGF-β and Wnt/β-catenin pathways 

play important roles in both proximal and distal colorectal tumorigenesis, and that a 

synergistic role in the TGF-β, Wnt/β-catenin, COX-2 and EGFR pathways may exist to 

promote tumor progression throughout the human colorectum. This may have important 

implications for CRC prevention.

The proximal and distal segments develop from two embryonic areas with different 

physiological functions, and have different gene expression levels [1,2]. A large body of 

CRC and adenoma studies also support differences between segments in epidemiology, 

clinicopathology and molecular biology [5–9,37–40]. These findings suggest that there 

might be location-related molecular features in normal colorectum and neoplastic lesions. In 

recent years, some of these differences have been identified to be related to the serrated 

neoplasia pathway [11,41]. Thus far, little is known about underlying molecular events, 

other than the serrated neoplasia pathway, which may differentially contribute to the 

tumorigenic progress in traditional adenomas arising in the proximal versus distal 

colorectum. The current study, limited to comparisons of traditional adenomas, did not find 

differential expression for the selected biomarkers involved in cell proliferation/apoptosis 

and the signaling pathways of COX-2, TGFβ, EGFR, and Wnt/β-catenin. Our results are 

consistent with reports that non-steroidal, anti-inflammatory drug use is associated with a 

reduced risk of adenoma recurrence by a similar magnitude in both the distal and proximal 

colon [41], and that risk factors for traditional adenomas are largely similar between the 

proximal and distal colorectum [42]. In addition, nuclear β-catenin overexpression had no 

correlation with the CRC tumor site in a recent meta-analysis [43]. However, due to the 

substantial variability of molecular events in CRCs and the hundreds of potential alterations, 

we cannot definitively conclude that there is no heterogeneity for any biomarker between the 

proximal and distal colorectum based on our limited analysis of the eight biomarkers in this 

study. For example, a recent study reported distinct patterns of DNA methylation between 

traditional adenomas of the proximal and distal colon [44]. Nevertheless, this study has 

opened the way for further studies involving more (or other) pathways, other methods, or 

other types of markers (e.g. DNA mutations, DNA methylation, non-coding RNAs, etc) 

which may provide additional molecular evidence to clarify the potential tumorigenic 

differences between proximal and distal adenomas.
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Although polyp location was not associated with the expression of biomarkers evaluated in 

this study, we did observe that other important clinicopathological features of adenomas, 

such as tumor size, villous component, dysplasia, and synchronousness were significantly 

associated with the biomarker expression. This is consistent with previous studies. For 

example, in the Wnt/β-catenin pathway, nuclear β-catenin was significantly associated with 

high grade dysplasia or advanced adenomas, consistent with other reports regarding its key 

role in promoting an adenoma’s progression to carcinoma [45–48]. The expression of 

nuclear cyclin D1, a responsive gene of the Wnt/β-catenin pathway, was significantly higher 

in advanced adenomas. These adenomas have higher cellular proliferation, larger size, and a 

higher villous component than in non-advanced adenomas. This is consistent with its 

potential role in adenoma progression [49–51]. The protein expression of c-Myc, another 

important target gene of the Wnt/β-catenin pathway, has been reported to be closely 

correlated with the size of a colorectal adenoma [45]. In general, we also found that 

expression levels were higher in more advanced adenomas, although this was not 

statistically significant for the villous component. C-Myc is not necessarily correlated with 

cellular proliferative activity in previous studies [45,52], but we observed a positive 

correlation between the c-Myc and Ki-67 levels in this study. We also found that, of all the 

markers, c-Myc might be the only one with location-specific expression (with higher levels 

in the rectum). Given the important role of Myc-directed transcriptional activation in CRCs 

[53] and the prevalence of expression in our study, our findings suggests that c-Myc 

overexpression might be a later-stage event than cyclin D1 in colorectal carcinogenesis [54].

In this study, TGFβRII expression was positively associated with more advanced adenomas, 

including the phenotypes of large, villous, and high-grade dysplasia. The epithelial cells in 

the adenomas were heterogeneously expressed with patchy strong staining and with zonal 

specificity at the surface, unlike the normal colonic mucosa, which shows a uniform 

distribution of TGFβRII expression in a moderate level in normal colon epithelial cells and 

stromal cells [55]. This finding suggests that the dysregulation of the TGF-β pathway in 

colorectal adenomas includes an abnormal TGFβRII expression, exhibiting a decreased 

expression in some tumor cells and an increased expression in other cells. In general, the 

increased expression of TGFβRII protein is associated with more advanced pathologic 

features of adenomas. Interestingly, out of eight selected biomarkers, only decreased 

TGFβRII was significantly associated with adenoma synchronousness. This suggests that 

reduction in TGFβRII may contribute to the initiation of colorectal adenomas. Our 

observations provide data to support the importance of the dysregulation of the TGFβ 
pathway in colorectal carcinogenesis in humans.

In addition to the Wnt/β-catenin and TGFβ pathways, the COX-2 pathway also has a key 

role in colorectal carcinogenesis, based on evidence from both animal and human studies 

[56,57]. Specifically, the administration of the COX-2-selective inhibitor celecoxib 

significantly decreases the occurrence of sporadic colorectal adenomas, not only by 

suppressing the growth of existing adenomas, but also by preventing the formation of new 

adenomas [58]. A previous study reported that large (> 1 cm) adenomas exhibited a 

significantly stronger expression of COX-2 than the very small (< 5 cm) adenomas, and an 

expression was absent in normal colonic epithelium, suggesting that epithelial COX-2 

activity is important for the growth and/or survival of adenomatous epithelial cells [59]. 
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Although we did not observe a statistically significant difference according to the size of the 

adenomas in this study, we did find levels were higher in adenomas with a villous 

component or high-grade dysplasia. This is consistent with this statement. However, there 

may be important tumor-stromal interactions at the adenoma stage of neoplasia. Individuals 

with a high deep stromal expression of COX-2 developed significantly more recurrent 

adenomas (65%) than those with a low deep stromal expression (47%, p=0.04) [60]. Further, 

although much of the data suggest an important role for COX-2/PGE2 signaling in the 

promotion of tumorigenesis, many conflicting results have also been reported and further 

research is still required [61]. Our data supports the role of COX-2 in tumor progression in 

the human colorectum, but also indicates it may not be as important as the TGF-β and Wnt/

β-catenin pathways. Future large-scale studies with detailed zonal quantitative analysis of 

epithelial/stromal expression of COX-2 may contribute to understanding the precise role of 

COX-2 in human colorectal carcinogenesis.

In addition to evaluating the individual markers within a pathway, it is also important to 

consider their relationship to each other because cancer development is a long-term, 

complex process requiring an accumulation of alterations in multiple genes and signaling 

pathways to form a complex cross-talk network. In the present study, most biomarkers were 

significantly correlated with each other. For example, cyclin D1 was also significantly 

correlated with other biomarkers such as Ki-67, EGFR, TGFβRII and c-Myc, suggesting a 

complexity of potential interactions of cyclin D1 with other genes, regardless of tumor 

location [62]. An illustration summarizing the relationships between the pathways examined 

in this study is provided in Figure 2. Previous animal studies using mouse models of 

Smad4/APC and Smad2/APC compound heterozygotes provided direct evidence of the 

cooperative involvement of TGF-β and Wnt signaling in carcinogenesis, including colon 

neoplasia [63,64]. The exact nature of the signaling cross-talk among the pathways is 

extremely complex and highly context-dependent. Nonetheless, it is well-described that the 

Wnt/β-catenin signaling plays a key role in both early and late colorectal tumorigenesis [65] 

[53]. Furthermore, this pathway interacts with other pathways to form complex signaling 

networks (see reviews [66–71]). The β-catenin downstream targets (cyclin D1 and c-Myc) 

are not only regulated by the Wnt/β-catenin pathway, but also directly (EGFR) and 

indirectly (EGFR, TGF-β, and COX-2) by other pathways. For example, EGFR-Erk directly 

increases the expression of cyclin D1 and c-Myc and indirectly enhances β-catenin-TCF 

transcription activity by down-regulating caveolin-1. The nuclear pSmad2/3 can directly 

associate with the lymphoid enhancer binding factor 1/T cell-specific factor (LEF1/TCF) to 

synergistically activate β-catenin target genes. This may partially explain our finding that, in 

comparison to β-catenin, its downstream targets (cyclin D1 and c-Myc) and cell proliferation 

activity (Ki-67) are more closely correlated with the other pathway biomarkers EGFR, 

COX2 and TGFβRII. However, this study showed that nuclear accumulation of β-catenin is 

associated with its downstream target gene c-Myc, but not cyclin D1. The lack of a 

correlation between nuclear cyclin D1 and nuclear β-catenin might be explained by a 

previous study. It found that the nuclear accumulation of cyclin D1 is mainly due to the loss 

of cyclin D1 nuclear export, altered nuclear trafficking, and proteolysis. This can result from 

direct mutations within cyclin D1, cancer-specific alternative splicing or mutations that 

target the upstream signaling pathway that regulate the phosphorylation-dependent nuclear 
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export of cyclin D1 complexes [72]. Although larger studies are needed, our observational 

data provide support that, for traditional sporadic adenomas, a synergistic role among Wnt/

beta-catenin, TGF-β, COX-2 and EGFR pathways may exist to promote tumor progression 

in the colorectum. Thus, multiple and key components in the associated pathways likely 

need to be simultaneously targeted for use as early detection biomarkers or for the effective 

prevention and treatment of CRC.

To the best of our knowledge, few studies focus on the comparison of the expression of 

carcinogenesis biomarkers in traditional colorectal adenomas between the proximal and 

distal colorectum. For this study, there are several factors that need to be considered in the 

interpretation. This study only included individuals with either synchronous or advanced 

adenomas, so this study may represent a more severe, or later, phenotype. This study was 

also limited to an analysis of combined categories of colorectum segments (i.e. proximal and 

distal or distal without rectum). If there are important location differences in early 

carcinogenesis or if there are important segmental differences, this study may not have been 

able to detect the differences. In this study, we used non-probability sampling within a larger 

cohort. Although we found few differences between the sample and the larger cohort, we 

cannot exclude the possibility of unmeasured selection biases or confounding, which may 

affect the generalization to the larger cohort in an unknown manner. The study is also based 

on a cross-sectional analysis and so cannot evaluate relationship or relevance of the selected 

markers to the prospective risk of colorectal neoplasia. The panel of markers was carefully 

selected for this study based on known genes and pathways important in the initiation and 

progression of CRC [26]. Although we did not observe statistically significant differences 

between proximal and distal adenomas in this study for any of the eight selected biomarkers, 

we did observe differences according to other adenoma features, such as advanced adenoma. 

Future studies are warranted to evaluate whether these markers may be used as predictors of 

advanced adenoma. Future studies in probability-based samples, which can also 

prospectively evaluate risk of metachronous adenoma or colorectal cancer and more 

extensive biomarkers, are also needed to confirm or refute our findings.

There are several strengths. Participants were recruited from a well-established retrospective 

cohort study of patients with a first time diagnosis. We had detailed patient information, and 

the diagnoses were standardized by a single pathologist. Our results with adenoma features, 

other than polyp location, were consistent with most previous studies, suggesting the data 

obtained in the current study are appropriate for the analyses. Finally, in general, the sample 

size was adequate for most comparisons, although the number of adenomas with high grade 

dysplasia was small.

In conclusion, our study indicated that the expression of selected biomarkers were largely 

similar between distal and proximal adenomas, after accounting for histological differences, 

indicating a similar carcinogenesis process in traditional adenoma formation for our study 

participants. The altered expression of β-catenin, cyclin D1 and TGFβRII was closely 

correlated with advanced features of adenoma, suggesting the important roles of Wnt/β-

catenin and TGF-β pathways in the carcinogenesis in both the proximal and distal 

colorectum. Further studies are warranted to confirm our findings.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Grant sponsor: National Cancer Institute; Grant numbers: R01CA97386; P50CA95103; K07CA122451; 
P30CA068485.

This study is supported by the research grants R01CA97386 and P50CA95103 through the National Cancer 
Institute. Dr. Shrubsole was supported by K07CA122451 from the National Cancer Institute. The immunostaining 
of the biomarkers and participant recruitment were conducted by the Survey and Biospecimen Shared Resource and 
the Translational Pathology Shared Resource, both of which are supported in part by the Vanderbilt-Ingram Cancer 
Center (P30CA068485). The content of this paper is solely the responsibility of the authors and does not necessarily 
represent the official views of the National Cancer Institute or the National Institutes of Health. A portion of this 
material is the result of work supported with resources and the use of facilities at the VA Tennessee Valley 
Healthcare System.

We thank Mr. Anthony L. Frazier for collecting tissue blocks and for his technical assistance in histology, Ms. 
Pamela S. Wirth for assistance with immunohistochemical staining, Ms. Sara Hollis and Ms. Hongmei Wu for 
laboratory assistance and tissue sample collection, and Dr. Zhi Chen for her statistical analysis assistance.

Abbreviations

CRC colorectal cancer

MSI microsatellite instability

TUNEL terminal deoxynucleotidyl transferase dUTP nick end labeling

COX-2 cyclooxygenase-2

TGFβRII transforming growth factor beta receptor II

EGFR epidermal growth factor receptor

PBS phosphate buffered saline

TCF4 transcription factor 4

DAPI 4′,6-Diamidino-2-phenylindole

SSA sessile serrated adenomas

TSA traditional serrated adenoma

LEF1/TCF lymphoid enhancer binding factor 1/T cell-specific factor

ERK extracellular signal-regulated kinase

PI3K phosphatidylinositol 3-kinase

Gαs G protein α subunits

Gβᵞ G protein βᵞ subunits

TGFα transforming growth factor-α

Su et al. Page 10

Mol Carcinog. Author manuscript; available in PMC 2017 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



AC adenylyl cyclase

PKA protein kinase A

cAMP cyclic AMP

AR amphiregulin

References

1. Carethers JM. One colon lumen but two organs. Gastroenterology. 2011; 141:411–2. [PubMed: 
21708155] 

2. Glebov OK, Rodriguez LM, Nakahara K, et al. Distinguishing right from left colon by the pattern of 
gene expression. Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer Res Cosponsored Am 
Soc Prev Oncol. 2003; 12:755–62.

3. Yamauchi M, Lochhead P, Morikawa T, et al. Colorectal cancer: a tale of two sides or a continuum? 
Gut. 2012; 61:794–7. [PubMed: 22490520] 

4. Haggar FA, Boushey RP. Colorectal cancer epidemiology: incidence, mortality, survival, and risk 
factors. Clin Colon Rectal Surg. 2009; 22:191–7. [PubMed: 21037809] 

5. Benedix F, Kube R, Meyer F, et al. Comparison of 17,641 patients with right- and left-sided colon 
cancer: differences in epidemiology, perioperative course, histology, and survival. Dis Colon 
Rectum. 2010; 53:57–64. [PubMed: 20010352] 

6. Weiss JM, Pfau PR, O’Connor ES, et al. Mortality by stage for right- versus left-sided colon cancer: 
analysis of surveillance, epidemiology, and end results--Medicare data. J Clin Oncol Off J Am Soc 
Clin Oncol. 2011; 29:4401–9.

7. Benedix F, Schmidt U, Mroczkowski P, et al. Colon carcinoma--classification into right and left 
sided cancer or according to colonic subsite? --Analysis of 29,568 patients. Eur J Surg Oncol J Eur 
Soc Surg Oncol Br Assoc Surg Oncol. 2011; 37:134–9.

8. Azzoni C, Bottarelli L, Campanini N, et al. Distinct molecular patterns based on proximal and distal 
sporadic colorectal cancer: arguments for different mechanisms in the tumorigenesis. Int J 
Colorectal Dis. 2007; 22:115–26. [PubMed: 17021745] 

9. Minoo P, Zlobec I, Peterson M, et al. Characterization of rectal, proximal and distal colon cancers 
based on clinicopathological, molecular and protein profiles. Int J Oncol. 2010; 37:707–18. 
[PubMed: 20664940] 

10. Leggett B, Whitehall V. Role of the serrated pathway in colorectal cancer pathogenesis. 
Gastroenterology. 2010; 138:2088–100. [PubMed: 20420948] 

11. Bordaçahar B, Barret M, Terris B, et al. Sessile serrated adenoma: from identification to resection. 
Dig Liver Dis Off J Ital Soc Gastroenterol Ital Assoc Study Liver. 2015; 47:95–102.

12. Okamoto M, Shiratori Y, Yamaji Y, et al. Relationship between age and site of colorectal cancer 
based on colonoscopy findings. Gastrointest Endosc. 2002; 55:548–51. [PubMed: 11923770] 

13. Choe JW, Chang H-S, Yang S-K, et al. Screening colonoscopy in asymptomatic average-risk 
Koreans: analysis in relation to age and sex. J Gastroenterol Hepatol. 2007; 22:1003–8. [PubMed: 
17608845] 

14. Rundle AG, Lebwohl B, Vogel R, et al. Colonoscopic screening in average-risk individuals ages 40 
to 49 vs 50 to 59 years. Gastroenterology. 2008; 134:1311–5. [PubMed: 18471508] 

15. Lieberman DA, Holub JL, Moravec MD, et al. Prevalence of colon polyps detected by colonoscopy 
screening in asymptomatic black and white patients. JAMA. 2008; 300:1417–22. [PubMed: 
18812532] 

16. Friedenberg FK, Singh M, George NS, et al. Prevalence and distribution of adenomas in black 
Americans undergoing colorectal cancer screening. Dig Dis Sci. 2012; 57:489–95. [PubMed: 
22052446] 

17. Corley DA, Jensen CD, Marks AR, et al. Variation of adenoma prevalence by age, sex, race, and 
colon location in a large population: implications for screening and quality programs. Clin 
Gastroenterol Hepatol Off Clin Pract J Am Gastroenterol Assoc. 2013; 11:172–80.

Su et al. Page 11

Mol Carcinog. Author manuscript; available in PMC 2017 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



18. Konishi F, Morson BC. Pathology of colorectal adenomas: a colonoscopic survey. J Clin Pathol. 
1982; 35:830–41. [PubMed: 7107955] 

19. Katičić M, Antoljak N, Kujundžić M, et al. Results of National Colorectal Cancer Screening 
Program in Croatia (2007–2011). World J Gastroenterol. 2012; 18:4300–7. [PubMed: 22969192] 

20. Gillespie PE, Chambers TJ, Chan KW, et al. Colonic adenomas--a colonoscopy survey. Gut. 1979; 
20:240–5. [PubMed: 437557] 

21. O’Brien MJ, Winawer SJ, Zauber AG, et al. The National Polyp Study. Patient and polyp 
characteristics associated with high-grade dysplasia in colorectal adenomas. Gastroenterology. 
1990; 98:371–9. [PubMed: 2403953] 

22. Lieberman DA, Weiss DG, Bond JH, et al. Use of colonoscopy to screen asymptomatic adults for 
colorectal cancer. Veterans Affairs Cooperative Study Group 380. N Engl J Med. 2000; 343:162–8. 
[PubMed: 10900274] 

23. Patel K, Hoffman NE. The anatomical distribution of colorectal polyps at colonoscopy. J Clin 
Gastroenterol. 2001; 33:222–5. [PubMed: 11500612] 

24. Betés M, Muñoz-Navas MA, Duque JM, et al. Use of colonoscopy as a primary screening test for 
colorectal cancer in average risk people. Am J Gastroenterol. 2003; 98:2648–54. [PubMed: 
14687811] 

25. Meza R, Jeon J, Renehan AG, et al. Colorectal cancer incidence trends in the United States and 
United kingdom: evidence of right- to left-sided biological gradients with implications for 
screening. Cancer Res. 2010; 70:5419–29. [PubMed: 20530677] 

26. Fearon ER. Molecular genetics of colorectal cancer. Annu Rev Pathol. 2011; 6:479–507. [PubMed: 
21090969] 

27. Edwards TL, Shrubsole MJ, Cai Q, et al. A study of prostaglandin pathway genes and interactions 
with current nonsteroidal anti-inflammatory drug use in colorectal adenoma. Cancer Prev Res 
Phila Pa. 2012; 5:855–63.

28. Su Y, Shrubsole MJ, Ness RM, et al. Immunohistochemical expressions of Ki-67, cyclin D1, beta-
catenin, cyclooxygenase-2, and epidermal growth factor receptor in human colorectal adenoma: a 
validation study of tissue microarrays. Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer 
Res Cosponsored Am Soc Prev Oncol. 2006; 15:1719–26.

29. Hoos A, Urist MJ, Stojadinovic A, et al. Validation of tissue microarrays for immunohistochemical 
profiling of cancer specimens using the example of human fibroblastic tumors. Am J Pathol. 2001; 
158:1245–51. [PubMed: 11290542] 

30. Nakashima M, Meirmanov S, Naruke Y, et al. Cyclin D1 overexpression in thyroid tumours from a 
radio-contaminated area and its correlation with Pin1 and aberrant beta-catenin expression. J 
Pathol. 2004; 202:446–55. [PubMed: 15095272] 

31. Lee CM, Lee RJ, Hammond E, et al. Expression of HER2neu (c-erbB-2) and epidermal growth 
factor receptor in cervical cancer: prognostic correlation with clinical characteristics, and 
comparison of manual and automated imaging analysis. Gynecol Oncol. 2004; 93:209–14. 
[PubMed: 15047238] 

32. Deeb G, Wang J, Ramnath N, et al. Altered E-cadherin and epidermal growth factor receptor 
expressions are associated with patient survival in lung cancer: a study utilizing high-density tissue 
microarray and immunohistochemistry. Mod Pathol Off J U S Can Acad Pathol Inc. 2004; 17:430–
9.

33. Tetsu O, McCormick F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. 
Nature. 1999; 398:422–6. [PubMed: 10201372] 

34. Mohsin SK, Weiss H, Havighurst T, et al. Progesterone receptor by immunohistochemistry and 
clinical outcome in breast cancer: a validation study. Mod Pathol Off J U S Can Acad Pathol Inc. 
2004; 17:1545–54.

35. Schleger C, Verbeke C, Hildenbrand R, et al. c-MYC activation in primary and metastatic ductal 
adenocarcinoma of the pancreas: incidence, mechanisms, and clinical significance. Mod Pathol Off 
J U S Can Acad Pathol Inc. 2002; 15:462–9.

36. Komori K, Ajioka Y, Watanabe H, et al. Proliferation kinetics and apoptosis of serrated adenoma of 
the colorectum. Pathol Int. 2003; 53:277–83. [PubMed: 12713561] 

Su et al. Page 12

Mol Carcinog. Author manuscript; available in PMC 2017 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



37. Shinomiya S, Sasaki J, Kiyohara C, et al. Apolipoprotein E genotype, serum lipids, and colorectal 
adenomas in Japanese men. Cancer Lett. 2001; 164:33–40. [PubMed: 11166913] 

38. Renga M, Brandi G, Paganelli GM, et al. Rectal cell proliferation and colon cancer risk in patients 
with hypergastrinaemia. Gut. 1997; 41:330–2. [PubMed: 9378387] 

39. Thorburn CM, Friedman GD, Dickinson CJ, et al. Gastrin and colorectal cancer: a prospective 
study. Gastroenterology. 1998; 115:275–80. [PubMed: 9679032] 

40. Hong SN, Lee SM, Kim JH, et al. Helicobacter pylori infection increases the risk of colorectal 
adenomas: cross-sectional study and meta-analysis. Dig Dis Sci. 2012; 57:2184–94. [PubMed: 
22669208] 

41. Laiyemo AO, Doubeni C, Pinsky PF, et al. Factors associated with the risk of adenoma recurrence 
in distal and proximal colon. Digestion. 2013; 87:141–6. [PubMed: 23548665] 

42. Burnett-Hartman AN, Passarelli MN, Adams SV, et al. Differences in epidemiologic risk factors 
for colorectal adenomas and serrated polyps by lesion severity and anatomical site. Am J 
Epidemiol. 2013; 177:625–37. [PubMed: 23459948] 

43. Chen Z, He X, Jia M, et al. β-catenin overexpression in the nucleus predicts progress disease and 
unfavourable survival in colorectal cancer: a meta-analysis. PloS One. 2013; 8:e63854. [PubMed: 
23717499] 

44. Koestler DC, Li J, Baron JA, et al. Distinct patterns of DNA methylation in conventional adenomas 
involving the right and left colon. Mod Pathol Off J U S Can Acad Pathol Inc. 2014; 27:145–55.

45. Brabletz T, Herrmann K, Jung A, et al. Expression of nuclear beta-catenin and c-myc is correlated 
with tumor size but not with proliferative activity of colorectal adenomas. Am J Pathol. 2000; 
156:865–70. [PubMed: 10702403] 

46. Rosenbluh J, Nijhawan D, Cox AG, et al. β-Catenin-driven cancers require a YAP1 transcriptional 
complex for survival and tumorigenesis. Cell. 2012; 151:1457–73. [PubMed: 23245941] 

47. White BD, Chien AJ, Dawson DW. Dysregulation of Wnt/β-catenin signaling in gastrointestinal 
cancers. Gastroenterology. 2012; 142:219–32. [PubMed: 22155636] 

48. Wong SCC, Lo ESF, Chan AKC, et al. Nuclear beta catenin as a potential prognostic and 
diagnostic marker in patients with colorectal cancer from Hong Kong. Mol Pathol MP. 2003; 
56:347–52. [PubMed: 14645698] 

49. Bartkova J, Thullberg M, Slezak P, et al. Aberrant expression of G1-phase cell cycle regulators in 
flat and exophytic adenomas of the human colon. Gastroenterology. 2001; 120:1680–8. [PubMed: 
11375949] 

50. Sansom OJ, Reed KR, van de Wetering M, et al. Cyclin D1 is not an immediate target of beta-
catenin following Apc loss in the intestine. J Biol Chem. 2005; 280:28463–7. [PubMed: 
15946945] 

51. Zhang T, Nanney LB, Luongo C, et al. Concurrent overexpression of cyclin D1 and cyclin-
dependent kinase 4 (Cdk4) in intestinal adenomas from multiple intestinal neoplasia (Min) mice 
and human familial adenomatous polyposis patients. Cancer Res. 1997; 57:169–75. [PubMed: 
8988060] 

52. Ben-David E, Bester AC, Shifman S, et al. Transcriptional dynamics in colorectal carcinogenesis: 
new insights into the role of c-Myc and miR17 in benign to cancer transformation. Cancer Res. 
2014; 74:5532–40. [PubMed: 25125661] 

53. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and 
rectal cancer. Nature. 2012; 487:330–7. [PubMed: 22810696] 

54. Arber N, Hibshoosh H, Moss SF, et al. Increased expression of cyclin D1 is an early event in 
multistage colorectal carcinogenesis. Gastroenterology. 1996; 110:669–74. [PubMed: 8608874] 

55. Bellone G, Gramigni C, Vizio B, et al. Abnormal expression of Endoglin and its receptor complex 
(TGF-β1 and TGF-β receptor II) as early angiogenic switch indicator in premalignant lesions of 
the colon mucosa. Int J Oncol. 2010; 37:1153–65. [PubMed: 20878063] 

56. Greenhough A, Smartt HJM, Moore AE, et al. The COX-2/PGE2 pathway: key roles in the 
hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis. 2009; 
30:377–86. [PubMed: 19136477] 

57. Wang D, Dubois RN. The role of COX-2 in intestinal inflammation and colorectal cancer. 
Oncogene. 2010; 29:781–8. [PubMed: 19946329] 

Su et al. Page 13

Mol Carcinog. Author manuscript; available in PMC 2017 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



58. Arber N, Eagle CJ, Spicak J, et al. Celecoxib for the prevention of colorectal adenomatous polyps. 
N Engl J Med. 2006; 355:885–95. [PubMed: 16943401] 

59. Elder DJE, Baker JA, Banu NA, et al. Human colorectal adenomas demonstrate a size-dependent 
increase in epithelial cyclooxygenase-2 expression. J Pathol. 2002; 198:428–34. [PubMed: 
12434411] 

60. Benamouzig R, Uzzan B, Martin A, et al. Cyclooxygenase-2 expression and recurrence of 
colorectal adenomas: effect of aspirin chemoprevention. Gut. 2010; 59:622–9. [PubMed: 
20427397] 

61. Chan AT. COX-2 expression in adenoma: an imperfect marker for chemoprevention. Gut. 2010; 
59:568–9. [PubMed: 20427388] 

62. Jirawatnotai S, Hu Y, Michowski W, et al. A function for cyclin D1 in DNA repair uncovered by 
protein interactome analyses in human cancers. Nature. 2011; 474:230–4. [PubMed: 21654808] 

63. Takaku K, Oshima M, Miyoshi H, et al. Intestinal tumorigenesis in compound mutant mice of both 
Dpc4 (Smad4) and Apc genes. Cell. 1998; 92:645–56. [PubMed: 9506519] 

64. Cullingworth J, Hooper ML, Harrison DJ, et al. Carcinogen-induced pancreatic lesions in the 
mouse: effect of Smad4 and Apc genotypes. Oncogene. 2002; 21:4696–701. [PubMed: 12096346] 

65. Powell SM, Zilz N, Beazer-Barclay Y, et al. APC mutations occur early during colorectal 
tumorigenesis. Nature. 1992; 359:235–7. [PubMed: 1528264] 

66. Attisano L, Wrana JL. Signal integration in TGF-β, WNT, and Hippo pathways. F1000prime Rep. 
2013; 5:17. [PubMed: 23755364] 

67. Cheruku HR, Mohamedali A, Cantor DI, et al. Transforming growth factor-β, MAPK and Wnt 
signaling interactions in colorectal cancer. EuPA Open Proteomics. 2015; 8:104–15.

68. Hu T, Li C. Convergence between Wnt-β-catenin and EGFR signaling in cancer. Mol Cancer. 
2010; 9:236. [PubMed: 20828404] 

69. Buchanan FG, DuBois RN. Connecting COX-2 and Wnt in cancer. Cancer Cell. 2006; 9:6–8. 
[PubMed: 16413466] 

70. Eisinger AL, Prescott SM, Jones DA, et al. The role of cyclooxygenase-2 and prostaglandins in 
colon cancer. Prostaglandins Other Lipid Mediat. 2007; 82:147–54. [PubMed: 17164142] 

71. Dorsam RT, Gutkind JS. G-protein-coupled receptors and cancer. Nat Rev Cancer. 2007; 7:79–94. 
[PubMed: 17251915] 

72. Gladden AB, Diehl JA. Location, location, location: the role of cyclin D1 nuclear localization in 
cancer. J Cell Biochem. 2005; 96:906–13. [PubMed: 16163738] 

73. Labbé E, Letamendia A, Attisano L. Association of Smads with lymphoid enhancer binding factor 
1/T cell-specific factor mediates cooperative signaling by the transforming growth factor-beta and 
wnt pathways. Proc Natl Acad Sci U S A. 2000; 97:8358–63. [PubMed: 10890911] 

74. Nishita M, Hashimoto MK, Ogata S, et al. Interaction between Wnt and TGF-beta signalling 
pathways during formation of Spemann’s organizer. Nature. 2000; 403:781–5. [PubMed: 
10693808] 

75. Demagny H, Araki T, De Robertis EM. The tumor suppressor Smad4/DPC4 is regulated by 
phosphorylations that integrate FGF, Wnt, and TGF-β signaling. Cell Rep. 2014; 9:688–700. 
[PubMed: 25373906] 

76. Furuhashi M, Yagi K, Yamamoto H, et al. Axin facilitates Smad3 activation in the transforming 
growth factor beta signaling pathway. Mol Cell Biol. 2001; 21:5132–41. [PubMed: 11438668] 

77. Peng X, Luo Z, Kang Q, et al. FOXQ1 mediates the crosstalk between TGF-β and Wnt signaling 
pathways in the progression of colorectal cancer. Cancer Biol Ther. 2015; 16:1099–109. [PubMed: 
25955104] 

78. Schroeder JA, Adriance MC, McConnell EJ, et al. ErbB-beta-catenin complexes are associated 
with human infiltrating ductal breast and murine mammary tumor virus (MMTV)-Wnt-1 and 
MMTV-c-Neu transgenic carcinomas. J Biol Chem. 2002; 277:22692–8. [PubMed: 11950845] 

79. Janssen K-P, Alberici P, Fsihi H, et al. APC and oncogenic KRAS are synergistic in enhancing Wnt 
signaling in intestinal tumor formation and progression. Gastroenterology. 2006; 131:1096–109. 
[PubMed: 17030180] 

Su et al. Page 14

Mol Carcinog. Author manuscript; available in PMC 2017 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



80. Civenni G, Holbro T, Hynes NE. Wnt1 and Wnt5a induce cyclin D1 expression through ErbB1 
transactivation in HC11 mammary epithelial cells. EMBO Rep. 2003; 4:166–71. [PubMed: 
12612606] 

81. Krejci P, Aklian A, Kaucka M, et al. Receptor tyrosine kinases activate canonical WNT/β-catenin 
signaling via MAP kinase/LRP6 pathway and direct β-catenin phosphorylation. PloS One. 2012; 
7:e35826. [PubMed: 22558232] 

82. Cross DA, Alessi DR, Cohen P, et al. Inhibition of glycogen synthase kinase-3 by insulin mediated 
by protein kinase B. Nature. 1995; 378:785–9.

83. Hazan RB, Norton L. The epidermal growth factor receptor modulates the interaction of E-
cadherin with the actin cytoskeleton. J Biol Chem. 1998; 273:9078–84. [PubMed: 9535896] 

84. Modi PK, Komaravelli N, Singh N, et al. Interplay between MEK-ERK signaling, cyclin D1, and 
cyclin-dependent kinase 5 regulates cell cycle reentry and apoptosis of neurons. Mol Biol Cell. 
2012; 23:3722–30. [PubMed: 22833568] 

85. Ravenhall C, Guida E, Harris T, et al. The importance of ERK activity in the regulation of cyclin 
D1 levels and DNA synthesis in human cultured airway smooth muscle. Br J Pharmacol. 2000; 
131:17–28. [PubMed: 10960064] 

86. Lu Z, Ghosh S, Wang Z, et al. Downregulation of caveolin-1 function by EGF leads to the loss of 
E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. 
Cancer Cell. 2003; 4:499–515. [PubMed: 14706341] 

Su et al. Page 15

Mol Carcinog. Author manuscript; available in PMC 2017 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
The expression patterns of eight markers in colorectal adenomas. The positive cells of most 

markers (Ki-67, TUNEL, COX-2, cyclin D1, EGFR, c-Myc and TGFβRII) show surface 

predominant distribution, except nuclear β-catenin (h), which shows basal predominant 

distribution (in which the positive cells are mainly distributed in the basal zone of 

adenomatous polyp) (see Supplementary Table 2). The subcellular localization of each 

marker is shown with high-power magnification in the lower right corner of each figure. The 

positively stained markers may present in the nuclei (Ki-67, TUNEL, cyclin D1 and c-Myc), 

cytomembrane (TGFβRII and EGFR), or cytoplasm (COX-2) of tumor cells. The positive 

signal of β-catenin shows the complexity of subcellular localization in the cell membrane, 

cytoplasm and nuclei (h). The positive nuclear β-catenin (green) overlaid the positive TCF4 

(red) shows in yellow color, and the nuclei are counterstained with DAPI.
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Figure 2. The cross-talk of the canonical Wnt/β-catenin pathway with the TGF-β, EGFR and 
COX-2 pathways
For the interaction between the Wnt/β-catenin and TGF-β pathways, the responsive Smads 

(Smads 2 and 3) can directly associate with lymphoid enhancer binding factor 1/T cell-

specific factor (LEF1/TCF) to synergistically activate target genes [73,74]; the tumor 

suppressor Smad4 is negatively regulated by Wnt/GSK3 phosphorylations [75]; Axin, a core 

component of the β-catenin destruction complex, may function as an adapter, facilitating 

Smad3 association with the receptor complex thereby promoting TGF-β signaling [76]; 

FOXQ1, a member of the forkhead transcription factor family, can be induced by TGF-β1 

and enhance the nuclear translocation of β-catenin [77]. For interaction between Wnt/β-

catenin and EGFR pathways, a synergistic interaction has been found through various 

mechanisms at different levels. For example, the direct association between β-catenin and 

EGFR/c-Neu (ErbB1/ErbB2) heterodimers is identified in mammary gland tumors [78]. In 

intestinal tumor cells, APC and KRAS act synergistically in enhancing Wnt signaling, tumor 

formation and progression [79]. Overexpression of Wnt-1 and Wnt-5a activated EGFR 

signaling by stimulated EGFR tyrosine phosphorylation, activation of extracellular signal-

regulated kinase (ERK)1/2, and matrix metalloproteinase-mediated release of soluble EGFR 

ligands through Frizzled receptors [80]. A potent activation of Wnt/β-catenin by EGFR is 

dependent on ERK MAP kinase-mediated phosphorylation of Wnt co-receptor LRP6 which 

dramatically increases the cellular response to Wnt. Moreover, EGFR directly phosphorylate 

β-catenin at Tyr142, which is known to increase cytoplasmic β-catenin concentration via 

release of β-catenin from membranous cadherin complexes [81]. The phosphatidylinositol 3-

kinase (PI3K)/AKT pathway inactivates GSK3, via direct AKT-mediated phosphorylation to 

facilitate Wnt signaling pathway [82]. EGF treatment of human breast cancer cell lines 

MDA-MB-468 can induce a strong tyrosine phosphorylation of β-catenin, that blocks the 

interaction between β-catenin and E-cadherin and increases the invasiveness and metastatic 
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potential of cancer cells [83]. In addition, EGFR/Erk signaling causes upregulation of cyclin 

D1 and c-Myc, and downregulation of caveolin-1 which in turn enhances β-catenin-TCF/

LEF-1 transcriptional activity [84–86]. For interaction between Wnt/β-catenin and COX-2 

pathways, a direct link between two pathways has been found through prostaglandin E2, one 

of the bioactive products of COX-2, which activates components of the canonical Wnt 

signaling system via G protein-coupled receptor EP2 and ravious signaling. The G protein α 
subunits (Gαs) interact with Axin resulting displacement of APC and increase of nuclear β-

catenin; Gαs can also activate Akt through PKA; G protein βᵞ subunits (Gβᵞ) interact with 

PI3K resulting phosphorylation and inactivation of GSK-3β via Akt. In addition, EP2-Gβᵞ 
can also promote the transactivation of EGFR pathway in colon cancer cells through Src, 

which activates the proteolytic release of the EGFR ligands amphiregulin (AR) and 

transforming growth factor-α (TGFα), thereby stimulating the EGFR-signalling network. 

EP2-Gαs also stimulates expression of COX-2 by activating adenylyl cyclase (AC), resulting 

in increased cyclic AMP (cAMP) production, protein kinase A (PKA) activation and the 

phosphorylation of CREB. [69,71].
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